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Abstract. In order to show existence of solutions for linear elliptic problems
with measure data, a first classical method, due to Stampacchia, is to use
a duality argument (and a regularity result for elliptic problems). Another
classical method is to pass to the limit on approximate solutions obtained
with regular data (converging towards the measure data). A third method is
presented. It consists to pass to the limit on approximate solutions obtained
with numerical schemes such that Finite Element schemes or Finite Volume
schemes. This method also works for convection-diffusion problems which lead
to non coercive elliptic problems with measure data. Thanks to a uniqueness
result, the convergence of the approximate solutions as the mesh size vanishes
is also achieved.
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1. Introduction

The first result of existence and uniqueness of solutions for the Dirichlet problem
for a linear elliptic equation (with possibly discontinuous coefficients and) with
measure data is probably due to G. Stampacchia in his paper of 1965, see [1]. In this
paper, G. Stampacchia use a duality method. A regularity result on a primal prob-
lem leads to an existence and uniqueness result on the dual problem. It is interest-
ing to notice that the solution obtained by this method satisfies the equation with
a stronger sense than the classical weak sense (such as (2.10) below) as it is shown
by the counterexample given in Prignet [2], which is an adaptation of Serrin [3].

In the seventies, H. Brezis studied some semilinear elliptic equations such as:

−∆u+ g(u) = µ in Ω,
u = 0 on ∂Ω,

(1.1)
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with a nondecreasing function g ∈ C(R,R). The case µ ∈ L1(Ω) is solved in the
well-known papers of Brezis-Strauss [4], for the case where Ω is a bounded open
subset of R

N with a smooth boundary, and of Bénilan-Brezis-Crandall [5] for the
case Ω = R

N (in this latter case, one assumes g(0) = 0 and the boundary condition
“u = 0” has to be changed in a convenient condition). A well-known result of
Bénilan-Brezis is devoted to the case of the Thomas-Fermi equation where µ is
a measure on Ω, see [6] and the recent paper [7]. In fact, in the case of (1.1),
the function g makes very different the cases “µ ∈ L1(Ω)” and “µ measure on
Ω”. Indeed, if Ω is a bounded open subset of R

N with a smooth boundary and if
g ∈ C(R,R) is such that g(s)s ≥ 0 for all s ∈ R, then, the problem (1.1) has a
unique solution for all µ ∈ L1(Ω). But, the existence part of this result is not always
true if µ is a measure on Ω. For instance, let p ∈]1,∞[, g(s) = |s|p−1s and µ be a
measure on Ω. Then, (1.1) has a solution if and only if µ ∈ L1(Ω)+W−2,p(Ω). This
latter condition is equivalent to say that |µ|(A) = 0 for for every borelian subset
of Ω whose W 2,p′

-capacity is zero, see Gallouët-Morel [8] and Baras-Pierre [9].
Following the works of H. Brezis, the case of quasilinear equations with the

classical Leray-Lions conditions may be studied:

−div(a(·, u,∇u)) = µ in Ω, u = 0 on ∂Ω. (1.2)

Here also, one obtains, for all measure µ on Ω, the existence of a solution to (1.2),
see Boccardo-Gallouët [10] and [11].

In order to obtain these existence results (for (1.1) or (1.2)), a classical
method is to consider approximate solutions obtained with a sequence of regu-
lar functions (µn)n∈N, bounded in L1(Ω) and �-weakly converging to µ (with also
some approximations of the function g in the case of (1.1)) and then to obtain
some estimates on this sequence of approximate solutions and to pass to the limit
as n → ∞ (it is for this last step that some difference occurs between “L1” and
“measure” in the case of (1.1)).

In this paper, we will present a third method to obtain existence of solutions
for elliptic problems with measure data. It consists to pass to the limit on the
solution obtained with a discretization of the equation by a numerical scheme
(such as a Finite Element scheme). This method has a double interest since it
gives the existence of a solution for the problem considered and it gives a way to
compute an approximation of this solution (especially if one has also a uniqueness
result). In some cases, it is also possible to have some error estimates. This question
of computation of the solution of an elliptic problem with measure data is crucial
for some engineering problems. An example is given by the reservoir simulation in
petroleum engineering. In this example, measure data have to be considered since
the diameter of a well (about 10 cm) is very small with respect to a typical mesh
size (about 100 m). It leads to source terms in the equations which are measures
supported on some points (for some 2d models) or some lines (for 3d models), see
Fabrie-Gallouët [12] for instance.

In Section 2, a model example is considered which is generalized in Section 3.
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2. A model example

This section presents a result given in Gallouët-Herbin [13].

Let Ω be a polygonal open subset of R
2 and µ ∈ Mb(Ω), where Mb(Ω) denotes

the set of bounded measures on Ω, that is the set of σ-additives applications from
the borelian subsets of Ω to R. An element µ ∈ Mb(Ω) may be considered as an
element of (C(Ω))′, setting µ(ϕ) =

∫
Ω ϕdµ if ϕ ∈ C(Ω). In the sequel, C(Ω) is

endowed with its usual “sup-norm” and ‖µ‖Mb
denotes the norm of µ in the dual

space (C(Ω))′. One considers the Dirichlet problem with µ as datum:

−∆u = µ in Ω,
u = 0 on ∂Ω. (2.1)

In order to prove the existence of a (weak) solution to (2.1), the method developed
in [10] considers a sequence (µn)n∈N of regular functions such that µn → µ for the
�-weak topology of C(Ω)′ and the sequence (un)n∈N ⊂ H1

0 (Ω) of (weak) solutions
of (2.1) with µn instead of µ, that is

−∆un = µn in Ω,
un = 0 on ∂Ω. (2.2)

The method developed in this paper is to consider a sequence of solutions of
a numerical scheme as the mesh size goes to 0. Roughly speaking, it consists to
“regularize the operator” (the discretized problem is a linear system in a finite-
dimensional space) instead of “regularize the datum”.

Let M be a Finite Element triangular mesh of Ω (see, e.g., Ciarlet [14]). One
chooses the piecewise Finite Element approximation of (2.1). One sets H = {u ∈
C(Ω); u|K ∈ P 1 for all K ∈ M}, where P 1 denotes the set of affine functions, and
H0 = {u ∈ H ; u = 0 on ∂Ω}. The Finite Element approximation of (2.1) leads to
the following problem:

uM ∈ H0,∫
Ω ∇uM · ∇vdx =

∫
Ω vdµ, ∀v ∈ H0.

(2.3)

It is classical that (2.3) has a unique solution. The aim is to proves the
convergence of uM to some u, as the mesh size goes to zero, and that u is the
unique solution of (2.1) in a convenient sense. The main difficulty is to obtain
some estimates on uM.

In order to obtain these estimates, one recalls the way to obtain some esti-
mates on the solution un of (2.2) (the method of [10]). Since (µn)n∈N ⊂ L1(Ω)
and µn → µ for the �-weak topology of C(Ω)′, the sequence (µn)n∈N is bounded
in L1(Ω). Indeed, in order to simplify, one may assume that ‖µn‖L1 ≤ ‖µ‖Mb

for
all n. Then, let θ > 1 and define:

ϕ(s) =
∫ s

0

1
(1 + |t|)θ

dt; s ∈ R.
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Taking ϕ(un) as test function in the weak formulation of (2.2) (note that ϕ(un) ∈
H1

0 (Ω)) leads to:
∫

Ω

|∇un|2
(1 + |un|)θ

dx ≤ Cθ‖µ‖Mb
, (2.4)

where Cθ =
∫ ∞
0

1
(1+|t|)θ dt < ∞ (and | · | denotes the Euclidean norm in R

d, for
any d ≥ 1).

Using Hölder Inequality, Sobolev embedding and the fact that θ can be chosen
arbitrarily close to 1, one deduces from (2.4) the existence, for all q < 2 (if Ω is a
bounded open of R

d, d ≥ 2, the bound on q is q < d
d−1), of Cq, only depending on

Ω, q and ‖µ‖Mb
such that: ∫

Ω

|∇un|qdx ≤ Cq.

A quite similar method can be used in order to obtain some estimates on the
solution uM of (2.3). The first difficulty is that ϕ(uM) does not belong to H0,
then it is not possible to take v = ϕ(uM) in (2.3). But, we can take for v the
interpolate of ϕ(uM). Indeed, let V the set of vertices of M and φK the Finite
Element basis function associated to K ∈ V (that is φK ∈ H , φK(K) = 1 and
φK(L) = 0 if L ∈ V , L 
= K). One has, with uK = uM(K) for all K ∈ V :

uM =
∑

K∈V
uKφK .

Taking v =
∑

K∈V ϕ(uK)φK in (2.3) leads to:
∑

(K,L)∈(V)2

TK,L(uK − uL)(ϕ(uK) − ϕ(uL)) ≤ Cθ‖µ‖Mb
, (2.5)

where TK,L = −
∫
Ω
∇φK · ∇φLdx and noting that

∑
L∈V TK,L = 0, for all K ∈ V

since
∑

L∈V φL(x) = 1 for all x ∈ Ω.
In order to deduce from (2.5) a W 1,q

0 -estimate on uM (for 1 ≤ q < 2), an
additional hypothesis is assumed. It is supposed that, the mesh M satisfies, for
some positive ζ, the following Delaunay and non degeneracy conditions:

(i) For any interior edge of M, the sum of the angles facing that edge
is less or equal to π − ζ,

(ii) For any edge lying on the boundary, the facing angle is less or
equal to π

2 − ζ,
(iii) For any angle θ of any triangle T of the mesh M, θ ≥ ζ.

(2.6)

Under this hypothesis, it follows from (2.5) the existence, for all q < 2, of Cq, only
depending on Ω, q, ‖µ‖Mb

and ζ such that:

‖uM‖W 1,q
0 (Ω) ≤ Cq. (2.7)

A way to prove (2.7), using (2.5), can be done with similar results using Finite
Volume schemes, see Gallouët-Herbin [15] or Droniou-Gallouët-Herbin [16]. Indeed,
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uM =
∑

K∈V uKφK is solution of (2.3) if and only if the family (uK)K∈V is solution
of

∑

L∈V
TK,L(uK − uL) =

∫

Ω

φKdµ, ∀K ∈ V ,

uK = 0, ∀K ∈ V ∩ ∂Ω.
(2.8)

The left-hand side of the first equation of (2.8) is the same than the left-
hand side obtained with the classical Finite Volume scheme on the Voronöı mesh
associated to the set V . The control volume (of this Voronöı mesh) associated to
K ∈ V is the set of points of Ω whose distance to K is less than its distance to
any other element of V . Thanks to Condition (2.6), the control volumes of the
Voronöı mesh are also defined by the orthogonal bisectors of the edges of M, see
Figure 1. The fact that the schemes (Finite Element on M and Finite Volume on
the Voronöı mesh associated to V) differ only by the right-hand sides is due to the
following computation for any T ∈ M:

−
∫

T

∇φK · ∇φLdx =
1
2
cotan(θK,L),

where θK,L is the angle of T facing the edge with vertices K and L. Hence, for
K,L ∈ V , K 
= L:

TK,L =
mK,L

dK,L
,

where mK,L denotes the distance between the points intersecting the orthogonal
bisectors in each of the triangles with vertices K and L (except for the case K ∈
V ∩ ∂Ω and L ∈ V ∩ ∂Ω which has no importance), and dK,L denotes the distance
between K and L.

Figure 1. Continuous line: Finite Element mesh. Dashed line:
Voronöı mesh associated to the vertices of the Finite Element
mesh.

It is now possible possible to use the results of [15] (or [16]) which use the
Hölder Inequality and a discrete version of the Sobolev embedding. It gives, for
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1 ≤ q < 2, the existence for Cq, only depending on Ω, q and ‖µ‖Mb
such that:

∑

(K,L)∈(V)2

mK,LdK,L

(
uK − uL

dK,L

)q

≤ Cq,

from which follows (2.7) for some Cq, only depending on Ω, q, ‖µ‖Mb
and ζ.

Thanks to these W 1,q
0 -estimates on uM, it is now possible to pass to the limit

as size(M) goes to zero, where size(M) is the supremum of the diameters of the
elements of M.

Assuming uM → u for the weak topology of W 1,q
0 , for all 1 ≤ q < 2, as

size(M)→ 0 (indeed, it is not possible, up to now, to assume such a conver-
gence, one has to consider subsequences of sequences of meshes satisfying (2.6)),
let ψ ∈ C∞

c (Ω) (a regular function with compact support). Taking v = ψM =∑
K∈V ψ(K)φK in (2.3) (this is possible since ψM ∈ H0) gives:

∫

Ω

∇uM · ∇ψMdx =
∫

Ω

ψMdµ. (2.9)

Since ψM → ψ, ∇ψM → ∇ψ uniformly on Ω and uM → u for the weak topology
of W 1,q

0 , as size(M) → 0, (2.9) gives that u satisfies:
∫

Ω

∇u · ∇ψdx =
∫

Ω

ψdµ.

Then, since u ∈ W 1,q
0 (Ω) for all 1 ≤ q < 2 and since W 1,r

0 (Ω) ⊂ C(Ω) for all
r > 2, a density argument gives that u is solution of:

u ∈ ∩1≤q<2W
1,q
0 (Ω),∫

Ω

∇u · ∇ψdx =
∫

Ω

ψdµ, ∀ψ ∈ ∪r>2W
1,r
0 (Ω).

(2.10)

The solution of (2.10) is unique (this is also true for a more general elliptic op-
erator in dimension 2, but not for a general elliptic operator with discontinuous
coefficients, in dimension d ≥ 3, replacing 2 by d

d−1 and 2 by d in the two assertions
of (2.10), a counterexample is in [2]).

Finally, thanks to this uniqueness result, it is proven that uM → u for the
weak topology of W 1,q

0 , for all 1 ≤ q < 2, as size(M) → 0, M satisfying (2.6)
(with a fixed ζ > 0). This gives the following theorem:

Theorem 2.1. Let Ω be a polygonal open subset of R
2, µ ∈Mb(Ω) and ζ > 0. For a

Finite Element mesh M of Ω satisfying Condition (2.6), let uM be the solution of
(2.3). Then, uM → u, unique solution of (2.10), for the weak topology of W 1,q

0 (Ω),
for all 1 ≤ q < 2, as size(M) → 0.

The convergence which is proven in Theorem 2.1 is only a weak convergence
in W 1,q

0 (Ω) for all q < 2. Then, it gives the (strong) convergence in Lq(Ω) for all
q < ∞. It is perhaps also possible to prove a strong convergence in W 1,q

0 (Ω) for
any q < 2. In some cases, such that a Dirac measure for µ, it is possible to obtain
some error estimates, see Scott [17].
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The generalization of this proof of convergence for a Finite Element method
in dimension d = 3 is not clear. It needs some additional work. In the following
section, a generalization is given for a convection-diffusion operator, in dimension
d = 2 or 3, using a Finite Volume method.

3. Convection-diffusion equations

This section presents a result given in Droniou-Gallouët-Herbin [16] (where more
general problems are considered).
Let Ω be a polygonal (for d = 2) or polyhedral (for d = 3) open subset of R

d

(d = 2 or 3). Let v ∈ C(Ω)d and µ ∈Mb(Ω), the problem under consideration is:

−∆u+ div(vu) = µ in Ω,
u = 0 on ∂Ω. (3.1)

Such a problem is studied, for instance, in Droniou [18], where an existence and
uniqueness result is given using the method of Stampacchia (see [1]), that is a
regularity result and a duality argument. The objective, here, is to obtain an
existence result, passing to the limit on numerical schemes (and this gives also the
convergence of numerical schemes).

Remark 3.1. For some v ∈ (C(Ω))d, the problem 3.1 appears to be associated to
a noncoercive operator. Let A : H1

0 (Ω) → H−1(Ω) be defined by Au = −∆u+
div(vu) for u ∈ H1

0 (Ω). Then, it may exist some u ∈ H1
0 (Ω), u 
= 0, such that

〈Au, u〉H−1,H1
0

= 0, which leads to the noncoercivity of A.

A solution of (3.1) is a function u satisfying (using the fact that W 1,r
0 (Ω) ⊂

C(Ω) for r > d):

u ∈ ∩1≤q< d
d−1

W 1,q
0 (Ω),

∫

Ω

∇u · ∇ψdx−
∫
vu · ∇ψ =

∫

Ω

ψdµ, ∀ψ ∈ ∪r>dW
1,r
0 (Ω).

(3.2)

The uniqueness of the solution of (3.2) is quite simple, using a regularity
result on the dual problem to (3.2) (see [16] or [18]). In order to prove an existence
result, a discretization of (3.1) by a Finite Volume scheme is used.

In [16] a large class of “admissibles” meshes of Ω is considered. Here, in
order to simplify, one considers only some particular meshes. Let T be a mesh of
Ω. One assumes that T is the Voronöı mesh associated to a family V of points
of Ω with the assumption that any point of ∂Ω belongs to a control volume (or
its boundary) associated to an element of V which is also belonging to ∂Ω (this
is always possible, adding to V some points on ∂Ω if necessary). In the sequel, a
Voronöı mesh satisfying this property on the points of ∂Ω will be called a “genuine
Voronöı mesh”. An example is given in the preceding section. Indeed, the Voronöı
mesh associated to the vertices of a Finite Element mesh M satisfying Condition
(2.6) is a genuine Voronöı mesh, see Figure 2. The definition of a Voronöı mesh
gives that the element of T are some open sets. In order to take into account the
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fact that the measure µ may charge some parts of the edges of T , the elements of
T are slightly modified such that T is now a (borelian) partition of Ω.

TK,L =
mK,L

K

L

dK,L

Figure 2. A genuine Voronöı mesh.

Let K ∈ V . The control volume associated to K is denoted by VK and
µK = µ(VK). For K ∈ V , the set of elements L of V such that VK and VL have a
common edge is denoted by NK . If L ∈ NK , the common edge to VK and VL is
denoted by σK,L and its (d−1)-Lebesgue measure is denoted by mK,L. The normal
unit vector on σK,L, outward K, is denoted by nK,L (so that nL,K = −nK,L).
Furthermore dK,L is the distance between K and L and:

TK,L =
mK,L

dK,L
.

The discretization of (3.1) is performed with the classical Finite Volume
scheme for the diffusion term and an upwind Finite Volume scheme for the con-
vection term:

∑

L∈NL

TK,L(uK − uL) +mK,LvK,LuK,L = µK , ∀K ∈ V ∩ Ω,

uK = 0, ∀K ∈ V ∩ ∂Ω,
(3.3)

where vK,L is the mean value of v · nK,L on σK,L and uK,L is equal to uK or uL

depending on the sign of vK,L:

uK,L = uK if vK,L > 0,
uK,L = uL if vK,L < 0. (3.4)

The system (3.3)–(3.4) appears to be a linear system of N unknowns, namely {uK ,
K ∈ V ∩Ω}, and N equations, where N is the number of elements of {K ∈ V ∩Ω}.
Existence and uniqueness of the solution of this system is an easy consequence of
the following property of positivity (interesting for its own sake), which is due to
the upwind choice of uK,L (that is (3.4)):

{uK ,K ∈ V} solution of (3.3)–(3.4)
µK ≥ 0 for all K ∈ V

}

⇒ uK ≥ 0 for all K ∈ V . (3.5)
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The proof of (3.5) is classical. IfM is the matrix which determines the linear system
(3.3)–(3.4), after an ordering of the unknowns, the property (3.5) is: X ∈ R

N ,
MX ≥ 0 ⇒ X ≥ 0, which a consequence of the same property on M�, namely
X ∈ R

N , M�X ≥ 0 ⇒ X ≥ 0.

The solution {uK , K ∈ V} of (3.3)–(3.4) gives an approximate solution of
(3.1) uV defined by:

uV(x) = uK if x ∈ VK , K ∈ V . (3.6)
The proof that uV converges to u, solution of (3.2), as the mesh size goes to 0, is
now divided in four steps:

1. Estimates on uV for a so-called discrete W 1,q
0 -norm, for 1 ≤ q < d

d−1 (note
that uV /∈ W 1,q

0 (Ω) except for some very particular cases !).
2. Relative compactness in Lq(Ω), for 1 ≤ q < d

d−2 , of the family of approximate
solutions.

3. Any possible limit of the approximate solutions as the mesh size goes to 0 is
belonging to W 1,q

0 (Ω) for 1 ≤ q < d
d−1 .

4. Any possible limit of the approximate solutions as the mesh size goes to 0 is
solution of (3.2).

With this four steps, the uniqueness of the solution of (3.2) gives that uV converges
to u, solution of (3.2), as the mesh size goes to 0, in Lq(Ω), for 1 ≤ q < d

d−2 .
The main arguments of these four steps are now described.
Step 1. Estimates on uV . Using the method of Section 2, it is quite easy to obtain
some estimates on uV in the case where div(v) ≥ 0 (which gives some coercivity).
But, it is not so easy without this assumption. Indeed, a first step is to control
meas({uV ≥ k}), as k → ∞, uniformly with respect to V . This is possible thanks
to an estimate on ln(1 + |uV |). The way to obtain this estimate on ln(1 + |uV |) is
described below in the continuous case that for the weak solution u ∈ H1

0 (Ω) of
(3.1) when µ ∈ H−1(Ω) ∩ L1(Ω).

Let ϕ ∈ C1(R,R) be the function defined in Section 2 for θ = 2, that is
ϕ(s) =

∫ s

0
1

(1+|s|)2 for s ∈ R. Taking ϕ(u) as test function in the weak formulation
of (3.1) leads to:

∫

Ω

|∇u|2
(1 + |u|)2 dx ≤ C2‖µ‖Mb

+
∫

Ω

|v||u||∇u|
(1 + |u|)2 dx

≤ C2‖µ‖Mb
+ ‖v‖∞

∫

Ω

|∇u|
1 + |u|dx,

(3.7)

with C2 =
∫ ∞
0
ϕ(s)ds = 1 and ‖v‖∞ = supx∈Ω |v(x)| <∞.

Using Cauchy-Schwarz Inequality, Inequality (3.7) gives a bound on ∇ ln(1+
|u|) in L2(Ω), only depending on v, ‖µ‖Mb

and Ω. Then, since ln(1+ |u|) ∈ H1
0 (Ω),

Poincaré Inequality gives a bound on ln(1 + |u|) in L2(Ω) only depending on v,
‖µ‖Mb

and Ω.
A similar estimate holds for uV , solution of the discretized problem, namely

(3.3)–(3.4) and (3.6). The bound on ln(1 + |uV |) in L2(Ω) is also only depending
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on v, ‖µ‖Mb
and Ω. The proof of this bound uses the same arguments, with some

technical difficulties, and uses the upwind choice of uK,L in (3.4).
The bound on ln(1 + |uV |) in L2(Ω) gives a bound on meas{|uV | ≥ k}), namely:

meas{|uV | ≥ k}) ≤ C

(ln(1 + k))2
, (3.8)

where C is only depending on v, ‖µ‖Mb
and Ω. Using this bound, it is now pos-

sible to obtain estimates on the so-called discrete W 1,q
0 -norm of uV (recall that,

generally, uV 
∈ W 1,q
0 (Ω)), for 1 ≤ q < d

d−1 . This discrete W 1,q
0 -norm is defined,

for uV satisfying (3.6) and such that uK = 0 if K ∈ V ∩ ∂Ω, by:

‖uV‖q
1,q,V =

∑

(K,L)∈(V)2

mK,LdK,L

(
uK − uL

dK,L

)q

.

A bound on ‖uV‖1,q,V is obtained, for 1 ≤ q < d
d−1 , when uV is solution of (3.3)–

(3.4) and (3.6), using (3.8), the function ϕ of Section 2, with θ > 1 (close to 1), and
the functions Tk and Sk defined by Tk(s) = max(−k,min(s, k)), Sk(s) = s−Tk(s),
for s ∈ R. It is also used, for proving this estimate on ‖uV‖1,q,V , that, if L ∈ NK ,
the distance fromK to σK,L is equal to the distance from L to σK,L. The conclusion
of this step is that, for 1 ≤ q < d

d−1 , there exists Cq, only depending on v, ‖µ‖Mb

and Ω, such that:
‖uV‖1,q,V ≤ Cq. (3.9)

Step 2. Relative compactness in Lq(Ω), for 1 ≤ q < d
d−2 , of the family of approxi-

mate solutions. With the discrete W 1,q
0 -norm and q < d, a discrete version of the

Sobolev embedding holds. Here also, the fact that, if L ∈ NK , the distance from
K to σK,L is equal to the distance from L to σK,L is used. There exists Sq, only
depending on q, such that, if uV is defined by (3.6) and uK = 0 for K ∈ V ∩ ∂Ω:

‖uV‖Lq� (Ω) ≤ Sq‖uV‖1,q,V , (3.10)

where q� = qd
d−q .

Then, if uV is the solution of (3.3)–(3.4) and (3.6), Estimate (3.9) (where
1 ≤ q < d

d−1 ) leads, with (3.10), to an estimate on uV in Lr(Ω) for 1 ≤ r <
d

d−2 . This estimate gives the relative weak-compactness in Lr(Ω) of the family of
approximate solutions (that is the family of uV , solution of (3.3)–(3.4) and (3.6), as
V describes all the possible sets of points of Ω leading to a genuine Voronöı mesh).
In order to obtain the relative (strong-)compactness of the family of approximate
solutions, an equivalent to the Rellich theorem, using the norm ‖ · ‖1,q,V instead of
the W 1,q

0 -norm, is needed. This compactness theorem is, thanks to the Kolmogorov
compactness theorem, a consequence of the following inequality, which holds for
q ≤ 2, h ∈ R

d and any uV defined by (3.6) and such that uK = 0 for K ∈ V ∩ ∂Ω:
∫

Rd

|uV(x+ h) − uV(x)|q ≤ |h|(|h| + Csize(V))q−1‖uV‖1,q,V , (3.11)
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where C is only depending on Ω, size(V) is the supremum of the diameters of the
elements of the Voronöı mesh associated to V , and uV is defined outside Ω by
setting uV(x) = 0 if x 
∈ Ω.

Estimate (3.9) (where 1 ≤ q < d
d−1 ) gives, with (3.10) and (3.11), the relative

compactness of the family of approximate solutions in Lq(Ω) for 1 ≤ q < 2, thanks
to the Kolmogorov compactness theorem. Then, using the estimate on uV in Lr(Ω)
for 1 ≤ r < d

d−2 , the relative compactness of the family of approximate solutions
is obtained in Lq(Ω) for 1 ≤ q < d

d−2 .

Step 3. Let uV be the solution of (3.3)–(3.4) and (3.6). Assuming that uV converges
to some u in Lq(Ω), for all 1 ≤ q < d

d−2 , as size(V) → 0, the fact that u ∈ W 1,q
0 (Ω)

for all 1 ≤ q < d
d−1 is a consequence of Estimate (3.9) and (3.11). Indeed, for

h ∈ R
d, h 
= 0, (3.11) gives with (3.9) (recall that uV is defined outside Ω by

setting uV(x) = 0 if x 
∈ Ω):
∫

Rd

|uV(x+ h) − uV(x)|q
|h|q ≤ |h|(|h| + Csize(V))q−1

|h|q Cq,

which leads, for 1 ≤ q < d
d−1 , passing to the limit as size(V) → 0:

∫

Rd

|u(x+ h) − u(x)|q
|h|q ≤ Cq, (3.12)

where, here also, u is defined outside Ω by setting u(x) = 0 if x 
∈ Ω. Inequality
(3.12) gives ∇u ∈ Lq(Rd) and therefore, since u = 0 outside Ω, u ∈ W 1,q

0 (Ω).

Step 4. The proof of this step is easier (at least for a regular v). Indeed, let uV
be the solution of (3.3)–(3.4) and (3.6). Assuming that uV converges to some u
in Lq(Ω), for all 1 ≤ q < d

d−2 , as size(V) → 0, the preceding step gives that
u ∈ W 1,q

0 (Ω) for all 1 ≤ q < d
d−1 . Taking ψ ∈ C∞

0 (Ω), (3.2) is proven, passing
to the limit on the numerical scheme (3.3)–(3.4). Then, a density argument gives
(3.2) for all ψ ∈ ∪r>dW

1,r
0 (Ω) and this concludes Step 4.

As usual, the steps 3 and 4 hold for “subsequences of sequences of approxi-
mate solutions” and it is the uniqueness of the solution of (3.2) which gives, finally,
the convergence of all the family, that is the convergence of uV to u, unique solu-
tion of (3.2), in Lq(Ω), for all 1 ≤ q < d

d−2 , as size(V) → 0. Then, the conclusion
of this proof is the following theorem:

Theorem 3.2. Let Ω be a polygonal (for d = 2) or polyhedral (for d = 3) open
subset of R

d (d = 2 or 3). Let v ∈ C(Ω)d and µ ∈Mb(Ω). For a genuine Voronöı
mesh associated to a set V of points of Ω, let uV be the solution of (3.3)–(3.4)
and (3.6). Then, uV converges to u, unique solution of (3.2), in Lq(Ω), for all
1 ≤ q < d

d−2 , as size(V) → 0.
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