logo site
Institut de Mathématiques de Marseille, UMR 7373
Slogan du site
Descriptif du site

Obstructions to Anosov diffeomorphisms

11h00 - 12h00
horaire FRUMAM

Aix-Marseille Université - Site St Charles
3, place Victor Hugo - case 39
13331 MARSEILLE Cedex 03

A diffeomorphism f of a closed Riemannian manifold M is Anosov if TM has a splitting as a Whitney sum of two df-invariant subbundles, and df acts expansively on one of the subbundles, and contractively on the other.
The only known examples of manifolds supporting an Anosov map are (certain) infranilmanifolds — prompting Smale to ask whether manifolds having an Anosov diffeomorphism necessarily have to be infranil. In this talk, I will survey the known obstructions to having an Anosov diffeomorphism. I will also outline some recent work with Andrey Gogolev showing that products of certain aspherical manifolds with nilmanifolds do not support Anosov diffeomorphisms.

Jean-François LAFONT