Convergence of approximate solutions for Stationary compressible Stokes equations

R. Eymard, T. Gallouët, R. Herbin and J.-C. Latché

Paris 6, 1er décembre 2008

First step for proving the convergence of approximate solutions for the evolution compressible Navier-Stokes equations (which gives, in particular, the existence of solutions, $\left.d=3, p=\rho^{\gamma}, \gamma>\frac{3}{2}\right)$.

Stationary compressible Stokes equations

Ω is a bounded open set of $\mathbb{R}^{d}, d=2$ or 3 , with a Lipschitz continuous boundary, $\gamma>1, f \in L^{2}(\Omega)^{d}$ and $M>0$

$$
\begin{gathered}
-\Delta \mathbf{u}+\nabla p=\mathbf{f} \text { in } \Omega, \quad u=0 \text { on } \partial \Omega, \\
\operatorname{div}(\rho \mathbf{u})=0 \text { in } \Omega, \rho \geq 0 \text { in } \Omega, \int_{\Omega} \rho(x) d x=M, \\
p=\rho^{\gamma} \text { in } \Omega
\end{gathered}
$$

Functional spaces : $\mathbf{u} \in\left(H_{0}^{1}(\Omega)\right)^{d}, p \in L^{2}(\Omega), \rho \in L^{2 \gamma}(\Omega)$
($p \in L^{q}, 1 \leq q<2$ in the case of Navier-Stokes if $d=3$ and $\gamma<3$)

Prove the existence of a weak solution to the compressible Stokes equations by the convergence of a sequence of approximate solutions given by a numerical scheme as the mesh size goes to 0
(up to a subsequence, since, up to now, no uniqueness result is available for this problem)

Discretization spaces

- Mesh: partition of Ω in simplices, regular in the usual finite element sense. Additional assumption:

$$
\inf \left\{\frac{h_{L}}{h_{K}}, \frac{h_{K}}{h_{L}}, \sigma=K \mid L\right\} \geq \theta_{0}
$$

- Approximation spaces: $(u, p, \rho) \in \mathbf{W}_{h} \times L_{h} \times L_{h}$ Crouzeix Raviart spaces W_{h} : piecewise linear functions discontinuous through the edges, with equal mean value on both sides of an edge
L_{h} : piecewise constant functions
Unknowns: $\left(\mathbf{u}_{\sigma}\right)_{\sigma \in \mathcal{E}_{\text {int }}},\left(p_{K}\right)_{K \in \mathcal{T}},\left(\rho_{K}\right)_{K \in \mathcal{T}}$.

$$
\mathbf{u}=\sum_{\sigma \in \mathcal{E}_{\mathrm{int}}} \mathbf{u}_{\sigma} \varphi_{\sigma}(\mathbf{x}) \quad p=\sum_{K \in \mathcal{T}} p_{K} 1_{K} \quad \rho=\sum_{K \in \mathcal{T}} \rho_{K} 1_{K}
$$

Discretization of the momentum equation

- Weak form of the momentum equation $-\Delta \mathbf{u}+\nabla p=\mathbf{f}$.

$$
\forall \mathbf{v} \in\left(H_{0}^{1}(\Omega)\right)^{d}, \quad \int_{\Omega} \nabla \mathbf{u}: \nabla \mathbf{v}-\int_{\Omega} p \operatorname{div} \mathbf{v}=\int_{\Omega} \mathbf{f} \cdot \mathbf{v}
$$

- Discrete operators for the velocity field:

$$
\begin{array}{lll}
\nabla_{h} \mathbf{u} \in \mathrm{~L}^{2}(\Omega)^{d \times d} & \text { with } & \nabla_{h} \mathbf{u}=\nabla \mathbf{u}
\end{array} \text { inside the cells, }
$$

- Discrete equation for $\mathbf{u} \in \mathbf{W}_{h}$:

$$
\forall \mathbf{v} \in \mathbf{W}_{h}, \quad \int_{\Omega} \nabla_{h} \mathbf{u}: \nabla_{h} \mathbf{v}-\int_{\Omega} p \operatorname{div}_{h} \mathbf{v}=\int_{\Omega} \mathbf{f} \cdot \mathbf{v}
$$

Properties of the discrete operators

- Broken Sobolev H^{1} semi-norm:

$$
\|v\|_{1, b}^{2}=\sum_{K \in \mathcal{T}} \int_{K}|\nabla v|^{2} \mathrm{~d} \mathbf{x}=\int_{\Omega}\left|\nabla_{h} v\right|^{2} \mathrm{dx}
$$

- Approximation operator $u \in \mathrm{H}_{0}^{1}(\Omega) \mapsto r_{h} u=\sum_{\sigma \in \mathcal{E}_{\text {int }}}\left(\frac{1}{|\sigma|} \int_{\sigma} u\right) \varphi_{\sigma} \in W_{h}$
- Stability and approximation properties: $v \in \mathrm{H}_{0}^{1}(\Omega)$

$$
\begin{aligned}
& \left\|r_{h} v\right\|_{1, b} \leq c|v|_{\mathrm{H}^{1}(\Omega)} \\
& \left\|v-r_{h} v\right\|_{\mathrm{L}^{2}(K)}+h_{K}\left\|\nabla_{h}\left(v-r_{h} v\right)\right\|_{\mathrm{L}^{2}(K)} \leq c h_{K}^{2}|v|_{\mathrm{H}^{2}(K)}
\end{aligned}
$$

- inf-sup condition $p \in L_{h}$

$$
\sup _{\mathbf{v} \in \mathbf{W}_{h}} \frac{\int_{\Omega} p \operatorname{div}_{h} \mathbf{v} \mathrm{~d} \mathbf{x}}{\|\mathbf{v}\|_{1, b}} \geq c\|p-\pi\|_{\mathrm{L}^{2}(\Omega)}, \text { with } \pi=\frac{1}{m(\Omega)} \int_{\Omega} p \mathrm{~d} \mathbf{x}
$$

- Compactness: If $\lim _{n \rightarrow \infty} h^{n}=0$ and $u^{n} \in W_{h}^{n} ;\left\|u^{n}\right\|_{1, b} \leq C$ then $\exists \bar{u} \in \mathrm{H}_{0}^{1}(\Omega) ; u^{n} \rightarrow \bar{u}$ in $\mathrm{L}^{2}(\Omega)$ (up to a subsequence).

The scheme

The scheme:

$$
\begin{array}{ll}
\forall \mathbf{v} \in \mathbf{W}_{h}, \quad & \int_{\Omega} \nabla_{h} \mathbf{u}: \nabla_{h} \mathbf{v}-\int_{\Omega} p \operatorname{div}_{h} \mathbf{v}=\int_{\Omega} \mathbf{f} \cdot \mathbf{v} \\
\forall K \in \mathcal{T}, & \sum_{\sigma=K \mid L} \rho_{\sigma} \mathrm{v}_{\sigma, K}+\left(T_{M}\right)_{K}+\left(T_{\text {stab }}\right)_{K}=0 \\
\forall K \in \mathcal{T}, & p_{K}=\left(\rho_{K}\right)^{\gamma}
\end{array}
$$

where:

- $\mathrm{v}_{\sigma, K}=|\sigma| \mathbf{u}_{\sigma} \cdot \mathbf{n}_{K L}$, upwind value for $\rho: \rho_{\sigma}=\left\{\begin{array}{l}\rho_{K} \text { if } \mathrm{v}_{\sigma, K} \geq 0 \\ \rho_{L} \text { otherwise }\end{array}\right.$
- $\left(T_{M}\right)_{K}=h^{\alpha}|K|\left(\rho_{K}-\rho^{*}\right), \quad \rho^{*}=M /|\Omega|, \alpha>0$
- $\left(T_{\text {stab }}\right)_{K}=\sum_{\sigma=K \mid L}\left(h_{K}+h_{L}\right)^{\xi} \frac{|\sigma|}{h_{\sigma}}\left(\left|\rho_{K}\right|^{\zeta}+\left|\rho_{L}\right|^{\zeta}\right)\left(\rho_{K}-\rho_{L}\right)$,

$$
\zeta=\max (0,2-\gamma), \xi \in(0,2)
$$

$T_{M} \rightsquigarrow$ regularity of the system, $\rho_{K}>0$ and $\sum_{K}|K| \rho_{K}=M$.
$T_{\text {stab }} \rightsquigarrow$ control of $|\rho|_{\mathcal{T}}^{2}=\sum_{\sigma=K \mid L} \frac{|\sigma|}{h_{\sigma}}\left(\rho_{K}-\rho_{L}\right)^{2}$

Existence of a solution to the scheme

Theorem

There exists a solution to the scheme.

Proof

Consider the function $(\tilde{\mathbf{u}}, \tilde{p}, \tilde{\rho}) \rightarrow(\mathbf{u}, p, \rho)$ defined for positive \tilde{p} and $\tilde{\rho}$ as follows:

1- compute ρ from the mass balance with $\tilde{\text { u }}$.
$2-\quad$ compute p from ρ by the equation of state.
$3-\quad$ compute \mathbf{u} by the momentum balance.
Then:

$$
\begin{aligned}
& \text { 1. } \rho \geq 0, \int_{\Omega} \rho \mathrm{d} \mathbf{x}=M \text {, so }\|\rho\|_{\mathrm{L}^{1}(\Omega)} \leq C_{1} \text {. } \\
& \text { 2. } \text {. } \text { so }\|p\|_{\mathrm{L}^{2}(\Omega)} \leq C_{2} \\
& \text { 3. } \text {. . so }\|\mathbf{u}\|_{1, b} \leq C_{3}
\end{aligned}
$$

and, by Brouwer's fixed point theorem, this function admits a fixed point in:

$$
\begin{aligned}
& \mathcal{C}=\left\{(\mathbf{u}, p, \rho) \in \mathbf{W}_{h} \times L_{h} \times L_{h}\right. \text { s.t. } \\
& \left.\quad\|\mathbf{u}\|_{1, b} \leq C_{3},\|p\|_{L^{2}(\Omega)} \leq C_{2},\|\rho\|_{L^{1}(\Omega)} \leq C_{1}, \rho \geq 0, p \geq 0\right\}
\end{aligned}
$$

Convergence result

Let $\left(\mathcal{T}_{n}\right)_{n \in \mathbb{N}}$ be a sequence of meshes with $\lim _{n \rightarrow \infty} h_{n}=0$.
Let $\left(\mathbf{u}_{n}, p_{n}, \rho_{n}\right)_{n \in \mathbb{N}}$ be the corresponding sequence of solutions to the scheme.
Then, when $n \rightarrow \infty$, up to a subsequence:

$$
\begin{aligned}
& \mathbf{u}_{n} \rightarrow \overline{\mathbf{u}} \in \mathrm{H}_{0}^{1}(\Omega)^{d} \text { strongly in } \mathrm{L}^{2}(\Omega)^{d} \\
& p_{n} \rightarrow \bar{p} \text { weakly in } \mathrm{L}^{2}(\Omega), \text { strongly in } \mathrm{L}^{q}(\Omega), q<2 \\
& \rho_{n} \rightarrow \bar{\rho} \text { weakly in } \mathrm{L}^{2 \gamma}(\Omega), \text { strongly in } \mathrm{L}^{q}(\Omega), q<2 \gamma .
\end{aligned}
$$

with ($\overline{\mathbf{u}}, \bar{p}, \bar{\rho}$) solution to the continuous problem
Technique of proof:

1. Estimates
2. Passing to the limit on the equation

Simpler result: "continuity" with respect to the data

$$
\begin{gathered}
-\Delta \mathbf{u}_{n}+\nabla p_{n}=\mathbf{f}_{n} \text { in } \Omega, \quad \mathbf{u}_{n}=0 \text { on } \partial \Omega \\
\operatorname{div}\left(\rho_{n} \mathbf{u}_{n}\right)=0 \text { in } \Omega, \rho_{n} \geq 0 \text { in } \Omega, \int_{\Omega} \rho_{n}(x) d x=M_{n} \\
p_{n}=\rho_{n}^{\gamma} \text { in } \Omega
\end{gathered}
$$

$\mathbf{f}_{n} \rightarrow \mathbf{f}$ in $\left(L^{2}(\Omega)\right)^{d}$ and $M_{n} \rightarrow M$. Then, up to a subsequence,

- $\mathbf{u}_{n} \rightarrow \overline{\mathbf{u}}$ in $L^{2}(\Omega)^{d}$ and weakly in $H_{0}^{1}(\Omega)^{d}$,
- $p_{n} \rightarrow \bar{p}$ in $L^{q}(\Omega)$ for any $1 \leq q<2$ and weakly in $L^{2}(\Omega)$,
- $\rho_{n} \rightarrow \bar{\rho}$ in $L^{q}(\Omega)$ for any $1 \leq q<2 \gamma$ and weakly in $L^{2 \gamma}(\Omega)$,
where $(\overline{\mathbf{u}}, \bar{p}, \bar{\rho})$ is a weak solution of the compressible Stokes equations (with \mathbf{f} and M as data)
The case $\gamma=1$ is also possible, but we obtain only weak convergence of p_{n} and ρ_{n} in $L^{2}(\Omega)$ (strong conv. are not needed).

Preliminary lemma

$$
\rho \in L^{2 \gamma}(\Omega), \rho \geq 0 \text { a.e. in } \Omega, \mathbf{u} \in\left(H_{0}^{1}(\Omega)\right)^{d}, \operatorname{div}(\rho \mathbf{u})=0 \text {, then: }
$$

$$
\begin{aligned}
& \int_{\Omega} \rho \operatorname{div}(\mathbf{u})=0 \\
& \int_{\Omega} \rho^{\gamma} \operatorname{div}(\mathbf{u})=0
\end{aligned}
$$

Proof of the preliminary lemma

For simplicity : $\rho \in C^{1}(\bar{\Omega}), \rho \geq \alpha$ a.e. in $\Omega, \alpha>0$,
$1<\beta \leq \gamma$. Take $\varphi=\rho^{\beta-1}$ as test function in $\operatorname{div}(\rho \mathbf{u})=0$:

$$
\int_{\Omega} \rho \mathbf{u} \cdot \nabla \rho^{\beta-1}=(\beta-1) \int_{\Omega} \rho^{\beta-1} \mathbf{u} \cdot \nabla \rho=0
$$

Then

$$
\frac{\beta-1}{\beta} \int_{\Omega} \mathbf{u} \cdot \boldsymbol{\nabla} \rho^{\beta}=0,
$$

and finally

$$
\int_{\Omega} \rho^{\beta} \operatorname{div}(\mathbf{u})=0
$$

Two cases :
$\beta=\gamma$
$\beta=1+\frac{1}{k}$ and $k \rightarrow \infty($ or $\varphi=\ln (\rho))$

Estimate on \mathbf{u}_{n}

Taking \mathbf{u}_{n} as test function in $-\Delta \mathbf{u}_{n}+\nabla p_{n}=\mathbf{f}_{n}$:

$$
\int_{\Omega} \nabla \mathbf{u}_{n}: \nabla \mathbf{u}_{n}-\int_{\Omega} p_{n} \operatorname{div}\left(\mathbf{u}_{n}\right)=\int_{\Omega} \mathbf{f}_{n} \cdot \mathbf{u}_{n} d x .
$$

But $p_{n}=\rho_{n}^{\gamma}$ a.e. and $\operatorname{div}\left(\rho_{n} \mathbf{u}_{n}\right)=0$, then $\int_{\Omega} p_{n} \operatorname{div} \mathbf{u}_{n}=0$. This gives an estimate on \mathbf{u}_{n} :

$$
\left\|\mathbf{u}_{n}\right\|_{\left(H_{0}^{1}(\Omega)\right)^{d}} \leq C_{1} .
$$

Estimate on p_{n}

Let $q \in L^{2}(\Omega)$ s.t. $\int_{\Omega} q d x=0$.
Then, there exists $\mathbf{v} \in\left(H_{0}^{1}(\Omega)\right)^{d}$ s.t.

$$
\operatorname{div}(\mathbf{v})=q \text { a.e. in } \Omega,
$$

$$
\|\mathbf{v}\|_{\left(H_{0}^{1}(\Omega)\right)^{d}} \leq C_{2}\|q\|_{L^{2}(\Omega)}
$$

where C_{2} only depends on Ω.

Estimate on p_{n}

$$
\pi_{n}=\frac{1}{|\Omega|} \int_{\Omega} p_{n} d x
$$

, $\mathbf{v}_{n} \in H_{0}^{1}(\Omega)^{d}, \operatorname{div}\left(\mathbf{v}_{n}\right)=p_{n}-\pi_{n}$
Taking \mathbf{v}_{n} as test function in $-\Delta \mathbf{u}_{n}+\nabla p_{n}=\mathbf{f}_{n}$:

$$
\int_{\Omega} \nabla \mathbf{u}_{n}: \nabla \mathbf{v}_{n} d x-\int_{\Omega} p_{n} \operatorname{div}\left(\mathbf{v}_{n}\right)=\int_{\Omega} \mathbf{f}_{n} \cdot \mathbf{v}_{n}
$$

Using $\int_{\Omega} \operatorname{div}\left(\mathbf{v}_{n}\right) d x=0$:

$$
\int_{\Omega}\left(p_{n}-\pi_{n}\right)^{2} d x=\int_{\Omega}\left(\mathbf{f}_{n} \cdot \mathbf{v}_{n}-\nabla \mathbf{u}_{n}: \nabla \mathbf{v}_{n}\right) d x
$$

Since $\left\|\mathbf{v}_{n}\right\|_{\left(H_{0}^{1}(\Omega)\right)^{d}} \leq C_{2}\left\|p_{n}-\pi_{n}\right\|_{L^{2}(\Omega)}$ and $\left\|\mathbf{u}_{n}\right\|_{\left(H_{0}^{1}(\Omega)\right)^{d}} \leq C_{1}$, the preceding inequality leads to:

$$
\left\|p_{n}-\pi_{n}\right\|_{L^{2}(\Omega)} \leq C_{3}
$$

where C_{3} only depends on the L^{2}-bound of $\left(f_{n}\right)_{n \in \mathbb{N}}$ and on Ω.

Estimates on p_{n} and ρ_{n}

$$
\begin{gathered}
\left\|p_{n}-\pi_{n}\right\|_{L^{2}(\Omega)} \leq C_{3} \\
\int_{\Omega} p_{n}^{\frac{1}{\gamma}} d x=\int_{\Omega} \rho_{n} d x \leq \sup \left\{M_{p}, p \in \mathbb{N}\right\} .
\end{gathered}
$$

Then:

$$
\left\|p_{n}\right\|_{L^{2}(\Omega)} \leq C_{4}
$$

where C_{4} only depends on the L^{2}-bound of $\left(f_{n}\right)_{n \in \mathbb{N}}$, the bound of $\left(M_{n}\right)_{n \in \mathbb{N}}, \gamma$ and Ω.
$p_{n}=\rho_{n}^{\gamma}$ a.e. in Ω, then:

$$
\left\|\rho_{n}\right\|_{L^{2 \gamma}(\Omega)} \leq C_{5}=C_{4}^{\frac{1}{\gamma}}
$$

Thanks to the estimates on $\mathbf{u}_{n}, p_{n}, \rho_{n}$, it is possible to assume (up to a subsequence) that, as $n \rightarrow \infty$:

$$
\begin{gathered}
\mathbf{u}_{n} \rightarrow \overline{\mathbf{u}} \text { in } L^{2}(\Omega)^{d} \text { and weakly in } H_{0}^{1}(\Omega)^{d}, \\
p_{n} \rightarrow \bar{p} \text { weakly in } L^{2}(\Omega), \\
\rho_{n} \rightarrow \bar{\rho} \text { weakly in } L^{2 \gamma}(\Omega) .
\end{gathered}
$$

Is $(\overline{\mathbf{u}}, \bar{p}, \bar{\rho})$ solution to the problem with data \mathbf{f} and M ?

Passing to the limit on the equations, except EOS

Linear equation :

$$
-\Delta \overline{\mathbf{u}}+\nabla \bar{p}=\mathbf{f} \text { in } \Omega, \quad \bar{u}=0 \text { on } \partial \Omega
$$

Strong times weak convergence

$$
\operatorname{div}(\bar{\rho} \overline{\mathbf{u}})=0 \text { in } \Omega,
$$

L^{1}-weak convergence of ρ_{n} gives positivity of ρ and convergence of mass:

$$
\bar{\rho} \geq 0 \text { in } \Omega, \int_{\Omega} \bar{\rho}=M
$$

Question (if $\gamma>1$):

$$
\bar{p}=\bar{\rho}^{\gamma} \text { in } \Omega ?
$$

Idea : prove $\int_{\Omega} p_{n} \rho_{n} d x \rightarrow \int_{\Omega} \bar{p} \bar{\rho}$ and deduce a.e. convergence (of p_{n} and ρ_{n}) and $\bar{p}=\bar{\rho}^{\gamma}$.

$\boldsymbol{\nabla}: \boldsymbol{\nabla}=\operatorname{div} \operatorname{div}+\operatorname{curl} \cdot$ curl

For all \mathbf{u}, \mathbf{v} in $H_{0}^{1}(\Omega)^{d}$,

$$
\int_{\Omega} \nabla \mathbf{u}: \nabla \mathbf{v}=\int_{\Omega} \operatorname{div} \mathbf{u} \operatorname{divv}+\int_{\Omega} \operatorname{curl} \mathbf{u} \cdot \operatorname{curl} \mathbf{u} .
$$

Then, the weak form of $-\Delta \mathbf{u}_{n}+\nabla p_{n}=\mathbf{f}_{n}$ gives for all \mathbf{v} in $H_{0}^{1}(\Omega)^{d}$

$$
\int_{\Omega} \operatorname{div} \mathbf{u}_{n} \operatorname{div} \mathbf{v} d x+\int_{\Omega} \operatorname{curl} \mathbf{u}_{n} \cdot \operatorname{curl} \mathbf{v}-\int_{\Omega} p_{n} \operatorname{div} \mathbf{v}=\int_{\Omega} \mathbf{f}_{n} \cdot \mathbf{v} d x .
$$

Choice of $\mathbf{v} \boldsymbol{?} \mathbf{v}=\mathbf{v}_{n}$;

- $\mathbf{v}_{n} \in\left(H_{0}^{1}(\Omega)\right)^{d}$, (unfortunately, 0 is impossible).
- $\operatorname{div}_{n}=\rho_{n}$ a.e. in Ω,
- $\operatorname{curlv}_{n}=0$ a.e. in Ω,
- $\left\|\mathbf{v}_{n}\right\|_{\left(H^{1}(\Omega)\right)^{d}} \leq C_{6}\left\|\rho_{n}\right\|_{L^{2}(\Omega)}$, where C_{6} only depends on Ω.

Then, up to a subsequence,
$\mathbf{v}_{n} \rightarrow \mathbf{v}$ in $L^{2}(\Omega)$ and weakly in $H_{0}^{1}(\Omega)$, curlv $=0, \operatorname{divv}=\rho$.

Proof using an ideal \mathbf{v}_{n} (1)

$$
\int_{\Omega} \operatorname{div} \mathbf{u}_{n} \operatorname{div} \mathbf{v}_{n}+\int_{\Omega} \operatorname{curl} \mathbf{u}_{n} \cdot \operatorname{curl} \mathbf{v}_{n}-\int_{\Omega} p_{n} \operatorname{div} \mathbf{v}_{n}=\int_{\Omega} \mathbf{f}_{n} \cdot \mathbf{v}_{n} .
$$

But, $\operatorname{divv}_{n}=\rho_{n}$ and curlv${ }_{n}=0$. Then:

$$
\int_{\Omega}\left(\operatorname{div} \mathbf{u}_{n}-p_{n}\right) \rho_{n}=\int_{\Omega} \mathbf{f}_{n} \cdot \mathbf{v}_{n} .
$$

Weak convergence of \mathbf{f}_{n} in $L^{2}(\Omega)^{d}$ to \mathbf{f} and convergence of \mathbf{v}_{n} in $L^{2}(\Omega)^{d}$ to \mathbf{v} :

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left(\operatorname{div} \mathbf{u}_{n}-p_{n}\right) \rho_{n}=\int_{\Omega} \mathbf{f} \cdot \mathbf{v} .
$$

Proof using an ideal \mathbf{v}_{n} (2)

But, since $-\Delta \overline{\mathbf{u}}+\nabla \bar{p}=\mathbf{f}$:

$$
\int_{\Omega} \operatorname{div} \overline{\mathbf{u}} \operatorname{div} \mathbf{v}+\int_{\Omega} \operatorname{curl} \overline{\mathbf{u}} \cdot \operatorname{curl} \mathbf{v}-\int_{\Omega} \bar{p} \operatorname{div} \mathbf{v}=\int_{\Omega} \mathbf{f} \cdot \mathbf{v} .
$$

which gives (using divv $=\bar{\rho}$ and curlv $=0$):

$$
\int_{\Omega}(\operatorname{div} \overline{\mathbf{u}}-\bar{p}) \rho=\int_{\Omega} \mathbf{f} \cdot \mathbf{v} .
$$

Then:

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left(p_{n}-\operatorname{div} \mathbf{u}_{n}\right) \rho_{n}=\int_{\Omega}(\bar{p}-\operatorname{div} \overline{\mathbf{u}}) \bar{\rho} .
$$

Finally, the preliminary lemma gives $\int_{\Omega} \rho_{n} \operatorname{div} \mathbf{u}_{n}=\int_{\Omega} \rho d i v \overline{\mathbf{u}}=0$ (since $\left.\operatorname{div}\left(\rho_{n} \mathbf{u}_{n}\right)=\operatorname{div}(\overline{\rho \mathbf{u}})=0\right)$

$$
\lim _{n \rightarrow \infty} \int_{\Omega} p_{n} \rho_{n}=\int_{\Omega} \bar{p} \bar{\rho} .
$$

Unfortunately, it is impossible to have $\mathbf{v}_{n} \in H_{0}^{1}(\Omega)$.

Curl-free test function

Let B be a ball containing Ω and $w_{n} \in H_{0}^{1}(B),-\Delta w_{n}=\rho_{n}$,

$$
\mathbf{v}_{n}=\nabla w_{n}
$$

- $\mathbf{v}_{n} \in\left(H^{1}(\Omega)\right)^{d}$,
- $\operatorname{div}_{n}=\rho_{n}$ a.e. in Ω,
- $\operatorname{curl}_{n}=0$ a.e. in Ω,
- $\left\|\mathbf{v}_{n}\right\|_{\left(H^{1}(\Omega)\right)^{d}} \leq C_{6}\left\|\rho_{n}\right\|_{L 2(\Omega)}$, where C_{6} only depends on Ω.

Then, up to a subsequence,
$\mathbf{v}_{n} \rightarrow v$ in $L^{2}(\Omega)$ and weakly in $H^{1}(\Omega)$,
curlv $=0, \operatorname{divv}=\rho$.
(Remark: $\left.\left\|\mathbf{v}_{n}\right\|_{\left(H^{2}(\Omega)\right)^{d}} \leq C_{6}\left\|\rho_{n}\right\|_{H^{1}(\Omega)}\right)$

Proving $\int_{\Omega}\left(p_{n}-\operatorname{div} \mathbf{u}_{n}\right) \rho_{n} \varphi d x \rightarrow \int_{\Omega}(\bar{p}-\operatorname{div} \overline{\mathbf{u}}) \bar{\rho} \varphi d x$

Let $\varphi \in C_{c}^{\infty}(\Omega)$ (so that $\left.\mathbf{v}_{n} \varphi \in H_{0}^{1}(\Omega)^{d}\right)$). Taking $\mathbf{v}=\mathbf{v}_{n} \varphi$:

$$
\int_{\Omega} \operatorname{div} \mathbf{u}_{n} \operatorname{div}\left(\mathbf{v}_{n} \varphi\right)+\int_{\Omega} \operatorname{curl} \mathbf{u}_{n} \cdot \operatorname{curl}\left(\mathbf{v}_{n} \varphi\right)-\int_{\Omega} p_{n} \operatorname{div}\left(\mathbf{v}_{n} \varphi\right)=\int_{\Omega} \mathbf{f}_{n} \cdot\left(\mathbf{v}_{n} \varphi\right)
$$

Using a proof similar to that given if $\varphi=1$ (with additional terms involving φ), we obtain :

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left(p_{n}-\operatorname{div} \mathbf{u}_{n}\right) \rho_{n} \varphi=\int_{\Omega}(\bar{p}-\operatorname{div} \overline{\mathbf{u}}) \bar{\rho} \varphi
$$

Proving $\int_{\Omega}\left(p_{n}-\operatorname{div} \mathbf{u}_{n}\right) \rho_{n} d x \rightarrow \int_{\Omega}(\bar{p}-\operatorname{div} \overline{\mathbf{u}}) \rho$

$\left(p_{n}-\operatorname{div} \mathbf{u}_{n}\right) \rho_{n} \rightarrow(\bar{p}-\operatorname{div} \overline{\mathbf{u}}) \bar{\rho}$ in $D^{\prime}(\Omega)$
$p_{n}-\operatorname{div} \mathbf{u}_{n}$ bounded in $L^{2}(\Omega), \rho_{n}$ bounded in $L^{2 \gamma}(\Omega)$
Lemma : $F_{n} \rightarrow F$ in $D^{\prime}(\Omega),\left(F_{n}\right)_{n \in \mathbb{N}}$ bounded in L^{q} for some $q>1$. Then $F_{n} \rightarrow F$ weakly in L^{1}.

With $F_{n}=\left(p_{n}-\operatorname{div} \mathbf{u}_{n}\right) \rho_{n}, F=(\bar{p}-\operatorname{div} \overline{\mathbf{u}}) \bar{\rho}$ and since $\gamma>1$, the lemma gives

$$
\int_{\Omega}\left(p_{n}-\operatorname{div} \mathbf{u}_{n}\right) \rho_{n} d x \rightarrow \int_{\Omega}(\bar{p}-\operatorname{div} \overline{\mathbf{u}}) \bar{\rho} d x .
$$

Proving $\int_{\Omega} p_{n} \rho_{n} d x \rightarrow \int_{\Omega} \overline{p \bar{\rho}} d x$

$$
\int_{\Omega}\left(p_{n}-\operatorname{div} \mathbf{u}_{n}\right) \rho_{n} d x \rightarrow \int_{\Omega}(\bar{p}-\operatorname{div} \mathbf{u}) \bar{\rho} d x
$$

But since $\operatorname{div}\left(\rho_{n} \mathbf{u}_{n}\right)=0, \operatorname{div}(\rho \mathbf{u})=0$, the preliminary lemma gives:

$$
\int_{\Omega} \operatorname{div}\left(\mathbf{u}_{n}\right) \rho_{n} d x=0, \int_{\Omega} \operatorname{div} \overline{\mathbf{u}} \bar{\rho} d x=0
$$

Then:

$$
\int_{\Omega} p_{n} \rho_{n} \rightarrow \int_{\Omega} \overline{p \rho}
$$

a.e. convergence of ρ_{n} and p_{n}

Let $G_{n}=\left(\rho_{n}^{\gamma}-\bar{\rho}^{\gamma}\right)\left(\rho_{n}-\bar{\rho}\right) \in L^{1}(\Omega)$ and $G_{n} \geq 0$ a.e. in Ω. Futhermore $G_{n}=\left(p_{n}-\bar{\rho}^{\gamma}\right)\left(\rho_{n}-\bar{\rho}\right)=p_{n} \rho_{n}-p_{n} \bar{\rho}-\rho^{\gamma} \rho_{n}+\bar{\rho}^{\gamma} \bar{\rho}$ and:

$$
\int_{\Omega} G_{n}=\int_{\Omega} p_{n} \rho_{n}-\int_{\Omega} p_{n} \bar{\rho}-\int_{\Omega} \bar{\rho}^{\gamma} \rho_{n}+\int_{\Omega} \bar{\rho}^{\gamma} \bar{\rho} .
$$

Using the weak convergence in $L^{2}(\Omega)$ of p_{n} and ρ_{n} and $\int_{\Omega} p_{n} \rho_{n} \rightarrow \int_{\Omega} \bar{p} \bar{\rho}$:

$$
\lim _{n \rightarrow \infty} \int_{\Omega} G_{n} d x=0
$$

Then (up to a subsequence), $G_{n} \rightarrow 0$ a.e. and then $\rho_{n} \rightarrow \bar{\rho}$ a.e. (since $y \mapsto y^{\gamma}$ is an increasing function on \mathbb{R}_{+}). Finally:
$\rho_{n} \rightarrow \bar{\rho}$ in $L^{q}(\Omega)$ for all $1 \leq q<2 \gamma$,
$p_{n}=\rho_{n}^{\gamma} \rightarrow \bar{\rho}^{\gamma}$ in $L^{q}(\Omega)$ for all $1 \leq q<2$,
and $\bar{\rho}=\bar{\rho}^{\gamma}$.

Back to the scheme

The scheme:

$$
\begin{array}{ll}
\forall \mathbf{v} \in \mathbf{W}_{h}, \quad & \int_{\Omega} \nabla_{h} \mathbf{u}: \nabla_{h} \mathbf{v}-\int_{\Omega} p \operatorname{div}_{h} \mathbf{v}=\int_{\Omega} \mathbf{f} \cdot \mathbf{v} \\
\forall K \in \mathcal{T}, & \sum_{\sigma=K \mid L} \rho_{\sigma} v_{\sigma, K}+\left(T_{M}\right)_{K}+\left(T_{\text {stab }}\right)_{K}=0 \\
\forall K \in \mathcal{T}, & p_{K}=\left(\rho_{K}\right)^{\gamma}
\end{array}
$$

where:

- $\mathrm{v}_{\sigma, K}=|\sigma| \mathbf{u}_{\sigma} \cdot \mathbf{n}_{K L}$, upwind value for $\rho: \rho_{\sigma}=\left\{\begin{array}{l}\rho_{K} \text { if } \mathrm{v}_{\sigma, K} \geq 0 \\ \rho_{L} \text { otherwise }\end{array}\right.$
- $\left(T_{M}\right)_{K}=h^{\alpha}|K|\left(\rho_{K}-\rho^{*}\right), \quad \rho^{*}=M /|\Omega|, \alpha>0$
- $\left(T_{\text {stab }}\right)_{K}=\sum_{\sigma=K \mid L}\left(h_{K}+h_{L}\right)^{\xi} \frac{|\sigma|}{h_{\sigma}}\left(\left|\rho_{K}\right|^{\zeta}+\left|\rho_{L}\right|^{\zeta}\right)\left(\rho_{K}-\rho_{L}\right)$,
$\zeta=\max (0,2-\gamma), \xi \in(0,2)$

Estimates for the discrete solutions

Lemma ("Preliminary lemma", continuous case)
if $\rho \in L^{2 \gamma}(\Omega), \rho>0$ and $\mathbf{u} \in\left(H_{0}^{1}(\Omega)\right)^{d}$ satisfy $\operatorname{div}(\rho \mathbf{u})=0$ then

$$
\int_{\Omega} \rho^{\beta} \operatorname{div} \mathbf{d} \mathbf{x}=0,1 \leq \beta \leq \gamma
$$

Lemma ("Preliminary lemma", discrete case)
if ρ, \mathbf{u} satisfy $\sum_{\sigma=K \mid L} \rho_{\sigma} \mathrm{V}_{\sigma, K}+\left(T_{M}\right)_{K}+\left(T_{\text {stab }}\right)_{K}=0$ then

$$
\int_{\Omega} \rho^{\beta} \operatorname{div}_{h} \mathbf{u} \mathrm{~d} \mathbf{x} \leq C(\beta, \Omega, M) h^{\alpha}, \forall \beta \geq 1
$$

upwind choice for ρ_{σ} and $T_{\text {stab }} \rightsquigarrow " \leq "$
$\left(T_{M}\right) \rightsquigarrow " \leq "$ and h^{α}

Estimates

Theorem
Any solution to the scheme satisfies:

$$
\|\mathbf{u}\|_{1, b}+\|p\|_{L^{2}(\Omega)}+\|\rho\|_{L^{2 \gamma}(\Omega)}+h^{\xi / 2}|\rho|_{\mathcal{T}} \leq C
$$

Proof:

1. $\rho>0$
2. Take $\mathbf{v}=\mathbf{u}$ in the momentum balance:

$$
\begin{aligned}
& \|\mathbf{u}\|_{1, b}^{2}-\int_{\Omega} p \operatorname{div}_{h} \mathbf{u} \mathrm{~d} \mathbf{x}=\int_{\Omega} \mathbf{f} \cdot \mathbf{u} \mathrm{d} \mathbf{x} \\
& \int_{\Omega} p \operatorname{div}_{h} \mathbf{u} \mathrm{~d} \mathbf{x}=\int_{\Omega} \rho^{\gamma} \operatorname{div}_{h} \mathbf{u} \mathrm{~d} \mathbf{x} \leq C(\gamma, \Omega, M) h^{\alpha} \rightsquigarrow\|\mathbf{u}\|_{1, b} \leq c
\end{aligned}
$$

3. Stability of the gradient (test function $r_{h} \mathbf{v}$ where $\operatorname{div} \mathbf{v}=p-\pi$ in momentum eq.) $\rightsquigarrow\|p-\pi\|_{L^{2}(\Omega)} \leq C$,

$$
\int_{\Omega} \rho \mathrm{d} \mathbf{x}=M \rightsquigarrow\|p\|_{L^{2}(\Omega)} \leq C .
$$

4. $T_{\text {stab }}$ in mass balance $\rightsquigarrow h^{\frac{\xi}{2}}|\rho|_{\mathcal{T}} \leq C$

Convergence: the momentum balance equation

- Momentum balance equation

Let $\varphi \in \mathrm{C}_{c}^{\infty}(\Omega)^{d}$, and φ_{n} its Crouzeix-Raviart interpolate. We have:

$$
\underbrace{\int_{\Omega} \nabla_{h} \mathbf{u}_{n}: \nabla_{h} \boldsymbol{\varphi}_{n} \mathrm{~d} \mathbf{x}}_{T_{1}}-\underbrace{\int_{\Omega} p_{n} \operatorname{div}_{h} \boldsymbol{\varphi}_{n} \mathrm{~d} \mathbf{x}}_{T_{2}}=\underbrace{\int_{\Omega} \mathbf{f} \cdot \boldsymbol{\varphi}_{n} \mathrm{~d} \mathbf{x}}_{T_{3}}
$$

And:

$$
\begin{aligned}
T_{3} & =\int_{\Omega} \mathbf{f} \cdot \boldsymbol{\varphi} \mathrm{d} \mathbf{x}+\underbrace{\int_{\Omega} \mathbf{f} \cdot\left(\varphi_{n}-\boldsymbol{\varphi}\right) \mathrm{d} \mathbf{x}}_{\leq c\left(h_{n}\right)^{2}} \\
T_{2} & =\int_{\Omega} p_{n} \operatorname{div} \boldsymbol{\varphi} \mathrm{~d} \mathbf{x} \\
T_{1} & =\int_{\Omega} \nabla_{h} \mathbf{u}_{n}: \boldsymbol{\nabla} \varphi \mathrm{d} \mathbf{x}+\underbrace{\leq c h_{n}}_{\leq \int_{\Omega} \nabla_{h} \mathbf{u}_{n}:\left(\nabla_{h} \varphi_{n}-\nabla \boldsymbol{\nabla}\right) \mathrm{d} \mathbf{x}} \\
& =-\int_{\Omega} \mathbf{u}_{n} \cdot \Delta \varphi \mathrm{~d} \mathbf{x}+\underbrace{j u m p t e r m s}_{\leq c h_{n}}
\end{aligned} \underbrace{\int_{\Omega} \nabla_{h} \mathbf{u}_{n}:\left(\nabla_{h} \varphi_{n}-\nabla \varphi\right) \mathrm{d} \mathbf{x}}_{\leq c h_{n}} .
$$

So, passing to the limit:

$$
\int_{\Omega} \nabla \overline{\mathbf{u}}: \nabla \varphi \mathrm{d} \mathbf{x}-\int_{\Omega} \bar{p} \operatorname{div} \varphi \mathrm{~d} \mathbf{x}=\int_{\Omega} \mathbf{f} \cdot \boldsymbol{\varphi} \mathrm{d} \mathbf{x}
$$

Convergence: the mass balance equation

- Mass balance equation

Let $\varphi \in \mathrm{C}^{\infty}(\Omega)$. We have:

$$
\sum_{K \in \mathcal{T}}\left[\sum_{\sigma=K \mid L}\left(\rho_{\sigma}\right)_{n}\left(\mathrm{v}_{\sigma, K}\right)_{n}+\left(T_{M}\right)_{K}^{n}+\left(T_{\text {stab }}\right)_{K}^{n}\right] \frac{1}{|K|} \int_{K} \varphi \mathrm{~d} \mathbf{x}=0
$$

When $n \rightarrow \infty$:

- $\sum_{K \in \mathcal{T}}\left[\sum_{\sigma=K \mid L}\left(\rho_{\sigma}\right)_{n}\left(\mathrm{v}_{\sigma, K}\right)_{n}\right] \frac{1}{|K|} \int_{K} \varphi \mathrm{~d} \mathbf{x} \rightarrow-\int_{\Omega} \bar{\rho} \overline{\mathbf{u}} \cdot \nabla \varphi \mathrm{d} \mathbf{x}$
thanks to $\left|\rho_{n}\right|_{\mathcal{T}} \leq c h_{n}^{-\frac{\xi}{2}}$ with $\xi<2$.
- $\sum_{K \in \mathcal{T}}\left(T_{M}\right)_{K}^{n} \frac{1}{|K|} \int_{K} \varphi \mathrm{~d} \mathbf{x}=h^{\alpha} \int_{\Omega}\left(\rho_{n}-\rho^{*}\right) \varphi \rightarrow 0 \quad$ thanks to $\alpha>0$.
- $\sum_{K \in \mathcal{T}}\left(T_{\text {stab }}\right)_{K}^{n} \frac{1}{|K|} \int_{K} \varphi \mathrm{~d} \mathbf{x} \simeq h^{\xi} \int_{\Omega}\left(\rho_{n}\right)^{\zeta} \nabla \rho_{n} \cdot \nabla \varphi \rightarrow 0 \quad$ thanks to $\xi>0$.

$$
(0 \leq \zeta=\max (2-\gamma, 0) \leq 1)
$$

Therefore: $\quad \operatorname{div} \bar{\rho} \mathbf{u}=0$

Convergence: the equation of state in the case $\gamma>1$

Lemma

$$
\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega), \quad \lim _{n \rightarrow \infty} \int_{\Omega}\left(\operatorname{div}_{h} \mathbf{u}_{n}-p_{n}\right) \rho_{n} \varphi=\int_{\Omega}(\operatorname{div} \overline{\mathbf{u}}-\bar{p}) \bar{\rho} \varphi
$$

Idea of the proof

1. Regularization of the sequence ρ_{n} : let $\tilde{\rho}_{n}$ be defined as the P_{1}-interpolate of ρ_{n}. Then:

$$
\left\|\tilde{\rho}_{n}\right\|_{\mathrm{H}^{1}(\Omega)} \leq c\left|\rho_{n}\right| \mathcal{T}, \quad\left\|\tilde{\rho}_{n}-\rho_{n}\right\|_{L^{2}(\Omega)} \leq c h_{n}\left|\rho_{n}\right|_{\mathcal{T}} \leq c h_{n}^{1-\frac{\xi}{2}}
$$

2. Let \mathbf{v}_{n} be such that:

$$
\operatorname{div} \mathbf{v}_{n}=\tilde{\rho}_{n}, \quad \operatorname{rot}_{n}=0, \quad\left\|\mathbf{v}_{n}\right\|_{\mathrm{H}^{2}(\Omega)^{d}} \leq c\left\|\tilde{\rho}_{n}\right\|_{\mathrm{H}^{1}(\Omega)} \leq c h_{n}^{-\frac{\xi}{2}}
$$

3. Take $r_{h} \varphi \mathbf{v}_{n}$ (the Crouzeix-Raviart interpolate of $\varphi \mathbf{v}_{n}$) as test function in the momentum balance equation, proceed as in the continuous case and use the "regularity" of the sequences $\left(\mathbf{v}_{n} \in\left(H^{2}\right)^{d}\right)$ to control the error terms...
Example: $\left\|r r_{h} \varphi \mathbf{v}_{n}-\varphi \mathbf{v}_{n}\right\|_{1, b} \leq c h_{n}\left\|\varphi \mathbf{v}_{n}\right\|_{H^{2}(\Omega)^{d}} \leq c h_{n}^{1-\frac{\xi}{2}}$

Convergence: the equation of state in the case $\gamma>1$

Lemma (a.e. convergence)
Up to a subsequence, $\rho_{n} \rightarrow \bar{\rho}, p_{n} \rightarrow \bar{p}$ a.e..

Idea of the proof

As in the continuous case,

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left(\operatorname{div}_{h} \mathbf{u}_{n}-p_{n}\right) \rho_{n}=\int_{\Omega}(\operatorname{div} \overline{\mathbf{u}}-\bar{p}) \bar{\rho}
$$

Continuous preliminary lemma $\rightsquigarrow \int_{\Omega} \bar{\rho}$ div $\overline{\mathbf{u}}=0$.
Discrete preliminary lemma $\rightsquigarrow \int_{\Omega} \rho_{n} \operatorname{div}_{h} \mathbf{u}_{n} \leq c h_{n}^{\alpha}$

$$
\int_{\Omega} p_{n} \rho_{n} \leq \int_{\Omega}\left(p_{n}-\operatorname{div}_{h} \mathbf{u}_{n}\right) \rho_{n}+c h_{n}^{\alpha}
$$

Therefore:

$$
\limsup \int_{\Omega} p_{n} \rho_{n} \leq \int_{\Omega} \bar{\rho} \bar{\rho}
$$

As in the continuous case, up to a subsequence, $\rho_{n} \rightarrow \bar{\rho}, p_{n} \rightarrow \bar{p}$ a.e..

Convergence of the scheme

Theorem

If $0<\alpha$ and $0<\xi<2$,

1. the sequence $\left(\mathbf{u}_{n}\right)_{n \in \mathbb{N}}$ converges in $\mathrm{L}^{2}(\Omega)^{d}$ to a limit $\overline{\mathbf{u}} \in \mathrm{H}_{0}^{1}(\Omega)^{d}$,
2. the sequence $\left(p_{n}\right)_{n \in \mathbb{N}}$ converges weakly in $\mathrm{L}^{2}(\Omega)$ and strongly in $\mathrm{L}^{p}(\Omega), 1 \leq p<2$ to $\bar{p} \in \mathrm{~L}^{2}(\Omega)$,
3. the sequence $\left(\rho_{n}\right)_{n \in \mathbb{N}}$ converges weakly in $\mathrm{L}^{2 \gamma}(\Omega)$ and strongly in $\mathrm{L}^{p}(\Omega), 1 \leq p<2 \gamma$ to $\bar{\rho} \in \mathrm{L}^{2 \gamma}(\Omega)$,
4. $(\overline{\mathbf{u}}, \bar{p}, \bar{\rho})$ are solution to the continuous problem.

Conclusion

- Replacing $-\Delta \mathbf{u}$ by $-\mu \Delta \mathbf{u}-\mu / 3 \nabla$ divu (with a constant viscosity μ) brings no additional difficulty.
- The term $T_{\text {stab }}$ never appears in practice. Probably only a technical tool for the proof of convergence. Seems useless in the case of the MAC scheme (ongoing work)
- The convergence (but not the stability, if one restricts to the L^{1} norm of p) relies on the stability of the gradient. Should inf-sup stable discretizations be used for the compressible Navier-Stokes equations?
- Higher order in pressure does not seem easy to achieve.
- Stability has been proven for coupled or pressure correction schemes for the barotropic transient Navier-Stokes equations (GGHL, M2AN 08) and for a drift-flux model (GHL, submitted).
- Proof is generalized to steady state compressible Navier-Stokes ($\gamma \geq 3 / 2$ in 3d for Crouzeix Raviart)
- On going work : MAC scheme, time dependent NS...

Additional difficulty for stat. comp. NS equations

Ω is a bounded open set of $\mathbb{R}^{d}, d=2$ or 3 , with a Lipschitz continuous boundary, $\gamma>1, f \in L^{2}(\Omega)^{d}$ and $M>0$

$$
\begin{gathered}
-\Delta u+\operatorname{div}(\rho u \otimes u)+\nabla p=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega \\
\operatorname{div}(\rho u)=0 \text { in } \Omega, \rho \geq 0 \text { in } \Omega, \int_{\Omega} \rho(x) d x=M \\
p=\rho^{\gamma} \text { in } \Omega
\end{gathered}
$$

$d=2$: no aditional difficulty
$d=3$: no additional difficulty if $\gamma \geq 3$. But for $\gamma<3$, no estimate on p in $L^{2}(\Omega)$.

Estimates in the case of NS equations, $\frac{3}{2}<\gamma<3$

Estimate on u : Taking u as test function in the momentum leads to an estimate on u in $\left(H_{0}^{1}(\Omega)^{d}\right.$ since

$$
\int_{\Omega} \rho u \otimes u: \nabla u d x=0 .
$$

Then, we have also an estimate on u in $L^{6}(\Omega)^{d}$ (using Sobolev embedding).
Estimate on p in $L^{q}(\Omega)$, with some $1<q<2$ and $q=1$ when $\gamma=\frac{3}{2}$ (using Nečas Lemma in some L^{r} instead of L^{2}).

Estimate on ρ in $L^{q}(\Omega)$, with some $\frac{3}{2}<q<6$ and $q=\frac{3}{2}$ when $\gamma=\frac{3}{2}$ (since $p=\rho^{\gamma}$).

Remark : $\rho u \otimes u \in L^{1}(\Omega)$, since $u \in L^{6}(\Omega)^{d}$ and $\rho \in L^{\frac{3}{2}}(\Omega)$ (and $\frac{1}{6}+\frac{1}{6}+\frac{2}{3}=1$).

NS equations, $\gamma<3$, how to pass to the limit in the EOS

We prove

$$
\lim _{n \rightarrow \infty} \int_{\Omega} p_{n} \rho_{n}^{\theta} d x=\int_{\Omega} p \rho^{\theta} d x
$$

with some convenient choice of $\theta>0$ instead of $\theta=1$.
This gives, as for $\theta=1$, the a.e. convergence (up to a subsequence) of p_{n} and ρ_{n}.

