Motivation A topological definition		Borders assignment	Expected properties	Applications		
0000000	000000 00000 00		0000000	0000000		

Natural coding of minimal rotations of the torus, induction and exduction

Mélodie Andrieu

ERNEST seminar

28th September 2021

Motivation	A topological definition	Borders assignment	Expected properties	Applications

I - Motivations

- 1 The remarkable case of dimension 1
- 2. One remarkable example in dimension 2: the Tribonacci word
- 3. Towards a generalization?
- 4. Unfortunately, the naive definition is trivial.

II - A purely topological definition

III - The miracle: borders can be wisely assigned

- 1. This is *natural* in dimension 1.
- 2. But not in higher dimension.

IV - Expected properties are satisfied

- 1. Stability through induction
- 2. Stability through exduction

V - Applications to Arnoux-Rauzy and Cassaigne-Selmer words

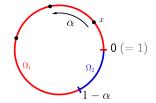
Motivation	A topological definition	Borders assignment	Expected properties	Applications
0000000	00000	000	0000000	0000000

I. Motivations

000000 00000	000	000000	0000000

1. The remarkable case of dimension 1

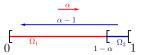
Consider: $\begin{array}{c} \star \alpha \in \mathbb{R} \setminus \mathbb{Q} \\ \star R_{\alpha} : \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z} \\ x \mapsto x + \alpha \\ \end{array}$ $\begin{array}{c} \star \text{ the partition } (\Omega_{1}, \Omega_{2}) \end{array}$



The partition (Ω_1, Ω_2) is remarkable:

1. The symbolic trajectory of any x under the iterations of R_{α} is a Sturmian word with frequency vector $(\frac{1}{1+\alpha}, \frac{\alpha}{1+\alpha})$.

2. Once lifted to [0,1), Ω_1, Ω_2 are two intervals and R_{α} is the exchange of these two intervals.



Motivation	A topological definition	Borders assignment	Expected properties	Applications
0000000				

In higher dimension?

Roughly speaking

A word $w \in \{1, ..., d+1\}^{\mathbb{N}}$ is a natural coding of rotation with angle $\alpha \in \mathbb{R}^d$ on the d-dimensional torus if there exists a partition $\Omega_1, ..., \Omega_{d+1}$ of the fundamental domain $[0, 1)^d$ such that:

- there exists a point whose symbolic trajectory is w
- the map induced by the rotation on the fondamental domain coincides with a piecewise translation (with pieces Ω₁,..., Ω_{d+1}).

✓ this partition is special!

Old questions:

1. Do such objects exist in dimension $d \ge 2$?

2. If so, describe a class of words C(d) such that for all $\alpha \in \mathbb{R}^d$, there exists $w \in C(d)$ which is a natural coding of the rotation with angle α .

Motivation	A topological definition	Borders assignment	Expected properties	Applications
0000000	00000	000	000000	0000000

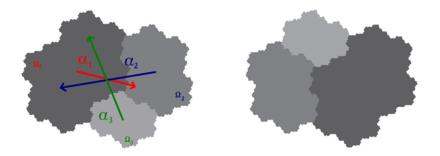
One encouraging example in dimension 2: the Tribonacci word (1982)

The Tribonacci word:

$w_{trib} := \lim_{n \to \infty}$	$\sigma^n(1) =$	1213121	121312121
-----------------------------------	-----------------	---------	-----------

where	σ	:	1	\mapsto	12
			2	\mapsto	13
			3	\mapsto	1

encodes an exchange of 3 pieces.



[Immediate consequence] It encodes the rotation by α_1 on the torus \mathbb{R}^2/L , with $L := (\alpha_2 - \alpha_1)\mathbb{Z} + (\alpha_3 - \alpha_1)\mathbb{Z}$.

Motivation	A topological definition	Borders assignment	Expected properties	Applications
00000000				

One encouraging example in dimension 2: the Tribonacci word (1982)

 \rightarrow The fundamental domain is not $[0,1)^d$, but a fractal!

the "Rauzy fractal"

乀

Some Properties: - connected

- regular (its closure = the closure of its interior)
- borders have measure 0.

Motivation	A topological definition	Borders assignment	Expected properties	Applications
00000000	00000	000	000000	0000000

Towards a generalization: the class of Arnoux-Rauzy words (1991)

Consider $S_{AR} = \{\sigma_1, \sigma_2, \sigma_3\}$ where:

σ_1 :	1	\rightarrow	1	;	σ_2 :	1	\rightarrow	21	and	σ_{3} :	1	\rightarrow	31
	2	\rightarrow	12			2	\rightarrow	2			2	\rightarrow	32
	3	\rightarrow	13			3	\rightarrow	23			3	\rightarrow	3.

def: w is an **Arnoux-Rauzy word** if there exists $(s_n)_n \in S_{AR}^{\mathbb{N}}$ (the "directive sequence") such that:

(i) σ_1, σ_2 and σ_3 appear infinitely often in (s_n) ;

 \rightarrow In this case, the sequence $(s_0 \circ \dots \circ s_n(1))_n$ converges to an infinite word w_0 . (ii) w has the same set of factors than w_0 .

"factor" = subword read with consecutive letters

example:

 w_{trib} is the limit of $(\sigma_1 \circ \sigma_2 \circ \sigma_3)^n(1))_n$ and thus, is an AR word.

Naive questions:

- are all AR words natural codings of minimal rotations of a 2 torus?

- for all minimal rotation of the 2 torus, does there exist an AR word which is a natural coding?

Motivation ○○○○○●○	A topological definition 00000	Borders assignment 000	Expected properties	Applications

The naive definition

definition 1: A word $w \in \{1, ..., d+1\}^{\mathbb{N}}$ is a natural coding of a minimal rotation R_{α} if there exist a fundamental domain Ω of $\mathbb{R}^d/\mathbb{Z}^d$, together with a partition $\Omega = \Omega_1 \sqcup ... \sqcup \Omega_{d+1}$, such that:

i. on each piece Ω_i , the covered rotation coincides with a translation by a vector α_i ;

ii. the sequence w is the symbolic coding of the orbit of a point $x \in \Omega$ with respect to the partition.

Naive answers:

- are all AR words natural codings of minimal rotations of a 2 torus?

- for all minimal rotation of the 2 torus, does there exist an AR word which is a natural coding?

Motivation ○○○○○●○	A topological definition 00000	Borders assignment 000	Expected properties	Applications

The naive definition

definition 1: A word $w \in \{1, ..., d+1\}^{\mathbb{N}}$ is a natural coding of a minimal rotation R_{α} if there exist a fundamental domain Ω of $\mathbb{R}^d/\mathbb{Z}^d$, together with a partition $\Omega = \Omega_1 \sqcup ... \sqcup \Omega_{d+1}$, such that:

i. on each piece Ω_i , the covered rotation coincides with a translation by a vector α_i ;

ii. the sequence w is the symbolic coding of the orbit of a point $x \in \Omega$ with respect to the partition.

Naive answers:

- are all AR words natural codings of minimal rotations of a 2 torus? YES

- for all minimal rotation of the 2 torus, does there exist an AR word which is a natural coding?

Motivation ○○○○○●○	A topological definition 00000	Borders assignment 000	Expected properties	Applications

The naive definition

definition 1: A word $w \in \{1, ..., d+1\}^{\mathbb{N}}$ is a natural coding of a minimal rotation R_{α} if there exist a fundamental domain Ω of $\mathbb{R}^d/\mathbb{Z}^d$, together with a partition $\Omega = \Omega_1 \sqcup ... \sqcup \Omega_{d+1}$, such that:

i. on each piece Ω_i , the covered rotation coincides with a translation by a vector α_i ;

ii. the sequence w is the symbolic coding of the orbit of a point $x \in \Omega$ with respect to the partition.

Naive answers:

- are all AR words natural codings of minimal rotations of a 2 torus? YES

- for all minimal rotation of the 2 torus, does there exist an AR word which is a natural coding? **YES**

Motivation	A topological definition	Borders assignment	Expected properties	Applications
00000000				

The naive definition fails

definition 1: A word $w \in \{1, ..., d+1\}^{\mathbb{N}}$ is a natural coding of a minimal rotation R_{α} if there exist a fundamental domain Ω of $\mathbb{R}^d/\mathbb{Z}^d$, together with a partition $\Omega = \Omega_1 \sqcup ... \sqcup \Omega_{d+1}$, such that:

i. on each piece Ω_i , the covered rotation coincides with a translation by a vector α_i ;

ii. the sequence w is the symbolic coding of the orbit of a point $x \in \Omega$ with respect to the partition.

Naive answers:

- are all AR words natural codings of minimal rotations of a 2 torus? YES

- for all minimal rotation of the 2 torus, does there exist an AR word which is a natural coding? **YES**

In fact...

Proposition 2

Under the axiom of choice, any word in $\{1, ..., d+1\}^{\mathbb{N}}$ is a natural coding [under def 1] of any minimal rotation R_{α} .

Motivation	A topological definition	Borders assignment	Expected properties	Applications
00000000				

The naive definition fails

definition 1: A word $w \in \{1, ..., d+1\}^{\mathbb{N}}$ is a natural coding of a minimal rotation R_{α} if there exist a fundamental domain Ω of $\mathbb{R}^d/\mathbb{Z}^d$, together with a partition $\Omega = \Omega_1 \sqcup ... \sqcup \Omega_{d+1}$, such that:

i. on each piece Ω_i , the covered rotation coincides with a translation by a vector α_i ;

ii. the sequence w is the symbolic coding of the orbit of a point $x \in \Omega$ with respect to the partition.

Naive answers:

- are all AR words natural codings of minimal rotations of a 2 torus? YES

- for all minimal rotation of the 2 torus, does there exist an AR word which is a natural coding? **YES**

In fact...

Proposition 2

Under the axiom of choice, any word in $\{1, ..., d+1\}^{\mathbb{N}}$ is a natural coding [under def 1] of any minimal rotation R_{α} .

 \rightarrow What did we miss? Which structure should we require from the pieces Ω_i ?

Motivation	A topological definition	Borders assignment	Expected properties	Applications
0000000				

And in the litterature?

- Natural codings of rotations of the torus are often referred to, rarely defined
- The naive definition is sometimes used...
- Some authors add working hypotheses (e.g. boundedness of the FD)

 \longrightarrow But we have examples of **unbounded** Rauzy fractals...

Motivation	A topological definition	Borders assignment	Expected properties	Applications
	0000			

II. A topological definition

Motivation	A topological definition	Borders assignment	Expected properties	Applications
0000000	0000	000	000000	0000000

1. A topological definition

Let $d \geq 1$. Let $L \subset \mathbb{R}^d$ a lattice and $\alpha \in \mathbb{R}^d$ such that $R_{\alpha,L}$ (the rotation with angle α on the torus \mathbb{R}^d/L) is minimal.

Definition 3

The word $w_0 \in \{1, ..., d\}^{\mathbb{N}}$ is a natural coding of $R_{\alpha, L}$ if:

- [partition of a pseudo-fundamental domain] There exist $\Omega_1, ..., \Omega_{d+1}$ nonempty, open sets of \mathbb{R}^d such that:
 - the sets $\Omega_1, ..., \Omega_{d+1}$ are pairwise disjoint;
 - the projection $p_L: \Omega \to \mathbb{R}^d/L$, with $\Omega := \cup \Omega_i$, is one-to-one;
 - the image set $p_L(\Omega)$ is dense in the torus \mathbb{R}^d/L .
- [exchange of pieces] There exist $\alpha_1, ..., \alpha_{d+1} \in \mathbb{R}^d$ such that for all indices $i \in \{1, ..., d+1\}$ and for all point $\tilde{x} \in p_L(\Omega_i) \cap R_\alpha^{-1}(p_L(\Omega))$, $r_{\Omega,L}(R_\alpha(\tilde{x})) = r_{\Omega,L}(\tilde{x}) + \alpha_i$, with $r_{\Omega,L} : p_L(\Omega) \mapsto \Omega$ the lift map.
- [a coding trajectory] There exists \tilde{x}_0 in $p_L(\Omega)$ such that, for all $n \in \mathbb{N}$, $R^n_{\alpha}(\tilde{x}_0) \in p_L(\Omega_{w_0[n]})$, where $w_0[n]$ denotes the (n+1)-th letter of w_0 .

def: $((L, \alpha); (\Omega : \Omega_1, ..., \Omega_{d+1}), \times_0, (\alpha_1, ..., \alpha_{d+1}))$ are the *elements* of the natural coding.

Motivation	A topological definition	Borders assignment	Expected properties	Applications
0000000	0000			

Examples in dimension 1

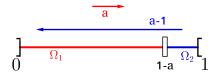
0000000 00000 000 000 000 00000 000000	Motivation	A topological definition	Borders assignment	Expected properties	Applications
	0000000	00000	000	0000000	0000000

Examples in dimension 1

Let $a \in [0,1] \setminus \mathbb{Q}$.

The standard sturmian word with slope a, denoted w_0 , is a natural coding with elements:

$$\begin{cases} L = \mathbb{Z} \\ \Omega = (0, 1); \quad \Omega_1 = (0, 1 - a); \quad \Omega_2 = (1 - a, 1) \\ x_0 = \alpha \\ \alpha = a; \quad \alpha_1 = a; \quad \alpha_2 = a - 1. \end{cases}$$



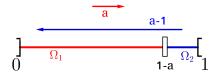
		ders assignment E	xpected properties /	Applications
0000000 00000	00	o o	000000	000000

Examples in dimension 1

Let $a \in [0,1] \setminus \mathbb{Q}$.

The standard sturmian word with slope a, denoted w_0 , is a natural coding with elements:

$$\begin{cases} L = \mathbb{Z} \\ \Omega = (0, 1); \quad \Omega_1 = (0, 1 - a); \quad \Omega_2 = (1 - a, 1) \\ x_0 = \alpha \\ \alpha = a; \quad \alpha_1 = a; \quad \alpha_2 = a - 1. \end{cases}$$



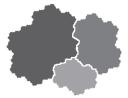
(!) In fact, all sturmian words with slope *a* are natural codings... except those such that $S^n(w) = w_0$ for some n > 0.

def: a minimal subshift is a natural coding of rotation if there exists $w \in X$ which is a natural coding...

Motivation	A topological definition	Borders assignment	Expected properties	Applications
	00000			

One example in dimension 2

The Tribonacci subshift $X := \overline{\{S^n(w_{trib}) | n \in \mathbb{N}\}\}}$ is a natural coding of rotation...

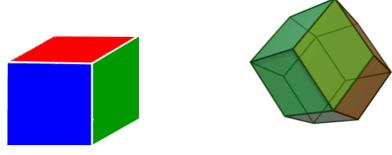


Since borders have measure 0, almost all points remain in the interior throughout time.

Motivation	A topological definition	Borders assignment	Expected properties	Applications
	00000			

Another family of examples

Minimal (d+1)-letter cubic billiard subshifts are natural codings of minimal rotation of the d-torus.



d = 3 (rhombic dodecahedron)

d = 2 (convex hexagonal parallelogon)

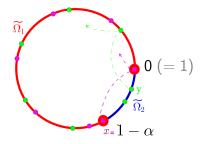
Motivation	A topological definition	Borders assignment	Expected properties	Applications
		000		

III - The miracle: borders can be wisely assigned

Motivation	A topological definition	Borders assignment	Expected properties	Applications
		000		

Borders assignment is natural in dimension 1

What happens if we choose the partition $\Omega_1 = [0, 1 - \alpha], \ \Omega_2 = (1 - \alpha, 1)$?



Problems:

1. The lifted rotation does not coincide with a translation on $\Omega_1.$

2. The words 1111111 and 2111112 are factors of the coding word w... which cannot be sturmian (not 1-balanced). We lost the minimality of the coding subshift.

 \longrightarrow How to prevent this bad bahavior in higher dimension? We have an uncountable decisions to make...

Motivation	A topological definition	Borders assignment	Expected properties	Applications
		000		

2. Borders assignment in dimension $d \ge 2$

Proposition 4: Under the axiom of choice, we can wisely assign borders, i.e., complete each piece Ω_i so as to obtain a true partition of a true fundamental domain $\Omega' = \Omega'_1 \sqcup \ldots \sqcup \Omega'_d$, while preserving:

- the exchange of pieces property
- the "continuity" of the coding function $f: \Omega' o \{1,...,d\}^{\mathbb{N}}$

Lemma 5 [weak sequencial continuity]: For all $x \in \Omega'$, there exists a sequence $(y_n)_n \in \Omega^{\mathbb{N}}$ such that $y_n \to x$ and $f(y_n) \to f(x)$.

 \longrightarrow In particular, we don't add new factors!

Strengh of our definition is to fully know what happens on borders.

Motivation	A topological definition	Borders assignment	Expected properties	Applications
			000000	

IV - Expected properties are satisfied

Motivation	A topological definition	Borders assignment	Expected properties	Applications
00000000	00000	000	0●00000	0000000

Theorem A (stability by induction)

Let w_0 be a natural coding of a minimal rotation of a *d*-torus, $((\alpha, L); (\Omega : \Omega_1, ..., \Omega_{d+1}); x_0; (\alpha_1, ..., \alpha_{d+1}))$ its elements, and $(\Omega' : \Omega'_1, ..., \Omega'_{d+1})$ a borders assignment. Denote by $T := r_{\Omega', L} \circ R_{\alpha, L} \circ p_L$ the covered rotation. Assume that *a* is a letter which admits d + 1 return words $u_1, ..., u_{d+1}$. Then there exist a second lattice *M* together with an angle $\beta \in \mathbb{R}^d$ such that:

• the rotation $R_{\beta,M}$ is minimal;

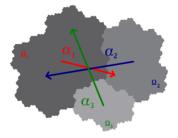
 ${f O}$ the set ${f \Omega}'_a$ is a fundamental domain of M;

- **9** for all x in Ω'_a , $T_{ind,a}(x) = x + \beta \mod M$, with $T_{ind,a}$ the first return map to the set Ω'_a of the covered rotation T;
- $D_a(w_0)$, is a natural coding of the rotation of \mathbb{R}^d/M with angle β , whose elements and borders assignment are explicit.

- * There is no need to resort to the axiom of choice a second time.
- * Theorem A is still true for factors instead of letters.

Motivation Atopolo	ogical definition Bor	ders assignment Expected	properties Applicat	Ions
000000 00000	000	000000	000000	00

 $w_{trib} = 1213121121312121...$



Motivation	A topological definition	Borders assignment	Expected properties	Applications
0000000	00000	000	000000	0000000

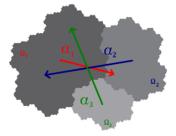
 $w_{trib} = 1213121121312121...$

Return words to 1:

$$\begin{cases} u_1 = 1 \\ u_2 = 12 \\ u_3 = 13 \end{cases}$$

-

1

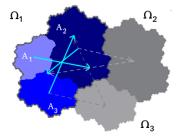


Motivation	A topological definition	Borders assignment	Expected properties	Applications
0000000	00000	000	000000	0000000

 $w_{trib} = 1213121121312121...$

Return words to 1:

$$\begin{cases} u_1 = 1 \\ u_2 = 12 \\ u_3 = 13 \end{cases}$$



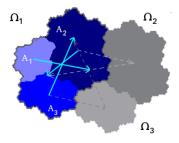
* The translation vectors:
$$\begin{cases} \beta_1 = \alpha_1 \\ \beta_2 = \alpha_1 + \alpha_2 \\ \beta_3 = \alpha_1 + \alpha_3 \end{cases}$$

Motivation	A topological definition	Borders assignment	Expected properties	Applications
0000000	00000	000	000000	0000000

 $w_{trib} = 1213121121312121...$

Return words to 1:

$$\begin{cases} u_1 = 1 \\ u_2 = 12 \\ u_3 = 13 \end{cases}$$



1

* The induced pseudo-partition:

$$\begin{cases}
A_1 = \Omega_1 \cap T^{-1}(\Omega_1) \\
A_2 = \Omega_1 \cap T^{-1}(\Omega_2) \cap T^{-2}(\Omega_1) \\
A_3 = \Omega_1 \cap T^{-1}(\Omega_3) \cap T^{-2}(\Omega_1)
\end{cases}$$

* The translation vectors:
$$\begin{cases} \beta_1 = \alpha_1 \\ \beta_2 = \alpha_1 + \alpha_2 \\ \beta_3 = \alpha_1 + \alpha_3 \end{cases}$$

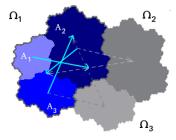
Motivation	A topological definition	Borders assignment	Expected properties	Applications
0000000	00000	000	000000	0000000

 $w_{trib} = 1213121121312121...$

Return words to 1:

$$\begin{cases} u_1 = 1 \\ u_2 = 12 \\ u_3 = 13 \end{cases}$$

1



* The translation vectors:
$$\begin{cases} \beta_1 = \alpha_1 \\ \beta_2 = \alpha_1 + \alpha_2 \\ \beta_3 = \alpha_1 + \alpha_3 \end{cases}$$

* The induced pseudo-partition: $\begin{cases}
A_1 = \Omega_1 \cap T^{-1}(\Omega_1) \\
A_2 = \Omega_1 \cap T^{-1}(\Omega_2) \\
A_3 = \Omega_1 \cap T^{-1}(\Omega_2)
\end{cases}$

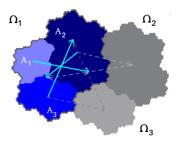
$$\begin{cases} A_2 = \Omega_1 \cap I^{-1}(\Omega_2) \cap I^{-2}(\Omega_1) \\ A_3 = \Omega_1 \cap T^{-1}(\Omega_3) \cap T^{-2}(\Omega_1) \end{cases}$$

$\begin{array}{l} \star \text{ Its completion:} \\ \begin{cases} A_1' = \Omega_1' \cap \mathcal{T}^{-1}(\Omega_1') \\ A_2' = \Omega_1' \cap \mathcal{T}^{-1}(\Omega_2') \cap \mathcal{T}^{-2}(\Omega_1') \\ A_3' = \Omega_1' \cap \mathcal{T}^{-1}(\Omega_3') \cap \mathcal{T}^{-2}(\Omega_1') \end{cases} \end{array}$

Motivation	A topological definition	Borders assignment	Expected properties	Applications
0000000	00000	000	000000	0000000

 $w_{trib} = 1213121121312121...$

Return words to 1: $\begin{cases} u_1 = 1 \\ u_2 = 12 \\ u_3 = 13 \end{cases}$



* The induced pseudo-partition: $\begin{cases}
A_1 = \Omega_1 \cap T^{-1}(\Omega_1) \\
A_2 = \Omega_1 \cap T^{-1}(\Omega_2) \cap T^{-2}(\Omega_1) \\
A_3 = \Omega_1 \cap T^{-1}(\Omega_3) \cap T^{-2}(\Omega_1)
\end{cases}$

* Its completion:

$$\begin{cases}
A'_1 = \Omega'_1 \cap T^{-1}(\Omega'_1) \\
A'_2 = \Omega'_1 \cap T^{-1}(\Omega'_2) \cap T^{-2}(\Omega'_1) \\
A'_3 = \Omega'_1 \cap T^{-1}(\Omega'_3) \cap T^{-2}(\Omega'_1)
\end{cases}$$

* The translation vectors:
$$\begin{cases} \beta_1 = \alpha_1 \\ \beta_2 = \alpha_1 + \alpha_2 \\ \beta_3 = \alpha_1 + \alpha_3 \end{cases}$$

1

* The lattice:
$$M = (\beta_2 - \beta_1)\mathbb{Z} + (\beta_3 - \beta_1)\mathbb{Z}$$
.

Motivation	A topological definition	Borders assignment	Expected properties	Applications
0000000	00000	000	000000	0000000

 $w_{trib} = 1213121121312121...$

Return words to 1:

$$\Omega_1$$
 Ω_2 Ω_2 Ω_3

1:
$$\begin{cases} u_2 = 12 \\ u_3 = 13 \end{cases}$$

 $\int u_1 = 1$

$$\begin{cases} A_1 = \Omega_1 \cap \mathcal{T}^{-1}(\Omega_1) \\ A_2 = \Omega_1 \cap \mathcal{T}^{-1}(\Omega_2) \cap \mathcal{T}^{-2}(\Omega_1) \\ A_3 = \Omega_1 \cap \mathcal{T}^{-1}(\Omega_3) \cap \mathcal{T}^{-2}(\Omega_1) \end{cases}$$

* Its completion:

$$\begin{cases}
A'_1 = \Omega'_1 \cap T^{-1}(\Omega'_1) \\
A'_2 = \Omega'_1 \cap T^{-1}(\Omega'_2) \cap T^{-2}(\Omega'_1) \\
A'_3 = \Omega'_1 \cap T^{-1}(\Omega'_3) \cap T^{-2}(\Omega'_1)
\end{cases}$$

 $\star \text{ The translation vectors: } \begin{cases} \beta_1 = \alpha_1 \\ \beta_2 = \alpha_1 + \alpha_2 \\ \beta_3 = \alpha_1 + \alpha_3 \end{cases}$

$$\star$$
 The lattice: $M=(eta_2-eta_1)\mathbb{Z}+(eta_3-eta_1)\mathbb{Z}$

Finally, $D_1(w_{trib}) = 23212322...$ is a natural coding of rotation with elements $((\mathcal{M}, \beta_1), (\Omega_1 : \mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3); x_0; (\beta_1, \beta_2, \beta_3))$ and borders assignment $(\Omega'_1 : \mathcal{A}'_1, \mathcal{A}'_2, \mathcal{A}'_3)$.

Motivation	A topological definition	Borders assignment	Expected properties	Applications
			0000000	

Aside question: what would have happened without the borders assignment?



Let T_{ind,Ω_1} be the first return map to Ω_1 .

For all $x\in \Omega_1$, we have ${\mathcal T}_{\mathit{ind},\Omega_1}=x+a \mod (1-a)...$

except for x = 1 - 2a

Contrary to the initial map, the induced map does not coincide with a rotation of the torus everywhere it could.

Motivation	A topological definition	Borders assignment	Expected properties	Applications
0000000	00000	000	0000000	0000000

A reverse construction: the exduction

(X,S) a dynamical system

* Induce = study the dynamical system $(A, S_{ind,A})$ with $A \subset X$ and $S_{ind,A}$ the first return map to A.

 \sim zoom in + contract time

* Exduce = study a [simple] dynamical system (Y, T) such that $X \subset Y$ and $S = T_{ind,X}$.

 \sim zoom out + dilate time

Motivation	A topological definition	Borders assignment	Expected properties	Applications
			000000	

Natural codings of rotation are stable by exduction

Theorem B stability by exduction

Let w be a natural coding of a minimal rotation of a d-torus and i a letter. If $\sigma:\{1,...,d+1\}^*\to\{1,...,d+1\}^*$ is a substitution such that:

- all images of letters start with i and contain no other occurrences of i
- the incidence [integer] matrix of σ is invertible,

then $\sigma(w)$ is a natural coding of a minimal rotation of a *d*-torus.

Again:

- the lattice, the angle, the fundamental domain and its partition are explicitely given;
- borders assignment are inherited

Motivation	A topological definition	Borders assignment	Expected properties	Applications
				000000

V - Consequences

Motivation	A topological definition	Borders assignment	Expected properties	Applications
0000000	00000	000	000000	000000

Consequences of stability through induction

Old questions (of slide 5):

1. Do such objects [natural codings] exist in dimension $d \ge 2$? YES

2. If so, describe a class of words C(d) such that for all $\alpha \in \mathbb{R}^d$, there exists $w \in C(d)$ which is a natural coding of the rotaton with angle α .

Good candidates should be classes of words stable under derivation.

 \longrightarrow This is not the case of d-letter cubic billiard words for $d \ge 3$!

 \rightarrow This is the case for Arnoux-Rauzy and Cassaigne-Selmer words!

Motivation	A topological definition	Borders assignment	Expected properties	Applications
				0000000

Definition of Cassaigne-Selmer words

Consider the set of substitutions $C = \{c_1, c_2\}$ with

C1 :	1	\mapsto	1	and	C2 :	1	\mapsto	2
	2	\mapsto	13			2	\mapsto	13
	3	\mapsto	2			3	\mapsto	3.

def: $w \in \{1, 2, 3\}^{\mathbb{N}}$ is a **Cassaigne-Selmer word** if there exists $(s_n)_n \in C^{\mathbb{N}}$ (the "directive sequence") such that $((s_0 \circ ... \circ s_n(1))_n$ converges to w.

Remark: As Arnoux-Rauzy words, the class of Cassaigne-Selmer words is associated with a multidimensional continued fraction algorithm, and thus, can be seen as a generalization of sturmian words.

Motivation				Applications 000●000
00000000	00000	000	0000000	0000000

Consequences of stability through induction

A theorem of Rauzy for bounded remainder sets gives:

Corollary 6

No Arnoux-Rauzy / Cassaigne-Selmer word with infinite imbalance is a natural coding of a minimal rotation of the 2-torus with a bounded pseudo-fundamental domain.

 \star Remaider: infinite imbalance \iff unbounded Rauzy fractal

 \rightarrow True question does this still hold without the assumption of boundedness??

Consequences of stability through induction and exduction

By studying the S-adic expression of their return words, we obtain:

Corollary 7

For Arnoux-Rauzy and Cassaigne-Selmer words, the property of being a natural coding of a minimal rotation of the 2-torus does not depend on any prefix of the directive sequence.

 \longrightarrow neither does the infinite imbalance...

Motivation	A topological definition	Borders assignment	Expected properties	Applications
				0000000

Thank you!

Motivation	A topological definition	Borders assignment	Expected properties	Applications
				0000000

Summary

I - Motivations

- 1 The remarkable case of dimension 1
- 2. One remarkable example in dimension 2: the Tribonacci word
- 3. Towards a generalization?
- 4. Unfortunately, the naive definition is trivial.

II - A purely topological definition

III - The miracle: borders can be wisely assigned

- 1. This is *natural* in dimension 1.
- 2. But not in higher dimension.

IV - Expected properties are satisfied

- 1. Stability through induction
- 2. Stability through exduction

V - Applications to Arnoux-Rauzy and Cassaigne-Selmer words