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Abstract

The Cauchy problem is studied for an homogeneous quantum kinetic equation describing the Compton effect. Since the collision
kernel commonly used in physics is highly singular, numerical simulations are performed for related collision kernels to get a
preliminary insight into the behavior of the solutions. Some of the numerical results are then given a theoretical explanation.
Global existence of a solution to the Cauchy problem is proven when the L1 initial data are a.e. smaller than the Planck distribution
function, and non-existence of solutions to the Cauchy problem is proven when the L1 initial data are a.e. bigger than the Planck
distribution function.
c© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The Compton effect describes the change in wavelength of X-rays and gamma rays due to scattering by electrons.
Its discovery by Arthur H. Compton in 1922 strengthened the case for quantum mechanics in an epoch when it was
still much debated. Indeed it supported the notion that not only radiation, but matter as well, had both wave and
corpuscular properties. From a modelization point of view, it represents one of the few known cases in quantum
kinetic theory where the collision kernel can be derived precisely.

Among the physics papers in the area we mention the following pioneering ones. G. Cooper developed
the Fokker–Planck equation for the Compton scattering in a plasma without recourse to a non-relativistic
approximation [1]. Dreicer presented a simple kinetic theory which includes the interactions between electrons and
photons and may thus describe relaxation phenomena [2]. Kompaneets studied the thermal equilibrium between
quanta and electrons [3]. Zel’dovich and Levich studied the process of equilibrium in a system consisting of radiation
and totally ionized plasma [4].

The mathematical perspective was developed in a.o. the following articles. Entropy increase and comparison
principles for the Fokker–Planck equation describing the radiation distribution in a homogeneous plasma were derived
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by Caflish and Levermore in [5]. There the entropy function was used to find the equilibrium distributions for the
scattering alone and for scattering with emission and absorption. In [6] solutions to the Fokker–Planck equation
developing singularities in finite time, independently of the total initial number of photons, were analyzed. Escobedo
and Mischler obtained existence results for a quantum kinetic equation with a simplified regular and bounded
kernel [7]. They studied the asymptotic behavior of the solutions, and showed that the photon distribution function may
condensate at energy zero asymptotically in time. Numerical methods were developed in [8] for the same quantum
kinetic equation, as well as for the Kompaneets equation. Chane-Yook and Nouri kept the physical kernel in the same
quantum kinetic equation and derived a local existence in time theorem for the Cauchy problem in the case of small
initial data [9]. In the context of parabolic problems, Brandle, Groisman and Rossi proposed numerical schemes for
the approximation of solutions with possible blow-ups [10]. Adaptive methods were performed in [11] in order to
reproduce the asymptotic behaviour of the solutions.

In this paper, global existence in time for the Cauchy problem is considered for the model with physical kernel.
Section 2 recalls the model and some of its properties. Section 3 describes earlier results for the model. Section 4
presents numerical simulations for various collision kernels, from the constant one considered in [7] to the physical
one. This is done with a scheme that preserves the main physical properties of the model. Different initial data are
considered, essentially distinguishing the case where the initial datum corresponds to a total number of photons
bigger than the Planck distribution one. Section 5 gives a theoretical explanation of some numerical simulations, in
the particular cases where the initial datum is an L1 function almost everywhere smaller (resp. bigger) than the Planck
distribution function. Global existence of a solution to the Cauchy problem is derived when the initial datum is almost
everywhere smaller than the Planck distribution function. For an initial datum a.e. bigger than the Planck distribution
function, non-existence of any solution to the Cauchy problem is proven. This is a limitation of the possible initial
data for the Cauchy problem.

2. The model

As considered in [7], the following quantum relativistic homogeneous equation describes the interaction via
Compton scattering between a gas of low energy electrons of mass m and weakly dense photons at low temperature,

∂ f

∂t
(t, P) = Q( f, g)(P), t > 0, P ∈ R4, (2.1)

with

Q( f, g)(P) =
8c

p0

∫
R4

∫
R4

∫
R4

s σ(s, θ)q( f, g)δ{P+P∗−P ′−P ′
∗=0}χ2(P0

∗ )χ1(P ′0)χ2(P ′0
∗ )dP ′dP ′

∗dP∗. (2.2)

The non-negative scalar function f (t, P) (resp. g(t, P)) is the distribution function of photons (resp. electrons). c
denotes the speed of the light. P and P ′ (resp. P∗ and P ′

∗) are the momenta of the photons (resp. electrons) before
and after a collision. A particle is determined by the pair (X, P) ∈ R4

× R4 of position X = (t, x) and momentum
P = (P0, p). Let

p0
= |p|, p′0

= |p′
|, p0

∗ =

√
|p∗|

2 + m2c2, p′0
∗ =

√
|p′

∗|
2 + m2c2.

Let s = (P + P∗)
2

:= (P0
+ P0

∗ )2
− |p + p∗|

2, and by θ the scattering angle given by

cos θ =
(P∗ − P).(P ′

∗ − P ′)

(P∗ − P)2 .

The differential cross section σ(s, θ) depends on energy and scattering angle and is given by the Klein Nishina
formula [12]. It behaves like

1
2

r2
0 (1 + cos2 θ), (2.3)

with r0 =
e2

4πmc2 when c → ∞. Here, e is the charge of the electron.
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The functions χ1(P ′0), χ2(P0
∗ ) and χ2(P ′0

∗ ) are defined by

χ1(P ′0) =
1

2p′0 δ{P ′0=p′0}, χ2(P0
∗ ) =

1

2p0
∗

δ
{P0

∗ =p0
∗}

, χ2(P ′0
∗ ) =

1

2p′0
∗

δ
{P ′0

∗ =p′0
∗ }

,

and

q( f, g) = g(p′
∗) f (p′)(1 + h̄ f (p))(1 + τg(p∗)) − f (p)g(p∗)(1 + h̄ f (p′))(1 + τg(p′

∗)), (2.4)

with τ ∈ {−h̄, 0, h̄} and h̄ the Planck constant.
Here and below, the following notations are used for any function f ,

f ′
= f (t, p′), f∗ = f (t, p∗), f ′

∗ = f (t, p′
∗).

In Eq. (2.1), emission and absorption of photons have not been taken into account, so that the transitions are produced
exclusively by the Compton scattering. In order to simplify the formulas, m and h̄ are taken equal to 1.

By integrating (2.2) with respect to P0
∗ , P ′0 and P ′0

∗ , Q( f, g) becomes

Q( f, g)(p) = c
∫
R3

∫
R3

∫
R3

s

p0 p′0 p0
∗ p′0

∗

σ(s, θ)q( f, g)δΣ dp′dp′
∗dp∗,

where Σ is the manifold of 4-uplets (p, p∗, p′, p′
∗) such that

p + p∗ = p′
+ p′

∗,

c|p| +
|p∗|

2

2
= c|p′

| +
|p′

∗|
2

2
.

To simplify the model, only the highest-order terms with respect to c are kept in Q( f, g)(p). The term s
p0 p′0 p0

∗ p′0
∗

is

equivalent to 1
|p||p′|

, when c → ∞. Together with (2.3), this implies that the collision operator can be approximated
by

Q( f, g)(p) =
cr2

0

2

∫
R3

∫
R3

∫
R3

(1 + cos2 θ)

|p||p′|
q( f, g)δΣ dp′dp′

∗dp∗.

The electrons are assumed to be at non-relativistic equilibrium, i.e.,

τ = 0 and g(p) = e−
|p|

2

2c .

Then,

q( f, g) = g(p′
∗) f (p′)(1 + f (p)) − f (p)g(p∗)(1 + f (p′)).

The collision integral becomes

Q( f, g)(p) =
cr2

0

2

∫
R3

(1 + cos2 θ)

|p||p′|
e|p′

|q( f )

(∫
R3

∫
R3

δΣ e−
|p∗|

2

2c dp∗dp′
∗

)
dp′,

with

q( f ) = e−|p| f (p′)(1 + f (p)) − e−|p′
| f (p)(1 + f (p′)).

It can be simplified in the following way.

Lemma 2.1. Let

S(p, p′) =

∫
R3

∫
R3

δΣ e−
|p∗|

2

2c dp∗dp′
∗, A = |p′

| − |p| +
|p − p′

|
2

2c
, w = p′

− p.

Then,

S(p, p′) =
2πc2

|w|
e
−

A2c
2|w|2 .
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It is then assumed that the photons distribution function is radial. Denote by k = |p|, k′
= |p′

|, F(t, k) = k2

f (t, k). The quantum kinetic homogeneous equation describing the interaction between photons and electrons
is then

∂ F

∂t
(t, k) = Q(F, F)(t, k), (2.5)

where

Q(F, F)(t, k) =

∫
∞

0
b(k, k′)[F ′(k2

+ F)e−k
− F(k′2

+ F ′)e−k′

]dk′,

b(k, k′) =
2c3r2

0π2

k k′

∫ π

0
(1 + cos2 θ)

sin θ

|w|
e
−

A2c
2|w|2

+k′

dθ,

A = k′
− k +

|w|
2

2c
, |w|

2
= k2

+ k′2
− 2kk′ cos θ.

(2.6)

The kernel set of the collision operator Q consists of the distribution functions

Bµ(k) =
k2

ek+µ − 1
, µ ≥ 0, and B0(k) + α δk=0, α ≥ 0.

The specific distribution function B0 is called the Planck distribution function.
Let us recall [7] the a priori estimates for the Cauchy problem{

∂ F

∂t
(t, k) = Q(F, F)(t, k), t > 0, k ≥ 0,

F(0, k) = Fi (k), k ≥ 0.
(2.7)

Proposition 2.1. Let M(F)(t) =
∫

∞

0 F(t, k) dk be the total number of photons at time t. Then,

M(F)(t) = M(Fi ), t > 0. (2.8)

Proposition 2.2. The entropy defined by

H(F)(t) =

∫
∞

0
[(k2

+ F) ln(k2
+ F) − F ln F − k2 ln k2

− k F]dk

is a non-decreasing function of time.

Proposition 2.3. The energy M(k F) and the entropy H(F) are bounded. More precisely,

M(k F) ≤ C(1 + M(F) − H(F)), (2.9)

|H(F)| ≤ M((1 + k)F), (2.10)

for some constant C.

3. Description of the previous results

Contrary to the common
∫

f ln f -type entropy, the present one of Proposition 2.2 is of no use for equi-integrability
questions. Here, instead, a suitable mathematical frame for solving the Cauchy problem (2.7) is L∞(R+,M1(R+)),
where M1(R+) denotes the space of bounded measures in the variable k. In [7], Escobedo and Mischler proved the
global existence and uniqueness of a measure solution of the Cauchy problem (2.7) for the following three particular
types of cross section b(k, k′).

(i) b ≥ 0 and bounded;
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(ii) b(k, k′) = eηkeηk′

σ(k′
− k), with η ∈ (0, 1) and the function σ satisfying

0 < σ?e−ν|z|γ
≤ σ(z) ≤ σ ?, for all z ∈ R,

for some σ?, σ
?, ν > 0, γ ∈ [0, 1);

(iii) 0 ≤ b(k, k′) e−ηke−ηk′

, bounded for some η ∈ [0, 1].

Moreover, the time asymptotics of a solution to the Cauchy problem (2.7) is derived in [7,13]. When b > 0, let
m = M(Fi ) be the total number of photons of the initial distribution. Denote by M0 = M(B0) the Planck distribution
one. Let Bm = Bµ + α δk=0 be the Bose distribution of the total number of photons m, with α = 0 and µ ≥ 0 such
that M(Bµ) = m if m ≤ M0, and µ = 0 and α = m − M0 if m > M0. In this setting, the following result holds.

Theorem 3.1. Let F ∈ C([0, T ],M1(R+)) be the solution to the Cauchy problem (2.7). Then

F(t, ·)
?

⇀
t→∞

Bm weakly ? in (Cc(R+))′ ,

lim
t→∞

∥∥g(t, ·) − Bµ

∥∥
L1((k0,∞))

= 0 for every k0 > 0.
(3.1)

Here F = g + G, with g ∈ L1(R+) and G the singular part of F with respect to the Lebesgue measure in R+.
Moreover, if m ≤ M0 or 0 ≤ gi ≤ B0, k0 can be taken as 0.

The assumption (i), (ii), or (iii) made by Escobedo and Mischler when deriving global existence in time of a solution
to the Cauchy problem (2.7) does not allow b to be singular in a neighborhood of zero, which is the case for the
physical kernel (2.6). On the other hand, for the physical kernel, Chane-Yook and Nouri have proved a local existence
in time theorem for small initial data [9]. Moreover, the following proposition is proven there, in order to give a sense
to the collision operator Q(F, F) for distribution functions F in C

(
[0, T ],M1(R+)

)
.

Proposition 3.1. Let F ∈ C([0, T ],M1(R+)) be such that

F(τ, ·) 6= B0 + α δk=0, α ∈ R+

for all τ ∈ [0, T ]. If for any continuous and bounded function φ of second order with respect to k in the neighborhood
of 0 and for any interval J ⊂ [0, T ],∣∣∣∣∫

J

∫
∞

0
φ(τ, k)Q(F, F)(τ, k)dk dτ

∣∣∣∣ < +∞,

then ∫
∞

0

F

k
(τ, k)dk < +∞, a.a. τ ∈ [0, T ].

In order to approach the possible global existence of solutions to the Cauchy problem (2.7), numerical simulations are
performed in Section 4. Some of the results obtained there are then theoretically explained in Section 5.

4. Numerical simulations

4.1. Discretizations

Approximations of the solution to the Cauchy problem (2.7) are performed in the following way. We restrict to a
bounded domain [0, R], R > 0, in energy. The collision operator in (2.5) becomes∫ R

0
b(k, k′)

(
F ′(k2

+ F)e−k
− F(k′2

+ F ′)e−k′
)

dk′. (4.1)

We consider a uniform grid in energy, given by the points

k1 < k2 < · · · < kN ∈ [0, R],



E. Ferrari, A. Nouri / Mathematical and Computer Modelling 43 (2006) 838–853 843

with k1 > 0 in order to avoid the singularity of b at 0, and 1k = R/N . Hence the collision operator Q(F, F)(kl) can
be discretized as

1k
N∑

j=1

b(kl , k j )
(

F j (k
2
l + Fl)e

−kl − Fl(k
2
j + F j )e

−k j
)

, 1 ≤ l, j ≤ N . (4.2)

By choosing k j =

(
j −

1
2

)
1k, j = 1, . . . , N , the discretization (4.2) is an approximation of (4.1) of second order

in energy. The time integration is performed by using the standard second-order explicit Runge–Kutta scheme given
by the following scheme,

p1 = Q(Fn, Fn),

p2 = Q(Fn
+ 1t p1, Fn

+ 1t p1),

Fn+1
= Fn

+
1t

2
(p1 + p2).

(4.3)

Here Fn denotes the approximate solution computed at tn .

Proposition 4.1. The scheme preserves the total number of photons. Moreover, it is entropy non-decreasing.

Sketch of the proof. As shown in [8], the discrete weak form for the collision operator Q(F, F)(kl) is

N∑
l=1

Ψl
∂ Fl

∂t
=

(1 k)2

2

N∑
l=1

N∑
j=1

b(kl , k j )Fl F j

(
(k2

l + Fl)e−kl

Fl
−

(k2
j + F j )e−k j

F j

)
(Ψl − Ψ j ). (4.4)

Choosing Ψ ≡ 1 leads to the conservation of the total number of photons. Then choosing Ψl := ln
(

k2
l +Fl
Fl

e−kl

)
gives a discrete version of the proof of Proposition 2.2.

Proposition 4.2. Let β ∈ ]0, 1[, k1 = λ1k and

Mi = 1k
N∑

j=1

F0(k j )

be the discrete number of photons of the distribution function F at time t = 0.
Assume that

1t

1k
≤

λ β

4 R
e−

c
2 , (4.5)

and

1t

(1k)2 ≤
3 λ2(1 − β)

8 Mi
e−

c
2 . (4.6)

Then the scheme preserves the positivity. More precisely,
if F0(k j ) ≥ 0, 1 ≤ j ≤ N, then Fn(k j ) ≥ 0, 0 ≤ n, 1 ≤ j ≤ N.

Proof of Proposition 4.2. First prove the result by induction for the explicit in time Euler scheme. Start from
F0

l ≥ 0, 1 ≤ l ≤ N , and assume Fn
l ≥ 0, 1 ≤ l ≤ N for some n > 0. For simplicity we split the physical

kernel (2.6) in two parts as b = b1 b2, where

b1(k, k′) =
1

k k′
,

b2(k, k′) =

∫ π

0

(
1 + cos2 θ

) sin θ

|w|
e
−

A2c
2|w|2

+k′

dθ.
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Then, in order to prove that Fn+1
l ≥ 0, 1 ≤ l ≤ N , it is sufficient to prove that

Fn
l + 1t 1k

N∑
j=1

b2(kl , k j )

(
Fn

j

k j

(
kl +

Fn
l

kl

)
e−kl −

Fn
l

kl

(
k j +

Fn
j

k j

)
e−k j

)
≥ 0, (4.7)

for 1 ≤ l ≤ N . Splitting the former inequality into its linear and bilinear terms, (4.7) is satisfied as soon as the
following inequalities hold,

βFl + 1t 1k

(
b2(kl , kl) Fl e−kl −

Fl

kl

N∑
j=1

b2(kl , k j )k j e−k j

)
≥ 0, 1 ≤ l ≤ N , (4.8)

and

1t 1k
N∑

j=1
j 6=l

b2(kl , k j )
F j

k j

(
e−k j − e−kl

)
≤ (1 − β)k1, 1 ≤ l ≤ N . (4.9)

Then ∫ π

0

sin θ

|w|
dθ =

2
max{k, k′}

, k, k′ > 0,

and

e−
1
8c w2

−
c(k−k′)2

2 w2 +
(k+k′)

2 e−k′

≤ e−
1
8c (k−k′)2

+
(k−k′)

2 ≤ e
c
2 , k, k′

≥ 0.

Consequently,

b2(kl , k j ) k j e−k j ≤ 4 e
c
2 , 1 ≤ l, j ≤ N .

And so, (4.8) follows from (4.5).
Moreover,

1
|w|

e−
1
8c w2

−
c(k−k′)2

2 w2 +
(k+k′)

2
(

e−k
− e−k′

)
≤ e−

1
8c (k′

−k)2 sinh (k′
−k)
2

(k′−k)
2

≤ e−
1
8c (k′

−k)2
+

(k′
−k)
2

≤ e
c
2 , 0 < k < k′,

so that

b2(k, k′)
(

e−k
− e−k′

)
≤

8
3

e
c
2 , k, k′ > 0. (4.10)

And so,∑
j 6=l

b2(kl , k j )
F j

k j

(
e−k j − e−kl

)
≤

8
3

e
c
2
∑
j 6=l

F j

k j

≤
8
3

e
c
2

Mi

k1
, 1 ≤ l ≤ N .

Hence, (4.9) follows from (4.6). Therefore, if Fn
≥ 0, Fn

+ 1t Q(Fn, Fn) ≥ 0.
Finally, the result also holds for the second-order explicit Runge–Kutta scheme (4.3), since

Fn+1
=

1
2

(
Fn

+ 1t Q(Fn, Fn)
)
+

1
2
(Fn) + 1t Q(Fn

+ 1t Q(Fn, Fn), Fn
+ 1t Q(Fn, Fn)).

If Fn
≥ 0, both terms of the right-hand side of the previous inequality are non-negative. �



E. Ferrari, A. Nouri / Mathematical and Computer Modelling 43 (2006) 838–853 845

Fig. 1. Plot of b1(k, k′).

Fig. 2. Plot of b2(k, k′).

4.2. Plots of the physical kernel

The graphics of b1, b2 and b are respectively shown in Figs. 1–3. The critical case k = k′ is approximated by
choosing |k − k′

| = 10−12.
As expected, the critical zone is located where k and k′ are small, but the singularity is stronger in b1 than in b2.

4.3. Numerical tests

Let

M̃0 = 1k
N∑

j=1

B0(k j )

be the discrete number of photons of the Planck distribution function. The initial number of photons being fundamental
to define the time asymptotics of the solution to the Cauchy problem, the following initial data are chosen.
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Fig. 3. Plot of the physical kernel b(k, k′).

i1. The Planck distribution Fi = B0.

i2. The Gaussian profile Fi (k) = C1 k2 e
−4
(

k−
R
2

)2

, with C1 such that Mi =
1
2 M̃0.

i3. Fi =
1
2 B0.

i4. The Gaussian profile Fi (k) = C2 k2 e
−4
(

k−
R
2

)2

, with C2 such that Mi =
3
2 M̃0.

i5. Fi =
3
2 B0.

In order to deal with the strong singularity of the physical kernel in the neighborhood of zero, numerical simulations
with the simplest collision kernel, i.e., the constant one used by Escobedo and Mischler, are first performed, then with
an intermediate singular kernel, and finally with the physical one, as follows.
k1. b(k, k′) = 1.
k2. b(k, k′) =

1
k k′ .

k3. The physical kernel b(k, k′) =
1

k k′

∫ π

0

(
1 + cos2 θ

) sin θ
|w|

e
−

A2c
2|w|2

+k′

dθ .
The simulation is stopped at time step tn , when∣∣∣Fn(kl , k j ) − Fn−1(kl , k j )

∣∣∣ ≤ 10−5, l, j ∈ 1, . . . , N .

The graphics in this section show the initial function Fi , the final distribution F f and the Bose distribution Bµ with
the same total number of photons as Fi .

They are obtained by using the space discretization given in Section 4.1, with N = 40. As long as the distribution
function remains non-negative (see Section 4.3.3), the time step used is 1t =

1k
4 .

4.3.1. Initial datum: The Planck distribution
The Planck distribution function B0 is an equilibrium state for the solution of the Cauchy problem associated to

(2.5) and the numerical kernels. Hence it is a good test for the validation of the schemes. As expected, for all the
kernels ki, i = 1, 2, 3, the Planck distribution is numerically preserved with time.

4.3.2. Initial data with total number of photons smaller than the one of B0

The evolution of the distribution function F in the cases i2 and i3, i.e., Fi given by a Gaussian profile or a Bose
distribution with Mi =

1
2 M̃0, are quite similar, so only the results of the case i2 are shown here. The result for the

initial datum i2 and the kernel k1, as well as the comparison with the Bose distribution Bµ having the same number
of photons of Fi , is shown in Fig. 4.
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Fig. 4. Initial and final distribution for i2 and k1.

The computations for i2, as well as the ones for i3, with the other kernels ki, i = 2, 3, lead to the same asymptotic
behavior. However, the cases i2 and i3 differ in their time of convergence. The computations for i2, with the kernels
ki, i = 1, 2, 3, lead to the following times of convergence.
k1. T f = 5.300;
k2. T f = 16.825;
k3. T f = 9.525.

Instead, the times of convergence for i3 and ki, i = 1, 2, 3, are the following.
k1. T f = 5.325;
k2. T f = 7.875;
k3. T f = 6.100.

4.3.3. Initial data with total number of photons bigger than the B0 one
In this case, the total number of photons of the initial datum Fi is equal to 3

2 M̃0, so the equilibrium state is expected
to be

B0 +
1
2

M̃0 δk=0. (4.11)

Both cases i4 and i5 have the same asymptotic behavior. In this section we show the graphics obtained starting from
the datum i5, corresponding to 3

2 B0. The results for the initial datum i5 and the kernel k1, as well as the comparison
with the Planck distribution B0, are shown in Fig. 5.

Notice that a Dirac part appears in F at k = 0 for large times, and that it only concentrates at the first energy point
k1. In particular, the value taken by F at k1, when the number of points in the energy discretization is N = 40, is
F(k1) = 8.2265. By increasing N up to 80, this value becomes F(k1) = 17.8337, as shown in Fig. 6. One expects the
value F(k1) 1kN , where 1kN =

R
N , to approach the coefficient 1

2 M̃0 = 0.9622 of the Dirac measure δk=0 in (4.11),
for large values of N . The result of this computation for increasing values of N is shown in Fig. 7.

The times of convergence obtained for i5 (with N = 40) and ki, i = 1, 2 are the following.
k1. T f = 41.850;
k2. T f = 2.800.

In an analogous way, for i4 (with N = 40) and ki, i = 1, 2 the following times of convergence are obtained.
k1. T f = 46.375;
k2. T f = 3.250.

The physical case i5 and k3 is quite different. Indeed, in order to preserve the positivity of the scheme (see
Proposition 4.2), it is necessary to keep a smaller time step. In particular, the following simulations are performed
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Fig. 5. Initial and final distribution for i5 and k1 with N = 40.

Fig. 6. Final distribution for i5 and k1 with N = 80.

by using 1t = 10−4. The time of convergence obtained for i5 and k3 with N = 40 is T f = 1.6330, and with N = 80
it is T f = 1.1193. The value of T f seems to decrease when k1 is closer to 0. In order to confirm this behavior, the
following simulations are performed. Let N = 80, 1t = 10−4 and k1 = λ 1k for decreasing values of λ ∈ (0, 1

2 ].
The relation between λ and the time of convergence T f is shown in Fig. 8. It shows that T f tends to 0, when k1 → 0.
A concentration of photons occurs at k = 0 at time 0.

So far, L1 initial data have been considered. In order to study what happens for data that are bounded measures,
similar simulations are done for the following initial data.

i6. Fi = C3 (δk=0 + δk=2) or Fi = C3 (δk=1 + δk=2), with C3 such that Mi ≤ M̃0.

i7. Fi = C4 (δk=0 + δk=2) or Fi = C4 (δk=1 + δk=2), with C4 such that Mi > M̃0.
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Fig. 7. Computation of F(k1) 1kN for different values of N .

Fig. 8. Relation between λ and T f .

The evolution obtained for i6 and ki, i = 1, 2, 3 leads to the distribution Bµ having the same total number of

photons as Fi . If the initial datum is i7, it leads to B0 +

(
Mi − M̃0

)
δk=0 for ki, i = 1, 2, 3, by choosing 1t = 10−4

in the simulation for k3.

5. Global existence or non-existence, depending on the initial datum

Denote by G = F − B0. Solving the Cauchy problem (2.7) is equivalent to solving

∂G

∂t
= B0

∫
b(k, k′)G ′(1 − e−k′

)dk′
+ G(t, k)

∫
b(k, k′)(G ′(e−k

− e−k′

) − B ′

0(1 − e−k))dk′,

G(0, k) = Fi (k) − B0(k).

(5.1)
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Notice that, since for a non-negative G, B0
∫

b(k, k′)G ′(1 − e−k′

)dk′ is also non-negative, an initial datum Fi
smaller (resp. bigger) than the Planck distribution function B0 will provide a F(t, ·) remaining so for a.e. positive
time t .

Theorem 5.1. Assume that 0 ≤ Fi (k) ≤ B0(k), a.a. k > 0. Then there is a solution F ∈ C(R+, L1(R+)) to the
Cauchy problem (2.7), such that

0 ≤ F(t, k) ≤ B0(k), t ≥ 0, a.a. k > 0.

Proof of Theorem 5.1. Let b j ∈ C1(R2
+) be such that

b j (k, k′) = b(k, k′), k >
1
j
, k′ >

1
j
,

b j (k, k′) = 0, k <
1

2 j
or k′ <

1
2 j

.

Let K be the closed subset of C(R+, L1(R+)) defined by

K = { f ; 0 ≤ f (t, k) ≤ B0(k), t ≥ 0, a.a. k > 0}.

Define the map T on K by T ( f ) = F solution to

∂ F

∂t
=

∫
b j ( f ′(k2

+ F)e−k
− F(k′2

+ f ′)e−k′

)dk′,

F(0, k) = Fi (k), a.a. k > 0.

By the exponential form of F , the non-negativity of f ∈ K and Fi implies that F = T ( f ) is non-negative. Then, if
g := f − B0, G := T ( f ) − B0,

∂G

∂t
= B0(1 − e−k)

∫
b j g

′dk′
+ G

∫
b j (g

′(e−k
− e−k′

) − B ′

0(1 − e−k))dk′,

so that the non-positivity of g and G(0, ·) implies that G is non-positive. Consequently T (K ) ⊂ K . Then T is
continuous for the C(R+, L1(R+)) topology. Indeed, if F1 = T ( f1) and F2 = T ( f2),

∂

∂t
(F1 − F2) =

∫
b j (( f ′

1 − f ′

2)((k
2
+ F1)e

−k
+ F2e−k′

) + (F1 − F2)( f ′

2e−k
− (k′2

+ f ′

1)e
−k′

))dk′,

so that∫
|F1 − F2|(t, k)dk ≤ c̃

∫ t

0
et−s

∫
|( f1 − f2)(s, k)|dk ds,

for some constant c̃. It finally follows from the exponential form of F = T ( f ) that T is compact for the
C(R+, L1(R+)) topology.

By a Schauder fixed point theorem, there is a solution F ∈ K ∩ C(R+, L1(R+)) to

∂ F j

∂t
=

∫
b j

(
F ′

j (k
2
+ F j )e

−k
− (k′2

+ F ′

j )e
−k′
)

dk′, F j (0, k) = Fi (k), a.a. k > 0.

Denote by h j (k, k′) = kk′ b j (k, k′). The sequence (G j ) := (F j − B0) satisfies −B0 ≤ G j ≤ 0 and

∂G j

∂t
=

G j

k

∫
h j (k, k′)(e−k

− e−k′

)
G ′

j

k′
dk′

+
B0

k

∫
h j G

′

j
1 − e−k′

k′
dk′

− G j
1 − e−k

k

∫
h j

B ′

0

k′
dk′.

Then, by (4.10), h j (k, k′)(e−k
− e−k′

) is continuous and uniformly bounded w.r.t. j , so that one can pass to the limit
in the weak formulation of the last equation when j → +∞. And so, there is a solution G = lim j→+∞ G j to the
Cauchy problem (2.7). �

The situation is completely different when the initial datum is almost everywhere bigger than the Planck distribution
function.
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Theorem 5.2. Let the initial datum Fi be an L1 function a.e. bigger than the Planck distribution function and have
bounded number of photons and energy. Then, there is no time T > 0 such that the Cauchy problem (2.7) has a
solution in F ∈ C([0, T ],M1(0, +∞)).

Proof of Theorem 5.2. In order to simplify the notation, let h(k, k′) = b2(k, k′) denote the second part of the physical
kernel introduced in Section 4. Then the Cauchy problem (5.1) writes

∂G

∂t
=

G

k

∫
e−k G ′

k′
hdk′

−
G

k

∫
e−k′ G ′

k′
hdk′

+
B0

k

∫
G ′

1 − e−k′

k′
hdk′

− G
1 − e−k

k

∫
B ′

0

k′
hdk′, (5.2)

G(0, k) = (Fi − B0)(k), a.a. k > 0. (5.3)

Assume there exists a solution G to the Cauchy problem (5.2) and (5.3) on a time interval [0, T ] with T > 0. Since the
initial datum Fi − B0 is positive, it will be the same for the absolutely Lebesgue continuous part of F on an interval
of time [0, T1], 0 < T1 ≤ T . And so, Proposition 3.1 applies on [0, T1]. Integrate (5.2) w.r.t. k ∈ (0, ε), for some
ε > 0. Performing the change of variables (k, k′) → (k′, k) in the second and fourth terms of the collision operator,
the integration of the right-hand side gives∫ ε

0

(∫
+∞

ε

GG ′

kk′
h(e−k

− e−k′

)dk′

)
dk +

∫
+∞

ε

G
1 − e−k

k

(∫ ε

0

B ′

0

k′
hdk′

)
dk

−

∫ ε

0
G

1 − e−k

k

(∫
+∞

ε

B ′

0

k′
hdk′

)
dk.

Taking the constant 2c3r2
0π2 as 1 for the sake of simplicity, the function h is given by

h(k, k′) =

∫ π

0
(1 + cos2 θ)

sin θ

|w|
e−

1
8c w2

−
c (k−k′)2

2w2 +
1
2 (k+k′)

,

where

|w| =

√
k2 + k′2 − 2kk′ cos θ.

Moreover,∫ π

0

sin θ

|w|
dθ =

∫ 1

−1

dy√
k2 + k′2 − 2kk′y

=
2

max{k, k′}
.

Then, for a.a. 0 < k < ε < k′,

h(k, k′)(e−k
− e−k′

) ≥
2
k′

e−
1
8c (k+k′)2

−
c
2 +

1
2 (k+k′)(e−k

− e−k′

)

≥ 2e−
1
8c (ε+k′)2

−
c
2

(
1 −

k

k′

)
.

Hence, for ε < 1
4 and for a.a. 0 < k < ε <

√
ε < k′,

h(k, k′)(e−k
− e−k′

) ≥ e−
1
8c ( 1

4 +k′)2
−

c
2 .

And so,∫ ε

0

(∫
+∞

ε

GG ′

kk′
h(e−k

− e−k′

)dk′

)
dk ≥

1
ε

e−
c
2

(∫
+∞

√
ε

G ′

k′
e−

1
8c ( 1

4 +k′)2
dk′

)(∫ ε

0
Gdk

)
.

Then, for ε < 1
4 and a.a. 0 < k′ < ε < k,

B ′

0

k′
≥

1
2

and h(k, k′) ≥
2
k

e−
c
2 −

1
8c (k+

1
4 )2

,
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so that∫
+∞

ε

G
1 − e−k

k

(∫ ε

0

B ′

0

k′
hdk′

)
dk ≥ ε e−

c
2

∫
+∞

ε

G
1 − e−k

k2 e−
1
8c (k+

1
4 )2

dk.

Moreover, for a.a. 0 < k < ε < k′,

1 − e−k

k

∫
+∞

ε

B ′

0

k′
h(k, k′)dk′

≤ 8
s h k

2

k

∫
+∞

ε

e
1
2 k′

ek′
− 1

dk′

≤ 8 ln
(

1 +
4
ε

)
.

Let ε2 :=
1
4 ∧ ε1, where 8 ln(1 +

4
ε
) ≤

1
√

ε
, ε < ε1. For ε < ε2 and a.a. 0 < k < ε < k′,

1 − e−k

k

∫
+∞

ε

B ′

0

k′
h(k, k′)dk′

≤
1

√
ε
.

And so, the integration of (5.2) w.r.t. k ∈ (0, ε), ε < ε2, implies that

e
c
2

∂

∂t

∫ ε

0
G(t, k)dk ≥

1
ε

(∫
+∞

√
ε

G(t, k′)

k′
e−

1
8c ( 1

4 +k′)2
dk′

− e
c
2
√

ε

)∫ ε

0
G(t, k)dk

+ ε

∫
+∞

ε

G(t, k)
1 − e−k

k2 e−
1
8c (k+

1
4 )2

dk,

so that∫ ε

0
G(t, k)dk ≥

(∫ t
2

t
4

∫
+∞

ε

G(s, k)
1 − e−k

k2 e−
1
8c (k+

1
4 )2

dkds

)ε e
1
ε
(
∫ t

t
2

∫
+∞
√

ε
G(τ,k)

k e−
1
8c ( 1

4 +k)2dkdτ−
1
2 e

c
2

√
εt

)

 .

By Propositions 2.1 and 2.3 the integral
∫

G(t, k)dk is conserved with time. If there were a time t ∈ (0, T1] such that
for any ε < ε2,∫ t

t
2

∫
+∞

√
ε

G(τ, k)

k
e−

1
8c ( 1

4 +k)2
dkdτ ≤ e

c
2
√

εt,

then making ε tend to zero in this last inequality would imply G(τ, ·) = 0, τ ∈ ( t
2 , t), which would contradict the

conservation of
∫

G(t, k)dk with time. Consequently, for any t ∈ (0, T1], there is an εt < ε2 such that∫ t

t
2

∫
+∞

√
εt

G(τ, k)

k
e−

1
8c ( 1

4 +k)2
dkdτ > e

c
2
√

εt t.

Then, for any ε < εt ,∫ t

t
2

∫
+∞

√
ε

G(τ, k)

k
e−

1
8c ( 1

4 +k)2
dkdτ > e

c
2
√

εt.

Consider any t ∈ (0, T1]. For any ε < εt ,∫
+∞

0
Gi (k)dk ≥

∫ ε

0
G(t, k)dk ≥

(∫ t
2

t
4

∫
+∞

ε

G(s, k)
1 − e−k

k2 e−
1
8c (k+

1
4 )2

dkds

)
εe

t
2
√

ε
e

c
2
.

Since limε→0 εe
t

2
√

ε
e

c
2

= +∞,∫ t
2

t
4

∫
+∞

ε

G(s, k)
1 − e−k

k2 e−
1
8 (k+

1
4 )2

dkds
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should tend to zero when ε tends to zero. This would imply that G(s,k)
k , s ∈ ( t

4 , t
2 ) be a Dirac measure at k = 0, which

would contradict the continuity of F at time zero. �

6. Conclusion

The quantum kinetic equation linked to the Compton effect studied in this paper presents a strong singularity at
energy zero. Numerical simulations, with more and more singular kernels up to the physical one, point out the real
singular part of the collision kernel. Moreover, they show that the problem behaves quite differently depending on the
value of the initial total number of photons M(Fi ) compared to the Planck one M0. In particular, blow-up immediately
occurs with the physical kernel if M(Fi ) > M0. Theoretical results stress these features for L1 initial data that are
almost everywhere smaller (resp. bigger) than the Planck distribution function.
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