Institut de Mathématiques de Marseille, UMR 7373




Rechercher


Accueil >

Ultrametric properties for valuation spaces of normal surface singularities

Jeudi 14 mars 14:00-15:00 - Matteo RUGGIERO - IMJ, Université Paris 7 (Paris-Diderot)

Ultrametric properties for valuation spaces of normal surface singularities

Résumé : Let (X,x_0) be a normal surface singularity, and denote by B_X the set of irreducible curves (branches) at (X,x_0).
Consider the functional u_L(A,B)=(L · A) (L · B) / (A · B), where L,A,B are branches.
In a joint work with E. García Barroso, P. González Pérez and P. Popescu Pampu, we show that u_L defines an (extended) ultrametric distance on B_X for a (any) branch L if and only if (X,x_0) is arborescent : the dual graph of any good resolution is a tree.
The proof relies on intersection properties of exceptional divisors, obtained in collaboration with W. Gignac.
I will present this result, and an analogous statement on the space V_X of (rank-1 normalized semi-)valuations at (X,x_0).
If time allows, I will also present a topological condition on dual graphs (resp., valuation spaces) to ensure that u_L is an ultrametric on a given subset of B_X (resp., V_X).

JPEG - 5.5 ko
Matteo RUGGIERO

Lieu : FRUMAM - salle de séminaire (3ème étage) - Aix-Marseille Université - Site St Charles
3, place Victor Hugo - case 39
13331 MARSEILLE Cedex 03

Exporter cet événement

Pour en savoir plus sur cet événement, consultez l'article Séminaire Singularités