logo site
Institut de Mathématiques de Marseille, UMR 7373
Slogan du site
Descriptif du site
ANR LISA
Article mis en ligne le 25 janvier 2018
dernière modification le 11 septembre 2019

par Lozingot Eric, Pichon Anne

-
-
-

LISA – Lipschitz Geometry of Singularities

Project ANR-17-CE40-0023 of the Agence Nationale de la Recherche

Date de début : 1er octobre 2017. Durée : 48 mois.

Membres

Partenaire 1 : Marseille  (Institut de Mathématiques de Marseille)

- Nicolas Dutertre

- Vincent Florens

- Hélène Maugendre

- Anne Pichon, responsable scientifique, coordinatrice

- David Trotman

Partenaire 2 : Lille (Laboratoire Paul Painlevé)

- Arnaud Bodin

- Patrick Popescu-Pampu, coordinateur

- Hussein Mourtada

Partenaire 3 : Nice (Laboratoire J.A. Dieudonné)

- Georges Comte

- Krzystof Kurdyka

- Adam Parusinski, coordinateur

Événements

- Conférence Géométrie Lipschitz des Singularités, Marseille, La FRUMAM, du 7 au 10 novembre  2017

- Workshop "The annual meeting of LISA", Paris, 23, 24 et 25 mai 2018

- École Internationale sur les Singularités et la Géométrie Lipschitz, Cuernavaca, Mexique, 11 au 22 juin 2018

- Workshop BIRS, Casa Matematica Oaxaca, Mexique, 21 au 26 octobre 2018.

- Workshop Lipschitz Geometry of Singularities, Marseille, La FRUMAM, du3 au 6 juin 2019

Publications

Dans chacune de vos publications ou preprints produits dans le cadre du projet, n’oubliez pas d'indiquer la mention :

LISA Project ANR-17-CE40-0023

1 - J.B. Campesato, T. Fukui, K. Kurdyka, A. Parusiński, Arc spaces, motivic measure and Lipschitz geometry of real algebraic sets, Math. Annalen, 374(1), (2019) 211-251. https://arxiv.org/abs/1807.05160

2 - N. Dutertre and N. Grulha (USP-Sao Carlos) : "Global Euler obstruction, global Brasselet numbers and critical points", Proceedings of the Royal Society of Edinburgh, DOI:10.1017/prm.2019.30, https://arxiv.org/abs/1703.06694

3 - E. Garcia Barroso, P. Gonzalez Perez, P. Popescu-Pampu, The valuative tree is the projective limit of Eggers-Wall trees. RACSAM, appeared online https://doi.org/10.1007/s13398-019-00646-z, https://arxiv.org/abs/1807.02841

4 - E. Garcia Barroso, P. Gonzalez Perez, P. Popescu-Pampu, M. Ruggiero, Ultrametric properties for valuation spaces of normal surface singularities, to appear in Transactions of the American Math. Society. https://arxiv.org/abs/1802.01165

5 - F. Misev, A. Pichon, Lipschitz normal embedding among superisolated singularities, 2018, 17 pages, to appear in International Mathematics Research Notices. https://arxiv.org/abs/1810.10179

6 - W. Neumann, H. Pedersen and A. Pichon, A characterization of Lipschitz normally embedded surface singularities, 2018, 30 pages, to appear in Journal of the London Mathematical Society. https://arxiv.org/abs/1806.11240

7- W. Neumann, H. Pedersen, A. Pichon, Minimal surface singularities are Lipschitz normally embedded, 19 pages, to appear in Journal of the London Mathematical Society. https://arxiv.org/abs/1503.03301

8 - N. Dutertre, “On the topology of non-isolated real singularities", à paraitre au Journal of Singularities, Proceedings de la conférence de Sao Carlos 2018. https://arxiv.org/abs/1901.06161

9- W. Kucharz, K. Kurdyka, From continuous rational to regulous function, Proc. ICM 2018, Rio de Janeiro, vol. 2, 737–766.

PREPUBLICATIONS soumises pour publication


- A. Parusinski, L. Paunescu, Zariski Equisingularity and Lipschitz Stratification of a
Family of Surface Singularities, 2019, https://arxiv.org/abs/1909.00296

- A. Belotto da Silva, L. Fantini, A. Pichon, Inner geometry of complex surfaces : a valuative approach, 2019, 42 pages, https://arxiv.org/abs/1905.01677.

- A. Belotto da Silva, A. Figalli, A. Parusiński, L. Rifford, Strong Sard Conjecture and regularity of singular minimizing geodesics for analytic sub-Riemannian structures in dimension 3, https://arxiv.org/abs/1810.03347

- A. Bodin, P. Dèbes, S. Najib, The Schinzel hypothesis for polynomials, https://arxiv.org/abs/1902.08155


- A. Bodin, Bilipschitz equivalence of polynomials, https://arxiv.org/abs/1902.01584

- C. McCrory, A. Parusiński, Real intersection homology II : A local duality obstruction, https://arxiv.org/abs/1701.08805

- D. Cutkovsky, H. Mourtada, B. Teissier, On uniqueness of finite extension of monomial valuation and their uniformization.

- F. Delgado, H. Maugendre, Pencils and critical locus on normal surfaces, https://arxiv.org/abs/1601.01647

- N. Dutertre, Vincent G., Gauss-Kronecker Curvature and equisingularity at infinity of definable families, https://arxiv.org/abs/1903.08001


- W. Kucharz, K. Kurdyka, Rational representation of real functions.


- B. Karadeniz, H. Mourtada, C. Plénat and M. Tosun, The embedded Nash problem of binational model of rational triple singularities.

- H. Maugendre, F. Michel, On the growth behaviour of Hironaka quotients, https://arxiv.org/abs/1707.02219

- C. Murolo, D. Trotman, Whitney cellulation of Whitney stratified sets and Goresky’s homology conjecture, preprint, 2019.

- A. Parusiński, A. Rainer, Selections of bounded variation for roots of smooth polynomials, https://arxiv.org/abs/1705.10492

- A. Parusiński, G. Rond, Algebraic varieties are homeomorphic to varieties defined over number fields, https://arxiv.org/abs/1810.00808

- A. Parusiński, G. Rond, Multiparameter perturbation theory of matrices and linear operators, https://arxiv.org/abs/1807.04242

- R. Oliveira Targino, Lipschitz geometry at infinity of complex plane algebraic curves, (2019), (Renato Oliveira Targino a est étudiant doctorant ; sa thèse est en codirection entre Anne Pichon et Alexandre Fernandes). https://arxiv.org/abs/1906.05569


- S. Trivedi, D. Trotman, Deformation retracts to intersections of Whitney stratifications, 2019.

-
-