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Quenched invariance principles for random
walks on percolation clusters
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We consider a supercritical Bernoulli percolation model in Z%, d>2, and study the simple
symmetric random walk on the infinite percolation cluster. The aim of this paper is to
prove the almost sure (quenched) invariance principle for this random walk.
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1. Introduction

Let d>2. In this paper, we study the simple random walk on the infinite
component of supercritical Bernoulli bond percolation on the lattice Z°
Percolation is a classical construction from statistical mechanics to select
random sub-graphs of a fixed graph. Applied to the d-dimensional lattice, the
construction is well known: one successively considers the different edges of the
grid and decides to keep or delete a given edge by tossing a fixed coin. (See below
for a more formal definition.) Call p the probability that an edge is kept. The
shape of the resulting (random) sub-graph thus obtained dramatically depends
on the percolation parameter p: below some critical value, p., with probability 1,
all the connected components of the percolation graph are finite but, when p> p,,
the percolation graph almost surely has a unique infinite connected component
called the infinite cluster and denoted by C(w). By construction, C(w) is a random
infinite connected sub-graph of the grid Z% The exact value of p, is unknown
except in dimension 2, where it equals 0.5.

In statistical mechanics, percolation plays the prominent role of a toy model
for disordered environments, as the title of de Gennes (1976) indicates. Since
its first rigorous formulation by J. M. Hammersley in 1956, percolation gave
rise to a rich mathematical theory, much of which focused on the geometric
properties of the percolation graph. We refer to Kesten (1982) and Grimmett
(1999). In the supercritical regime p>p,., one would expect the geometry of
the infinite cluster to be close to the geometry of the full grid. Indeed, by
construction, the law of C(w) is invariant under translations of Z% Note,
however, that, except in the trivial case p=1, the geometry of C(w) will
undergo fluctuations; for instance, big holes will appear somewhere as well as
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long linear parts. As a matter of fact, with probability 1, C(w) contains
somewhere a translate of any finite sub-graph of the grid.

Closely connected to a description of the geometry of C(w) are questions related
to potential theory on C(w). In probabilistic terms, one wonders to what extent the
simple random walk on C(w) behaves similarly to the simple random walk on Z*,
Grimmett et al. (1993) proved that the random walk is recurrent in dimension 2
and transient in larger dimensions. In this paper, we will discuss the extension of
Donsker’s invariance principle to the simple random walk on C(w), namely can we
prove that, after proper rescahng, the law of the random walk converges to the law
of a Browman motion in R In order to give a more precise meaning to this
question, one should distinguish weak (also called annealed or averaged) and
strong (also called individual, almost sure or quenched) forms of the invariance
principle. The annealed form of the invariance principle, stating the convergence
of the law of the walk towards Brownian motion when one averages with respect to
the law of environment, was proved by De Masi et al. (1989) as a special case of a
general theorem on random walks among random conductances. The annealed
invariance principle does not give a complete description of the behaviour of the
random walk for a given realization of the percolation. For instance, after being
averaged over the percolation randomness, the law of the random Walk clearly
inherits all the symmetries of the grid Zd On the other hand, owing to the
fluctuations caused by randomness in the percolation process, a given realization
of the infinite cluster has no symmetry. Nevertheless, on a large scale, one would
expect symmetries to be restored, and that should reflect on the isotropy of the
limiting behaviour of the random walk. Different recent approaches have been
proposed in order to prove the quenched invariance principle: Sidoravicius &
Sznitman (2004) deduced the quenched invariance principle from the annealed one
through variance estimates in dimensions higher than 4. Here, we shall establish
the quenched invariance principle in any dimension using the construction of a
corrector and the notion of two-scale convergence. Independently of our work and at
the same time, Berger & Biskup (in press) recently published the same statement.
Although they also rely on the construction of a corrector, their method to prove the
sub-linear growth of the corrector is quite different from ours.

We now turn to a more precise description of the model and the statement of
our result Consider supercritical Bernoulli bond percolation in Z¢, d>2 For
z, yE€Z°, we write z~y if z and y are nelghbours in the grid Z% and let E? be the
set of non-oriented nearest neighbour pairs (z, y). We identify a sub-graph of Z*
with a functional w:E;— {0, 1}, writing w(z, y)—l if the edge (z, y) is present
in w and w(z, y)=0 othervvlse Thus, Q= {0,1}% might be identified with the
set of sub-graphs of Z% Edges pertalmng to w are then called open. Connected
components of such a Sub graph will be called clusters, and the cluster of w
containing a point z€Z% is denoted by C,(w).

Now define @ to be the probability measure on {0, 1}* under which the random
variables (w(e), e€E,) are Bernoulli independent variables with common parameter

(p) and let pe = sup{p; Q0 €C(w)] = 0}

be the critical probability. It is known that p.€]0,1[ (see Grimmett 1999).
Throughout the paper, we choose a parameter p such that

P> . (1.1)
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Then, @ almost surely (Q.a.s.), the graph w has a unique infinite cluster denoted by
C(w).

We are interested in the behaviour of the simple symmetric random walk on
Co(w): let D(R 4 ,Z% be the space of cad-lag Z“valued functions on R, and X(1),
tER, be the coordinate maps from D(R, Zd) to Z<. D(R., Zd) is endowed with
the Skorohod topology. For a given sub-graph w € {0, l}Ed , and for z€Z7 let P
be the probability measure on D(R_, Zd) under which the coordinate process
is the Markov chain starting at X(0) =2 and with generator

£o7(2) = —— " wla, 9)(f(5) —£(2)), (1:2)

ne (x) =

where n”(z) is the number of neighbours of z in the cluster C,(w).

The behaviour of X(¢) under Pg can be described as follows: starting from point
z, the random walker waits for an exponential time of parameter 1 and then
chooses, uniformly at random, one of its neighbours in C,(w), say y, and moves to it.
This procedure is then iterated with independent hoping times. The walker clearly
never leaves the cluster of w it started from. Since edges are not oriented, the
measures with weights n”’(z) on the possibly different clusters of w are reversible.

Let @ be the conditional measure Qy(.)= Q(.|0E€C(w)), and let Q.P; be the
so-called annealed semi-direct product measure law defined by

Qo-P?[F(w, X()] = j PE[F (e, X()]dQy(w).

Note that X(#) is not Markovian anymore under ¢)y.P5. As already alluded to at
the beginning of this introduction, it was proved by De Masi et al. (1989) that,
under Q).Py, the process (X°(t)=eX(t/e?),tER,) satisfies an invariance
principle as ¢ tends to 0, i.e. it converges in law to a non-degenerate Brownian
motion. The proof is based on the point of view of the particle. It relies on the fact
that the law of the environment w viewed from the current position of the
Markov chain is reversible when considered under the annealed measure. We
shall prove theorem 1.1.

Theorem 1.1. @ almost surely on the event 0E€C(w), under P§, the process
(X (t)=eX(t/e?), tER ) convergesin law ase tends to 0 to a Brownian motion with
covariance matriz ”Id, where a* is positive and does not depend on .

Our strategy of proof follows the classical pattern introduced by Kozlov (1985)
for averaging random walks with random conductances. The method of Kozlov
was successfully used under ellipticity assumptions that are clearly not satisfied
here. We refer in particular to the first part of Sidoravicius & Sznitman (2004 ), in
which random walks in elliptic environments are considered. The main idea is to
modify the process X(¢) by the addition of a corrector in such a way that the sum
is a martingale under P§ and to use a martingale invariance principle. Then one
has to prove that, in the rescaled limit, the corrector can be neglected, or
equivalently that the corrector has sub-linear growth. For this second step, in a
classical elliptic set-up, one would invoke the Poincaré inequality and the
compact embedding of H' into L?. For percolation models, a weaker but still
suitable form of the Poincaré inequality was proved by Mathieu & Remy (2004)
(see also Barlow 2004). However, another difficulty arises: our reference measure
is the counting measure on the cluster at the origin. When rescaled, it does
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converge to the Lebesgue measure on R? but for a fixed ¢ it is of course singular.
Thus, rather than using classical functional analysis tools, one has to turn to L?
techniques in varying spaces or to two-scale convergence arguments as they have
been recently developed for the theory of homogenization of singular random
structures by Jikov & Piatnitski (2006). An elementary self-contained
construction of the corrector is given in §2b. We also provide an approach to
two-scale convergence avoiding explicit reference to the results of Jikov &
Piatnitski (2006). For background material on homogenization theory in both
periodic and random environments, we refer to Jikov et al. (1994), in which
percolation models are considered in ch. 9.

Note on the constants. Throughout the paper, 8 and ¢ will denote positive
constants depending only on d and p, whose values might change from place to place.

2. Proof of the theorem

Let |z/=max|z;]. We use the notation z-y for the scalar product of the
two vectors z, y€R?. We also use the notation Qu(.)= Q(.[0€C(w)).

(a) Tightness

We start by recalling the Gaussian upper bound obtained by Barlow (2004) for
walks on percolation clusters. A corresponding lower bound also holds, but we
will not need it here. Note that Barlow’s bound is used in the proof of tightness
only. Remember that p> p,, so that, ().a.s., the percolation sub-graph w contains
a unique infinite cluster denoted by C(w).

Statement from Barlow (2004): Q.a.s., for any z&€C(w) there exists a random
variable S, such that, whenever z and y belong to C(w), if t>|z—y| and t>S5,
then

—d/2 |y —a|”
PYIX(t) = y) < et Pexp <— —t> (2.1)
¢
Moreover,

Qlz€C(w), S, > 1] < cexp(—ct?) with ¢(d)> 0. (2.2)

In case t<|z—y|, then the upper bound on P{[X(¢)= y] is of the form
PY[X(t) = y] < cexp <— M) . (2.3)

¢

Indeed, if ¢ is much smaller than |z—y|, say 2t<|z—y|, then (2.3) is an
easy estimate on the tail on the Poisson distribution. In case t<|z—y| <2¢, then
(2.3) follows from the Carne—Varopoulos bound (see appendix C in Mathieu &
Remy (2004)).

Also, observe that the same estimates on the tail on the Poisson distribution
imply that for 2¢<|z—y| we have

PUEs<t; X(s) =y < cexp<— |y;x|>. (2.4)

Let us assume that > S,. Combining (2.1) and (2.3), it is now an easy exercise
to conclude that

EC[|X (1) —z] < e(t +1). (2.5)
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Lemma 2.1. Q almost surely on the event 0€C(w), under Py, the sequence of
processes (X°(t)=eX(t/e?),t ER,) is tight in the Skorohod topology.

Proof. Tt is sufficient to check that @.a.s. on the event 0E€C(w), for any T>0
one has
lim sup lim sup sup ES[|X*(r +6)— X (1)"] =0,
0—0 e—0

where 7 is any stopping time in the filtration generated by X* that is bounded by
T (see Ethier & Kurtz 1986, p. 138).

We have
) & € 2 2 1w T+0 T
BYIX(r +8) =X (0] = £ B | |X (5 —X(S—Z)

som[[x(222)-x(3) (3|2
e[ [e(20) 13 @) () -0 (D) 22
e[ [x(220) 3B @) B () -x () s2]

The third term in this last inequality is bounded by 20 P§[| X (7/e?)| > 2(T/e*)]
and, as follows from the exponentlal bound (2.4), it tends to 0 as ¢ tends to O
(Remember that 7 is bounded by ) We use the Markov property at time 7/¢>
to bound the second term by &? sup, ES[| X (6/e) —y|*; | X (6/e*) —y| > 26/¢%] and
we deduce from (2.3) that it converges to 0 as ¢ tends to 0.

]

We also use the strong Markov property to estimate the first term by
0 0
82E8)|:X<%>—X< ) ‘X( >’<2 ]<e sup E‘;[X(—z)—y
€ yEC(w)ilyl<2T/e €
Since we are conditioning on the event Cy(w)=C(w), one may replace the
condition yECy(w) by the condition yEC(w). From (2.5), it then follows
that e?E9[|X(6/e*)—yl’] is bounded by cd+ce® provided that 4/e>

SUPyeC(w); |yl<T/e?
To check this last condition, we observe that

1 2
lim sup & sup S, < lim sup < > sup Sy
0 yeC(o); [y T/ oo \MH L) ecyyicrn

From (2.2), we get

Q  sup  S,> 0’| < eTnlexp(—c(6n®) ).
yEC(w); |y|< Tn !

It then follows from the Borel-Cantelli lemma that @.a.s. on the event 0 €C(w)

1 \2
lim sup & sup S, < lim sup ( ) sup S, =0,
0 yeClo)lyi<T/e e A\ L) yeequ); <
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and we conclude that @.a.s. on the event 0€C(w), we have
lim sup sup E{[| X* (7 + 6) — X*(7)]*] < co.
e—0 T

(b) Construction of the corrector

In this section, we prove the existence of a corrector to the process X, i.e. we
construct a random field y(w, ) such that the process M(t)= X(t)+ x(w, X(1)) is
a martingale under P§ for @) almost all @ s.t. 0€C(w). Then, we argue that the
martingale M satisfies an invariance principle by checking the conditions of
theorem 5.1 part a in Helland (1982).

Random fields. We recall that Q=1{0, 1}¥ is the set of sub—graphs of Z% We
shall denote with B the set of neighbours of the origin in Z%. With some abuse of
notation, we write w(b) instead of w(0, b) when b€ B. We use the notation z.w to
denote the natural action of Z% on Q by translations. Q is equipped with the
product sigma field.

We endow QX B with the measure M defined by

JUdM =qQ [Z w(b)u((u, b)10€C(w) :
beB

Note that, if two random fields u and v coincide in L*(Q X B,M), then Q.a.s. on

the event 0&€C(w) it holds u(w, b) =v(w, b) for any b& B such that w(b)=1.

We are now going to introduce two subspaces of L*(Q X B,M), called Lgot and

=1~ To this end, we first define local functions and their gradients.

A function w: Q—> R is said to be local if it only depends on a finite number of

coordinates. We associate to u its gradient: V¥ u : Q X B— R defined by

L

VO u(w, b) = u(b.w) —u(w).

Definition 2.2. The closure in L*(Q X B, M) of the set of gradients of local fields
is called Lfm. The orthogonal complement of Lgot in LQ(QXB, M) is called L2,
Note that ‘pot’ stands for potential and ‘sol’ stands for solenoidal.

From the definition of potential vector fields, it follows that they possess
so-called co-cycle property.

Lemma 2.3. Fields in Lpot satisfy a co-cycle relation: on the event 0E€C(w), for
any w€ L, and any closed path in C(w) of the form y=(zo, z1, ..., 7) with
zi~ i1, (2, 41) =1 and zo=1,=0, then Y0 u(z;y.0, 5, — ;)= 0.

Let us write down explicitly what it means for a square integrable field v to be
in L2 let u be a local function on Q. Then

Q> w(b)v(w, b))V u(w, b)1oec(w)} = Q[Z v(w, b))V u(w, b)loec(wmec(w)}

veB beB

beB

=Q [Z v(w, b)(u(b.w) — U(w))loecw,becw] :
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Using the translation invariance of ) and the symmetry of the set B, we then get

Q Z v(w, b)u(b'w)IOEC(w),bEC(m) =Q Z v((=b)-b.w, b)u(b'w)IOEC(b.w),beC(b.w)]

beB | bEB

= Q Z v((—b).w, b)u(&))].ogc(w)’_bec(w)]

| beB

= Q Z U(b'wa_b)u(a))IOEC(w),bEC(m)]

| beB

- @ Zw<b>v<b.w,—b>u<w>1oec<w)]7

| beB

beB

so that
Q [Z v(, b)(u(b.w) — U(w))loecw,beaw)]

=qQ [Z w(b)u(w)(v(b.w,—b) —v(w, b))loecw)] :

beB

Thus, we have proved the following integration by parts formula:

JUV("’) udM =—Q {n“’(O) u(V(“’)*v)loec(w)} , (2.6)
where 1
VO (w) = —— > w(b)(v(w, b) —v(b.w,—b)). (2.7)
n(0) =5

Relation (2.6) holds for a square integrable random field v and any local function w.

As a consequence, taking v to be a constant, note that fV(w)u dM =0 for any
local u. By extension, we will also have [udM =0 for any u & Lgot.

A square integrable random field v is in L2 if it satisfies V?*v=0 Q.a.s. on
the set 0€C(w).
_ Definition of the corrector. Let bEB. Define the random field
b(w,e)=1,,—1,__;. Let G, be the unique solution in L2, satisfying the
equation R )

b + G”b((,()7 6) S5 Lsol' (28)

(G, is simply the projection of —bon Lf,ot.)

We define the corrector x : U, e (0, Co(w)) = R? by the equation

X(w,z+e) b—x(w,z)- b= Gyz.v,e), (2.9)

for any z€Z% b, eeB. (In this equation, x(.)-b stands for the usual scalar
product of the two R? vectors x(.) and b. Note that there is no ambiguity because
G,=— G_,, as can be seen directly from equation (2.8).) Observe that, unlike
Gy, the corrector y is not a homogeneous field.

The solution to (2.8) being unique in L2, the value of Gj(w, €) is uniquely
determined whenever 0€C(w) and e€ B satisfy w(e)=1. Therefore, Gy(z.w, €) is
well defined Q.a.s. on the set 0E€C(w) for any x and e s.t. z and z+ e belong to
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C(w). Thus, if z belongs to Co(w), then the value of x(w, z)—x(w, 0) can be
computed by integrating (2.9) along a path in Cy(w) from the origin to z. That
this value does not depend on the choice of the path is an immediate consequence
of the co-cycle relation satisfied by G;. We conclude that x(w, z) is uniquely
determined by equation (2.9) up to an additive constant (which might depend
on w). We summarize these properties in the following statement.

Lemma 2.4. The corrector x=x(w, x) is uniquely defined by (2.9) up to an
additive (random) constant.

The martingale property. Let X(t) be a random walk in Z¢ with generator
(1.2), X(0)=0. Consider the random process

M(t) = X(t) + x(w, X(1).

Note that since the process X(t), starting from the origin, never leaves C(w)
x(w, X(t)) is well defined on the event {w:0€C(w)}.

Proposition 2.5. The process M is a martingale under P§ for @ almost all w
s.t. 0€C(w).

Proof. We choose w s.t. 0€C(w). Since G, ELEM, the co-cycle relation (see
lemma 2.3) implies that Gy(w,e)+ Gy(e.w,—e)=0 for any e€B s.t. w(e)=1.
Comparing the expression (1.2) of L with the definition (2.7) of V(“)*| we then
see that Ly (w,z)-b=1/2V“) G} (z.w) for any z€C(w).

Let ¢(z)=z+x(w, x). Noting that I;(w, e)=e-b and I;(e.w,—e) =—b-e, we see
that V" b(w) = 2/n"(0)3 .csw(e)b- e. Therefore,

1
n®(x)

LOY(w,x) b= Z w(z,z+e)e b+ LY (w, x)

e€B
L G L S
= §V b(z.w) +§V Gy(z.w) = 0.

This last equality holds for any z€C(w). We have proved the martingale
property.

The invariance principle. Let M(t)= X(t) +x(w, X(1)).

In order to prove the convergence of the rescaled martingales M*(t)=
eM(t/e?) towards a Brownian motion, we will use theorem 5.1 part a from

Helland (1982). For the reader’s convenience, we provide here the formulation of
this theorem.

Theorem 2.6 (Helland 1982). Let m® be a family of martingales with associated
quadratic variation processes (m°) satisfying the following two conditions:

(i) foranyt>0, ase tends to0, then (m®)(t) converges in probability towards a>t,
and
(i) for any t>0 and for anyn>0, as & tends to 0,

Z (me(s) - mg(s_))Qllmg(s)—7rf(s—)|27; —0,

0<s<t
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inprobability, then, ase tendsto0, the sequence of processes m*(.) convergesin
law in the Skorohod topology to a Brownian motion with variance o”.

More precisely, for any b€ B, we check that, for any ¢>0, as ¢ tends to 0,
(1/£)(M*-b)(t) almost surely converges to some constant, and

EF LY (M(5) b =M (s7)- )" Linge(s) p—pte(5m)-bin | = O-
0<s<t
(See (2.11) and (2.12).) Both conditions follow from the computation of the
bracket of the martingale M and the ergodic theorem applied to the Markov
process (X(¢t—).w) that represents the evolution of the environment w as seen
from the moving particle.

We start computing the bracket of the martingale M using the representation of
the Markov chain X by Poisson processes: to each pair of neighbouring points
z, y€Co(w), such that w(z, y) =1, attach a Poisson process of rate 1/n”(x), say N,
all of them being independent. Let X be the cad-lag solution of the equation X(0)=0,

dx() = Y w(X(t), y)(y—X(t=)dnN; .

y~X(t-)

Then the law of the random process (X(t),t>0) is Pg.

Let @ be such that 0€C(w). Let M(t)=X(t)+x(w, X(¢)). From the previous
paragraph, we already know that M is a martingale. Its bracket can be
computed using [t6’s formula. We fix a direction b€ B. Then

d(M-b) (1)
1 2
=WMZ@)““X“_)’y)(y'b”(“” )b X(1=)b— (e, X(1=) Bt
= X ZX(t e)(e b+ Gy(X(1—).w,e))*dt. (2.10)
eeB

Let QO be the probability measure

JA” )d Qo (w)
QO( ) J‘n dQO )

The random process X(t—).w is Markovian under P§. The measure @ is
reversible, invariant and ergodic with respect to X(¢—).w (see lemma 4.9 in De
Masi et al. (1989)). Observe that @, is obviously absolutely continuous with
respect to (Jy. As a consequence, by Birkhoff’s ergodic theorem we get, ().a.s. on
the set 0€C(w),

My (1 :
ff—_)m Qo nw—(o);w(@)(e'b"‘ Gy(w, €))” |
Now let M(t)=eM(t/e?). We have proved that, for any ¢>0, as ¢ tends to 0,

(ME-b)(t) = tQ, (n“’;((]) Zw(e)(e-b—i— Gy(w, e))2>. (2.11)

eEB
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For any function £Z?XZ%— R that vanishes on the diagonal, the process

> FOX(9). X)) - | s ) S X0l (X(s) + e X(s)

0<s<t eeB

is a local martingale. Applying this to f(z, y) = (b (z+ x (@, 2)) — b (y+ x(w, v)))?
L) (atx(0,2))—b- (4% (o, 9)) |2y TOT sSOmMe direction b and some >0, we get that

D (M(s)-b=M(57) - B) L ng(s) b=ri(s—)-bizn

0<s<t

t
1
_JU dsm Y X(sm)w(e)(eb+ Gy(X(57).0, ) Lo, (x() ne)zn

eeB

is a martingale. Taking expectations and using the ergodic theorem for the
process X(s—).w, we get, on the set 0€C(w),

.11
Ej N Z (M(S)'b_M(S_)'b)21M(s)-b—M(s—)-blZn]
0<s<t
1
J dSEO ZX §— ) 6 b+ Gb(X(S_)'w7e))21|e-b+Gb(X(s—).w,e)\Zn
(,EB

( Zw eb+ Gb(wa e))Qle-b+Gb(w,e)|Zn> < .

oEB

Then, for any >0,

Eg

D (M) b= M (57)b)* 1 pge()-bnae(s )-bzn]

0<s<t

=By | Y (M(8) b=M(s) 0Ly pmisy yznse | =00 (2.12)

0<s<t/e?

From the martingale convergence theorem, theorem 5.1 part a in Helland (1982)7
we then deduce that, Q.a.s. on the set 0€C(w), the law of the process e X(./¢%) +
ex(w, X(./&%)) under Py converges to the law of a Brownian motion with a
deterministic covariance matrix A=¢Id with

. 1 )
= Q (n‘*’(O) Zo)(e)(e-el + G, (w,¢€)) >, (2.13)

eeB

and e; being the first coordinate vector. Thus, we proved the following
statement.

Lemma 2.7. Qq.a.s., the family M*(t)=eX(./e*)+ex(w,X(. /e ) converges in
law in the Skorohod topology to a Brownian motion with covariance matriz o°Id,
where a° is defined in (2.13).
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(¢) Convergence of the corrector

We now check that the contribution of the corrector is neghglble in the limit.
Let us recall that, by lemmas 2.1 and 2.7, the process ex(w, X(t/e?)) is tight in
the Skorohod topology on any time interval. Therefore, it suffices to prove
that, for all ¢, ex(w, X(t/¢%)) converges to 0 in Py probability, ().a.s. on the set
0€C(w). In view of (2.1), it is sufficient to show that

lirroled Z lex(w, Y)> =0 Qp.a.s.
‘ yECo(w);[yl<1/e

We first note that the tightness of the family eX(#/e*) implies the relation

(2

Below, we use the Poincaré inequality to prove that there exist some constants
a¢(w) such that

lim lim P§’ [

t—0 e—0

> K} =0 (.ass., and for any K > 0. (2.14)

lim &* Z lex(w, ¥) — a|* =0 Q.as. (2.15)

0
7 yECo(w); |yI<1/e

As a consequence of (2.1), (2.15) yields

t
lfmghnépo[ <a),X<—2>> — a, ZK] =0 @Q.as., and for any K> 0.
—) e— &
Indeed,
t
—_ >
iy 75 ex(0%() ) - o2 6}

= lim lim P§ {

t—0 e—0

ea(8) -5 ()2
(e (2)-fox ()2

By (2.1) and (2.15), the first limit on the right-hand side is equal to zero. The
second one is zero owing to (2.14).
But the invariance principle for the process eX(t/e?)+ex(w, X(t/e)) implies

that
t
I{IHOIIII%PO [\eX( >+ex<w X< ))\>K] =0 @Q.a.s.,

and for any K>0.
Thus, taking the difference, we see that a, tends to 0 and

lim &* Z lex(w, »))? =0 Qp.a.s.

e—0
yECo(w); |yl<1/e

ag| = K,

t—0 e—0

+ lim hm Py {

It remains to justify (2.15).

Poincaré inequalities. Let us recall that the function G,= Gy(w,e), wEQ, eEB, is
defined as a unique solution to problem (2.8) and x(w, z) satisfies (2.9). Since G,
is square integrable, the spatial ergodic theorem (see Krengel 1985, p. 205) implies
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that 8chEBZl€C{)(m); oj<1/eT-0(€) (Gy(z.0, e))? has a Q.a.s. finite limit. Therefore,

lim sup &* Z Z z.w(e)(Gy(z., €))* < %, (2.16)

€ e€B zeCy(w); |z|<1/(1—a)e

p-a.s. and for any constant 0 <a<1.

We quote from Mathieu & Remy (2004), theorem 1.3. For some ¢>0, define Cj to
be the connected component of the intersection of Co(w) with the box [—1/e,1/¢]? that
contains the origin. There exists a constant ( such that, (Jy.a.s. for small enough ¢, for
any function u:Cj — R one has

LY ) —um)? <8 Y wls, o) (u(z) —u(y)

t
#Co z,yEC, a~yeC

1Since #C5 is of order ¢~ for small enough e and since Cy(w) N [—1/e,1/e]* C
Cg ~* for some constant a, we therefore have a constant 8 such that, Q.a.s. for
small enough ¢, for any function u:Co(w)—R

¢! > () —u(m)*<pe > > wlz, y)(u(@) —u(y))*

7,y €Co(w); |z,yI<1/e a~yeC) "

We use this last inequality for the functions u(z)=x(w, z)-b to get

ety X(@,2) —x(, y)|*

z, y€Co(w); |al,|yI<1/e
< Z Z Z z.w(e)(Gy(z.0, €))?.
bEB e€B zeC)(w); |z|<1/(1—a)e

By (2.16), we therefore get

lim sup &2l Z lex(w, z) —ex(w, Z/)’Q <,
¢ z,y€Co(w); |2l |yl<1/e

@o-a.s., and

lim sup &2 Z n®(z)n”(y)lex(w, z) —ex(w, y)|2 < .
¢ z, y€Co(w); |a,|y[<1/e

Indeed, observe that the presence of the bounded factors n”(z) and n”(y) is
harmless. This last inequality is equivalent to

lim sup ¢’ Z n®(z)|ex(w, ) — a,)* <, (2.17)

¢ aeCyw) foi<l/e

@o-a.s., where

a, = Z n”(z)ex(w, x)

2€Cy(w); |z|<1/e

is the mean value of ex(w, z) on the set {z€Cy(w); |2/ <1/} with respect to the
measure with weight n”(z).
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Two-scale convergence. We first introduce some notation. Let I'=]—1,1[%. For
w€Q and ¢>0, we define the measures

po= > n%(2)8.,, u,=e" > n(2)d,..
2€C(w) 2€C(w)

Given a direction e€B, the gradient of a function ¢:R?—R is

Vid(s) = (8= + e6)~4(2).

Let us now choose byE B and let

V(w, 2) = <ex (w,%z) _ ag> by,

Thus y* is well defined for z€eCy(w). From the definition of x, we have

1
V' (w,2) = Gy, (; 2.0, e),

for z€eCy(w).

Remember that, for 2 €Z¢, the expression 7.w denotes the graph obtained by
translating @ by 2. In particular, for z€¢Z% (1/¢)zw(e) is either 0 or I,
depending on whether the edge (z, z+e) belongs to w or not. We sometimes
prefer the notation (z/¢).w(e) in order to avoid possible confusion.

In our new notation, (2.16) and (2.17) now read

Ci(w) = supsup J (2)-w((Ve (@, 2)dus () < =, (2.18)
and
Co(w) = sup [ (W (0,2 du(2) < (2.19)

for @)y almost any w. For further reference, let us call 2, the set of w in Q such
that 0€C(w), Cj(w)< o and Ch(w)< o and observe that Qy(2;)=1.
Define the measure

P(4) = Q[14(w)n”(0)1pec(y)]- (2.20)

According to the ergodic theorem, for any smooth function ¢ = C*(I') and any
uw€ L'(Q,P) we have

[ (s 20)auiia = (] o) ([ uenaren). e
Qo.a.5.

We endow Q with its natural (product) topology to turn it into a compact
space. We will use the notation C(Q) for continuous real-valued functions defined
on Q. Using standard separability arguments, we see that (2.21) holds
simultaneously for any ¢ C*(I') and ue C(Q) on a set of full @, measure.
More precisely, let Q5 be the set of w in Q such that 0€C(w), and for any
functions ¢ € C*(I') and ue C(Q) one has

Lqﬁ(z)u(% z.w) dus, () — <L¢(z)dz> (Jgu(w’)dP(w’)>, (2.22)
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and, for any e€ B,

L¢(z) % z.w(e)u (% z.a)) Gy, <% 2.0, e) due,(2)

- (Ld)(@dz) <ng/(e)u(w’)Gbn(w’, e)dp(w')) (2.23)

Then @Qy(Q2)=1. Finally, let Qy=Q,NQ,. In the sequel, a will denote an
element of Q.

Our next goal is to introduce a version of two-scale convergence adapted to the
model studied. To this end, consider the family of linear functionals

£(ud) = [ #(a2u; 2 i)

Using the Cauchy—Schwartz inequality, we get

2
(1) < | WP a)| o0+ 2 (o)
From (2.19) and (2.22), we deduce that for ¢ C*(I') and ue C(Q)

lim sup (L% (u, ¢))* < Cg(oz)J ¢(z)2dzJ w(w)*dP(w).
e r Q
Therefore, applying the diagonal procedure, we conclude that, up to extracting a
sub-sequence, we can assume that, for any smooth ¢ and any continuous
u€ C(Q), L**(u, ¢) has a limit of say L*(u, ¢), where L is a linear functional
satisfying
(11, 9)* < G|

r

gb(z)deJ w(w)?dP(w).

Q

Thus, L* can be extended as a continuous linear functional on L*(Q X I',dP X dx)
and, by Riesz’s theorem, there exists a function v* € L*(Q X I',dP X dz) such that

L(1,) = | $(:)dz] ulw)e (0, 2aP0).

Let us summarize the preceding discussion: we have proved that, up to
extracting a sub-sequence, for g€ C*(I') and ue C(Q),

()Y (a, 2)u lz.oz dug(2) = | ¢(2)dz| w(w)v"(w, 2)dP(w). (2.24)
.[r <€ > J J

r Q
We will prove lemma 2.8.

Lemma 2.8. For any a€Q,, v*(w, 2)=0 for Lebesgue almost any z€T and P
almost any w.

As a consequence of this lemma, we have that for ¢, almost any «, for any
function p € C*(TI),

L¢(2)¢€(a, 2)dus,(z) = 0.
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Since we also have uniform bounds on the L* norm of ¥* (see (2.19)), we
deduce that, for any rectangle ACT,

| ¥t~
A
We conclude that, for any rectangle AC[— 1,1]d, Qp-a.s.

e Z n”(z)(ex(w, x) — a,) — 0. (2.25)

zeC(w); exz€A

Remark 2.9. The content of this part of the paper, including the proof of
lemma 2.8 below, should be compared with the results of Jikov & Piatnitski
(2006). The convergence in (2.24) is known as ‘two-scale convergence’. The only
difference between our setting and that of Jikov & Piatnitski (2006) is the
discrete nature of the grid; continuous diffusions are considered in Jikov &
Piatnitski (2006).

It is also possible to directly apply the results of Jikov & Piatnitski (2006) to
justify lemma 2.8. We refer the interested reader to the first version of the present
paper on the arXiv e-print archive for details. Here, we preferred to give a more
self-contained approach, but most of the arguments are mere copies of the proofs in
Jikov & Piatnitski (2006) with some minor simplifications owing to the fact that,
for instance, the Palm measure P is explicit and absolutely continuous w.r.t. Q.

Proof of lemma 2.8. The proof is in three steps. Throughout the following
proof, ¢ is always assumed to be in C§ (I'), the space of smooth functions with
compact support in I.

Step 1. We check the integration by parts formula

JF¢(z)V(“’)*u<% z.oz) i (2) = —eLﬁ
X Sou(g 2ae) (3 al0maeIi(), 020

where u is any function defined on Q X B and ¢ is small enough (depending on the
support of ¢),

L¢<z>v<w*u@z.a)du;(z) — ! T plen) VO u(z.0)n(2)

zE€C(ar)
ngbe:L“ Zxa u(z.a, €)
zE€C(a eeB

—u(z.e.a,—e))n"(x).

Z ¢(ex) Z z.a(e)u(z.e.a,—e)n*(z)

2E€C(a) eeB

But

= Z Z ' .a(e)u(r ., e)p(ex’ + ee)n*(2),
7EeC(a) €EB
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with the change of variables 2’=1+¢ and ¢'=—e. Combining the last two
equalities, one gets (2.26). Observe that boundary terms vanish because ¢ has
compact support and ¢ is small enough.

Step 2. We prove that v*(w, z) does not depend on w, i.e. that @Q.a.s.

oy 2P

Indeed, let u be continuous on @ XB and ¢ € C5 (I') and use (2.24) and the
integration by parts formula (2.26) to get

Jr(ﬁ(z)dsza(w’ AV u(0)dP(w) = h?“J

HW (w9 (L) 2

r

~ lim —gjrﬁ 3 ue v, e) (5)-ale) V(w9 () ).

& —_
& cEB

Since w is continuous, it is bounded. Note that (z/¢).a(e) <n*((1/¢)z). Besides,

im sup | (Z)-(e) (T2 (0 ) () Pk () < 21 @) 91 + 2G|V <

&

We conclude that, as ¢ tends to 0, the expression

J 1) <1 v ) (5) al@ve(w (e )o)(2)dus (),

rn® (;

remains bounded and therefore

e iy (570 e) (5) a0 )i () =0,

& =
e e€B

and

By (2.6), we also have

JQ v (w, 2)V O u(w)dP(w) = JQU“(w, 2)V " u(w)n®(0) Lyec(w)d Q(w)

= —J uV (., 2)d M.
Thus, we have proved that
JT¢(z)dzJuV(w) v*(., 2)dM = 0,
for any ¢ € C5 (I') and continuous u. We deduce that Qp.a.s. for any b€ B such
that w(b)=1 and for Lebesgue almost any z then v*(b.w, 2) = v*(w, z). Integrating

this equality on a path between 0 and z€Cy(w), we then get that (.a.s. for any
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€ C(w) and for Lebesgue almost any z then v*(w, z) =v"(2.w, z). Therefore, since
u;, charges only C(w), the ergodic theorem yields

_ [rv* (27w, 2)dug,(2') R [ (o, 2)dP()
T () o JdP(w)

()p-a.s in w and for Lebesgue almost any z& T

Step 3. We now prove that v*(2) does not depend on z To this end, we first

prove that, for any smooth ¢ € C%(I') and any continuous u € L2, we have

Z (Ldzva(z)V¢(z)-e> (Jga(w, e)dP(w)) =0, (2.28)

eeB

= v"(2),

v (w, 2)

where

w(w, e) = u(w, e). (2.29)

(J gercametey) (], sorape))

= tim | (99(:)- 0021 ; 2 e )i

& I

We have

= lim | Vio(2)¥ («, z)ﬂ(i z., e) dug(2)
r

€ oJ

S A RCACICL CRR EE

&

—lim Jrqs(z)v;(wf(a, .))(z)ae 2., e> it (2), (2.30)

where we used (2.24) in the first equality and the regularity of ¢ for the
second and third equalities. Using integration by parts and the definition of ,
we get

> JFVE(WS(a, .))(z)ﬂc z.a, e) dus,(2)

e€eB

=3[ wiowia i 2 ’(a(f)) (e
1

eeB
—— [ swta z>v<<“>*u<3 z.a> dut () = 0,
I

& &

o =

since u € L2 and therefore V(4= 0.
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We now turn to the second term in (2.30). Remember that Vi (y(«,.))(2)=
Gy, (% z.a, e). Thus, as an application of (2.23),

im [ 69 (@) )i 2 e )2

&

= (Jrgb(z)dz) <L) G, (0, ) (o, e)dP(w))

Replacing @ and P by their definitions in (2.29) and (2.20), respectively, we
also have

S|, Gu (@ egitw, 9aP(©) = 3 [ 6. ole)ulo, leccud @)

eeB eEB
= J Gy, udM =0,

since Gy, € L}, and u € L%. We conclude that (2.28) holds.
2

Equation (2.28) was proved for any continuous u € LZ;. By density, it also
holds for any v € L2).
It remains to check the following fact.

Lemma 2.9. For any direction e€ B, there exists u € L%, such that [yi(w, €)

dP(w) #0 with 4 defined in (2.29).
Proof. Indeed, first of all note that, by definition of 4,
J W(w, e)dP(w) = J w(e)u(w, e)dQ(w).
Q 0eC(w)

Define the random field € by é(w,b)=1,—, (e is kept fixed.) Let G be the
orthogonal projection of —é on Lgot and let u= G + ¢ € L2,;. We write that u and
u— e= G are orthogonal,

Joec(w)w(e)u(w, e)dQ(w) = J uwedM = J w?dM +0,

because &€& L2, and u+0. [ |

Conclusion of the proof of lemma 2.8. We deduce from (2.28) and lemma 2.9
that

erzv“(z)VqS(z)-e o,

for any smooth ¢ and any direction e. Therefore, v* is Lebesgue almost surely
constant.

The mean of Y° w.r.t. the measure u, on I' vanishes; remember, this is the way
we chose a,. Therefore, v* also has a vanishing mean w.r.t. the Lebesgue measure
on I'. And since, by steps 2 and 3, v* is almost surely constant, we must have that
Qo-a.s. and for Lebesgue almost any z, v*(w,z)=0.
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Scaling and strong L* convergence of x. To conclude the proof of the theorem,
we still have to prove the strong L? convergence in (2.15). It will be a consequence
of the weak convergence (2.25) and of a scaling argument

We choose a parameter 6>O We chop the box [—1,1]% into smaller boxes of
side length of order 6: for 2€6Z%s.t. |2/ <1, let B, (resp. C.) be the box of centre z
and side length Mo (resp. side length ). M is a constant whose value will be
chosen later. For e>0, we use the notation B.(¢e)=((1/¢)B.)NZ" and C,(e)=
(1/e)C)NZ"

The following version of the Poincaré inequality was proved by Barlow (2004),
see definition 1.7, theorem 2.18, lemma 2.13 and proposition 2.17 in that paper:
there exist constants M>1 and ﬁ such that @)y.a.s. for any 6> 0, for small enough
e, for any 2€0Z% s.t. |2/ <1 and for any function w:Z%—R, one has

com Y @)<Y ol g)ue) = u)

€) 4 yel@NC.(e) s~yeC(@)NB.(¢)

We use this inequality for the function ey to get

1 2
> lex(w,2) —ex(o, y)|

#C.(e) , yEC@NC,(e)

< D DD wlwzte)(Gylrw,e)’.
2€C(w)NB,(¢) bEB ecB

This last inequality is equivalent to
1

n”(z)n” (y)|ex(w, z) —ex(w, y)|*
#C.(e) 2, yeC(@)NC.(e)

< g6 Z Z Z w(z,z + e)(Gylz.w, e))>
zE€C(w)NB,(e) bEB e€B

Denoting with a,(z) the mean value of ex(w,.) on the set C(w)NC,(¢) and with
respect to the measure with weights n”(z), we get that, for all z,

> n@lex(o.2) = o)

r€C(w)NC;(e)
< g6 Z ZZ (2,7 + e)(Gy(z.0, €))%,
z€C(w)NB,(¢) bEB eEB
and summing over all values of z,
n®(z)|ex(w, ) — a.(2)*
z zel(w)NC,(e)
< 66’ Z Z Z w(z,z + e)(Gyz.w, e)’.
z€C(w);|z|<1/e bEB e€B

(Remember that the value of B is allowed to change from line to line.)
Multiplying by ¢? and applying the spatial ergodic theorem as before, we get

imsupd e} n(@)lex(w,7) = als)P <66° Y J (Gy)* dM.

rEC()NCL(e) b<b
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On the other hand, it follows from (2.25) that, for any z, a.(z) — a. converges to 0.
Therefore, we must also have

lim supe Z Z n‘”(x)(sx(w,x)— a€)2£,862ZJ(Gb)2 dM,

z zeC(w)NC,(e beB

and

lim sup &” Z n”(z)(ex(w, r) — a,)* < 86> Z J (Gy)* dM,

¢ 1EC(w); |2|<1/e =

and, since this holds for any 6 >0, we deduce that

e Z n”(z)(ex(w, z) — a£)2 — 0,

z€C(w); |z[<1 /e

Qp-a.s.

Since n”(z) >1 for z€C(w), we conclude that (2.15) holds.

Conclusion of the proof of the theorem. As pointed out at the beglnnlng of §2¢,
(2. 15) implies that, for any ¢>0, the random variables ex(w, X(t/e?)) converge
to 0 in Py probablhty, Q.a.s. on the set 0E€C(w). Therefore, the asymptotics of
the ﬁmte dimensional marginals of the two processes (X°(t), t€R;) and
(Me(t)=X*(t) +ex(w, X(t/e?)), tER,) coincide, and, since we already
proved that M® satisfies the invariance principle (see the conclusion of §2b),
we deduce that the processes (X°(t),t€R.) converge in the sense of finite-
dimensional distributions towards a Brownian motion with deterministic
covariance matrix A. Combined with the tightness result of lemma 2.1, it
gives the convergence of X* in the Skorohod topology.

That A is diagonal was proved by De Masi et al. (1989), theorem 4.7, 3. One
can argue that A is positive as a consequence of the Gaussian lower bounds
obtained by Barlow (2004), but the original proof was given by Grimmett &
Marstrand (1990). |
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