Soit $A \in GL_n(\mathbb{R})$.

Soit $A \in \mathrm{GL}_n(\mathbb{R})$.

Théorème 7

Il existe $O \in \mathrm{O}_n(\mathbb{R})$ et $S \in \mathrm{S}_n(\mathbb{R})$ définie positive telles que

Soit $A \in \mathrm{GL}_n(\mathbb{R})$.

Théorème 7

Il existe $O \in \mathcal{O}_n(\mathbb{R})$ et $S \in \mathcal{S}_n(\mathbb{R})$ définie positive telles que

$$A = OS$$
.

Soit $A \in \mathrm{GL}_n(\mathbb{R})$.

Théorème 7

Il existe $O \in \mathcal{O}_n(\mathbb{R})$ et $S \in \mathcal{S}_n(\mathbb{R})$ définie positive telles que

$$A = OS$$
.

De plus, le couple (O, S) est unique.

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien de dimension $n \in \mathbb{N} \setminus \{0\}$,

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien de dimension $n \in \mathbb{N} \setminus \{0\}$, et soit f un endomorphisme orthogonal de E.

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien de dimension $n \in \mathbb{N} \setminus \{0\}$, et soit f un endomorphisme orthogonal de E.

Notation : Pour $\theta \in \mathbb{R}$,

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien de dimension $n \in \mathbb{N} \setminus \{0\}$, et soit f un endomorphisme orthogonal de E.

$$\underline{\mathsf{Notation}:} \ \mathsf{Pour} \ \theta \in \mathbb{R}, \ \mathsf{on} \ \mathsf{note} \ R(\theta) := \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \in \mathrm{O}_2(\mathbb{R}).$$

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien de dimension $n \in \mathbb{N} \setminus \{0\}$, et soit f un endomorphisme orthogonal de E.

Notation: Pour
$$\theta \in \mathbb{R}$$
, on note $R(\theta) := \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \in O_2(\mathbb{R})$.

Théorème 8

Il existe une base orthonormale $\mathcal B$ de $\mathcal E$ dans laquelle

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien de dimension $n \in \mathbb{N} \setminus \{0\}$, et soit f un endomorphisme orthogonal de E.

$$\underline{\mathsf{Notation}:} \ \mathsf{Pour} \ \theta \in \mathbb{R}, \ \mathsf{on \ note} \ R(\theta) := \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \in \mathrm{O}_2(\mathbb{R}).$$

Théorème 8

Il existe une base orthonormale \mathcal{B} de \mathcal{E} dans laquelle

$$\operatorname{Mat}_{\mathcal{B}}(f) = egin{pmatrix} \epsilon_1 & & & & 0 \ & \ddots & & & & \ & & \epsilon_r & & & \ & & & R(heta_1) & & \ & & & \ddots & \ 0 & & & & R(heta_s) \end{pmatrix}$$

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien de dimension $n \in \mathbb{N} \setminus \{0\}$, et soit f un endomorphisme orthogonal de E.

Notation: Pour $\theta \in \mathbb{R}$, on note $R(\theta) := \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \in \mathrm{O}_2(\mathbb{R})$.

Théorème 8

Il existe une base orthonormale ${\cal B}$ de ${\cal E}$ dans laquelle

$$\operatorname{Mat}_{\mathcal{B}}(f) = \left(egin{array}{cccc} \epsilon_1 & & & & & 0 \\ & \ddots & & & & & \\ & & \epsilon_r & & & & \\ & & & R(heta_1) & & & \\ & & & \ddots & & \\ 0 & & & & R(heta_s) \end{array}
ight)$$

où
$$r, s \in \mathbb{N}$$
, $\forall i \in \{1, \dots, r\}$, $\epsilon_i \in \{+1; -1\}$, $\forall j \in \{1, \dots, s\}$, $\theta_j \in \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}$.