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Abstract. Time dependent flows of viscous incompressible immiscible flu-
ids are studied in the limit of vanishing Reynolds numbers. The velocity
fields associated to each fluid solve Stokes equations in a time-dependent
domain. Classical immiscibility conditions on the varying fluids interfaces
are taken into account by a new formulation of the problem. The viscosity
solves a transport equation and the velocity field solves a Stokes problem
with this non constant viscosity. This formulation due to A. Fortin, Y. De-
may and J.F. Agassant has already been used for numerical computations,
see [4]. For this nonlinear system of equations, existence of solutions is
proved, using the Schauder fixed point theorem and the concept of renor-
malized solutions introduced recently by R. J. DiPerna and P. L. Lions.
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1 Introduction.

Fluids interface computation has received increasing attention in recent
years in the domain of polymer processing because of the proliferation of
products that are manufactured using various coating and multilayer ex-
trusion technologies. Coextrusion, i.e. extrusion of several polymers, is
important in the polymer industry since it can lead to more economical pro-
duction of flat film than the conventional lamination. This allows to obtain
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products combining properties of different polymers such as low cost, surface
aspect or impermeability (barrier materials). In this case, due to the high
viscosity of polymer melts, the Reynolds number vanishes. Other factors
such as density differences and tension between interfaces may also play a
role but are considered as negligible in polymer processing.
From a mathematical point of view, the flow of N fluids occupying time-
dependent subdomains Ωk, k = 1, ..., N , of a fixed domain Ω ⊂ IRD,D = 2
or 3, is considered. In each subdomain, the fluid behaviour, i.e. the rela-
tionship between the strain and stress tensors, incompressibility and equilib-
rium, neglecting inertia forces, lead to Stokes equations. At the interfaces,
transmission conditions are the continuity of the velocity and the normal
component of the stress tensor. These conditions are obtained by varia-
tional considerations. The immiscibility condition at interfaces is shown to
be equivalent to a transport equation on the whole domain for the viscosity,
or other rheological constants in case of more complex rheology. The aim
of this paper is to derive existence of weak solutions for the non linear sys-
tem or equations obtained by coupling this transport equation with Stokes’
equations. Unfortunately, smoothness properties of the velocity field do not
allow to obtain a classical solution for the transport equation. Therefore,
using the concept of renormalized solutions introduced by R. J. DiPerna and
P. L. Lions is necessary ([3]). New difficulties arise when dealing with bound-
ary conditions. They are overcome by constructing ’extended’ solutions. It
allows to precisely control the incoming and outcoming fluxes. Then the
existence proof of solutions for the coupled system is obtained by means of
the Schauder fixed point theorem. The compactness property of the map,
whose fixed points are solutions of the multifluid problem, is proved thanks
to a compensated compactness lemma. We point out that this technique
applies for the full incompressible Navier-Stokes equations. A further paper
will present results in this direction.
In Section 2, we derive the weak formulation we use, with classical interface
conditions and present the main result. Section 3 is devoted to the Stokes
problem with a given non constant viscosity. We prove a uniqueness and
existence result for this linear problem, with standart techniques. Section
4 deals with the transport problem when the velocity fields are assumed to
be Lipschitz. We prove existence and uniqueness of extended solutions by
means of techniques developped in [3]. Finally, Section 5 concludes the paper
by giving a proof of the main theorem. This proof is based on results derived
in the previous sections and on compensated compactness techniques.
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2 The multifluid Stokes problem.

Let us consider N viscous fluids with viscosities ηk (1 ≤ k ≤ N, η1 ≤ η2 ≤
... ≤ ηN ) flowing in an open set Ω of IRD. The ith fluid occupies at time t
the open subdomain Ωk(t). Denote uk(t, x) the velocity vector (x ∈ Ωk(t)).
The velocity is globally defined on Ω by

u = uk(t, x), x ∈ Ωk(t), k = 1, ..., N.

In the following, letters without subscript, such as γ, denote functions de-
fined on the whole domain Ω, and the same letters with subscripts, such as
γk, denote the restriction of these functions to the subdomains Ωk(t), k =
1, ..., N .

2.1. Stokes equations.

The srain tensor ε is defined by

ε(uk) =
1

2
(5uk + 5ut

k), x ∈ Ωk(t). (2.1)

The fluid incompressibility is expressed by

div(uk) = 0 or Tr(ε(uk)) = 0.

The newtonian behaviour gives the constitutive equation for the stress tensor
σk,

σk = 2ηkε(uk) − pkId. (2.2)

Inertia being neglected and gravity not considered, the equilibrium equation
is

div(σk) = 0. (2.3)

Stokes equations are classically obtained by substituting equations (2.1)
and(2.2) in the previous equation and using that uk is divergence free

ηk∆uk −5pk = 0, div(uk) = 0. (2.4)

2.2. Transmission conditions. Denote hm(t) an interface between
fluids k and l. The classical transmission conditions are the continuity of
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the velocity u and of the normal component of the stress tensor at the
interface

uk(t, x) = ul(t, x), x ∈ hm(t), (2.5)

σk(t, x) · n = σl(t, x) · n, x ∈ hm(t). (2.6)

The vector n is the normal in hm at point x and time t. These conditions cor-
respond to those obtained in multimaterial elasticity (see [1]). Let us remark

that if (2.5) is interpreted for almost every t as a trace equality in H
1

2 (hm(t))
and if the functions uk belong to H1(Ωk(t)), then u belongs to H1(Ω). In
the same way, the continuity of the stress normal component (2.6), inter-

preted for almost every t as an equality in H− 1

2 (hm(t)), implies that the
’globally’ defined stress tensor σ belongs to H = {σ ∈ (L2(Ω))6; div(σ) =
0 in D′(⊗)}. These remarks will allow to derive a weak formulation of the
multifluid problem. Indeed we have

Lemma 2.1 Let Ωm be Lipschitz bounded subsets of a bounded set Ω =
∪N

m=1Ωm, and let η be the function defined by η = ηm on Ωm. Then for
every p in L2(Ω) and u in H1(Ω), the following propositions are equivalent

(i) σ = ηε(u) − pId, div(σ) = 0, div(u) = 0.

(ii) ηk∆uk −5pk = 0 inΩk, div(uk) = 0 inΩk,

uk/hm
= ul/hm

in H
1

2 (hm),

σk · n/hm
= σl · n/hm

in H− 1

2 (hm).

2.3. The immiscibility condition.

Define

Π = [0, T ] × Ω; Πk = {(t, x); 0 ≤ t ≤ T and x ∈ Ωk(t)},

Hm = {(t, x); 0 ≤ t ≤ T and x ∈ hm(t)}.

Denote N the normal to Πk at the boundary and U = (1, u(t, x)). For the
time-dependent case, the immiscibility condition is classically written (see
[1])

U ·N = 0, (t, x) ∈ Hm. (2.7)
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The interface Hm is locally described as the graph of a Lipschitz function h,

xd = h(t, x′), x = (xd, x
′), u = (ud, u

′), x′ ∈ IRD−1, u′(x) ∈ IRD−1.

The previous equation becomes

∂h

∂t
− ud + u′ · 5x′h = 0. (2.8)

Let us define the viscosity function as

η(t, x) = ηk, x ∈ Ωk(t). (2.9)

These conditions at the interfaces can be expressed as a weak formulation
of a transport equation of the viscosity on the whole domain

∂η

∂t
+ u · 5η = 0, (t, x) ∈ Π. (2.10)

In order to give a precise mathematical meaning to these statements, we
first derive a trace property.

Lemma 2.2 Let Πk be a Lipschitz bounded set of Π. Then there is a con-
tinuous trace mapping Γk from V1(Πk) onto V 1

2

(∂Πk), where V1(Πk) and

V 1

2

(∂Πk) are defined in the following way

V1(Πk) = {u/Πk
;u ∈ L∞(0, T ; (H1(Ω))D)},

V 1

2

(∂Πk) = {v ◦ ψ; v ∈ L∞(0, T ; (H
1

2 (∂B1))
D)},

with

B1 = {x ∈ IRD; | x |< 1}, ψ ∈ Lip([0, T ] ×B1; Πk),

ψ ∈Lip([0, T ] × x)ψ is one to one and onto.

Proof.

Denote γ the trace mapping from (H1(B1))
D into (H

1

2 (∂B1))
D. Γk is defined

by

Γk(uk) = γ(uk ◦ ψ−1) ◦ ψ, uk ∈ V1(Πk).

The equivalence between (2.7) and (2.10) is expressed in
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Lemma 2.3 Assume that Πk, k = 1, ..., N , are Lipschitz domains and u
belongs to L∞(0, T ; (H1(Ω))D). Then the following conditions are equivalent
(i) Γk(uk) ·N = 0 = Γl(ul) ·N on Hm.
(ii) ∂η

∂t + u · 5η = 0 in D′(�).

Proof.

In a weak sense equation (2.10) means
∫

Π
η(
∂η

∂t
+ u · 5ϕ)dtdx =

∫

Π
η(U · 5t,xϕ)dtdx

= 0 for every ϕ ∈ C∞
0 (Π). (2.11)

If for example N = 2 and Π = Π1∪Π2∪H and if the interface H is smooth,
(2.11) becomes, since ϕ vanishes on the boundary of Π

∫

Π1

η(
∂ϕ

∂t
+ u · 5ϕ)dtdx+

∫

Π2

η(
∂ϕ

∂t
+ u · 5ϕ)dtdx = 0.

Using the divergence theorem and Lemma 2.2, we obtain

(η1 − η2)

∫

H
U ·Nϕdtdx = 0, for every ϕ ∈ C∞

0 (Π),

which concludes the proof.

Hence, the multifluid Stokes problem can be written as a Stokes problem
with a variable viscosity, coupled with a transport equation for the viscosity.
Indeed, combining Lemma 2.1 and Lemma 2.2 we obtain

Proposition 2.1 Assume that the subdomains Πk = {(t, x) ∈ Π; η(t, x) =
ηk} are Lipschitz. Then the following properties are equivalent

(i) uk ∈ V1(Πk), pk ∈ V0(Πk),

ηk∆uk −5pk = 0 in Πk, div(uk) = 0 in Πk,

Γk(uk) = Γl(ul) on Hm,

Γk(Uk) ·N = Γl(Ul) ·N = 0 on Hm,

Σk/∂Πk
·N = 0 = Σl/∂Πl

·N on Hm,

where U = t(1, u), Σ =t (1, σ), σ = ηε(u) − pId and Σk/∂Πk
denotes

the trace of Σ in H− 1

2 (∂Πk).

(ii) u ∈ L∞(0, T ;H1(Ω)), p ∈ L∞(0, T ;L2(Ω)),

div(ηε(u) − pId) = 0, div(u) = 0,

∂η

∂t
+ u · 5η = 0 in Π.
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We shall use (ii) as a weak formulation of the multifluid problem.

Remark.

The strict equivalence between (i) and (ii) is only obtained when the in-
terfaces are assumed to be smooth. But in the following we will construct
a weak solution of (ii). Especially the viscosity η only belongs to L∞(Π).
Therefore the subdomains Πk = η−1(ηk) have no reason to be smooth. Frac-
tal interfaces may occur. Then interfacial transmission conditions (i) would
no longer have any meaning. However, even in that situation, weak solu-
tions of (ii) are mechanically admissible. Indeed the rheological constant η is
always transported by the fluid as it is expressed by the transport equation
and through every smooth surface there is continuity of velocities and of
the normal component of the stress tensor, in the sense of traces in H

1

2 and
H− 1

2 respectively.

We now state the main result of this paper.

Theorem 2.1 Let Ω be a bounded Lipschitz open set of IRD, whose bound-
ary ∂Ω splits into

∂Ω = Γin ∪ Γ0 ∪ Γout, (2.12)

where Γin and Γout are separated from each other. That means that there
exist two open sets Ωin and Ωout such that

Γin ⊂ Ωin, Γout ⊂ Ωout, Ωin ∩ Ωout = ∅. (2.13)

Let u0 ∈ L2((0,∞) × ∂Ω) be such that there exists U0 ∈ L∞(0,∞;C1
0 (IR)D)

verifying

U0 = u0 on (0,∞) × ∂Ω,

div(U0) = 0,

U0 · n < 0, t ≥ 0, x ∈ Γin,

U0 · n = 0, t ≥ 0, x ∈ Γ0,

U0 · n > 0. t ≥ 0, x ∈ Γout, (2.14)

where n denotes the outward normal on ∂Ω. Let 0 < η1 < ..., ηN , and η0

and ηin belonging to L∞(Ω) and L∞((0,∞)×Γin) respectively , be such that

(η0, ηin) ∈ {η1, ..., ηN} a.e. (2.15)
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Then there is at least one solution (u, η, p) of the coupled system of equations

div(η(t, x)(5u + 5ut)) = 5p, t > 0, x ∈ Ω,

div(u) = 0, t > 0, x ∈ Ω,

u = u0, t > 0, x ∈ ∂Ω, (2.16)

and

∂η

∂t
+ u · 5η = 0, t > 0, x ∈ Ω,

η = η0, t = 0, x ∈ Ω,

η = ηin, t > 0, x ∈ Γin, (2.17)

that satisfy

u ∈ L∞(0,∞; (H1(Ω))D), (2.18)

η ∈ L∞((0,∞) × Ω), η ∈ {η1, ..., ηN} a.e., (2.19)

p ∈ L2(0,∞;L2(Ω)). (2.20)

Before proving this theorem, let us study separately the two problems (2.16)
and (2.17). This is the object of the following sections.

3 The Stokes problem with a given non-constant

viscosity.

In this section we assume that Ω is a Lipschitz bounded set of IRD. We are
concerned with the following Stokes problem

Find u ∈ (H1(Ω))D, p ∈ L2
0(Ω), such that

γ(u) = u0,

div(u) = 0, x ∈ Ω,

div(η(x)(5u + 5ut)) = 5p, in (H−1(Ω))D. (3.1)

The space L2
0(Ω) is defined by

L2
0(Ω) = {p ∈ L2(Ω);

∫

Ω
pdx = 0}.
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The operator γ denotes the trace mapping from H1(Ω) onto H
1

2 (Ω). We
assume that u0 is the trace of some divergence-free function U0 belonging
to (H1(Ω))D,

u0 = U0, U0 ∈ (H1(Ω))D, div(U0) = 0. (3.2)

Remark.

If Ω is smooth, let us say with a C2 boundary, then a necessary and sufficient
condition in order that there exist a function U0 satisfying (3.2) is

u0 ∈ H
1

2 (∂Ω),

∫

∂Ωk
u0dσ(x) = 0,

where ∂Ωk are the connected components of the boundary. Assumption
(3.2) is the usual one to obtain an existence and uniqueness result for the
Stokes problem (see [8]).

Theorem 3.1 Let η be a bounded function such that

η ∈ L∞(Ω), 0 < η1 < η(x) < ηN <∞, (3.3)

and let u0 satisfy (3.2) for some function U0. Then there exist a unique
solution (u, p) of the Stokes problem (3.1). Moreover,

‖ u ‖H1(Ω)≤ 2C(Ω)

√

ηN

η1
‖ u0 ‖H1(Ω), (3.4)

where C(Ω) is a Poincaré constant.

Proof.

We introduce the space

V = {v ∈ (H1
0 (Ω))D; div(v) = 0}, (3.5)

which is a closed subspace of (H1
0 (Ω))D. Then an equivalent problem to

(3.1) is

Find u = U0 + v, v ∈ V, such that
∫

Ω
ηε(v) : ε(w)dx +

∫

Ω
ηε(U0) : ε(w)dx = 0 for any w ∈ V. (3.6)

It is easy to check that the bilinear form appearing in (3.6) is coercive,
thanks to the following Korn inequality
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Lemma 3.4 Let Ω be a Lipschitz bounded set. Then for any function v in
V ,

∫

Ω
ε(v) : ε(v)dx ≥

1

4
‖ 5v ‖(L2(Ω))6≥

C2(Ω)

4
‖ v ‖(H1(Ω))D . (3.7)

For a proof of this lemma we refer to [7]. We only point out that we have to
assume that Ω is Lipschitz. Indeed, under such regularity, V is the closure
in (H1

0 (Ω))D of the space of functions v of (C∞
0 (Ω))D such that div(v) = 0

(see [8]), for which (3.7) is easily checked. Hence we obtain existence and
uniqueness of a solution of (3.6) which satisfies (3.4). As usual the result for
p is obtained by considering

f = div(ηε(u)),

that is bounded in H−1(Ω) and satisfies

< f, v >= 0, v ∈ V.

Then there exists a unique p in L2
0(Ω) such that (see [8])

f = 5p.

4 Transport equations with a non-Lipschitz con-

vective field.

Let Ω be a Lipschitz bounded set of IRD, whose boundary is split into three
connected components Γin, Γ0 and Γout. Let us study the following transport
problem

Find η ∈ L∞((0,∞) × Ω)such that

∂η

∂t
+ u · 5η = 0, t > 0, x ∈ Ω,

η = ηin, t > 0, x ∈ Γin,

η(0, x) = η0(x), x ∈ Ω. (4.1)

An existence and uniqueness result for (4.1) is classical when the velocity
field u belongs to L1(0, T ;Lip(Ω)). It is obtained by the method of character-
istics (see [2]). However, in the coupled problem, the natural set for u is the
space L∞(0,∞; (H1(Ω))D) ∩ N(div). In this framework the only available
result is due to DiPerna and Lions [3]. They proved the existence and unique-
ness of a weak solution of (4.1) for the Cauchy problem, with Ω = IRD, under
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the weak assumptions u ∈ L1(0, T ;W 1,1
loc (Ω)), div(u) ∈ L1(0, T ;L∞(Ω)). In

order to do that, they introduced the new concept of renormalized solutions.
Here we have to extend their result to boundary value problems. First we
introduce a class of admissible velocity fields

U = {u ∈ L∞(0, T ; (H1(Ω))D); div(u) = 0, γ(u) = γ(U0)}, (4.2)

where U0 ∈ L∞(0, T ; (C1
0 (IRD))D) and satisfies

div(U0) = 0,

U0 · n < 0, x ∈ Γin,

U0 · n = 0, x ∈ Γ0,

U0 · n > 0, x ∈ Γout, (4.3)

where n denotes the outward normal. Then we introduce the space of test
functions

T = {ϕ ∈ C∞
0 (IRD+1); ϕ(t, x) = 0, t > 0, x ∈ Γout},

and the following definitions

Definition 4.1 Let u be in U . Then a weak solution of (4.1) is a function
η ∈ L∞((0,∞) × Ω) such that

∫ ∞

0

∫

Ω
η(
∂ϕ

∂t
+ u · 5ϕ)dtdx =

∫

Ω
η0(x)ϕ(0, x)dx

+

∫ ∞

0

∫

Γin

ηin(t, x)ϕ(t, x) | u0 · n | dσ(x)dt (4.4)

for every ϕ in T .

Definition 4.2 Let u be in U . Then a renormalized solution of (4.1) is a
function η ∈ L∞((0,∞)×Ω) such that, for any β in C1(IR), β(η) is a weak
solution of (4.1) with the Cauchy data β(η0) and the boundary data β(ηin).

In these definitions, we have extensively used the fact that u is divergence
free. Then it is easy to verify that, if u and η are smooth, η is a renormalized
solution of (4.1). These definitions do not allow to control the ougoing flux
of the solutions. Therefore we introduce an auxiliary problem. We first
assume that Γin and Γout are separated from each other: there exist two
open sets Ωin and Ωout such that

Γin ⊂ Ωin, Γout ⊂ Ωout, Ωin ∩ Ωout = ∅.
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Then we extend the velocity field u in the following way. Let θin and θout be
two functions of C∞

0 (IRD+1) which satisfy, for some open sets ωin and ωout

such that Γin ⊂ ωin and Γout ⊂ ωout,

θin = 1 for x ∈ ωin, θin = 0 for x /∈ Ωin,

θout = 1 for x ∈ ωout, θout = 0 for x /∈ Ωout.

Define ũ by

ũ = u, x ∈ Ω,

ũ = U0(θin + θout), x /∈ Ω. (4.5)

Then

Lemma 4.5 The velocity field ũ satisfies

ũ ∈ L∞(0, T ;H1(IRD)), div(ũ) ∈ L∞((0,∞) × Ω),

ũ = 0, x /∈ Ω ∪ Ωin ∪ Ωout.

Definition 4.3 An extended solution of (4.1) is a weak solution of

Find η ∈ L∞((0,∞) × (Ω ∪ Ωout))such that

∂η

∂t
+ ũ · 5η = 0, t > 0, x ∈ Ω ∪ Ωout,

η(t, x) = ηin(t, x), t > 0, x ∈ Γin,

η(0, x) = η̃0(x), x ∈ Ω ∪ Ωout, (4.6)

with η̃0(x) = η0(x) if x ∈ Ω and η̃0(x) = η1 if x /∈ Ω.

Notice that for this problem there is no longer any part of the boundary
where the field ũ is outward. Therefore a weak extended solution satisfies

∫ ∞

0

∫

Ω∪Ωout

η(
∂ϕ

∂t
+ ũ · 5ϕ)dtdx =

∫

Ω∪Ωout

η̃0(x)ϕ(0, x)dx +

∫ ∞

0

∫

Γin

ηin(t, x)ϕ(t, x) | u0 · n | dσ(x)dt(4.7)

for every ϕ in C∞
0 (IRD+1).

Of course an extended solution of (4.1) is a weak solution.
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Theorem 4.1 Let u be a vector field in V , and η0 and ηin be functions such
that

η0 ∈ L∞(Ω), ηin ∈ L∞((0, T ) × Γin),

η0 ∈ {η1, ..., ηN} a.e.

Then the problem (4.1) has a unique weak extended solution. Moreover this
weak extended solution is a renormalized solution and satisfies

η ∈W 1,∞(0, T ;Lp(Ω)), p <∞, (4.8)

η0 ∈ {η1, ..., ηN} a.e. (4.9)

It has a trace ηout on Γout that belongs to L∞(Γout), and

∫

Ω
η2(t, x)dx+

∫ t

0

∫

Γout

η2
out(s, x) | u0 · n | dσ(x)ds =

∫

Ω
η2
0(x)dx+

∫ t

0

∫

Γin

η2
in(s, x) | u0 · n | dσ(x)ds. (4.10)

If u is smooth, a characteristics method is available to solve (4.1), then (4.9)
and (4.10) are easily obtained (see [2])).

Proof.

We begin with the existence result. First we consider a regularized se-
quence uk defined as follows. Since the restriction of ũ − U0 to Ω belongs
to L∞(0, T ;V ), there is a sequence vk in C∞

0 (IR×Ω) such that div(vk) = 0
and vk → ũ− U0 in Lp(0, T ;H1

0 (Ω)), with p <∞. Then we define

uk = vk + U0, x ∈ Ω,

uk = U0(θin + θout), x /∈ Ω.

It is easy to check that uk belongs to L∞(0, T ;C1
0 (IRD)). By a characteristics

method we obtain a bounded sequence of solutions ηk of (4.6) asociated
with the velocity field uk. Then it is easy to pass to the limit in (4.7)
for a subsequence ηk which converges in L∞((0, T ) × Ω) weak ∗. To prove
uniqueness, let us consider a solution of (4.7) with η0 = 0, ηin = 0. We
extend it by 0 outside Ω and obtain

∫

IRD+1

η(
∂ϕ

∂t
+ 5 · (ũϕ))dtdx = 0. (4.11)
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Then the result of [3, Theorem II.2] applies, which concludes η = 0. Now we
prove that an extended solution of (4.1) is a renormalized solution. Following
[3], we introduce a regularized sequence

ρε(x) =
1

εD
ρ(
x

ε
), ρ ∈ C∞

0 (IRD),

∫

IRD
ρdx = 1,

and we recall a result due to Friedrichs [5] (see also [3]).

Lemma 4.6 Let ũ in L2(0, T ; (H1(IRD))D) and η̃ in L∞((0, T ) × IRD).
Then

rε = ũ · 5(η̃ ∗ ρε) − (ũ · 5η̃) ∗ ρε → 0 in L2(0, T ;L2
loc(IR

D))

Let now η be an extended solution of (4.1). The first step is to extend η by
a function η̃ of L∞((0, T ) × IRD) which satisfies

∂η̃

∂t
+ ũ · 5η̃ = 0, t > 0, x ∈ IRD. (4.12)

For that, we solve a ’backward problem’. Let ω = Ωin \ Ω. We solve

∂η̂

∂t
+ ũ · 5η̂ = 0, t ∈ (0, T ), x ∈ ω,

η̂(T, x) = 0, x ∈ ω,

η̂(t, x) = ηin(t, x), t ∈ (0, T ), x ∈ Γin. (4.13)

We point out that a solution of (4.13) is given by the preceeding proof of
existence and that

ũ = 0, x ∈ ∂ω \ Γin.

Therefore, for every function ϕ in C∞
0 ((0, T ) × IRD),

∫ T

0

∫

Ω
η̂(
∂ϕ

∂t
+ 5 · (ũϕ))dtdx =

−
∫ T

0

∫

Γin

ηin(t, x)ϕ(t, x) | u0 · n | dσ(x)dt. (4.14)

Then we define η̃ by

η̃ = η, t ∈ (0, T ), x ∈ Ω ∪ Ωout,

η̃ = η̂, t ∈ (0, T ), x ∈ ω,

η̃ = 0, t ∈ (0, T ), x /∈ Ω ∪ Ωout ∪ Ωin.
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It follows from (4.7) and (4.14) that η̃ satisfies (4.12). Define

ηε = η̃ ∗ ρε.

We have

∂ηε

∂t
+ ũ · 5ηε = rε, t ∈ (0, T ), x ∈ IRD.

But ηε is smooth with respect to t and x, since ∂ηε

∂t = −(ũ·5η̃)∗ρε. Therefore

∂

∂t
(β(ηε)) + ũ · 5β(ηε) = rεβ′(ηε), t ∈ (0, T ), x ∈ IRD, (4.15)

for every function β in C1(IR). Using Lemma 4.2, we pass to the limit and
obtain

∂

∂t
(β(η̃)) + ũ · 5β(η̃) = 0 in C∞

0 ((0, T ) × IRD).

It remains to study the traces of the sequence β(ηε) in order to determine
the traces of β(η). Choosing β(t) = t2 in (4.15) we obtain

∂

∂t
((ηε − ηδ)2) + ũ · 5((ηε − ηδ)2) = 2(rε − rδ)(ηε − ηδ).

Let α be a nonnegative function in C∞
0 (IR) such that

α = 0 for t ≥ T, α = 1 for 0 ≤ t ≤ T ∗ < T.

Hence
∫ T

0

∫

Γin

ηin(ηε − ηδ)2 | u0 · n | α(t)dσ(x)dt =

∫ T

0

∫

Ω∪Ωout

(ηε − ηδ)2(α′(t) + 5 · ũ)dxdt

+

∫

Ω∪Ωout

(η̃0 ∗ ρ
ε − η̃0 ∗ ρ

δ)2dx

+2

∫ T

0

∫

Ω∪Ωout

(ηε − ηδ)(rε − rδ)α(t)dxdt.

This proves that the trace of ηε on Γin is a Cauchy sequence of the Hilbert
space L2(0, T ∗;L2(Γin; | u0 · n | dσ(x))). Since this sequence is bounded, it
converges in this space towards a bounded function η̃in. The same integra-
tion on Ωout proves that the trace of ηε converges in
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L2(0, T ∗;L2(Γout; | u0 · n | dσ(x)))) towards a bounded function ηout. Then
using the weak formulation,

∫ ∞

0

∫

Ω
β(ηε)(

∂ϕ

∂t
+ 5 · (Uϕ))dtdx =

∫ ∞

0

∫

Ω
β′(ηε)rεϕdtdx+

∫

Ω
β(η̃0 ∗ ρ

ε)(x)ϕ(0, x)dtdx

+

∫ ∞

0

∫

Γin

β(ηε)ϕ(t, x) | u0 · n | dσ(x)dt

−
∫ ∞

0

∫

Γout

β(ηε)ϕ(t, x) | u0 · n | dσ(x)dt, (4.16)

we pass to the limit and obtain that β(η) is a weak solution of (4.1) with
the data β(η̃0), β(η̃in). But taking β(t) = t gives η̃in = ηin. This proves that
η is a renormalized solution. Moreover, it has a bounded trace ηout on Γout.
Taking ϕ = α(t) on Ω in (4.16) and passing to the limit gives

∫ ∞

0
α′(t)

∫

Ω
β(η)(t, x)dtdx =

∫

Ω
β(η0)(x)dx

+

∫ ∞

0

∫

Γin

β(ηin)α(t) | u0 · n | dσ(x)dt

−
∫ ∞

0

∫

Γout

β(ηout)α(t) | u0 · n | dσ(x)dt.

Choosing β(t) =| t |p, it follows that ‖ η(t, .) ‖Lp(Ω) belongs to W 1,∞(0, T ).
The above formula with β(t) = t2 leads also to (4.10). To prove that η takes
its value in {η1, ..., ηN}, we consider a function β, positive except for the
value ηi : β(ηi) = 0, i = 1, ..., N . Then β(η) is an extended solution of (4.1)
with vanishing data. It follows from the result of uniqueness that β(η) = 0,
a.e. This concludes the proof of Theorem 4.1.

5 Proof of the main theorem.

Stokes problem (3.1), only provides some regularity on the space derivatives
of u, whereas the transport equation (4.1) gives some information on the time
derivative of η. Therefore some compensated compactness result seems to
be appropriate for passing to the limit in the non linear term ηu.

Lemma 5.7 Let (ηn) and (vn) be two sequences uniformly bounded respec-
tively in L2((0, T ) × Ω) and L2(0, T ;H1

0 (Ω)D), such that

ηn ⇀ η in L2((0, T ) × Ω) weak,

vn ⇀ v in L2(0, T ; (H1
0 (Ω))D) weak.
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If ∂ηn

∂t is bounded in L2(0, T ;H−1(Ω)), then up to a subsequence, ηnun con-
verges to ηu in (C∞

0 ((0, T ) × Ω))′.

Proof. (ηn) and (∂ηn

∂t ) being bounded in L2(0, T ;L2(Ω)) and L2(0, T ;H−1(Ω))
respectively, Aubin’s lemma ([6]) implies that there is a subsequence of
(ηn) converging to η in L2(0, T ;H−1(Ω)). We notice that the convergence
of ηn to η in L2(0, T ;H−1(Ω)) and the weak conergence of vn to v in
L2(0, T ; (H1

0 (Ω))D) lead to the convergence of ηnvn to ηv in (C∞
0 ((0, T ) ×

Ω))′.

Corollary 5.1 If un weakly converges to u in L2(0, T ; (H1(Ω))D) and (η)n

is the solution of Theorem 4.1 associated with un, then (ηn) converges in
L2((0, T ) × Ω) to the solution of Theorem 4.1 associated with u.

Proof. Introduce the norm

‖| η |‖= [‖ η ‖L2((0,T )×Ω) +

∫ T

0
(T − t)

∫

Γout

η2
out | u0 ·n | dσ(x)dt]

1

2 (5.1)

and the space

X = L2((0, T ) × Ω) ∩ L2(0, T ;L2(Γout; | u0 · n | dσ(x))),

provided with this norm ‖||‖. Thanks to (4.10), (ηn) is bounded in X. So,
up to a subsequence, it weakly converges to some η in X. Lemma 5.1 applies
to (ηn) and (un − U0), since

∂ηn

∂t
= −5 ·(ηnun) (5.2)

is bounded in L2(0, T ;H−1(Ω)). But ηnU0 ⇀ ηU0 in L∞ weak star, there-
fore ηnun ⇀ ηu in (C∞

0 ((0, T ) × Ω))′. Then, passing to the limit in the
formulation (4.7), we obtain that η is the extended solution of (4.1) asso-
ciated with the velocity field u. It follows that the whole sequence weakly
converges to η. We also conclude from (4.10) that

‖| ηn |‖=‖| η |‖ . (5.3)

Since this norm is strictly convex, this leads to the strong convergence of ηn

to η.

Let us now prove the main result.
Theorem 2.1 results from the existence of a fixed point for a map F by means
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of the Schauder fixed point theorem. This map is defined in the following
way. Let C be the convex set of L2((0, T ) × Ω)defined by

C = {η ∈ L∞((0, T ) × Ω); 0 < η1 < η(x, t) < ηN a.e.}. (5.4)

For every η in C, let u be the unique solution of the Stokes problem asso-
ciated to η, given by Theorem 3.1. Then µ = F (η) is defined as the unique
extended solution given by Theorem 4.1, with an extended velocity field ũ
defined as in (4.5). It follows from (4.9) that F maps C onto itself.
First we prove that F is continuous. (ηn) being a sequence of C converg-
ing to η in L2((0, T ) × Ω), let un be the associated solution of (3.1), and
(µn) = (F (ηn)). From (3.4), (un) is bounded in L∞(0, T ; (H1(Ω))D), so
there is a subsequence (unp) and an u such that (unp) weakly converges
to u in L2(0, T ; (H1(Ω))D). Hence ε(unp) weakly converges to (ε(u)) in
(L2((0, T ) × Ω)6. The strong convergence of (ηnp) to η in L2((0, T ) × Ω),
as well as the weak convergence of ε(unp) to ε(u) in (L2((0, T )×Ω))6 imply
the convergence of ηnpε(unp) to η(u) in L1((0, T ) × Ω). Therefore, passing
to the limit in the Stokes problem (3.1), we obtain that u is the solution
to the Stokes problem associated with η. Hence u is unique, so the whole
sequence (un) weakly converges to u in L2(0, T ; (H1(Ω))D). On the other
hand, (F (ηn)) and (ũn) satisfy the assumptions of Corollary 5.1, so that
(F (ηn)) converges in L2((0, T ) × Ω) to the solution of Theorem 4.1 associ-
ated with u, that is exactly F (η).
We now prove the compactness of F .
Let (ηn) be an arbitrary sequence in C. Then the sequence of Stokes prob-
lem solution (un) associated with (ηn) is bounded in L2(0, T ; (H1(Ω))D).
Hence there is a subsequence (unp) weakly converging to some U in
L2(0, T ; (H1(Ω))D). We conclude as above that, up to a subsequence, F (ηn)
strongly converges in L2((0, T ) × Ω) towards the extended solution of (4.1)
associated with the velocity u. It ends the proof of the compactness of F ,
as well as Theorem 2.1 proof.
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ites non linéaires, Gauthier-Villars, 1969.

7. OLEINIK, O. A., Boundary value problems for elasticity theory in
unbounded domains, Russian Math. Surveys 43 5 (1988) 65-119.

8. TEMAM, R., Navier-Stokes equations, North Holland, Amsterdam
New-York Oxford, 1977.

19


