A semi-algorithm to explore the set of imbalances in S-adic systems

Mélodie Andrieu

Advisor : Julien Cassaigne Institut de Mathématiques de Marseille

Dyadisc3, Amiens, July 2019

I - MOTIVATION : understand the dynamics of [multiD] continued fraction algorithms.

II - OUR TOOL: a semi-algorithm to explore imbalances in S-adic systems.

III - APPLICATION : to Cassaigne-Selmer continued fraction algorithm.

definitions & notations

... "S-adic"?

```
Be \mathcal{A} a finite set \leftarrow "alphabet"
"Substitution" : \sigma \in End(A^*)
              ex: -\sigma_0: 1 \mapsto 2: 2 \mapsto 1
                        -\sigma_1: 1 \mapsto 11: 2 \mapsto \epsilon
                        - Thue-Morse : \sigma_{TM} : 1 \mapsto 12: 2 \mapsto 21
                        - Fibonacci : \sigma_{Fib}: 1 \mapsto 12; 2 \mapsto 1
                         - Tribonacci : \sigma_{Trib} : 1 \mapsto 12; 2 \mapsto 13; 3 \mapsto 1
"Substitutive word":
an infinite word that can be written : w = \lim_{n \to \infty} \sigma^n(a) with a \in \mathcal{A} \longleftarrow "seed"
              ex: - no word for \sigma_0
                        - w_{\sigma_1} = 11111111111111111...
                        - Thue-Morse :  \left\{ \begin{array}{l} w_{TM} = 1221211221121221... \\ w_{TM}' = 2112122112212112... \end{array} \right. 
                         - w_{Fib} = 1211212112112121...
                         - w_{Trib} = 1213121121312...
```

definitions & notations

... "S-adic"?

Be S a finite set of non-erasing substitutions on a common alphabet A.

```
"S-adic word": an infinite word that can be written: w = \lim_{n \to \infty} \sigma_0 \circ ... \circ \sigma_{n-1}(a) with: -a \in \mathcal{A} \longleftarrow "seed" -(\sigma_n) \in S^{\mathbb{N}} \longleftarrow "directive sequence"
```

ex : - substitutive words $S = \{\sigma\}$ - but not only

"S-adic system": given S, the set of all S-adic words

definitions & notations

... "imbalance"?

Be w a finite or infinite word on A.

"imbalance of
$$w$$
": $Imb(w) := \sup_{n \in \mathbb{N}} \sup_{\substack{u,v \in F_n(w) \\ l \in A}} \max_{l \in A} ||u|_l - |v|_l| \in \mathbb{N} \text{ or } \infty$

where :
$$|u|_I = \text{number of 'I' in } u$$
 ex : $|banana|_a = 3$

$$ex : Imb('1221') = 1$$

ex: - Thue-Morse: $w_{TM} = 122121122112121...$ $Imb(w_{TM}) = 2$ - Fibonacci : $w_{Fib} = 121121211212121...$ $Imb(w_{Fib}) = 1$ - Tribonacci : $w_{Trib} = 1213121121312...$ $Imb(w_{Trib}) = 2$

Motivations?

Why are S-adic systems of interest?

What should we study their imbalances?

 \longrightarrow fruitful results for understanding the dynamics of (multiD) continued fraction algorithm.

1D: Euclid's algorithm

Dynamical system	$ \begin{pmatrix} \mathbb{R}^2_+ & \longrightarrow & \mathbb{R}^2_+ \\ (x,y) & \longmapsto & (x-y,y) \text{ if } x \ge y \\ & & (x,y-x) \text{ otherwise.} \end{pmatrix} $		
Associated words	sturmian words		
Substitutions set	$ au_1: 1 \mapsto 1 au_2: 1 \mapsto 12$		
	$2 \mapsto 21$ $2 \mapsto 2$		
(Im)balance	1-balanced		
Rotation coding	\checkmark		

2D : Arnoux-Rauzy algorithm [Arnoux, Rauzy, 1991]

Dynamical system	$ \begin{array}{cccc} \mathcal{G} \subseteq \mathbb{R}^3_+ & \longrightarrow & \mathcal{G} \\ (x,y,z) & \longmapsto & (x-y-z,y,z) \text{ if } x \geq y+z \\ & & (x,y-x-z,z) \text{ if } y \geq x+z \\ & & (x,y,z-x-y) \text{ if } z \geq x+y. \end{array} $
Associated words	Arnoux-Rauzy words
Substitutions set	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(Im)balance	There exist AR words with infinite imbalance.
	[Cassaigne, Ferenczi, Zamboni, 2001]
Rotation coding	X Massacudi 2000l
	[Cassaigne, Ferenczi, Messaoudi, 2008]

The Rauzy gasket \mathcal{G} .

A new candidate for 2D : Cassaigne-Selmer algorithm

Dynamical system	$ \begin{array}{ccc} \mathbb{R}^3_+ & \longrightarrow & \mathbb{R}^3_+ \\ (x,y,z) & \longmapsto & (x-z,z,y) \text{ if } x \geq z \\ & & (y,x,z-x) \text{ otherwise.} \end{array} $		
Associated words	C-adic words		
	$c_1: 1 \mapsto 1 \qquad c_2: 1 \mapsto 2$		
Substitutions set	$2 \mapsto 13$ $2 \mapsto 13$		
	$3 \mapsto 2$ $3 \mapsto 3$		
(Im)balance	?		
Rotation coding	?		

$$C := \{c_1, c_2\}.$$

What can be said about the imbalance of C-adic words?

A new candidate for 2D : Cassaigne-Selmer algorithm

Dynamical system	$ \begin{array}{cccc} \mathbb{R}^3_+ & \longrightarrow & \mathbb{R}^3_+ \\ (x,y,z) & \longmapsto & (x-z,z,y) \text{ if } x \geq z \\ & & (y,x,z-x) \text{ otherwise.} \end{array} $	
Associated words	C-adic words	
	$c_1: 1 \mapsto 1 \qquad c_2: 1 \mapsto 2$	
Substitutions set	$2 \mapsto 13$ $2 \mapsto 13$	
	$3 \mapsto 2 \qquad 3 \mapsto 3$	
(Im)balance	There exists C-adic words with infinite imbalance.	
Rotation coding	?	

$$C := \{c_1, c_2\}.$$

What can be said about the imbalance of C-adic words?

Foretaste

Theorem

Be S a finite set of non-erasing substitutions over A, $n \in \mathbb{N}$. Assume (H) that each $a \in A$ appear in at least one S-adic word. Then "There exists w S-adic such that $Imb(w) \ge n$ " is **semi-decidable**.

 \longrightarrow If such a w exists, we'll find it!

Our semi-algorithm "imbalances automaton": a growing family of automata, for which

 $\begin{array}{ll} \text{imbalances} & \approx \text{ final states} \\ \text{directive sequences} & \approx \text{ paths labels} \end{array}$

II - TOOL: imbalances automaton

Everything hinge on a finiteness lemma!

Be $C \in \mathbb{N}$

```
Lemma
```

```
\exists w \text{ S-adic s.t. } Imb(w) \geq C \quad \Rightarrow \quad \exists \sigma_0, ..., \sigma_{n_0} \in S, a \in \mathcal{A} \\ \exists u, v \in F(\sigma_0 \circ ... \circ \sigma_{n_0}(a)) \text{ s.t } : \\ |u| = |v| \text{ and } \max_{l \in \mathcal{A}} ||u|_l - |v|_l| \geq C
```

Is the **converse** true?

 \longrightarrow In general : NO \longrightarrow If (H) : YES

Consequence: a naive semi-algorithm to detect imbalances.

We can do better!

1) Be methodic : understand where does an imbalance come from, to reinvest what we learnt at a previous step.

2) Eco-friendly computing : do we really need to know everything about u and v?

 \longrightarrow semi-abelianization

--- desubstitution

1) Be methodic

Let's desubstitute!

Be $u,v \in F(\sigma_0 \circ ... \circ \sigma_{n_0}(a))$, s.t. |u| = |v|.

 \longrightarrow Where do u and v come from?

Good point : directive sequence is shorter

Bad point: \widetilde{u} and \widetilde{v} may not have the same length!

Compromise: study the couples of factors in S-adic words, with no consideration on their lengths.

1) Be methodic

Towards an "infinite" automaton

$$\mathfrak{S} := \{(u,v) \mid \exists w \text{ S-adic s.t. } u,v \in F(w)\}$$
 states
$$\mathfrak{F} := \{(u,v) \in \mathfrak{S} \mid |u| = |v|\}$$
 final states

...transitions?

---- converse of the desubstitution

which is NOT the substitution

...but the "substitute and cut" operation.

1) Be methodic : the **substitute** and **cut** operation

Be $u, \tilde{u} \in \mathcal{A}^*$.

Notations : -
$$\alpha(u)$$
 and $\omega(u)$ the first and last letter of u ; - $p_k(u)$ [$s_k(u)$] the prefix [suffix] of u of length k .

- A substitute and cut operation from \tilde{u} to u is a triplet $(\sigma, \beta, \gamma) \in S \times \mathbb{N}^2$ s.t. :
 - $p_{eta}(\sigma(\widetilde{u})).u.s_{\gamma}(\sigma(\widetilde{u})) = \sigma(\widetilde{u})$ • Cutting conditions : $\begin{cases} \beta = \gamma = 0 \text{ if } \widetilde{u} = \epsilon \text{ (empty word)} \\ \beta + \gamma \leq |\sigma(\widetilde{u})| \text{ and } \beta, \gamma < |\sigma(\widetilde{u})| \text{ if } |\widetilde{u}| = 1 \\ \beta < |\sigma(\alpha(\widetilde{u}))| \text{ and } \gamma < |\sigma(\omega(\widetilde{u}))| \text{ otherwise.} \end{cases}$

From u = 23, there are 4 allowed S&C operations : $(c_1, 0, 0), (c_1, 1, 0), (c_2, 0, 0)$ and $(c_2, 1, 0)$. which give respectively 132, 32, 133 and 33.

1) Be methodic : the **substitute** and **cut** operation

Be $u, \tilde{u}, v, \tilde{v} \in \mathcal{A}^*$.

- A substitute and cut operation from (u, v) to (u, v) is $(\sigma, \beta, \gamma, \delta, \eta) \in S \times \mathbb{N}^4$ s.t. :
 - (σ, β, γ) is a S&C operation from \tilde{u} to u
 - (σ, δ, η) is a S&C operation from \tilde{v} to v.

We denote it ${}^{\beta}_{\delta}\sigma^{\gamma}_{\eta}$.

• A quintuplet $(\sigma, \beta, \gamma, \delta, \eta)$ which satisfy (\approx) is "allowed".

There are 4 allowed S&C operations from (u,v): ${}^0_0c1^0_0$, ${}^1_0c1^0_0$, ${}^0_0c2^0_0$ and ${}^1_0c2^0_0$ which give respectively (132, 22), (32, 22), (133, 33) and (33, 33).

Applications

1) Be methodic

Closer to the "infinite" automaton

$$\mathfrak{S}$$
 := $\{(u,v) \mid \exists w \text{ S-adic s.t. } u,v \in F(w)\}$ states \mathfrak{F} := $\{(u,v) \in \mathfrak{S} \mid |u| = |v|\}$ final states $(\tilde{u},\tilde{v}) \to (u,v)$ allowed S&C operations transitions

Good points:

- Given $(u, v) \in \mathfrak{S}$, the number of allowed S & C operations from (u, v) is finite.
- Their image remain in S.

...Initial states?

 \longrightarrow Does there exist a finite set $\mathfrak{I} \subset \mathfrak{S}$ from which any state can be reached?

1) Be methodic

A finite initial set

Theorem

If $\forall a \in \mathcal{A}$ there exists a S-adic word w s.t. $a \in F(w)$ (H), then there exists a finite set $\mathfrak{I} \in \mathfrak{S}$ s.t. :

 $\forall (u,v) \in \mathfrak{S}, \exists (u_0,v_0) \in \mathfrak{I}, \exists (T_i)_{i \in \{0,n_0\}} = (^{\beta i}_{\delta i} \sigma i^{\gamma i}_{\eta i})_{i \in \{0,n_0\}} \text{ a finite sequence of allowed substitute and cut operations s.t.}:$

$$(u, v) = T_{n_0-1} \circ ... \circ T_0(u_0, v_0).$$

We can take

$$\mathfrak{I} = \{(\epsilon, \epsilon)\} \cup \bigcup_{a \in A} \{(a, \epsilon), (\epsilon, a), (a, a)\}.$$

elegance is coming

Be $\mu, \nu \in A^*$.

"abelianized of
$$u$$
": $ab(u) := (|u|_I)_{I \in \mathcal{A}} \in \mathbb{N}^{\mathcal{A}}$.

ex:
$$ab('12111') = (4,1)$$

Properties: 1.
$$ab(u).(1)_{l \in A} = |u|$$

2.
$$[ab(u) - ab(v)] \cdot (1)_{l \in \mathcal{A}} = 0 \iff |u| = |v|$$
.
then $ab(u) - ab(v)$ is the "imbalance vector" of u an

then
$$ab(u) - ab(v)$$
 is the "imbalance vector " of u and v .

3. If $w \in \mathcal{A}^{\mathbb{N}}$, $Imb(w) = \sup_{u,v \in F(w), |u| = |v|} ||ab(u) - ab(v)||_{\infty}$

Lemma: Given S, the imbalance of S-adic words is bounded iff the set of imbalance vectors $\{ab(u)-ab(v) \mid (u,v) \in \mathfrak{F}\}$ is finite.

→ We want to explore this set!

But abelianization breaks the transitions!

Consider the equivalence relation on $(A^*)^2$:

$$(u,v)\sim_{ab}(u',v')\iff ab(u)-ab(v)=ab(u')-ab(v')$$

 \longrightarrow **Factorize** \mathfrak{S} by \sim_{ab} ?

Problem: $x \in \mathfrak{G}/_{ab}$ can represent in the same time (u, v) and (u', v') for which the sets of allowed S&C operations (and the result they give) are different!

ex :
$$x=(0,0,0)$$
 represents $u=v=132$ as well as $u'=v'=\epsilon$. ${0\atop 0}c1{1\over 0}$ is allowed for (u,v) but not for (u',v') .

Recall

$$\begin{array}{l} \text{Cutting conditions}: \left\{ \begin{array}{l} \beta = \gamma = 0 \text{ if } \widetilde{u} = \epsilon \text{ (empty word)} \\ \beta + \gamma \leq |\sigma(\widetilde{u})| \text{ and } \beta, \gamma < |\sigma(\widetilde{u})| \text{ if } |\widetilde{u}| = 1 \\ \beta < |\sigma(\alpha(\widetilde{u}))| \text{ and } \gamma < |\sigma(\omega(\widetilde{u}))| \text{ otherwise.} \end{array} \right. \end{aligned}$$

Semi-abelianizaton

Solution: append a "matrix of extremities" containing the first/last letter of (u, v).

A more restrictive equivalence relation :

$$(u,v)\sim_{sab}(u',v') \iff \left\{ \begin{array}{l} ab(u)-ab(v)=ab(u')-ab(v') \\ M_{ext}(u,v)=M_{ext}(u',v') \end{array} \right.$$

$$\begin{array}{c} \mathbf{ex} : \begin{pmatrix} a & b \\ c & c \end{pmatrix}, (1,1,-1) \text{ represents } (acb,cc), \dots \\ \begin{pmatrix} a & \cdot \\ c & c \end{pmatrix}, (1,0,-2) \text{ represents } (a,cc). \\ \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix}, (0,0,0) \text{ represents } (\epsilon,\epsilon). \end{array}$$

Theorem: The S&C operation is compatible with \sim_{sab} .

Hence the quotient graph:

$$S := \{ (M, x) \in Ext \times \mathbb{Z}^A \mid \exists w \text{ S-adic }, \exists u, v \in F(w) \text{ s.t.}$$

$$M = M_{ext}(u, v) \text{ and } x = ab(u) - ab(v) \}$$
 states

$$\mathcal{F}$$
 := $\{(M,x) \in \mathcal{S} \mid x.(1)_{\mathcal{A}} = 0\}$ final states

$$ightarrow$$
 allowed S & C op. transitions

$$\mathcal{I} := \mathfrak{I}/{\sim_{sab}}$$
 initial states

Good properties:

- Given $S \in \mathcal{S}$, the number of allowed S & C operations from S is finite.
- Their image remain in S.
- From \mathcal{I} (which is **finite**!) you can reach every $S \in \mathcal{S}$.

 \longrightarrow From \mathcal{I} , we can explore \mathcal{S} , and thus, \mathcal{F} .

Our semi-algorithm: the "imbalances automaton"

Input : S a finite set of substitutions, $n \in \mathbb{N}$

Output: - YES if there exist w S-adic s. t. $Imb(w) \ge n$

- keep running otherwise.

It consists of:

- \longrightarrow A Breadth First Search of the quotient graph, starting from \mathcal{I} ...
- \longrightarrow If it finds a vertex S = (M, x) s. t. :
 - sum of coordinates of x = 0

$$\longleftarrow S \in \mathcal{F}$$

•
$$||x||_{\infty} > n$$

then return YES.

First steps of computation with Cassaigne-Selmer substitutions

III - Applications

Experimentation (sad) reality

Problem : the tree grows too fast!

Number of vertices in function of depth

Solution: cut branches with no hope to reach new final states...

At depth 9, among 1 000 vertices, we found the first imbalance 3...
At depth 16, among 80 000 vertices, we found the first imbalance 4...

Results for Cassaigne-Selmer words

$$C = \{c_1, c_2\}$$

$$c_1: 1 \mapsto 1$$

$$2 \mapsto 13$$

$$2 \mapsto 13$$

$$3 \mapsto 2$$

$$3 \mapsto 3$$

Be w_0 any CS word, e.g. $c_1 \circ c_2 \circ c_1 \circ c_2 \circ ...(1)$. Consider $w_1 = c_2 \circ c_2 \circ c_2(w_0)$ and for each $n \ge 1$:

$$\begin{cases} w_{n+1} = c_1^{2n+2} \circ c_2(w_n) & \text{if } n \text{ is odd} \\ w_{n+1} = c_2^{2n+2} \circ c_1(w_n) & \text{otherwise.} \end{cases}$$

Theorem 1: For every n, w_n is a CS word satisfying $D(w_n) \ge n$.

--- The imbalance of CS words is not bounded.

Theorem 2: There exists a CS word with infinite imbalance.

This is a construction from $(w_n)_n$ using the following lemma:

Lemma : If w is a C-adic word s.t. $D(w) \ge 3n$, then $c_1(w)$ (resp. $c_2(w)$) is a CS word satisfying $D(w) \ge n$.

- Given S and n, a "realistic" algorithm to semi-answer the question : " $\exists w$ S-adic s.t. $Imb(w) \ge n$?"
- The imbalance automaton gives intuitions on the nature (bounded/ unbounded)
 of the set of imbalances of S-adic words and on rules to construct these
 imbalances.
- OTHER USES :
 - behaviour with bounded partial quotient?
 - abelian complexity
 - ...
- Difficulty: the growth speed.

Miscellaneous questions :

- what about sets containing erasing substitutions?
- what if the substitutions work on different alphabets?
- more generally, what if we put restrictions on the language of directives sequences $\ref{eq:constraints}$
- Does there exist S such that imbalances of S-adic words are finite but not bounded?
 - Choice of an initial set \mathcal{I} when the condition (H) is not satisfied?

Thank you!