logo site
Institut de Mathématiques de Marseille, UMR 7373
Slogan du site
Descriptif du site

Selberg’s eigenvalue conjecture for moduli spaces of abelian differentials

vendredi
29
mars
2019
11h00 - 12h00
horaire FRUMAM

Aix-Marseille Université - Site St Charles
3, place Victor Hugo - case 39
13331 MARSEILLE Cedex 03

I’ll begin by discussing Selberg’s eigenvalue conjecture, that predicts a uniform spectral gap for the Laplacian on a special family of arithmetic Riemann surfaces.
Selberg’s conjecture can be restated in terms of the Teichmuller dynamics of abelian differentials on a torus. Based on this, Yoccoz made a generalization of Selberg’s conjecture for connected components of strata of abelian differentials on higher genus surfaces.
I will explain how I have proved an approximation to Selberg’s conjecture in higher genus, and highlight some of the interesting ingredients involved, including the recent resolution of a conjecture of Zorich by Avila-Matheus-Yoccoz and Gutierrez-Romo. If I have time, I’ll explain how this all fits into a broader program of automorphic forms on moduli spaces.

Michael MAGEE