logo site
Institut de Mathématiques de Marseille, UMR 7373
Slogan du site
Descriptif du site

L’alternative de Tits pour le groupe des automorphismes d’un produit libre

vendredi
23
janvier
2015
11h00 - 12h00
horaire FRUMAM

Aix-Marseille Université - Site St Charles
3, place Victor Hugo - case 39
13331 MARSEILLE Cedex 03

L’exposé sera consacré à une version de l’alternative de Tits pour le groupe des automorphismes d’un produit libre. Un théorème de Grushko affirme que tout groupe de type fini se scinde en un produit libre de la forme G=G_1*...*G_k*F_N, où chaque facteur G_i est non trivial, non isomorphe à Z, et librement indécomposable. Je montre que si chacun des groupes G_i et Out(G_i) satisfait l’alternative de Tits, alors Out(G) la satisfait également. Je présenterai quelques applications de ce théorème (notamment au cas où G est un groupe d’Artin à angles droits). J’en esquisserai une démonstration, que je présenterai en parallèle avec une preuve nouvelle de l’alternative de Tits pour les groupes modulaires de surfaces. Celle-ci repose sur l’étude de l’action de sous-groupes de Out(G) sur une version de l’outre-espace, et sur un complexe simplicial hype

Camille HORBEZ