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Framework and purpose

▶ Framework: approximation of elliptic and parabolic problems,
possibly for anistropic, heterogeneous and on general polytopal
meshes.

▶ Purpose: identification of the key properties satisfied by all
methods and sufficient for convergence analysis.

▶ Model problem:{
−div(Λ∇u) + u = f in Ω

u = 0 on ∂Ω

▶ Ω open bounded subset of Rd ,

▶ f ∈ L2(Ω),

▶ Λ ∈ Rd×d , symmetric, s.t. 0 < λξ · ξ ≤ Λξ · ξ ≤ λξ · ξ.



Weak formulation and Galerkin approximations

Weak formulation:

Find u ∈ H1
0 (Ω) : ∀v ∈ H1

0 (Ω),

∫
Ω
Λ∇u · ∇v +

∫
Ω
u v =

∫
Ω
f v .

Conforming Galerkin approximation:

Find uh ∈ Vh ⊂ H1
0 (Ω) : ∀v ∈ Vh,

∫
Ω
Λ∇uh ·∇v +

∫
Ω
uh v =

∫
Ω
fv .

Non-conforming Galerkin approximation:
Find

uh ∈ Vh ̸⊂H1
0 (Ω) : ∀v ∈ Vh,

∫
Ω
Λ∇huh · ∇hv +

∫
Ω
uh v =

∫
Ω
fv .



From Galerkin approximations to the GDM
Galerkin approximation:

Find uh ∈ Vh : ∀v ∈ Vh,

∫
Ω
Λ∇huh · ∇hv +

∫
uhv =

∫
Ω
fv .

Gradient discretization method:
Find u ∈ XD⊂ RND : ∀v ∈ XD,∫

Ω
Λ∇Du · ∇Dv +

∫
Ω
ΠDu ΠDv =

∫
Ω
f ΠDv .

▶ u: the family of discrete unknowns

▶ ∇Du: reconstructed gradient

▶ ΠDu: reconstructed function

GDM defined by the triplet (XD,ΠD,∇D)
GDM includes :

▶ (non) conforming Galerkin methods ΠDu = uh ∈ Vh

▶ mass lumping (with a suitable operator ΠD)

▶ “finite volume style” methods (MPFA, SUSHI)



Conforming P1 finite elements
On a triangular/tetrahedral mesh, N = set of nodes of the mesh.
Gradient discretisation:

▶ XD,0 = {u = (uN)N∈N : uN = 0 if N ∈ ∂Ω},
▶ ΠD : XD,0 → C (Ω)

u 7→ uh =
∑
N∈N

uNϕN ,

with ϕN P1 f.e. shape function associated to node N.

▶ ∇D : XD,0 → L2(Ω)
u 7→ ∇Du = ∇uh (piecewise constant function)

▶ (∇Du)|K = ∇(ΠDu)|K .

Ω

ΠDu



Mass-lumped conforming P1 finite elements
On a triangular/tetrahedral mesh.
Gradient discretisation:

▶ XD,0,

▶ ΠDu = uN on the Donald cell associated to N.

▶ ∇Du = ∇uh
▶ (∇Du)|K ̸= ∇(ΠDu)|K .

Ω

ΠDu



Non-conforming P1 finite elements
On a triangular/tetrahedral mesh; F is the set of faces (or edges)
Gradient discretisation:

▶ XD,0 = {u = (uσ)σ∈F : uσ = 0 if σ ∈ Fext},
▶ ΠD : XD,0 → Lp(Ω)

u 7→ uh =
∑
σ∈F

uσϕσ,

with ϕσ non conforming P1 f.e. shape function associated to
face (or edge) σ (piecewise continuous and affine function).

▶ ∇D : XD,0 → W 1,p
0 (Ω) such that (∇Du)|K = ∇(ΠDu)|K

(broken gradient).

Ω

ΠDu



Mass-lumped non-conforming P1 finite elements

On a triangular/tetrahedral mesh.
Gradient discretisation:

▶ XD,0 and ∇D as for non-conforming finite elements,

▶ ΠDu = uσ on a “dual” cell around σ.

Ω

ΠDu

▶ (∇Du)|K ̸= ∇(ΠDu)|K .



MPFA-O finite volume scheme

M=Cartesian mesh (also possible with triangular/tetrahedral).

Gradient discretisation:

▶ u ∈ XD,0 if u = ((uK )K , (uσ,v )σ,v ) with
K cells and (σ, v) pairs edge-vertex s.t.
v ∈ σ, and uσ,s = 0 if σ ∈ Fext.

▶ ΠDu = uK in K ,

▶ ∇Du =
uσ,v − uK
d(xK , σ)

nK ,σ+
uτ,v − uK
d(xK , τ)

nK ,τ

in the cube defined by K and v .

uK

v ′

τ v

nK ,σ

nK ,τ

σ

uσ,v
uσ,v ′

uτ,v



The fully hybrid SUSHI scheme

M=polytopal mesh.

Gradient discretisation:

▶ u ∈ XD,0 if
u = ((uK )K , (uσ))K∈M,σ∈F

▶ ΠDu = uK in K ,

▶ ∇Du = ∇Du + SDu

with:

∇Du|K =
1

|K |
∑
σ∈FK

|σ|vσnK ,σ

dK ,σ′

nK ,σ′

nK ,σ

σ′

σ

dK ,σ

K
DK ,σxK

SDu|K ,σ =

√
d

dK ,σ

∑
σ∈FK

[
(vσ − vK −∇Kv · (xσ − xK ))nK ,σ

]



Other examples of GDMs

▶ Galerkin methods: (non) conforming Pk FE method, mixed
finite elements (Hdiv-conforming gradient discretisations:
∇Du ∈ Hdiv), SIPG.

▶ Hybrid Mimetic Mixed methods: SUSHI, mixed finite
volumes, mixed-hybrid mimetic finite Differences.

▶ CeVeFE-DDFV, Nodal mimetic finite differences.

▶ Hybrid high-order methods, non-conforming Virtual Element
Methods, non-conforming Mimetic Finite Difference.



Coercivity, GD-consistency, limit-conformity
▶ D = (XD,ΠD,∇D) GD, (Dm)m∈N sequence of GDs

(P1) Coercivity:

CD = max
vD∈XD,0\{0}

∥ΠDvD∥Lp
∥∇DvD∥Lp

.

(CDm)m∈N is bounded (discrete Poincaré inequality).

(P2) GD-consistency: (“interpolation error” in FE)
SD(φ) = min

vD∈XD,0

(∥ΠDvD − φ∥Lp + ∥∇DvD −∇φ∥Lp) .

For all φ ∈ W 1,p
0 (Ω), SDm(φ) → 0 as m → ∞.

(P3) Limit-conformity:

WD(ψ) = max
vD∈XD,0\{0}

1

∥∇DvD∥Lp

∣∣∣∣∫
Ω
∇DvD ·ψ +ΠDvDdivψ

∣∣∣∣ .
∀ψ ∈ W p′

div(Ω), WDm(ψ) → 0 as m → ∞.

▶ Actually, (P3)⇒(P1).



Error estimate

▶Weak formulation:
Find u ∈ H1

0 (Ω) :∫
Ω
Λ∇u · ∇v =

∫
Ω
f v ,

∀v ∈ H1
0 (Ω)

▶ Gradient scheme:
u ∈ XD,0 :∫
Ω
Λ∇Du · ∇Dv =

∫
Ω
f ΠDv ,

∀v ∈ XD,0.

▶ Error estimate:

∥ΠDuD − u∥L2 + ∥∇DuD −∇u∥L2
≤ C (1 + CD) [SD(u) +WD(∇u)] .

CD Coercivity, SD(u) Consistency, WD Limit conformity

▶ Error estimate also obtained for the p-Laplace equation.



Additional properties for non-linear problems
(P4) Compactness: (Dm)m∈N is compact if for all um ∈ XDm,0

such that (∥∇Dmum∥Lp)m∈N is bounded, (ΠDmum)m∈N is relatively
compact in Lp.
(Discrete Rellich theorem).

▶ Useful for −div(a(u)∇u) = f for example.

(P5) Piecewise constant reconstruction:
∃ (ei )i∈I basis of XD,0 ∃(Ωi )i∈I partition of Ω (some of them can
be empty) such that, for all u =

∑
i uiei ∈ XD,0,

ΠDu =
∑
i

ui1Ωi
.

▶ Mass lumping is a way to obtain (P5)

▶ Essential for degenerate evolution problems : permutation of
nonlinearity and discrete unknown.



Polytopal toolbox to prove (P1), (P3), (P4)

Polytopal tools:
polytopal mesh

+ discrete unknowns on cells and faces : XM
+ reconstruction operator
+ “natural” non-stabilized discrete gradient
+ norm

Polytopal toolbox:
set of tools adapted to the considered BCs

Control by a polytopal toolbox:
▶ mapping the discrete unknowns of a GD onto cell- and

face-unknowns on a polytopal mesh;
▶ three estimates on this mapping ⇝ coercivity,

compactness and limit-conformity of GDs, thanks to Discrete
Funtional Analysis.



Local linearly exact (LLE) gradients to prove (P2)

▶ Rigorous writing of “∇D exactly reconstructs linear functions”

nearly all numerical methods try to satisfy this property.

▶ Provides easy proof of (P2) consistency for all methods.



Main results with GDM

▶ Error estimates and convergence for linear elliptic problems
and the p-Laplacian

▶ Error estimate for linear parabolic problems

▶ Convergence analysis for non linear (degenerate) parabolic
problems (Richards, Stefan)



Conclusion, perspectives and ongoing work

▶ Framework for the convergence analysis
- of a number of methods: FE, MFE, MPFA, MFV,

CeVeDDFV, MFD, dG
- for a number of problems: heat equation, miscible flow,

multi-phase flow, stefan problem, image processing, Richards
equation, Navier-Stokes...

▶ Abstract setting for the analysis of all boundary conditions at
once.

▶ Take into account all the referees remarks, finish the revised
version and publish the book ! revised version online soon!


