Licence de mathématiques, 2^e année Algèbre Linéaire 2 (SMI3U2)

Deux heures, ni calculatrices, ni documents

Examen	□ Luminy
Mardi 8 janvier 2013	
	□ Saint-Jérôme

☐ Château-Gombert

Enseignants: T. Coulbois, F. Palesi, H. Short

Exercice I. (Cours, 6 points)

- (1) Montrer que toute matrice de $\mathcal{M}_n(\mathbb{C})$ possède un vecteur propre non nul.
- (2) Énoncer le théorème de Cayley-Hamilton.
- (3) Soit f un endomorphisme de E et P un polynôme. Montrer que si λ est une valeur propre de f et P(f) = 0, alors $P(\lambda) = 0$

Exercice II. On travaille dans un espace vectoriel réel de dimension 3. Soit $m \in \mathbb{R}$.

Soit
$$A_m = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 2 & m \end{pmatrix}$$
.

- 1. Calculer le polynôme caractéristique de A_m .
- 2. Soit $Q(X) = X^3 (m+2)X^2 + (2m+1)X$. En utilisant le théorème de CAYLEY-HAMILTON, montrer que $Q(A_m) = mI_3$.
- 3. Pour $m \neq 0$, déduire A_m^{-1} de la question précédente.
- 4. Pour m=3, montrer que la matrice A_3 est diagonalisable et donner une matrice de passage P_3 telle que $P_3^{-1}A_3P_3$ est diagonale.
- 5. Pour m=1, montrer que la matrice A_1 n'est pas diagonalisable et donner une matrice de passage P_1 telle que $P_1^{-1}A_1P_1$ est triangulaire.
- **6.** Pour $m \in \mathbb{R} \setminus \{1, 3\}$, montrer que A_m n'est pas diagonalisable (on ne demande pas de la trigonaliser).

Exercice III. Soit $E = \mathbb{R}_2[X]$ l'espace vectoriel des polynômes de degré inférieur ou égal à 2 et soient $x_1, x_2, x_3 \in \mathbb{R}$ trois réels distincts. On définit l'application ϕ_i par $\phi_i(P) =$ $P(x_i)$ pour tout polynôme $P \in E$.

- 1. Montrer que ϕ_i est une forme linéaire sur E.
- **2.** Montrer que la famille (ϕ_1, ϕ_2, ϕ_3) est une base de E^* .
- 3. Soit (L_1, L_2, L_3) la base antéduale de (ϕ_1, ϕ_2, ϕ_3) . Exprimer $L_i(x_i)$.
- 4. En déduire que $L_1(X) = C_1(X x_2)(X x_3)$ pour une constante C_1 que l'on déterminera en fonction de x_1, x_2, x_3 .
- **5.** Montrer qu'il existe $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ tels que pour tout polynôme P on a :

$$\int_0^1 P(t)dt = \alpha_1 P(x_1) + \alpha_2 P(x_2) + \alpha_3 P(x_3)$$

Montrer que pour tout polynôme $P \in \mathbb{R}_2[X]$ on a

$$P = P(x_1)L_1 + P(x_2)L_2 + P(x_3)L_3$$