Institut de Mathématiques de Marseille, UMR 7373


Accueil >

Asymptotic expansion of eigenvalues for the MIT bag model

Jeudi 27 avril 15:30-16:30 - Loïc LE TREUST - I2M, Aix-Marseille Université

Asymptotic expansion of eigenvalues for the MIT bag model

Résumé : In this talk we present some spectral asymptotic results of the MIT bag model. This model is the Dirac operator, −iα · ∇ + mβ, defined on a smooth and bounded domain of R3 , Ω, with certain boundary conditions. Specifically, −iβ(α · n)ψ = ψ must hold at the boundary of Ω, where n is the outward normal vector and ψ ∈ H 1 (Ω, C^4 ). This model was developed to get a better understanding of the phenomenons involved in the quark-gluon confinement. We study the self-adjointness of the operator and describe the limiting behavior of the eigenvalues of the MIT bag Dirac operator as the mass m tends to ±∞. This is a joint work with N. Arrizabalaga and N. Raymond.

JPEG - 10 ko


Exporter cet événement

Pour en savoir plus sur cet événement, consultez l'article Groupe de Travail Guide d’ondes, milieux stratifiés et problèmes inverses (GOMS)