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First step for proving the convergence of approximate solutions for the
evolution compressible Navier-Stokes equations (which gives, in particular, the
existence of solutions, d = 3, p = ργ , γ > 3

2
).



Stationary compressible Stokes equations

Ω is a bounded open set of Rd , d = 2 or 3, with a Lipschitz continuous
boundary, γ > 1, f ∈ L2(Ω)d and M > 0

−∆u + ∇p = f in Ω, u = 0 on ∂Ω,

div(ρ u) = 0 in Ω, ρ ≥ 0 in Ω,

∫
Ω

ρ(x)dx = M,

p = ργ in Ω

Functional spaces : u ∈ (H1
0 (Ω))d , p ∈ L2(Ω), ρ ∈ L2γ(Ω)

( p ∈ Lq, 1 ≤ q < 2 in the case of Navier-Stokes if d = 3 and γ < 3)



Aim

Prove the existence of a weak solution to the compressible Stokes equations

by the convergence of a sequence of approximate solutions

given by a numerical scheme as the mesh size goes to 0

(up to a subsequence, since, up to now, no uniqueness result is available for
this problem)



Discretization spaces

I Mesh: partition of Ω in simplices, regular in the usual finite element sense.
Additional assumption:

inf{ hL

hK
,
hK

hL
, σ = K |L} ≥ θ0

I Approximation spaces: (u,p,ρ) ∈ Wh × Lh × Lh Crouzeix Raviart spaces

Wh: piecewise linear functions discontinuous through the edges, with
equal mean value on both sides of an edge

Lh: piecewise constant functions

Unknowns: (uσ)σ∈Eint , (pK )K∈T , (ρK )K∈T .

u =
∑

σ∈Eint

uσϕσ(x) p =
∑
K∈T

pK1K ρ =
∑
K∈T

ρK1K



Discretization of the momentum equation

I Weak form of the momentum equation −∆u + ∇p = f.

∀v ∈ (H1
0 (Ω))d ,

∫
Ω

∇u : ∇v −
∫

Ω

p divv =

∫
Ω

f · v

I Discrete operators for the velocity field:

∇hu ∈ L2(Ω)d×d with ∇hu = ∇u inside the cells,

divhu ∈ L2(Ω) with divhu = divu inside the cells.

I Discrete equation for u ∈ Wh:

∀v ∈ Wh,

∫
Ω

∇hu : ∇hv −
∫

Ω

p divhv =

∫
Ω

f · v



Properties of the discrete operators

I Broken Sobolev H1 semi-norm:

||v ||21,b =
∑
K∈T

∫
K

|∇v |2 dx =

∫
Ω

|∇hv |2 dx

I Approximation operator u ∈ H1
0(Ω) 7→ rhu =

∑
σ∈Eint

(
1

|σ|

∫
σ

u

)
ϕσ ∈ Wh

I Stability and approximation properties: v ∈ H1
0(Ω)

||rhv ||1,b ≤ c |v |H1(Ω)

||v − rhv ||L2(K) + hK ||∇h(v − rhv)||L2(K) ≤ c h2
K |v |H2(K)

I inf-sup condition p ∈ Lh

sup
v∈Wh

∫
Ω

p divhv dx

||v||1,b
≥ c ||p − π||L2(Ω) , with π =

1

m(Ω)

∫
Ω

p dx

I Compactness: If limn→∞ hn = 0 and un ∈ W n
h ; ||un||1,b ≤ C then

∃ ū ∈ H1
0(Ω) ; un → ū in L2(Ω) (up to a subsequence).



The scheme

The scheme:∣∣∣∣∣∣∣∣∣∣
∀v ∈ Wh,

∫
Ω

∇hu : ∇hv −
∫

Ω

p divhv =

∫
Ω

f · v

∀K ∈ T ,
∑

σ=K |L

ρσ vσ,K + (TM)K + (Tstab)K = 0

∀K ∈ T , pK = (ρK )γ

where:

I vσ,K = |σ| uσ · nKL, upwind value for ρ: ρσ =

{
ρK if vσ,K ≥ 0
ρL otherwise

I (TM)K = hα |K | (ρK − ρ∗) , ρ∗ = M/|Ω|, α > 0

I (Tstab)K =
∑

σ=K |L

(hK + hL)
ξ |σ|

hσ

(
|ρK |ζ + |ρL|ζ

)
(ρK − ρL),

ζ = max(0, 2− γ), ξ ∈ (0, 2)

TM  regularity of the system, ρK > 0 and
∑

K |K |ρK = M.

Tstab  control of |ρ|2T =
∑

σ=K |L

|σ|
hσ

(ρK − ρL)
2



Existence of a solution to the scheme

Theorem
There exists a solution to the scheme.

Proof
Consider the function (ũ, p̃, ρ̃) → (u, p, ρ) defined for positive p̃ and ρ̃ as
follows:

1− compute ρ from the mass balance with ũ.
2− compute p from ρ by the equation of state.
3− compute u by the momentum balance.

Then:

1. ρ ≥ 0,

∫
Ω

ρ dx = M, so ‖ρ‖L1(Ω) ≤ C1.

2. . . . so ‖p‖L2(Ω) ≤ C2

3. . . . so ||u||1,b ≤ C3

and, by Brouwer’s fixed point theorem, this function admits a fixed point in:

C = {(u, p, ρ) ∈ Wh × Lh × Lh s.t.

||u||1,b ≤ C3, ‖p‖L2(Ω) ≤ C2, ‖ρ‖L1(Ω) ≤ C1, ρ ≥ 0, p ≥ 0}



Convergence result

Let (Tn)n∈N be a sequence of meshes with limn→∞ hn = 0.

Let (un, pn, ρn)n∈N be the corresponding sequence of solutions to the scheme.

Then, when n →∞, up to a subsequence:

un → u ∈ H1
0(Ω)d strongly in L2(Ω)d

pn → p̄ weakly in L2(Ω), strongly in Lq(Ω), q < 2,

ρn → ρ̄ weakly in L2γ(Ω), strongly in Lq(Ω), q < 2γ.

with (ū, p̄, ρ̄) solution to the continuous problem

Technique of proof:

1. Estimates

2. Passing to the limit on the equation



Simpler result: “continuity” with respect to the data

−∆un + ∇pn = fn in Ω, un = 0 on ∂Ω,

div(ρnun) = 0 in Ω, ρn ≥ 0 in Ω,

∫
Ω

ρn(x)dx = Mn,

pn = ργ
n in Ω

fn → f in (L2(Ω))d and Mn → M. Then, up to a subsequence,

I un → u in L2(Ω)d and weakly in H1
0 (Ω)d ,

I pn → p in Lq(Ω) for any 1 ≤ q < 2 and weakly in L2(Ω),

I ρn → ρ in Lq(Ω) for any 1 ≤ q < 2γ and weakly in L2γ(Ω),

where (u, p, ρ) is a weak solution of the compressible Stokes equations (with f
and M as data)

The case γ = 1 is also possible, but we obtain only weak convergence of pn and
ρn in L2(Ω) (strong conv. are not needed).



Preliminary lemma

ρ ∈ L2γ(Ω), ρ ≥ 0 a.e. in Ω, u ∈ (H1
0 (Ω))d , div(ρu) = 0, then:∫

Ω

ρdiv(u) = 0∫
Ω

ργdiv(u) = 0



Proof of the preliminary lemma

For simplicity : ρ ∈ C 1(Ω̄), ρ ≥ α a.e. in Ω, α > 0,

1 < β ≤ γ. Take ϕ = ρβ−1 as test function in div(ρ u) = 0:∫
Ω

ρ u ·∇ρβ−1 = (β − 1)

∫
Ω

ρβ−1u ·∇ρ = 0.

Then
β − 1

β

∫
Ω

u ·∇ρβ = 0,

and finally ∫
Ω

ρβdiv(u) = 0.

Two cases :
β = γ
β = 1 + 1

k
and k →∞ (or ϕ = ln(ρ))



Estimate on un

Taking un as test function in −∆un + ∇pn = fn:∫
Ω

∇un : ∇un −
∫

Ω

pndiv(un) =

∫
Ω

fn · un dx .

But pn = ργ
n a.e. and div(ρn un) = 0, then

∫
Ω

pndivun = 0. This gives an
estimate on un:

‖un‖(H1
0 (Ω))d ≤ C1.



Estimate on pn

Let q ∈ L2(Ω) s.t.
∫

Ω
qdx = 0.

Then, there exists v ∈ (H1
0 (Ω))d s.t.

div(v) = q a.e. in Ω,

‖v‖(H1
0 (Ω))d ≤ C2‖q‖L2(Ω),

where C2 only depends on Ω.



Estimate on pn

πn =
1

|Ω|

∫
Ω

pndx

, vn ∈ H1
0 (Ω)d , div(vn) = pn − πn

Taking vn as test function in −∆un + ∇pn = fn:∫
Ω

∇un : ∇vn dx −
∫

Ω

pndiv(vn) =

∫
Ω

fn · vn.

Using
∫

Ω
div(vn)dx = 0:∫

Ω

(pn − πn)
2dx =

∫
Ω

(fn · vn −∇un : ∇vn)dx .

Since ‖vn‖(H1
0 (Ω))d ≤ C2‖pn − πn‖L2(Ω) and ‖un‖(H1

0 (Ω))d ≤ C1, the preceding
inequality leads to:

‖pn − πn‖L2(Ω) ≤ C3.

where C3 only depends on the L2−bound of (fn)n∈N and on Ω.



Estimates on pn and ρn

‖pn − πn‖L2(Ω) ≤ C3.

∫
Ω

p
1
γ
n dx =

∫
Ω

ρndx ≤ sup{Mp, p ∈ N}.

Then:
‖pn‖L2(Ω) ≤ C4;

where C4 only depends on the L2−bound of (fn)n∈N, the bound of (Mn)n∈N, γ
and Ω.

pn = ργ
n a.e. in Ω, then:

‖ρn‖L2γ (Ω) ≤ C5 = C
1
γ

4 .



Weak-convergence on un, pn, ρn

Thanks to the estimates on un, pn, ρn, it is possible to assume (up to a
subsequence) that, as n →∞:

un → u in L2(Ω)d and weakly in H1
0 (Ω)d ,

pn → p weakly in L2(Ω),

ρn → ρ weakly in L2γ(Ω).

Is (u, p, ρ) solution to the problem with data f and M?



Passing to the limit on the equations, except EOS

Linear equation :

−∆u + ∇p = f in Ω, u = 0 on ∂Ω,

Strong times weak convergence

div(ρ u) = 0 in Ω,

L1-weak convergence of ρn gives positivity of ρ and convergence of mass:

ρ ≥ 0 in Ω,

∫
Ω

ρ = M.

Question (if γ > 1):
p = ργ in Ω ?

Idea : prove

∫
Ω

pnρndx →
∫

Ω

p ρ and deduce a.e. convergence (of pn and ρn)

and p = ργ .



∇ : ∇ = div div + curl · curl

For all u, v in H1
0 (Ω)d ,∫

Ω

∇u : ∇v =

∫
Ω

divu divv +

∫
Ω

curlu · curlu.

Then, the weak form of −∆un + ∇pn = fn gives for all v in H1
0 (Ω)d∫

Ω

divun divvdx +

∫
Ω

curlun · curlv −
∫

Ω

pn divv =

∫
Ω

fn · v dx .

Choice of v ? v = vn ;

I vn ∈ (H1
0 (Ω))d , (unfortunately, 0 is impossible).

I divvn = ρn a.e. in Ω,

I curlvn = 0 a.e. in Ω,

I ‖vn‖(H1(Ω))d ≤ C6‖ρn‖L2(Ω), where C6 only depends on Ω.

Then, up to a subsequence,

vn → v in L2(Ω) and weakly in H1
0 (Ω), curlv = 0, divv = ρ.



Proof using an ideal vn (1)

∫
Ω

divundivvn +

∫
Ω

curlun · curlvn −
∫

Ω

pndivvn =

∫
Ω

fn · vn.

But, divvn = ρn and curlvn = 0. Then:∫
Ω

(divun − pn) ρn =

∫
Ω

fn · vn.

Weak convergence of fn in L2(Ω)d to f and convergence of vn in L2(Ω)d to v :

lim
n→∞

∫
Ω

(divun − pn) ρn =

∫
Ω

f · v.



Proof using an ideal vn (2)

But, since −∆u + ∇p = f:∫
Ω

divu divv +

∫
Ω

curlu · curlv −
∫

Ω

pdivv =

∫
Ω

f · v.

which gives (using divv = ρ and curlv = 0):∫
Ω

(divu− p) ρ =

∫
Ω

f · v.

Then:

lim
n→∞

∫
Ω

(pn − divun) ρn =

∫
Ω

(p − divu) ρ.

Finally, the preliminary lemma gives
∫

Ω
ρndivun =

∫
Ω

ρdivu = 0 (since
div(ρnun) = div(ρu) = 0)

lim
n→∞

∫
Ω

pnρn =

∫
Ω

p ρ.

Unfortunately, it is impossible to have vn ∈ H1
0 (Ω).



Curl-free test function

Let B be a ball containing Ω and wn ∈ H1
0 (B), −∆wn = ρn,

vn = ∇wn

I vn ∈ (H1(Ω))d ,

I divvn = ρn a.e. in Ω,

I curlvn = 0 a.e. in Ω,

I ‖vn‖(H1(Ω))d ≤ C6‖ρn‖L2(Ω), where C6 only depends on Ω.

Then, up to a subsequence,

vn → v in L2(Ω) and weakly in H1(Ω),

curlv = 0, divv = ρ.

(Remark : ‖vn‖(H2(Ω))d ≤ C6‖ρn‖H1(Ω))



Proving
∫
Ω(pn − divun)ρnϕdx →

∫
Ω(p − divu) ρϕdx

Let ϕ ∈ C∞
c (Ω) (so that vnϕ ∈ H1

0 (Ω)d)). Taking v = vnϕ:∫
Ω

divundiv(vnϕ) +

∫
Ω

curlun · curl(vnϕ)−
∫

Ω

pndiv(vnϕ) =

∫
Ω

fn · (vnϕ)

Using a proof similar to that given if ϕ = 1 (with additional terms involving ϕ),
we obtain :

lim
n→∞

∫
Ω

(pn − divun)ρnϕ =

∫
Ω

(p − divu) ρ ϕ



Proving
∫
Ω(pn − divun)ρndx →

∫
Ω(p − divu)ρ

(pn − divun)ρn → (p − divu)ρ in D ′(Ω)

pn − divun bounded in L2(Ω), ρn bounded in L2γ(Ω)

Lemma : Fn → F in D ′(Ω), (Fn)n∈N bounded in Lq for some q > 1. Then
Fn → F weakly in L1.

With Fn = (pn − divun)ρn, F = (p − divu)ρ and since γ > 1, the lemma gives∫
Ω

(pn − divun)ρndx →
∫

Ω

(p − divu)ρdx .



Proving
∫
Ω pnρndx →

∫
Ω pρdx

∫
Ω

(pn − divun)ρndx →
∫

Ω

(p − divu)ρdx .

But since div(ρn un) = 0, div(ρ u) = 0, the preliminary lemma gives:∫
Ω

div(un)ρndx = 0,

∫
Ω

divu ρdx = 0;

Then: ∫
Ω

pnρn →
∫

Ω

pρ



a.e. convergence of ρn and pn

Let Gn = (ργ
n − ργ)(ρn − ρ) ∈ L1(Ω) and Gn ≥ 0 a.e. in Ω. Futhermore

Gn = (pn − ργ)(ρn − ρ) = pnρn − pnρ− ργρn + ργρ and:∫
Ω

Gn =

∫
Ω

pnρn −
∫

Ω

pnρ−
∫

Ω

ργρn +

∫
Ω

ργρ.

Using the weak convergence in L2(Ω) of pn and ρn and

∫
Ω

pnρn →
∫

Ω

p ρ:

lim
n→∞

∫
Ω

Gndx = 0,

Then (up to a subsequence), Gn → 0 a.e. and then ρn → ρ a.e. (since y 7→ yγ

is an increasing function on R+). Finally:

ρn → ρ in Lq(Ω) for all 1 ≤ q < 2γ,

pn = ργ
n → ργ in Lq(Ω) for all 1 ≤ q < 2,

and p = ργ .



Back to the scheme

The scheme:∣∣∣∣∣∣∣∣∣∣
∀v ∈ Wh,

∫
Ω

∇hu : ∇hv −
∫

Ω

p divhv =

∫
Ω

f · v

∀K ∈ T ,
∑

σ=K |L

ρσ vσ,K + (TM)K + (Tstab)K = 0

∀K ∈ T , pK = (ρK )γ

where:

I vσ,K = |σ| uσ · nKL, upwind value for ρ: ρσ =

{
ρK if vσ,K ≥ 0
ρL otherwise

I (TM)K = hα |K | (ρK − ρ∗) , ρ∗ = M/|Ω|, α > 0

I (Tstab)K =
∑

σ=K |L

(hK + hL)
ξ |σ|

hσ

(
|ρK |ζ + |ρL|ζ

)
(ρK − ρL),

ζ = max(0, 2− γ), ξ ∈ (0, 2)



Estimates for the discrete solutions

Lemma (“Preliminary lemma”, continuous case)

if ρ ∈ L2γ(Ω), ρ > 0 and u ∈ (H1
0 (Ω))d satisfy div(ρ u) = 0 then∫

Ω

ρβdivu dx = 0, 1 ≤ β ≤ γ

Lemma (“Preliminary lemma”, discrete case)

if ρ, u satisfy
∑

σ=K |L ρσ vσ,K + (TM)K + (Tstab)K = 0 then∫
Ω

ρβdivhu dx ≤ C(β, Ω, M)hα, ∀β ≥ 1

upwind choice for ρσ and Tstab  “≤”
(TM)  “≤” and hα



Estimates

Theorem
Any solution to the scheme satisfies:

||u||1,b + ||p||L2(Ω) + ||ρ||L2γ (Ω) + hξ/2 |ρ|T ≤ C

Proof:

1. ρ > 0

2. Take v = u in the momentum balance:

||u||21,b −
∫

Ω

p divhu dx =

∫
Ω

f · u dx∫
Ω

p divhu dx =

∫
Ω

ργ divhu dx ≤ C(γ, Ω, M)hα  ||u||1,b ≤ c

3. Stability of the gradient (test function rhv where divv = p − π in
momentum eq.)  ||p − π||L2(Ω) ≤ C ,∫

Ω

ρ dx = M  ||p||L2(Ω) ≤ C .

4. Tstab in mass balance  h
ξ
2 |ρ|T ≤ C



Convergence: the momentum balance equation
I Momentum balance equation

Let ϕ ∈ C∞c (Ω)d , and ϕn its Crouzeix-Raviart interpolate. We have:∫
Ω

∇hun : ∇hϕn dx︸ ︷︷ ︸
T1

−
∫

Ω

pn divhϕn dx︸ ︷︷ ︸
T2

=

∫
Ω

f ·ϕn dx︸ ︷︷ ︸
T3

And:

T3 =

∫
Ω

f ·ϕ dx +

∫
Ω

f · (ϕn −ϕ) dx︸ ︷︷ ︸
≤c (hn)2

T2 =

∫
Ω

pn divϕ dx

T1 =

∫
Ω

∇hun : ∇ϕ dx +

∫
Ω

∇hun : (∇hϕn −∇ϕ) dx︸ ︷︷ ︸
≤c hn

= −
∫

Ω

un ·∆ϕ dx + jump terms︸ ︷︷ ︸
≤c hn

+

∫
Ω

∇hun : (∇hϕn −∇ϕ) dx︸ ︷︷ ︸
≤c hn

So, passing to the limit:∫
Ω

∇ū : ∇ϕ dx−
∫

Ω

p̄ divϕ dx =

∫
Ω

f ·ϕ dx



Convergence: the mass balance equation

I Mass balance equation
Let ϕ ∈ C∞(Ω). We have:∑

K∈T

[ ∑
σ=K |L

(ρσ)n (vσ,K )n + (TM)n
K + (Tstab)n

K

] 1

|K |

∫
K

ϕ dx = 0

When n →∞:

I
∑
K∈T

[ ∑
σ=K |L

(ρσ)n (vσ,K )n
] 1

|K |

∫
K

ϕ dx → −
∫

Ω
ρ̄ ū ·∇ϕ dx

thanks to |ρn|T ≤ c h
− ξ

2
n with ξ < 2.

I
∑
K∈T

(TM)nK
1

|K |

∫
K

ϕ dx = hα

∫
Ω
(ρn − ρ∗) ϕ → 0 thanks to α > 0.

I
∑
K∈T

(Tstab)nK
1

|K |

∫
K

ϕ dx ' hξ

∫
Ω
(ρn)

ζ ∇ρn ·∇ϕ → 0 thanks to ξ > 0.

(0 ≤ ζ = max(2− γ, 0) ≤ 1)

Therefore: divρ̄u = 0



Convergence: the equation of state in the case γ > 1

Lemma

∀ϕ ∈ C∞c (Ω), lim
n→∞

∫
Ω

(divhun − pn) ρnϕ =

∫
Ω

(divū− p̄) ρ̄ϕ

Idea of the proof

1. Regularization of the sequence ρn: let ρ̃n be defined as the P1-interpolate
of ρn. Then:

‖ρ̃n‖H1(Ω) ≤ c |ρn|T , ‖ρ̃n − ρn‖L2(Ω) ≤ c hn |ρn|T ≤ c h
1− ξ

2
n

2. Let vn be such that:

divvn = ρ̃n, rotvn = 0, ‖vn‖H2(Ω)d ≤ c‖ρ̃n‖H1(Ω) ≤ c h
− ξ

2
n

3. Take rhϕvn (the Crouzeix-Raviart interpolate of ϕvn) as test function in
the momentum balance equation, proceed as in the continuous case and
use the ”regularity” of the sequences (vn ∈ (H2)d) to control the error
terms...

Example: ||rhϕvn − ϕvn||1,b ≤ c hn‖ϕvn‖H2(Ω)d ≤ c h
1− ξ

2
n



Convergence: the equation of state in the case γ > 1

Lemma (a.e. convergence)

Up to a subsequence, ρn → ρ̄, pn → p̄ a.e..

Idea of the proof
As in the continuous case,

lim
n→∞

∫
Ω

(divhun − pn) ρn =

∫
Ω

(divū− p̄) ρ̄

Continuous preliminary lemma  
∫

Ω

ρ̄divū = 0.

Discrete preliminary lemma  
∫

Ω

ρndivhun ≤ c hα
n∫

Ω

pnρn ≤
∫

Ω

(pn − divhun)ρn + c hα
n

Therefore:

lim sup

∫
Ω

pnρn ≤
∫

Ω

p̄ ρ̄

As in the continuous case, up to a subsequence, ρn → ρ̄, pn → p̄ a.e..



Convergence of the scheme

Theorem
If 0 < α and 0 < ξ < 2,

1. the sequence (un)n∈N converges in L2(Ω)d to a limit ū ∈ H1
0(Ω)d ,

2. the sequence (pn)n∈N converges weakly in L2(Ω) and strongly in
Lp(Ω), 1 ≤ p < 2 to p̄ ∈ L2(Ω),

3. the sequence (ρn)n∈N converges weakly in L2γ(Ω) and strongly in
Lp(Ω), 1 ≤ p < 2γ to ρ̄ ∈ L2γ(Ω),

4. (ū, p̄, ρ̄) are solution to the continuous problem.



Conclusion

I Replacing −∆u by −µ∆u− µ/3∇divu (with a constant viscosity µ)
brings no additional difficulty.

I The term Tstab never appears in practice. Probably only a technical tool
for the proof of convergence. Seems useless in the case of the MAC
scheme (ongoing work)

I The convergence (but not the stability, if one restricts to the L1 norm of
p) relies on the stability of the gradient. Should inf-sup stable
discretizations be used for the compressible Navier-Stokes equations?

I Higher order in pressure does not seem easy to achieve.

I Stability has been proven for coupled or pressure correction schemes for
the barotropic transient Navier-Stokes equations (GGHL, M2AN 08) and
for a drift-flux model (GHL, submitted).

I Proof is generalized to steady state compressible Navier-Stokes (γ ≥ 3/2
in 3d for Crouzeix Raviart)

I On going work : MAC scheme, time dependent NS...



Additional difficulty for stat. comp. NS equations

Ω is a bounded open set of Rd , d = 2 or 3, with a Lipschitz continuous
boundary, γ > 1, f ∈ L2(Ω)d and M > 0

−∆u + div(ρu ⊗ u) + ∇p = f in Ω, u = 0 on ∂Ω,

div(ρu) = 0 in Ω, ρ ≥ 0 in Ω,

∫
Ω

ρ(x)dx = M,

p = ργ in Ω

d = 2 : no aditional difficulty

d = 3 : no additional difficulty if γ ≥ 3. But for γ < 3, no estimate on p in
L2(Ω).



Estimates in the case of NS equations, 3
2 < γ < 3

Estimate on u : Taking u as test function in the momentum leads to an
estimate on u in (H1

0 (Ω)d since∫
Ω

ρu ⊗ u : ∇udx = 0.

Then, we have also an estimate on u in L6(Ω)d (using Sobolev embedding).

Estimate on p in Lq(Ω), with some 1 < q < 2 and q = 1 when γ = 3
2

(using
Nečas Lemma in some Lr instead of L2).

Estimate on ρ in Lq(Ω), with some 3
2

< q < 6 and q = 3
2

when γ = 3
2

(since
p = ργ).

Remark : ρu ⊗ u ∈ L1(Ω), since u ∈ L6(Ω)d and ρ ∈ L
3
2 (Ω) (and

1
6

+ 1
6

+ 2
3

= 1).



NS equations, γ < 3, how to pass to the limit in the EOS

We prove

lim
n→∞

∫
Ω

pnρ
θ
ndx =

∫
Ω

pρθdx ,

with some convenient choice of θ > 0 instead of θ = 1.

This gives, as for θ = 1, the a.e. convergence (up to a subsequence) of pn and
ρn.


