
LOCALIZATION ON 5 SITES FOR VERTEX REINFORCED

RANDOM WALKS: TOWARDS A CHARACTERIZATION

BRUNO SCHAPIRA

Abstract. We continue the investigation of the localization phenomenon for

a Vertex Reinforced Random Walk on the integer lattice. We provide some

partial results towards a full characterization of the weights for which local-
ization on 5 sites occurs with positive probability, and make some conjecture

concerning the almost sure behavior.

Keywords and phrases. Self-interacting random walks; Vertex Reinforced Ran-

dom Walk.

MSC 2010 subject classifications. 60K35.

1. Introduction

Given a sequence w = (w(n))n≥0 of positive real numbers, called the weight,
one can define a process (Xn)n≥0 on Z, called Vertex Reinforced Random Walk
(VRRW) as follows: first X0 = 0, and then for any n ≥ 0 and x ∈ Z,

(1) P(Xn+1 = x± 1 | Fn) =
w(Zn(x± 1))

w(Zn(x+ 1)) + w(Zn(x− 1))
,

where Fn := σ(X0, . . . , Xn) and Zn(y) is the number of visits to site y by the
process before time n (see below). This process was introduced by Pemantle [P] on
the complete graph and for a linear weight, and then by Pemantle and Volkov on Z,
still for the linear weight, who showed that the process localizes on five sites with
positive probability, that is with positive probability exactly five sites are visited
infinitely often. This result was later improved by Tarrès who showed [T1, T2] that
this behavior occurs in fact almost surely.

A few years later, Volkov [V] introduced the model with a general weight se-
quence, in the same fashion as Davis [Dav] did for Edge Reinforced Random Walks.
He proved in particular that for weights of the form w(n) = nα, with α < 1, local-
ization on a finite subgraph is not possible. This was later improved in [CK, Sch, S]
in the case α < 1/2, where it was proved that the process visits almost surely all
sites infinitely often.

In a previous work in collaboration with Basdevant and Singh [BSS], we managed
to completely characterize the nondecreasing weights for which localization on 4
sites occurs with positive probability, or almost surely, in terms of some parameter
αc(w) (see below). Our aim here is to analyze the analogous question for the
localization on 5 sites. For this we introduce some new parameter βc(w), which
should play a similar role as αc(w). To define it, we first extend w as a function on
the positive reals by w(t) := w(btc), and then set

W (t) :=

∫ t

0

1

w(u)
du.

1
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We will assume throughout the paper that

(2)

∞∑
n=0

1

w(n)
=∞,

which is equivalent to saying that W is a bijection from R+ to itself. Note however,
that this is not a restrictive hypothesis, since when w is reciprocally summable, it
is known [BSS, V] that the process localizes almost surely on two sites. Then we
denote by W−1 its inverse, and define for α > 0,

Iα(w) :=

∫ ∞
0

dx

w(W−1(W (x) + α))
.

When w is nondecreasing, the map α 7→ Iα(w) is nonincreasing and one defines

(3) αc(w) := inf{α ≥ 0 : Iα(w) <∞} ∈ [0,∞],

with the convention that inf ∅ = ∞. In [BSS] it was proved in particular that
localization on 4 sites holds with nonzero probability if, and only if, αc(w) is finite.
We now define for β ∈ R,

Jβ(w) :=

∫ ∞
0

dx

w(W−1(2W (x) + β))
,

with the convention that W−1(u) = 0, for u < 0, and set

βc(w) := inf{β ∈ R : Jβ(w) <∞} ∈ [−∞,+∞].

We make the following conjecture (with R′ standing for the set of sites which are
visited infinitely often):

Conjecture 1.1. Assume that w is nondecreasing and satisfies (2). Assume fur-
ther that αc(w) =∞. Then

P(|R′| = 5) > 0 ⇐⇒ P(|R′| = 5) = 1 ⇐⇒ βc(w) <∞.

Remark 1.1. With the notation of [BSS2], we also conjecture that localization on
5 sites is equivalent to having i1/2(w) = 2 (which by definition is itself equivalent
to having J0(w) = ∞). In fact as we will later explain, we conjecture that βc(w)
always belongs to {±∞}.

The hardest part here is the characterization of the almost sure localization,
which is a notoriously difficult problem that we will not discuss in this paper; we
simply recall that in the case of a linear weight, Tarrès proved that |R′| = 5 almost
surely [T1, T2]. Proving that the same holds for some other weight function is
possibly one of the most challenging problem on this model. Instead we will only
be interested here on the easiest part of the conjecture, which is a characterization
of the localization with positive probability. Our first result provides one direction
of the conjecture:

Theorem 1.1. Assume that w is nondecreasing. Then

P(|R′| = 5) > 0 =⇒ βc(w) < +∞.

We note that this result was proved in [BSS2] (see the proof of Proposition 1.4
there) under some additional hypotheses on w, including the fact that w was a
slowly varying function.

Our second result concerns the other direction. However, instead of βc(w) being
finite, one needs to assume some slightly stronger condition (which we nevertheless
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conjecture to be equivalent). Namely, we first define H(x) := x+W−1(W (x) + 1),
and note that H is increasing and continuous; thus it has an inverse which we
denote by H−1. Then set for β ∈ R,

J̃β(w) :=

∫ ∞
0

dx

w(H−1 (W−1(2W (x) + β)))
,

and

β̃c(w) := inf{β ∈ R : J̃β(w) <∞} ∈ [−∞,+∞].

Note that H(x) ≥ x and H−1(x) ≤ x, for all x ≥ 0. Thus for any β ∈ R,

J̃β(w) ≥ Jβ(w). In particular for any w,

β̃c(w) ≥ βc(w).

Our second result is the following:

Theorem 1.2. Assume that w is nondecreasing and satisfies (2). Assume further
that αc(w) =∞. Then

β̃c(w) <∞ =⇒
{

P(5 ≤ |R′| <∞) = 1,
P(|R′| ∈ {5, 6}) > 0.

As mentioned above we conjecture that in fact βc(w) = β̃c(w), for all weights w.
We provide some evidence for this fact at the end of the paper, and show that it is
true for a large class of weight functions (see Lemmas 5.1 and 5.2).

In particular Lemma 5.1 shows that for any surlinear weight function, such that

w(n) = o(n
√

log n), one has β̃c(w) <∞. This is of course not surprising, regarding
the known result for a linear weight, but let us observe that prior to this, nothing
was known for weights with intermediate growth between linear and n log log n
(apart from the fact that the associated process could not localize on any finite
subgraph with 4 or less sites). Note that when lim inf w(n)/(n log log n) > 0, then
αc(w) is finite, and localization was proved in [BSS] for such weights.

Now it is a bit disappointing that we cannot exclude the possibility of a local-
ization on 6 sites in the conclusion of Theorem 1.2, especially since for a linear
weight [PV, T2], as well as for weights satisfying the so-called condition i+(w) = 2
from [BSS2], it has been proved that localization on 5 sites occurs with positive
probability. Let us however stress that, concerning the weight w(n) = n+ 1, both
the original proof by Pemantle and Volkov [PV], as well as the simplified one by
Tarrès [T2] heavily rely on the explicit form of the linear weight, and cannot be
transposed (at least not directly) to the general setting we are considering here.
On the other hand the hypotheses on w made in [BSS2] are stronger than ours (in
particular in addition to the hypothesis i+(w) = 2, which is already stronger than

requiring β̃c(w) being finite, some regularity condition was also imposed for w), and
moreover, the proof in [BSS2] requires more sophisticated arguments than here.

Let us finally add that we also believe that localization on any even number of
sites, larger than or equal to 6, is not possible for any weight function. In contrast
it was proved in [BSS2] that localization on any odd number of sites – other than
one and three – is possible.

The paper is organized as follows. In the next section, we recall some important
and elementary facts about the VRRW, and some related martingales attached to
each site. Then in Sections 3 and 4 we give the proofs of Theorems 1.1 and 1.2
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respectively. The final section is concerned with the computation of the parameters

βc(w) and β̃c(w), and gives some cases where one can show equality between them.

2. Notation and background

2.1. VRRW. Given some initial distribution of local times C := (z0(y))y∈Z ∈ NZ,
we define the C-VRRW as the process (Xn)n≥0, whose transition probabilities are
given by (1), with for any y ∈ Z, Z0(y) = z0(y), and for any n ≥ 1,

Zn(y) := z0(y) +

n∑
k=1

1{Xk = y}.

We call C0 the configuration with z0(y) = 0, for all y 6= 0 and z0(0) = 1. We then
simply say that X is a VRRW when its initial local time distribution is given by
C0. We also recall that a C-VRRW can be defined as well on any subgraph of Z,
and we refer to [BSS] for details.

2.2. The martingales Mn(x). For x ∈ Z, define Z∞(x) := limn→∞ Zn(x). Recall
that R′ stands for the set of sites visited infinitely often by the walk:

R′ := {x ∈ Z : Z∞(x) =∞}.
We define for any n ≥ 1, and x ∈ Z,

(4) Y ±n (x) :=

n−1∑
k=0

1{Xk = x, Xk+1 = x± 1}
w(Zk(x± 1))

,

and

Mn(x) := Y +
n (x)− Y −n (x).

We let also Y ±0 (x) = 0, and M0(x) = 0, and consider the limits:

Y ±∞(x) := lim
n→∞

Y ±n (x).

An important observation from Tarrès [T1, T2] is that (Mn(x))n≥1 is a martingale
for each x ∈ Z. Moreover, if

(5)

∞∑
n=0

1

w(n)2
<∞,

then these martingales are bounded in L2, and thus converge almost surely and in
L2. Moreover, for any C-VRRW, one has

(6) Y +
n (x− 1) + Y −n (x+ 1) = W (Zn(x))−W (z0(x)).

We will also use the following result due to Tarrès (see also [BSS, Lemma 3.3]):

Lemma 2.1 (Tarrès [T2]). Assume that w is nondecreasing and that (5) holds.
Then, for any x ∈ Z, almost surely,

{Y +
∞(x) <∞} = {Y −∞(x) <∞} = {Z∞(x− 1) <∞} ∪ {Z∞(x+ 1) <∞}.

We further use the same notation as in [T2], and write f(n) ≡ g(n), when the
sequence (f(n)− g(n))n converges to some finite real. In particular, it follows from
the above discussion that∑

n≥0

1

w(n)2
<∞ =⇒ Y +

n (x) ≡ Y −n (x), for all x ∈ Z.(7)
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3. Proof of Theorem 1.1

We start the proof with the following lemma:

Lemma 3.1. Assume that w is nondecreasing. Then

P(|R′| = 5) > 0 =⇒
∞∑
n=0

1

w(n)2
<∞.

Remark 3.1. This result has the same flavor than some others from [Sch, S, V],
which all give different conditions on the weight w, ensuring that localization on
any finite subgraph is not possible. In particular the proof in [S] shows that for
any weight satisfying lim supn/w(n)2 = ∞, the walk cannot localize on any finite
subgraph, which is close to imply our result (but not quite).

Proof of Lemma 3.1. We first note that if localization on five sites occurs with
positive probability, then there exists some initial configuration C, such that with
positive probability the C-VRRW spends all its time in the set {1, 2, 3, 4, 5}, and
visits all sites from this set infinitely often. Call E this event. By the conditional
Borel-Cantelli Lemma (see Theorem 4.3.2 in [Dur]), one can see that almost surely
on the event E, one has Y +

∞(1) <∞, since for some constant c > 0 (only depending
on C), one has

Y +
∞(1) ≤ c

∑
k≥0

P [Xk+1 = 0 | Fk]1{Xk = 1},

where we denote here by Fk the sigma field generated by the process X up to its
k-th visit to site 1. Then we use a fact, already observed in [BSS] (see the end of
Section 4 there), which is that the following process is a martingale:

Y +
n (1)−

Zn(2)−z0(2)∑
k=1

pk(2, 1)

w(k + z0(2))
,

where pk(2, 1) denotes the probability to jump to site 1, at k-th visit to site 2.
Since this martingale has bounded increments, we know that almost surely, either
it converges, or its lim sup as well as its lim inf are both infinite (see Theorem 4.3.1
in [Dur]). However, we have just observed that on the event E, its lim sup is finite,
which means that it must converge, and as a consequence on the event E, it holds
almost surely

∞∑
k=0

pk(2, 1)

w(k + z0(2))
<∞.

Now by definition of pk(2, 1), one has for some constant c > 0 (depending only on
C), and on E,

∞∑
k=0

1

w(k + z0(2))w(Zτk(3))
≤ c

∞∑
k=0

pk(2, 1)

w(k + z0(2))
<∞,

where τk denotes the time of k-th visit to site 2. By symmetry one has as well
∞∑
k=0

1

w(k + z0(4))w(Zτ̃k(3))
<∞,

with τ̃k the time of k-th visit to site 4. Finally observe that for any n, Zn(3) ≤
Zn(2) + Zn(4) + C, with C a constant depending only on C. This implies that for
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any k, either Zτk(3) ≤ 2k +C + z0(3) or Zτ̃k(3) ≤ 2k +C + z0(3). Using that w is
nondecreasing, it follows that for some (possibly larger) constant C > 0,∑

k≥0

1

w(2k + C)2
<∞.

The lemma follows, using again that w is nondecreasing. �

We next prove the following result.

Lemma 3.2. Let X be a C-VRRW, for some initial local time configuration C.
Assume that w is nondecreasing, and satisfies (2) and (5). Then on the event
E = {Z∞(0) = Z∞(4) = ∞} ∩ {Y +

∞(0) < ∞} ∩ {Y −∞(4) < ∞}, it holds almost
surely

Zn(2)−max(Zn(1), Zn(3))→ +∞, as n→∞.

Proof. Let for n ≥ 1,

Nn(y, y ± 1) :=

n−1∑
k=0

1{Xk = y, Xk+1 = y ± 1},

denotes the number of jumps from y to y ± 1 before time n, for any y ∈ Z. Then
Zn(1) ≡ Nn(0, 1)+Nn(2, 1) and similarly, Zn(2) ≡ Nn(1, 2)+Nn(3, 2). Now observe
that W (Nn(2, 1))− Y −n (2) is nondecreasing and that for all n,

0 ≤W (Nn(2, 1))− Y −n (2) ≤ Y +
n (0) +W (z0(1)).

Since by definition Y +
∞(0) is finite on the event E, we deduce that

W (Nn(2, 1)) ≡ Y −n (2).

By symmetry, one has as well

W (Nn(2, 3)) ≡ Y +
n (2),

and since by (7), one also has Y −n (2) ≡ Y +
n (2), we get in fact

W (Nn(2, 1)) ≡W (Nn(2, 3)).(8)

Moreover, Lemma 2.1 implies that under the hypotheses of the lemma and on the
event E, Z∞(−1) is finite, and thus Y +

∞(−1) also. Together with (6), it follows that

W (Nn(1, 0)) ≡W (Zn(0)) ≡ Y −n (1) ≡ Y +
n (1).(9)

We claim now that

δn := W (Nn(1, 2))− Y +
n (1)→ +∞.(10)

To see this note first that δn is nondecreasing. Let then (ik)k≥1 and (jk)k≥1, be
the increasing sequences of integers, such that for all n ≥ 0,

Y −n (3) =

Nn(3,2)∑
k=1

1

w(ik)
, and Y +

n (1) =

Nn(1,2)∑
k=1

1

w(jk)
.

Set also n0 = 0, and for k ≥ 1,

nk := inf{n > nk−1 : w(jn) ≥ 2w(ik)}, and Nk := inf{n ≥ 0 : Nn(1, 2) ≥ nk}.
Then for any k ≥ 1,

δNk ≥
1

2

∑
k′≤k

1

w(ik′)
.
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Since Z∞(4) = Z∞(2) =∞, Lemma 2.1 shows that Y −∞(3) =∞, which proves (10).
By using next that |Nn(1, 2) − Nn(2, 1)| ≤ 1, together with (8), (9) and (10), we
obtain

W (Nn(2, 3))−W (Nn(1, 0))→ +∞,
which implies that Nn(2, 3)−Nn(1, 0)→ +∞. By symmetry one can prove as well
that Nn(1, 2)−Nn(4, 3)→ +∞, and the lemma follows. �

Let us resume now the proof of Theorem 1.1. Lemma 3.7 in [BSS] shows that there
exists some local time configuration C, such that for the C-VRRW, the event

E := {Z∞(0) = Z∞(4) =∞} ∩ {Y +
∞(0) <∞} ∩ {Y −∞(4) <∞},

has some positive probability. Moreover, we know by (6) that on E,

W (Zn(1))−W (Zn(3)) ≡ Y −n (2)− Y +
n (2),

and using (7), we deduce that W (Zn(1))−W (Zn(3)) converges as n→∞, towards
some α ∈ R. Furthermore, Lemma 4.8 in [BSS] shows that almost surely α 6= 0, and
by symmetry we can assume without loss of generality that α > 0. In particular,
this gives Zn(1) ≥ Zn(3), for n large enough. Set now

hn(2) :=

Zn(2)∑
k=1

2pk − 1

w(k)
,

where pk is the probability to jump to site 1 at k-th visit to site 2. As noticed
already in the proof of Lemma 3.1, one has hn(2) ≡ Y +

n (1) − Y −n (3). But since
after some time the process has at least probability 1/2 to jump to 1 when it is in
2, we see that for n large enough hn(2) is nondecreasing. In particular there exists
some (random) constant γ ∈ R, such that hn(2) ≥ γ, for all n ≥ 0. By using also
that

W (Zn(0)) ≡ Y −n (1) ≡ Y +
n (1) ≡W (Zn(2))− Y −n (3),

we deduce that for some β ∈ R,

W (Zn(2)) ≤ 2W (Zn(0)) + β, for all n ≥ 0.(11)

Together with Lemma 3.2, this yields for some constant c > 0,

Y +
∞(0) ≡

∞∑
n=0

1{Xn = 0}
w(Zn(1))

≥ c
∞∑
n=0

1{Xn = 0}
w(Zn(2))

≥ c
∞∑
n=0

1

w(W−1(2W (n) + β))
,

which concludes the proof of the theorem, since Y +
∞(0) is finite on E. �

4. Proof of Theorem 1.2

We start the proof with some elementary lemma.

Lemma 4.1. Assume that w is nondecreasing. Then

βc(w) <∞ =⇒
∞∑
n=0

1

w(n)2
<∞.

Proof. Assume that w(n) ≤
√
n, for some n ≥ 1. Since w is nondecreasing, this

implies on one hand W (n + 1) ≥
√
n, and also w(k) ≥ w(0), for all k ≥ 0. The

latter implies the existence of a constant c > 0, such that W (k) ≤
√
n/3, for all

k ≤ c
√
n (namely one can take c = w(0)/3). Assume that n is large enough so that
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√
n/3 < (

√
n − βc(w) − 1)/2. Then 2W (k) + βc(w) + 1 <

√
n, for all k ≤ c

√
n.

Therefore W−1(2W (k) + βc(w) + 1) < n+ 1, for all such k, and it follows that∑
k∈[c
√
n/2,c

√
n]

1

w(W−1(2W (k) + βc(w) + 1))
≥ c/2.

In particular, by definition of βc(w), this can only happen for finitely many n, which
proves that lim inf w(n)/

√
n ≥ 1, and concludes the proof of the lemma. �

The next step is the following lemma.

Lemma 4.2. Assume that w is nondecreasing and that β̃c(w) < ∞. Consider a
C-VRRW on a set of the form {−3, . . . , y}, with 0 ≤ y ≤ ∞, and C satisfying

z0(−1) ≤ z0(−2) + z0(0). Let ε0 ∈ (0, 1], and β > (β̃c(w) + 3ε0)/2 be given, and
define for N ≥ 1,

TN,β,ε0 := inf

n ≥ 0 :
Zn(−1) ∧ Zn(0) ≥ N
W (Zn(−2)) ≤W (Zn(0))− ε0
W (Zn(−3)) ≤W (Zn(−1))/2− β

 .

Then, as N →∞,

P
(
Y +
∞(−3) <∞ | TN,β,ε0 <∞

)
→ 1.

Moreover, the convergence is uniform with respect to C.

Proof. To simplify notation we denote by PN the conditional probability:

PN (·) := P(· | TN,β,ε0 <∞).

Consider X the process reflected in 0 after time TN,β,ε0 , and denote by Zn, Y
±
n , . . .

all the quantities associated to X. First note that since Y
+

∞(−3) stochastically
dominates Y +

∞(−3) (see Lemma 3.6 in [BSS]), it suffices to prove the result for the
process X instead of X. Set now

T0 := inf{n ≥ TN,β,ε0 : W (Zn(−2)) > W (N)− ε0},

and

T := inf{n ≥ T0 : W (Zn(−2)) ≥W (Zn(0))− ε0/2}.

Since W (Zn(−2))−W (Zn(0)) ≡ Y +

n (−3), we have

{TN,β,ε0 <∞} ∩ {T =∞} ⊂ {Y +

∞(−3) <∞},(12)

and thus one can assume now that T is finite. Then note that ZT0
(0) ≥ N and

ZT0
(−2) ≥ W−1(W (N) − 1), since ε0 ≤ 1. Recall also that βc(w) ≤ β̃c(w), and

the latter is finite by hypothesis. Thus Lemma 4.1 shows that (5) holds. Let now
ε > 0 be given. It follows from Doob’s L2-inequality for martingales, that for N
large enough,

PN
(

sup
n≥T0

|Mn(−1)−MT0
(−1)| ≥ ε0

10

)
≤ 800

ε20

∞∑
i=N ′

1

w(i)2
≤ ε,(13)

with N ′ := W−1(W (N)− 1). Moreover, since the process X is reflected in 0 after
time TN,β,ε0 , one has for any n ≥ T0,

Y
+

n (−1)− Y +

T0
(−1) = W (Zn(0))−W (ZT0

(0)).
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In addition, (6) gives(
Y

+

n (−3)− Y +

T0
(−3)

)
+
(
Y
−
n (−1)− Y −T0

(−1)
)

= W (Zn(−2))−W (ZT0(−2)).

Assume that N ′ is large enough so that w(N ′) ≥ 6/ε0. By definition of T0 and T ,
this implies that

W (ZT (−2))−W (ZT0
(−2)) ≥W (ZT (0))−W (ZT0

(0)) +
ε0
3
.

Then it follows from the last displays and (13) that for N large enough,

PN
(
Y

+

T (−3)− Y +

T0
(−3) ≤ ε0

6

)
≤ PN

(
|MT (−1)−MT0(−1)| ≥ ε0

6

)
≤ ε.(14)

Recall next the definition of N ′ above, and define

N ′′ := inf{n ≥ N ′ : W (n)−W (N ′) ≥ ε0
6
}.

Since w is nondecreasing, and since we recall that by definition of T0, one has
ZT0(x+ 1) ≥ N ′, it follows from (6) that

(15)
{
Y

+

T (−3)− Y +

T0
(−3) ≥ ε0

6

}
⊆
{
ZT (−3)− ZT0(−3) ≥ N ′′ −N ′

}
.

However, N ′′ − N ′ → ∞, as N → ∞. Thus it follows again from Doob’s L2-
inequality that for N large enough,

PN
(

sup
n≥T

|Mn(−2)−MT (−2)| ≥ ε0
6

)
≤ ε.(16)

Now similarly as in the proof of Theorem 1.1, introduce

h(n) =

Zn(−1)∑
k=1

2pk − 1

w(k)
,

where pk is the probability to jump to 0 at k-th visit to −1 for the process X.
Recall that

Y
−
n (0)− Y +

n (−2) ≡ h(n),

and on the other hand (6) and Lemma 2.1 yield

W (Zn(−1)) ≡ Y +

n (−2) + Y
−
n (0), and Y

+

n (−2) ≡ Y −n (−2) ≡W (Zn(−3)).

As a consequence,

U(n) := W (Zn(−3))− W (Zn(−1))

2
≡ −h(n)

2
.

Define next

T ′ := inf

n ≥ T :
W (Zn(−2)) ≥W (Zn(0))− ε0/4
or
W (Zn(−2)) ≤W (Zn(0))− 3ε0/4

 .

Since Zn(−2) ≤ Zn(0), for all n ∈ [TN,β,ε0 , T
′], h is nondecreasing on this interval.

Set now,

tN,β := inf{n ≥ TN,β,ε0 : W (Zn(−3)) ≥W (N)/2− β},
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and note that U(T ∧ tN,β) ≤ −β + ε0/2, if N is taken large enough. Therefore by
using (16), and again Doob’s L2-inequality, we get at least for N large enough,

PN

(
sup

T∧tN,β≤n≤T ′
U(n) ≥ −β + ε0

)
≤ ε.(17)

Remember then that H is defined by H(x) = x + W−1(W (x) + 1), and thus by
using the hypothesis on C, we get that for all n ∈ [T, T ′],

Zn(−1) ≤ Zn(−2) + Zn(0) ≤ H(Zn(−2)).

It follows that on the event {supT∧tN,β≤n≤T ′ U(n) ≤ −β + ε0}, one has

Y
+

T ′(−3)− Y +

T (−3) =

T ′∑
n=T

1{Xn = −3}
w(Zn(−2))

≤
T ′∑
n=T

1{Xn = −3}
w(H−1(Zn(−1)))

≤
∞∑

n=ZT (−3)

1

w(H−1(W−1(2W (n) + 2β − 2ε0)))
.(18)

Fix now β ≥ (β̃c(w) + 3ε0)/2, and let K > 0 be such that

∞∑
n=K

1

w(H−1(W−1(2W (n) + β̃c(w) + ε0)))
≤ ε0

10
.

Then by using (14), (15), (17) and (18), we get that if N is large enough,

PN
(
Y

+

T ′(−3)− Y +

T (−3) >
ε0
10

)
≤ 2ε.(19)

But by definition of T and T ′, on the event {T ′ <∞}, we have for N large enough,

ε0/5 < {W (ZT ′(−2)−W (ZT (−2))} − {W (ZT ′(0)−W (ZT (0))}

= {Y +

T ′(−3)− Y +

T (−3)} − {MT ′(−1)−MT (−1)}.

Therefore (13) and (19) imply

PN (T ′ <∞) ≤ 3ε, and PN
(
Y

+

∞(−3)− Y +

T (−3) ≥ 1
)
≤ 5ε.

With (12) we deduce that

P(Y
+

∞(−3) =∞ | TN,β,ε0 <∞) ≤ 5ε,

for N large enough. Since ε > 0 can be chosen arbitrarily small, this proves the
lemma. �

We can now finish the proof of Theorem 1.2. Fix some ε0 ∈ (0, 1) and β > (β̃c(w)+
3ε0)/2, and consider some initial local time configuration C, such that z0(−1) ≥ N ,
z0(0) ≥ N , and z0(x) = 0, for x /∈ {−1, 0}, with N ≥ 1. Note that in this case,
for the C-VRRW, one has TN,β,ε0(−3) = 0, for any N large enough, by definition
of this stopping time. Thus Lemma 4.2 shows that if N is large enough, then
P(Y +
∞(−3) <∞) ≥ 1/2, for any C as above, when the process is reflected in −3. By

using a coupling and Lemmas 3.6 and 3.7 in [BSS], we deduce that the C-VRRW
never visits site −4 with probability at least some constant c0 > 0, independently
of its trajectory on the set of positive integers, and for any N larger than some
constant N0.
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By symmetry, we deduce that with probability at least c20, it will never visit neither
−4, nor 3. But then the same holds for the C0-VRRW, since for any N ≥ 1,
with positive probability at time 2N , we have ZN (−1) = N − 1, ZN (0) = N , and
X2N = 0, and one can then apply the previous result at time 2N . This proves in
particular that |R′| ∈ {5, 6}, with positive probability.

Now it just remains to show that almost surely the walk visits only a finite number
of sites. However, each time the VRRW on Z visits a new site x < 0, two cases
may appear. If at this time the local time in x+ 1 is not larger than N0, then the
process has some positive probability (depending only on N0) to jump immediately
to x − 1, and then to localize on the set {x − 7, . . . , x − 1} and never come back
to x, by the above argument. If instead at this hitting time of x, the local time
in x + 1 is larger than N0, then necessarily the local time in x + 2 has to be also
not smaller than N0, and we deduce by using again the above argument, that the
process has some (constant) positive probability to never visit x − 2. Then the
conditional Borel-Cantelli lemma (see Theorem 4.3.2 in [Dur]) shows that almost
surely infnXn > −∞. By symmetry we also get that almost surely supnXn <∞,
and this concludes the proof of Theorem 1.2. �

5. On the values of the parameters βc(w) and β̃c(w).

Let us first observe that for any nondecreasing w, and any λ > 0, one has

βc(λw) = βc(w)/λ, and β̃c(λw) = β̃c(w)/λ (which follows from the facts that

Jβ(λw) = Jλβ(w)/λ, and J̃β(λw) = J̃λβ(w)/λ).
Now our aim here is to convince the reader that in most cases (and we believe

this is true in fact for any nondecreasing weight function), one has:

βc(w) = β̃c(w) ∈ {−∞,∞}.(20)

On one hand we prove in Lemma 5.1 that this is true for any weight function
growing at least linearly and not faster than n

√
log n. On the other hand, we show

in Lemma 5.2 that it holds as well for a large class of sublinear weights.
Now recall that one can restrict our attention to weights satisfying (2) and such

that αc(w) = ∞, since otherwise we already know the behavior of the process by
the results of [BSS]. But it is also proved there that if lim inf w(n)/(n log log n) > 0,
then αc(w) is finite; thus the upper bound on w, which is imposed in the hypotheses
of Lemma 5.1 below is not a strong restriction.

Lemma 5.1. Let w be some nondecreasing weight function, such that

lim inf
n→∞

w(n)

n
> 0.

• If w(n) = o(n log n), then βc(w) = −∞.

• If w(n) = o(n
√

log n), then βc(w) = β̃c(w) = −∞.

Proof. Assume first that w(n) = o(n log n). Let ε > 0, be such that w(n) ≤
ε2n log n, and w(n) ≥ εn, for all n large enough. Then at least for t large enough,

(21) W (t) ≥ 1

2ε2
log log t.

Now by definition, for any β ∈ R, and t large enough,

W (t) + β =

∫ W−1(2W (t)+β)

t

du

w(u)
.



LOCALIZATION ON 5 SITES FOR VRRW 12

Thus using that w(n) ≥ εn, we get that for t large enough,

W (t) + β ≤ 1

2ε
log

(
W−1(2W (t) + β)

t

)
.

Combining this with (21), we get,

W−1(2W (t) + β) ≥ t(log t)
1
2ε ,

for all t large enough. Then by choosing ε < 1/2, and using again that lim inf w(n)/n >
0, the first assertion of the lemma follows.

Assume now that w(n) = o(n
√

log n), so that for n large enough w(n) ≤
ε2n
√

log n. Then for x large enough,

1 =

∫ W−1(W (x)+1)

x

du

w(u)
≥ 1

ε2

∫ W−1(W (x)+1)

x

du

u
√

log u

≥ 2

ε2

(√
logW−1(W (x) + 1)−

√
log x

)
.

Thus for x large enough (and ε small enough),

H(x) = x+W−1(W (x) + 1) ≤ 2x · eε
2√log x.

On the other hand, a similar argument as above shows that for any β ∈ R, for x
large enough,

W−1(2W (x) + β) ≥ x exp(
√

log x).

In particular, by taking ε small enough, we get that for x large enough,

H−1(W−1(2W (x) + β)) ≥ x(log x)2,

and the second assertion of the lemma follows, using again that lim inf w(n)/n is
positive. �

Our second result is concerned with sublinear weights.

Lemma 5.2. Let w be some nondecreasing weight function satisfying (2). If the
two following conditions hold:

lim sup W−1(W (n) + α)/n <∞, for any α > 0,(22)

and

lim sup w(cn)/w(n) <∞, for any c > 1,(23)

then βc(w) = β̃c(w) ∈ {−∞,∞}. In particular (22) holds when w(n) = O(n).

Proof. By using a change of variables, we can write for any β > β′, for some
constant c > 0,

Jβ(w) =

∫ ∞
0

dt

w(W−1(2W (t) + β))
=

∫ ∞
0

w(W−1(u))

w(W−1(2u+ β))
du

≥ c
∫ ∞
0

w(W−1(u))

w(W−1(2u+ β′))
du = cJβ′(w),

using the two hypotheses of the lemma, and the first assertion follows.
Now if there exists C > 0, such that w(n) ≤ Cn, for all n ≥ 1, then for any α > 0,

α =

∫ W−1(W (n)+α)

n

dt

w(t)
≥ 1

C

∫ W−1(W (n)+α)

n

dt

t
=

1

C
log

(
W−1(W (n) + α)

n

)
,
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which proves the second assertion of the lemma. �

Let us conclude this section by mentioning that by combining the results of
[BSS2] with our Theorem 1.1, and the previous lemma, we obtain that any non-
decreasing weight function w, such that w(n) ∼ n exp(−(log n)α), for some α ∈
(0, 1/2) satisfies β̃c(w) = −∞. Indeed, we know from [BSS2], that for such weight
localization on 5 sites occurs with positive probability. Then Theorem 1.1 shows

that βc(w) is finite, and finally Lemma 5.2 gives that in fact βc(w) = β̃c(w) = −∞.
On the other hand, when w(n) ∼ n exp(−(log n)α), with α > 1/2, the results of
[BSS2] show that J0(w) = ∞, which imply βc(w) ≥ 0. Applying then Lemma 5.2

gives βc(w) = β̃c(w) =∞.

References

[BSS] Basdevant A.L., Schapira Br., Singh A. Localization on 4 sites for Vertex Reinforced

Random Walk on Z, Ann. Probab. 42, (2014), 527–558.

[BSS2] Basdevant A.-L., Schapira Br., Singh A. Localization of a vertex reinforced random
walk on Z with sub-linear weight, Probab. Theory Related Fields 159, (2014), 75–115.

[CK] Chen J., Kozma G. Vertex-reinforced random walk on Z with sub-square-root weights is

recurrent. C. R. Math. Acad. Sci. Paris 352, (2014), 521–524.
[Dav] Davis B. Reinforced random walk, Probab. Theory Related Fields 84, (1990), 203–229.

[Dur] Durrett R. Probability: theory and examples, Cambridge University Press, Cambridge,

Fourth edition, (2010).
[P] Pemantle R. Vertex-reinforced random walk, Probab. Theory Related Fields 92 (1992),

117–136.
[PV] Pemantle R., Volkov S. Vertex-reinforced random walk on Z has finite range, Ann.

Probab. 27, (1999), 1368–1388.

[Sch] Schapira Br. A 0-1 law for Vertex Reinforced Random Walk on Z with weight of order kα,
α < 1/2, Electron. Commun. Probab. 17, (2012), no. 22, 8 pp.

[S] Singh A. Recurrence for vertex-reinforced random walks on Z with weak reinforcements.

Electron. Commun. Probab. 19, (2014), 6 pp.
[T1] Tarrès P. Vertex-reinforced random walk on Z eventually gets stuck on five points, Ann.

Probab. 32, (2004), 2650–2701.

[T2] Tarrès P. Localization of reinforced random walks, arXiv:1103.5536.
[V] Volkov S. Phase transition in vertex-reinforced random walks on Z with non-linear rein-

forcement, J. Theoret. Probab. 19, (2006), 691–700.


