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First step for proving the convergence of approximate solutions for the
evolution compressible Navier-Stokes equations (which gives, in particular, the
existence of solutions, d =3, p = p7, v > 3).



Stationary compressible Stokes equations

Q is a bounded open set of R?, d = 2 or 3, with a Lipschitz continuous
boundary, v > 1, f € [2(Q)¢ and M > 0

—Au+Vp=FfinQ, u=0o0n 99,
div(pu) =0 inQ, p>0 in Q, / p(x)dx = M,
Q
p=p"in Q
Functional spaces : u € (Hy(Q))9, p € L3(Q), p € L*(Q)

(p€e L9 1< g<2in the case of Navier-Stokes if d =3 and vy < 3)



Aim

Prove the existence of a weak solution to the compressible Stokes equations
by the convergence of a sequence of approximate solutions
given by a numerical scheme as the mesh size goes to 0

(up to a subsequence, since, up to now, no uniqueness result is available for
this problem)



Discretization spaces

> Mesh: partition of €2 in simplices, regular in the usual finite element sense.
Additional assumption:

— — = K|L} > 6,
mf{hK’hL’J K|L} > 6o

> Approximation spaces: (u,p,p) € Wy, X Ly x L, Crouzeix Raviart spaces

W ),: piecewise linear functions discontinuous through the edges, with
equal mean value on both sides of an edge

Ly: piecewise constant functions

Unknowns: (us)oce.,., (Px)keT, (PK)keT-

u= Z Uy o (X) p= Z prlk p= Z prlk

o€ Eint KeT KeT



Discretization of the momentum equation

> Weak form of the momentum equation —Au+ Vp =f.
Y € (Hp ()7, /VUZVV*/pdivv:/f.v
Q Q Q

> Discrete operators for the velocity field:

Viu e L2(Q)??  with Viu=Vu inside the cells,

diviu € L2 (Q) with  divsu = divu  inside the cells.

» Discrete equation for u € Wy:

Yv € Wy, /th:th—/pdivhv:/f~v
Ja Ja Q



Properties of the discrete operators

» Broken Sobolev H' semi-norm:

B = Z/|VV\2dX:/|th|2dx
K Q

KeT

[Iv

1
» Approximation operator u € H}(Q) — ryu = Z ( / u) po € W

og€E&; |U|
int

v

Stability and approximation properties: v € H}(Q)

[raviie < c|v]m(g)

lv = rnvliagey + hi IV a(v = mv)liieeg < ¢ b [vinzg

v

inf-sup condition p € Ly

p divpv dx

sup 22

1
= >c|p— 7|2 ,withw:i/pdx
vew,  [Ivllve | ez m() Jo

» Compactness: If lim,—ooc h" =0and u" € W} ; ||u"||1,p < C then
3 o€ Q) ;u” — bin L3(Q) (up to a subsequence).



The scheme

The scheme:

Vv € Wy, /th:th—/pdivhv:/f~v
Q Q Q
VK € T, Z poVak + (Tm)k + (Tstab)k =0
o=K]|L
VK eT, pr = (pK)"

where:
PK If Vo.K 2 O

> Vo.k = |o|Us - Nk, upwind value for p: ps = { o1 otherwise

> (Tm)k = h" |K| (pk = "), p"=M/|Q, >0
b (Tewde = 3 (4 h)E 2 (1ol 4+ 1oul€) (on - o),

o=K|L E
¢ =max(0,2—7), £ €(0,2)

Twm ~ regularity of the system, px > 0 and >, |K|px = M.

g
Titan ~ control of [pl7 = ) |IT| (px — pL)?
o=K[L °



Existence of a solution to the scheme

Theorem
There exists a solution to the scheme.

Proof
Consider the function (@1, p, p) — (u, p, p) defined for positive p and j as
follows:
1— compute p from the mass balance with .
2— compute p from p by the equation of state.
3— compute u by the momentum balance.
Then:

120, [ pax=M, 50 llxe < G
Q

2. ...50 |lpllrz) < G
3. ...s0 ||u||1,b S C3
and, by Brouwer's fixed point theorem, this function admits a fixed point in:

C= {(u,p,p) € Wy X Ly X Ly s.t.
lulles < G, lIpllze) < G, llolluie) < G, p=0,p 20}



Convergence result

Let (75)nen be a sequence of meshes with lim,—.o h, = 0.
Let (un, pn, Pn)nen be the corresponding sequence of solutions to the scheme.

Then, when n — oo, up to a subsequence:
u, — u € Hy(Q)? strongly in L*(Q)°
pn — P weakly in L?(Q), strongly in LY(Q),q < 2,

pn — p weakly in L*7(Q), strongly in LI(Q), g < 2.

with (@, p, p) solution to the continuous problem

Technique of proof:

1. Estimates

2. Passing to the limit on the equation



Simpler result: “continuity” with respect to the data

—Au,+Vp,=f,in Q, u, =0 on 09,

div(ppun) =0 in Q, p, >0 in Q, / pn(X)dx = M,
Q
pn = pp in Q

f, — fin (L(R))¢ and M, — M. Then, up to a subsequence,

> u, — uin L*(Q) and weakly in H3(Q)?,

> p, — pin L9(Q) for any 1 < g < 2 and weakly in L*(Q),

> po— pin LI(Q) for any 1 < g < 2y and weakly in L27(Q),
where (U, p, p) is a weak solution of the compressible Stokes equations (with f
and M as data)

The case v = 1 is also possible, but we obtain only weak convergence of p, and
pn in L%(Q) (strong conv. are not needed).



Preliminary lemma

peL?(Q), p>0ae inQ ue (H(Q), div(pu) = 0, then:

—

pdiv(u) =0

p div(u) =0

D\D\



Proof of the preliminary lemma

For simplicity : p € CI(Q), p>aae. inQ, a>0,
1< B <~. Take ¢ = p?! as test function in div(p u) = 0:

/pu'Vp‘M:(ﬁfl)/pﬁ‘lu-Vp:&
Q Q

Then
% u- v’ =0,
and finally
/ p’div(u) = 0.
Q
Two cases :
B=r

B=1+ % and k — oo (or ¢ = In(p))



Estimate on u,

Taking u, as test function in —Au, + Vp, = f,:

/ Vu,: Vu, — / prdiv(u,) = / fn - u, dx.
Q Ja Ja

But p, = pj a.e. and div(p, u,) =0, then [, p,divu, = 0. This gives an
estimate on u,:
lunllpye < G-



Estimate on p,

Let g € L*(Q) s.t. [, qdx =0.
Then, there exists v € (H3(Q))? s.t.

div(v) = g a.e. in Q,

IVllpye < Cllallizg),

where G, only depends on €.



Estimate on p,

aph
Th = = | pndx
12| Jo

LV € H3(Q)9, div(v,) = pn — mn
Taking v, as test function in —Au, + Vp, = f,:

/Vu,,:an dx—/p,,div(v,,) :/fn~v,,.
Q Q Q

Using [, div(v,)dx = 0:
/(p,7 — mp)dx = /(f,, v, — Vu, : Vv,)dx.
Q Q

Since ||v,,||(Hé(Q))d < Gllpn — mall2(q) and Hu,,||(,_,é(9))d < G, the preceding
inequality leads to:
lpn — mall 2@y < G-

where G; only depends on the L?—bound of (f,)sen and on Q.



Estimates on p, and p,

P = Talli20) < G-

1
/ pa dx = / pndx < sup{M,, p € N}.
Q Q

Then:
lpoll2) < Cas

where C; only depends on the L2—bound of (f,)sen, the bound of (Ma)sen, ¥
and Q.

pn = p; a.e. in Q, then:

2

llonllev) < G =G,



Weak-convergence on u,, pn, pn

Thanks to the estimates on u,, pn, pn, it is possible to assume (up to a
subsequence) that, as n — oo:

u, — t in L*(Q)? and weakly in Hy (),
p» — P weakly in [*(),

pn — P weakly in L*7(9).

Is (u, P, p) solution to the problem with data f and M?



Passing to the limit on the equations, except EOS

Linear equation :
—Au+Vp=finQ, =0 on 09,

Strong times weak convergence
div(p u) =0 in Q,
L'-weak convergence of p, gives positivity of p and convergence of mass:

p>0 inQ,/ﬁ:M.
Q

Question (if v > 1):

p=p inQ7?

Idea : prove / Pnpndx — / P p and deduce a.e. convergence (of p, and pn)
Q Q

and p=7p".



V : V =div div + curl - curl

For all u,v in H}(Q)?,

/ Vu:Vv= / divu divv + / curlu - curlu.
Q Q Q

Then, the weak form of —Au, + Vp, = f, gives for all v in H3(Q)?

/ divu, divvdx + / curlu, - curlv — / pn dive = / f, - vdx.
Q Q Q Q

Choiceof v? v=v, ;
v € (H3(R)), (unfortunately, 0 is impossible).
divv, = pp a.e. in Q,

curlv, =0 a.e. in Q,

vV vVv.VvYyYy

[Ivall(t1(@ye < Cellonll2(q), where Co only depends on €.

Then, up to a subsequence,
vy, — v in L2(Q) and weakly in H3(Q), curlv = 0, divv = p.



Proof using an ideal v, (1)

/divu,,divv,, + / curlu, - curlv, — / pndivv, = / f, v,
Ja Q Q Ja

But, divv, = p, and curlv, = 0. Then:

/(divu,, — Pn) pn = / fn - Vo
Q Q

Weak convergence of f, in L?(Q)¢ to f and convergence of v, in L*(Q)? to v :

lim /(divu,, — Pn) pn = / f-v.
n—eeJa Q



Proof using an ideal v, (2)

But, since —Au+ Vp = f:

/divﬁ divv + / curlu - curlv — / pdivv = / f-v.
Q Q Q Q

which gives (using divv = and curlv = 0):

/Q(divﬁfﬁ)p:/gf-v.

lim / (pn — divuy,) pn = / (p — divu) p.
Ja Q

n— oo

Then:

Finally, the preliminary lemma gives [, padivu, = [, pdivi = 0 (since

div(ppu,) = div(pu) = 0)
lim / PnpPn = / PP
n—oo Q Q

Unfortunately, it is impossible to have v, € H3(Q).



Curl-free test function

Let B be a ball containing Q and w, € Hj(B), —Aw, = pa,

v, =Vw,

v

vn € (K@),
> divv, = p, a.e. in Q,

» curlv, =0 a.e. in Q,

v

||v,,||(,_,1(Q))d < Gsl|pnl|2(0). where Cs only depends on Q.
Then, up to a subsequence,

v, — v in L*(Q) and weakly in H*(Q),

curlv = 0, divv = p.

(Remark : |Ivall(n2(ayd < Collpnlle))



Proving [q(pn — divu,)pnpdx — [o(p — divi) ppdx

Let p € C2°(Q) (so that vap € H5(Q)9)). Taking v = v,

/divu,,div(v,,cp) + / curlu, - curl(v,p) — / prdiv(vap) = / fn - (Vo)
Q Q Q Q

Using a proof similar to that given if ¢ = 1 (with additional terms involving ),
we obtain :

lim /(p,7 — divu,)pnp = /(ﬁ —divu) p ¢
Q Q

n— oo



Proving [q(pn — divu,)pndx — [o(p — divii)p

(pn — divun)p, — (p — divu)p in D'(Q)
pn — divu, bounded in L3(Q), p, bounded in L*7(Q)

Lemma : F, — F in D'(Q), (F)nen bounded in L7 for some g > 1. Then
F, — F weakly in L.

With F, = (pn — divu,)pn, F = (p — divu)p and since v > 1, the lemma gives

/(pn — divu,)ppdx — /(ﬁ — divu)pdx.
Q Q



Proving [q pnpndx — [ Ppdx

/(pn — divup)ppdx — / (p — divu)pdx.
Q Q

But since div(pn u,) =0, div(p u) = 0, the preliminary lemma gives:

/ div(un)pndx = 0, / divu pdx = 0;
Q Q

/Pnpn_’/w
Q JQ

Then:



a.e. convergence of p, and p,

Let G, = (o} —p")(pn —P) € LY(Q) and G, > 0 a.e. in Q. Futhermore
Gn = (Pn = P")(pn — P) = Pnpn — PP — p” pn + PP and:

[~ [ [ [ 7ot [ 79

Using the weak convergence in L?(Q) of p, and p, and / Pnpn — / P p:
Q Q

lim / Gpdx =0,
n—oo Q

Then (up to a subsequence), G, — 0 a.e. and then p, — p a.e. (since y — y”
is an increasing function on R, ). Finally:

pn— pin LI(Q) for all 1 < g < 27,
Pn=p) —p’in L9(Q) forall1 < g< 2,
and p=7p".



Back to the scheme

The scheme:

Vv € Wy, /VhUZVhV—/pdivhv:/f.v
Q Q Q

VK eT, 3" o Vo + (T + (Tean)k = 0
o=K]|L

VK € T? Pk = (PK)V

where:
PK if Vo,K 2 0

> Vv = |o| Uy - NkL, upwind value for p: po = .
ok = |o|us Nk, up (P (e pL otherwise

> (Tm)k = h* |K| (pxk —p), p"=M/IQ, >0

o
> (Tstab)k = Z (hk + hL)E |hi| (|pK|< A ‘PL‘C> (pk — pL),

o=K]|L

¢ =max(0,2 —~), £ €(0,2)



Estimates for the discrete solutions

Lemma (“Preliminary lemma", continuous case)
if p€ L*(Q), p> 0 and u € (H3(RQ))? satisfy div(p u) = 0 then

/pﬁdivudx:o,lgﬂgy
Q

Lemma (“Preliminary lemma”, discrete case)
if p,u satisfy 3 1 po Vok + (Tm)k + (Tsean)x = 0 then

/pﬁdiv,,u dx < C(B,Q, M)h*, V3 > 1
Q

upwind choice for p, and Tgap ~~ <"
(Tm) ~ “<" and h*



Estimates

Theorem
Any solution to the scheme satisfies:

lulls,s + llPllz@) + el +hplr < C

Proof:
1. p>0

2. Take v = u in the momentum balance:

”uHib — | pdivpudx = f.udx
Q Q

/p divpudx = / p” diveudx < C(v, 2, M)A ~ |lull1,p <c
Q Q

3. Stability of the gradient (test function r,v where divv = p — 7 in
momentum eq.) ~ [p — 7|l 2@ < C,

[ pax =M< lplha < C.

. £
4. Tsap in mass balance ~ h2 |p|r < C



Convergence: the momentum balance equation

» Momentum balance equation
Let ¢ € C2°(Q)9, and ¢, its Crouzeix-Raviart interpolate. We have:

/th,,:thpndx—/p,, divhapndx:/f~gondx
Q Q Q

T1 T2 T3
And:
Ts :/f-(pdx+/f~(<p,,—go)dx
Ja Ja
[

<c(hp)?

T Z/pn dive dx
Q

T. = / Viu,: Ve dx+/ Viun: (Vip, — V)dx
Q Q

<chp
—/ u, - Ap dx + jump terms+/ Viu,: (Viap, — V)dx
Q ~—— Ja

<chp

<chy

So, passing to the limit:

/Vﬁ:chdxf/ﬁdivgodx:/fvapdx
Q Q Q



Convergence: the mass balance equation

» Mass balance equation
Let ¢ € C*°(Q2). We have:

n ny 1
Z [ Z (po)n (Vo,k)n + (Tm)k + (Tstab)K] m/ pdx =0
KeT o=K|L K
When n — oo:
1
> [ (pa)n(va,x)n}—/ wdxﬂ—/ﬁﬁ-vwdx
igﬂ' o=K|L L Q

_£
thanks to |pn|7 < c h, 2 with £ < 2.

1
> Z(TM)',’(—/ godx:ho‘/(p,,—p*)cp—>0 thanks to o > 0.
KeT |K‘ K Q

1
> Z (Tstab)k == / pdx >~ ht /(pn)c Vpn-Ve —0 thanks to & > 0.
KeT |K‘ JK JQ

(0 < ¢ =max(2—7,0) < 1)

Therefore: divpu = 0



Convergence: the equation of state in the case v > 1

Lemma

Vo€ C(@),  im [ (divin — p) prip = | (divii—P) o
JQ JQ

n— oo

Idea of the proof
1. Regularization of the sequence p,: let g, be defined as the P;-interpolate
of p,. Then:

£
2

. < =
nllen) < € lpal7 150 — palliz@) < € hnlpal7 < € ha

2. Let v, be such that:

¢
divv, = pn,  rotvy =0, |[[Vallm2)e < cl|pnllmi) < ¢ hn ?

3. Take rnpv, (the Crouzeix-Raviart interpolate of v,) as test function in
the momentum balance equation, proceed as in the continuous case and
use the "regularity” of the sequences (v, € (H?)?) to control the error
terms...

£

2

1—
Example: [[rapvy — @Vall1,e < ¢ hollpVallmz)e < ¢ by



Convergence: the equation of state in the case v > 1

Lemma (a.e. convergence)
Up to a subsequence, pn — p, pn — P a.e..

Idea of the proof
As in the continuous case,

lim /(divhun — Pn) Pn = /(divﬁ —p)p
Q Q

n—oo

Continuous preliminary lemma ~~ /ﬁdivﬁ =0.
Q

Discrete preliminary lemma ~~ pndivieu, < ¢ hy
Q
/ PnpPn < / (Pn - dthun)pn G h,of
Ja Ja

Therefore:

IimSUP/PnPnS/f’ﬁ
Q Q

As in the continuous case, up to a subsequence, p, — p, pn — P a.e..



Convergence of the scheme

Theorem
If0<aand0<&<2,

1. the sequence (un)nen converges in L*(Q)? to a limit i € H(Q)?,

2. the sequence (pn)nen converges weakly in L?(Q) and strongly in
LP(Q), 1< p<2topel?Q),

3. the sequence (pn)nen converges weakly in 12Y(Q) and strongly in
LP(Q), 1< p<2ytopel?(Q),

4. (u,p,p) are solution to the continuous problem.



Conclusion

» Replacing —Au by —pAu — 11/3Vdivu (with a constant viscosity )
brings no additional difficulty.

» The term Tgab never appears in practice. Probably only a technical tool
for the proof of convergence. Seems useless in the case of the MAC
scheme (ongoing work)

» The convergence (but not the stability, if one restricts to the L! norm of
p) relies on the stability of the gradient. Should inf-sup stable
discretizations be used for the compressible Navier-Stokes equations?

> Higher order in pressure does not seem easy to achieve.

» Stability has been proven for coupled or pressure correction schemes for
the barotropic transient Navier-Stokes equations (GGHL, M2AN 08) and
for a drift-flux model (GHL, submitted).

> Proof is generalized to steady state compressible Navier-Stokes (v > 3/2
in 3d for Crouzeix Raviart)

» On going work : MAC scheme, time dependent NS...



Additional difficulty for stat. comp. NS equations

Q is a bounded open set of RY, d = 2 or 3, with a Lipschitz continuous
boundary, v > 1, f € L*(Q)¢ and M > 0

—Au+divipu® u)+ Vp=17in Q, u=0on 99,
div(pu) =0 in Q, p>0 in Q, /p(x)dx: M,
Q
p=p" in Q

d = 2 : no aditional difficulty

d = 3 : no additional difficulty if v > 3. But for v < 3, no estimate on p in
L3(9).



Estimates in the case of NS equations, % <v<3

Estimate on v : Taking u as test function in the momentum leads to an
estimate on u in (HZ(Q)? since

/pu®u:Vudx:0.
Q

Then, we have also an estimate on u in L%(Q)? (using Sobolev embedding).

Estimate on p in L9(£2), with some 1 < g < 2 and g = 1 when v = 3 (using
Netas Lemma in some L instead of L?).

Estimate on p in L9(Q), with some 3 < g <6 and g = 3 when v = 3 (since
p=p").

Remark : pu® u € L}(Q), since u € L5(Q) and p € L%(Q) (and
T
lyliz=1)



NS equations, v < 3, how to pass to the limit in the EOS

We prove
lim / p,,p‘de = / ppgdx,
n— oo Q . Q

with some convenient choice of §# > 0 instead of 6 = 1.

This gives, as for § = 1, the a.e. convergence (up to a subsequence) of p, and
Pn.



