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Abstract. We study a distinguished random walk on affine buildings of type
Ãr , which was already considered by Cartwright, Saloff-Coste and Woess. In
rank r=2, it is the simple random walk and we obtain optimal global bounds
for its transition density (same upper and lower bound, up to multiplicative
constants). In the higher rank case, we obtain sharp uniform bounds in fairly
large space-time regions which are sufficient for most applications.

In memory of Gerrit van Dijk (1939-2022)

1. Introduction

Heat diffusion in the continuous setting, respectively random walks in the discrete
setting are extensively studied. A main issue consists in obtaining sharp upper
and/or lower bounds for the heat kernel in the continuous setting, respectively for
transition densities of random walks in the discrete setting. Actually there are
few cases where the same global bound (up to multiplicative constants) have been
obtained. Apart from the Euclidean setting, this was achieved for instance for
Riemannian symmetric spaces of noncompact type [2, 3].

This work started as an attempt to obtain similar results for isotropic random walks
on affine buildings; it remained unpublished [4] but we believe that the techniques
as well as the result may be interesting for the mathematical community. More
precisely, we study a distinguished random walk on affine buildings of type Ãr.
This walk was already considered in [23, 7] ; it is the simple random walk in rank
r≤ 2 but not in rank r > 2. In rank r = 1, affine buildings are homogeneous trees
and the simple random walk was already studied in [8, 9, 27]. In rank r = 2, we
obtain the same global upper and lower bound, up to multiplicative constants. In
higher rank r > 2, we obtain the same result in a fairly large space-time region,
as well as a global upper bound, which are sufficient for applications, for instance
to deduce a global upper and lower bound for the Green function (see [26]). We
recover in particular the spectral gap computed in [23] and the local limit theorem
established in [7, 19].

In the meantime, the third author was able to generalize the latter results to finitely
supported isotropic random walks on any affine building [26]. Nonetheless we con-
sider that this work is worth publishing, since our results are global for buildings of

type Ã2 and since our present approach is much simpler than the delicate analysis
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carried out in [26]. Our initial aim consisted in analyzing the behavior of isotropic
random walks on affine buildings, in order to describe the Martin compactification
of affine buildings. This was eventually achieved in [21].

Our paper is organized as follows. Basics are recalled in Section 2. Section 3 is
devoted to our main result, namely a global upper and lower bound for the simple

random walk on affine buildings of type Ã2. At the end of Section 3 and in Section
4, we extend in part our results to isotropic nearest neighbor random walks in
rank r = 2 and to to the distinguished random walk in rank r > 2. Appendix A
is devoted to some remarkable formulae for the Fourier transform of any nearest
neighbor random walk in rank r=2.

Our method relies on a careful analysis of the transition density using the inverse
Fourier transform. Fourier analysis on p-adic like buildings goes back to Macdonald
[10] in the early seventies. There was no other reference available in the literature
for a long time, until Cartwright [6] and Parkinson [17, 18] on the one hand, Mantero
and Zappa [14, 15] on the other hand, resumed Fourier analysis on affine buildings.
Our work, as well as all aforementioned ones about buildings, deals with vertices
and it is natural to consider higher dimension simplices in affine buildings. A first
study of random walks on chambers in affine buildings of type Ã2 is carried out in
[20], relying on the theory developed in [16].

2. Preliminaries

2.1. Notation. Throughtout the paper, N will denote the set of nonnegative in-
tegers {0, 1, 2, . . .} and N∗ the set of positive integers {1, 2, . . .}. The maximum
of two real numbers a and b will be denoted by a∨b, and the minimum by a∧ b.
Let us finally specify the meaning of the following binary symbols between two
nonnegative functions f and g :

• f . g , resp. f & g means that there exists a constant C>0 such that f ≤ Cg ,
resp. f ≥Cg ,

• f ≈ g stands for f . g and f & g ,
• in the case of positive functions, f ∼ g means that the ratio f

g tends to 1.

2.2. Root system. We recall some standard notation and refer e.g. to [5] for more
details. In the Euclidean space Rr+1, consider the subspace

a = {z∈Rr+1 | z1+ . . . + zr+1=0}
and the root system of type Ar

R = {ej−ek |1≤ j 6= k ≤ r+1} .
Notice that

• the inner product 〈·, ·〉 on Rr+1 extends to a C-bilinear form on Cr+1 and in
particular on the complexification aC = a+ ia,

• each root α∈R coincides with its coroot α∨= 2
‖α‖2 α.

Consider the positive subsystem

R+ = {ej−ek |1≤ j < k ≤ r+1}
in R , the corresponding positive Weyl sector

a+ = {z∈a | z1> . . . > zr+1}
in a and its closure

cl(a+) = {z∈a | z1≥ . . . ≥ zr+1} ,
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the basis of simple roots
αj = ej− ej+1 (1≤ j≤ r)

and the dual basis of fundamental weights

λj =
∑

1≤k≤j
ek − j

r+1

∑
1≤k≤r+1

ek (1≤ j≤ r) .

Notice that ∑ r
j=1 λj is equal to ρ = 1

2

∑
α∈R+ α .

Let P =
∑ r

j=1 Zλj be the weight lattice and Q =
∑ r

j=1 Zαj the root sublattice.

Let P+= P ∩ cl(a+)=∑ r
j=1Nλj , resp. P

++= P ∩ a+=
∑ r

j=1N
∗λj , be the subset

of dominant weights, resp. strictly dominant weights. The length of λ ∈ P+ is
|λ|=

∑ r
j=1〈αj , λ〉. The Coxeter complex is a simplicial complex in a whose set of

vertices is P . Its maximal simplices are called chambers. The fundamental chamber
C0 has vertices λ0=0, λ1, . . . , λr . Define the label function τ : P −→{0, . . . , r} by
the following two conditions :

• For the fundamental chamber, τ(λj)=j .
• For each chamber, the labels of vertices are exactly 0, . . . , r .

Let W0 =Sr+1 be the Weyl group, generated by the reflections rα(z)=z−〈α, z〉α
along roots α∈R , and let W=W0⋉Q, resp. W̃=W0⋉P be the affine Weyl group,
resp. the extended Weyl group, generated by W0 and by the translations τλ along

λ∈Q, resp. λ∈P . Stabilizers will be denoted by subscripts, for instance W0=W̃0

is the stabilizer of 0 in W and in W̃. Let w 7−→ qw be an extended parameter

function on W̃. For the type Ãr considered in this work, recall that there is an
integer q>1 such that

qw = q ℓ(w) ∀w ∈W0 ,

where ℓ(w) denotes the lenght of w in W0 , and

qtλ = q2〈ρ,λ〉 ∀ λ∈P+.

Eventually the following Poincaré polynomial

V (q−1) =
∑

w∈V
q−1
w

is attached to every subset V of W0 .

2.3. Affine building. In this subsection, we follow mostly [22] and refer for more
details to [6, 17]. An affine building of type Ãr is a nonempty simplicial complex
containing subcomplexes called apartments such that:

• Each apartment is isomorphic to the Coxeter complex associated to Ãr .
• Any pair of simplices is contained in an apartment.
• Given two apartments which share at least one chamber (simplex of maximal

dimension), there exists a unique isomorphism between them, which fixes point-
wise their intersection.

The building will be assumed to be regular, thick and locally finite. By definition
this means that, given any chamber C and any face F (simplex of codimension 1)
of C, the cardinality of the set of chambers different from C and containing F is
independent of C and F , and is equal to 2 ≤ q < ∞. We denote by X the set
of vertices (simplices of dimension 0) of the building. In rank r=1, buildings are
homogeneous trees with q+1 edges. Fix a base point 0∈X . It follows from the
above definition that one can define a label function τ :X → {0, . . . , r} such that
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Figure 1. Apartment in an affine building of type Ã2

τ(0) = 0 and all isomorphisms in the definition preserve labels. Now given x∈X ,
there exists an apartment P̃ containing 0 and x and a label preserving isomorphism
between P̃ and P , sending 0 to 0 and x to an element of P+. The image of x by
such an isomorphism is called the radial part of x and will be denoted by x+. Let

Vλ(0) = { y∈X | y+=λ },

be the so-called sphere of radius λ ∈ P+ centered at 0. For every y ∈ Vλ(0), we
set |y| = |λ| and yj = 〈αj , λ〉. More generally, the sphere Vλ(x) of radius λ ∈ P+

and center x ∈ X consists of all y ∈ X such that there exist an apartment P̃

containing {x, y} and an isomorphism between P̃ and P which preserves labels up
to translation and which sends x to 0 and y to λ. The cardinality of Vλ(x) is
independent of x and is given by

Nλ = W0(q
−1)

(W0∩Wλ)(q−1) q
2〈ρ,λ〉 .

Finally (x, y)+ = λ ∈ P+ and d(x, y) = |λ| ∈ [0,+∞) are the vectorial and scalar
distances between x and y. Both are invariant under isomorphisms of X .

2.4. Special functions. Consider the fundamental skew invariant polynomial

π(z) =
∏

α∈R+
〈α, z 〉 ,
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the Weyl denominator

∆(z) =
∑

w∈W0

(detw) e 〈w.ρ,z〉 =
∏

α∈R+

(
e

〈α,z〉
2 − e−

〈α,z〉
2

)
,

and the following functions on aC :

b(z) =
∏

α∈R+

(
1− q−1e−〈α,z〉

)
,

c(z) = e〈ρ,z〉∆(z)
−1

b(z) =
∏

α∈R+

1− q−1e−〈α,z〉

1− e−〈α,z〉 , (2.1)

h(z) =
∑ r

j=1

∑
λ∈W0.λj

e〈λ,z〉 .

Notice that b(z) is bounded on cl(a+)+ ia, as well as all its derivatives, and
moreover that |b(z)| is bounded there from below. The function h(z) is a linear
combination of symmetric Macdonald functions

Pλ(z) = W0(q
−1)−1 q

−1/2
tλ

∑
w∈W0

c(w.z) e〈λ,w.z 〉 (2.2)

(see [13], [18]). For the type Ãr considered in this work, there is indeed a close
connection, namely

Pλ(z) =

N−1
λ q 〈ρ,λ〉

︷ ︸︸ ︷
(W0∩Wλ)(q

−1)
W0(q−1) q−〈ρ,λ〉 Pλ(e

z ; q−1)

between symmetric Macdonald polynomials Pλ and Hall-Littlewood polynomials
Pλ( . ; q

−1), which boil down to symmetric monomials when λ is a fundamental
weight (see for instance [11, pp. 209 & 299], [12, § 10], [6, pp. 99–100]). Thus

Pλj (z) = N−1
λj

q 〈ρ,λj〉
∑

λ∈W0.λj

e〈λ,z〉

and

h(z) =
∑ r

j=1
Nλj q

−〈ρ,λj〉Pλj (z) .

Now the fundamental spherical function is defined on X by

F0(x) = Pλ(0) with λ=x+.

It is a positive eigenfunction of the Hecke algebra A described in Subsection 2.5
below. Specifically, for every µ∈P+, there exists a constant cµ>0 such that

∑
y∈Vµ(x)

F0(y) = cµF0(x), (2.3)

for all x∈X (see [18, Theorem 3.22]). Its behavior is given in the following propo-
sition. The statement and the proof are similar to the symmetric space case [1],
which was generalized to the hypergeometric setting in [24].

Proposition 2.1. We have

F0(x) ≈ q−〈ρ,λ〉
∏

α∈R+

(
1+〈α, λ〉

)
. (2.4)

Moreover,

F0(x) ∼ const. π(λ) q−〈ρ,λ〉, (2.5)

as 〈α, λ〉 →+∞ for all α∈R+.
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Proof. Let us multiply (2.2) by π(z), in order to remove the singularity of the
c-function at the origin, and apply the operator π

(
∂
∂z

)∣∣
z=0

. We obtain in this way

Pλ(0) = q−〈ρ,λ〉 p(λ) ,

where p is a polynomial of the form

p = const. π + linear combination of subproducts of π .

This proves (2.5) and (2.4) far away from the walls. Eventually (2.3) enables us to
extend (2.4) up to the walls, since it implies that F0(x)≈ F0(y) for all neighbors
x, y∈X and more generally for all x, y∈X at any fixed distance. �

2.5. Averaging operators and Fourier-Gelfand transform. We denote by A
the linear span of mean operators on X :

Aλf(x) =
1

Nλ

∑
y∈Vλ(x)

f(y) ∀ x∈X , ∀ λ∈P+.

Then A is a (commutative) polynomial ∗-algebra with generators Aλ1 , . . . , Aλr .
Consider A as a subalgebra of the algebra L(ℓ2(X )) of bounded linear operators on
ℓ2(X ). Then the closure A of A in L(ℓ2(X )) is a commutative C∗-algebra and the
Fourier-Gelfand transform defines an isomorphism between A and the algebra of
continuous functions on ia, which are invariant under W0⋉i2πQ. Such functions
can be viewed as W0 -invariant continuous functions on iU, where

U = { θ∈a | |〈α,θ〉|≤2π ∀ α∈R },
is a W0 -invariant fundamental domain for the action of the lattice 2πQ on a.
Specifically, the image of Aλ is the Macdonald polynomial Pλ .

Finally the following inversion formula holds, for every A∈A and x,y∈X (see [10,
Theorem 5.1.5] or [18, Theorem 5.2]) :

(Aδx)(y) = C0

∫

U

Â(iθ)Pλ(−iθ) dθ
|c(iθ)|2 , (2.6)

where C0 =
W0(q

−1)

(2π)r |W0|
and λ= (x, y)+ .

2.6. Distinguished random walk. In this paper, we consider mainly the Markov
chain on X with transition probability

p(x, y) =

{
σ q

−1/2
tλj

if y∈Vλj(x),

0 otherwise,

where

σ−1 =
∑ r

j=1
Nλj q

−1/2
tλj

.

This distinguished random walk, which was already considered in [23] and [7], is
the simple random walk in rank one and two, but not in higher rank. Its generator

Af(x) =
∑

y∈X

p(x, y) f(y) = σ

r∑

j=1

q
−1/2
tλj

Nλj Aλjf(x), (2.7)

corresponds to Â = σh via the Fourier-Gelfand transform and its spectral radius
is equal to σ = σh(0), where h(0) =

∑ r
j=1 |W0 .λj |= 2(2r−1).
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3. Global heat kernel estimates in rank two

For every integer n≥ 2 and for every x∈X with |x|<n, set

δ = x++ρ
n+2 = x1+1

n+2︸ ︷︷ ︸
δ1

λ1+
x2+1
n+2︸ ︷︷ ︸
δ2

λ2 .

Notice that the coordinates δj belong to the interval (0, 1). Thus δ ∈ a+ and
|δ|= |x|+2

n+2 < 1. This section is mainly devoted to the proof of the following global
estimate for the transition probabilities pn(x)= pn(0, x) of the random walk (2.7).

Theorem 3.1. Let φ(δ) = minz∈aΦδ(z), where Φδ(z) = log h(z)
6 −〈δ, z〉. Then

pn(x) ≈
(1+ |x|)(1+x1)(1+x2)

n3
√

n−|x|
√

n−x1∨x2

σ
n q−〈ρ,x+〉enφ(δ) (3.1)

uniformly in the range |x|<n. In the limit case |x|=n,

pn(x) ≈ σn q−n nn (x1∨x2)
−(x1∨x2) (x1∧x2+1)−(x1∧x2)−

1
2 .

Remark 3.2. Let us comment on some factors occurring on the right hand side of
(3.1). The exponential decay σ

n is produced by the spectral radius σ = 3
q+1+q−1 < 1

of A, F0(x) ≈ (1+|x|)(1+x1)(1+x2) q
−〈ρ,x+〉 is the W0-invariant ground state of

A, and enφ(δ) is a Gaussian type factor.

Remark 3.3. Recall ([8], see also [27]) the corresponding result in rank one i.e. for
homogeneous trees :

pn(x) ≈ 1+ |x|

n
√

1+n−|x|
σ

n q−
|x|
2 enφ(δ) ∀ |x| ≤ n with same parities. (3.2)

Here σ = 2
q1/2+ q−1/2 , δ =

|x|+1
n+1 and

φ(δ) = − 1
2 {(1+δ) log(1+δ)+ (1−δ) log(1−δ)}.

As limδր1φ(δ) = − log 2, notice that (3.2) agrees with the obvious expression
pn(x)=(q+1)−n in the limit case |x|=n.

Theorem 3.1 is proved by combining different arguments, depending on the relative
sizes of |x| and n and on the position of λ= x+ in cl(a+). In most cases, the proof
relies on suitable versions of the inversion formula (2.6), which yields

pn(x) = C0 σ
n

∫

U

h(iθ)n Pλ(−iθ) dθ
|c(iθ)|2 , (3.3)

and thus boils down to estimating integrals of the form
∫

U

e(n+2)Ψ(θ) a(θ) dθ , (3.4)

where Ψ is a complex phase involving the function h and a is an amplitude involving
the functions b or c. Let us start the proof of Theorem 3.1 with a series of auxiliary
results.
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3.1. Local Harnack inequalities.

Lemma 3.4. There exists a constant C>0 such that

pn+1(x) ≥ C pn(y)

for every n∈N∗ and for all neighbors x, y∈X .
This inequality is an immediate consequence of the very definition

pn+1(x) = Apn(x) =
1

2(q2+q+1)

∑

y∈X
d(y,x)=1

pn(y) ∀ n∈N∗, ∀ x∈X .

Next result follows by iteration and by using the fact that the random walk between
two neighbors in X is aperiodic, meaning that

gcd{n∈N∗ | pn(x, y)> 0} = 1 ∀x 6= y.

Corollary 3.5. For every m∈N∗, there exists C>0 such that

pn+m(x) ≥ C pn(y) (3.5)

for every n∈N∗ and for all x, y∈X such that 0< d(x, y)≤m.

Remark 3.6. Inequality (3.5) remains true when x= y . This is proved by the same
arguments if m>1 but, if m=1, this follows only a posteriori from Theorem 3.1.

3.2. Remarkable formulae. The function

h = eλ1+ e−λ1+ eλ2+ e−λ2+ eλ1−λ2+ eλ2−λ1

enjoys the product formula

h+2 = (eλ1+1)(e−λ2+1)(eλ2−λ1+1)

= (2 cosh λ1

2 )(2 cosh λ2

2 )(2 cosh λ1−λ2

2 )
(3.6)

and the differentiation formula

π(∂)hn+3 = (n+3)2(n+2)
[
h+2 n+1

n+3

]
hn∆ ∀ n≥−2 . (3.7)

These formulae, which are easily checked (see Appendix A for more general results),
play key roles in our analysis of (3.3).

3.3. Real phase Φ=Φδ . Let δ∈cl(a+) with |δ|= δ1+δ2<1, where δj=〈αj , δ〉≥0
are the coordinates of δ in the basis {λ1, λ2}. In this subsection, we study the
function

Φ(z) = Φδ(z) = log h(z)
6 − 〈δ, z 〉 ∀ z∈a,

which was introduced in the statement of Theorem 3.1 and whose dependency on
δ will no more be indicated.

Lemma 3.7. (a) The function Φ is strictly convex, tends to +∞ at infinity and
reaches its minimum φ(δ)∈(− log 6, 0] at a single point s∈cl(a+), which is the
unique solution to the equation

dh(s)
h(s) = δ . (3.8)

Moreover,
dφ(δ) = − s . (3.9)

(b)The map δ 7−→ s is real analytic and bijective between {δ∈cl(a+)| |δ|<1} and
cl(a+).



DISTINGUISHED RANDOM WALKS ON AFFINE BUILDINGS OF TYPE Ãr 9

(c) We have h(s) ≈ es
1∨s2, where sj = 〈λj , s〉 denote the coordinates of s in the

basis {α1, α2}.
(d)The jth coordinates δj and sj = 〈αj , s〉 in the basis {λ1, λ2} vanish simultane-

ously.

(e) |δ| → 1 if and only if |s| →+∞. More precisely, 1− |δ| ≈ e−(s1∧s2) .

(f) We have 1− δ1∨ δ2 ≈ e−|s1−s2|. More precisely,

e−|s1−s2| = 1−δ1∨δ2
δ1∨δ2

+O(1− |δ|) as |δ| → 1.

(g) δ1− δ2 and s1− s2= 3(s1− s2) have the same sign. Moreover

|δ1− δ2 | ≈ 1− e−|s1−s2| ≈ 1∧ |s1− s2 | .

Proof. As h(z)> e |z
1|∨|z2| and |〈δ, z〉| ≤ |δ|(|z1| ∨ |z2|), where z j= 〈λj , z 〉 are the

coordinates of z in the basis {α1, α2}, we have

Φ(z) > (1− |δ|) (|z1| ∨ |z2|)− log 6 .

Hence Φ(z)→+∞ as z tends to infinity in a. Moreover, as h is W0 -invariant and

〈δ, z 〉 ≥ 〈δ, w.z 〉 ∀ z∈cl(a+), ∀w∈W0 ,

Φ reaches its minimum φ(δ) in cl(a+). Notice that φ(δ)>− log 6 and φ(δ)≤Φ(0)=
0. Let us next compute the first two derivatives of log h. As h=

∑
λ∈Λ e

λ is a sum
of exponentials, the gradient of log h is given by

d(log h) = 1
h

∑
λ∈Λ

eλλ (3.10)

and its Hessian by

d2(log h) = 1
h

∑
λ∈Λ

eλ λ⊗λ− 1
h2

∑
λ,λ′∈Λ

eλ+λ′

λ⊗λ′

= 1
2h2

∑
λ,λ′∈Λ

eλ+λ′

(λ−λ′)⊗(λ−λ′) .
(3.11)

Since the vectors λ−λ′ span a, we conclude that the Hessian d2Φ = d2(log h) is
positive definite, that Φ is strictly convex and that Φ has a single minimum s,
which satisfies the stationary equation (3.8). Moreover s = s(δ) depends analyti-
cally on δ, according to the local inversion theorem, and the derivative of

φ(δ) = Φ(s(δ)) = log h(s(δ))
6 − 〈δ , s(δ)〉

is given by

dφ(δ) = dΦ(s(δ)) ◦ ds(δ)− s(δ) = − s(δ) .

This proves (a) and the first part of (b). Apart from (c), which is obvious, all other
claims rely on (3.8), which is equivalent to the system

{
h(s) δ1 = 2 sinh s1+ 2 sinh(s1− s2) = 4 sinh s1

2 cosh s2

2 ,

h(s) δ2 = 2 sinh s2+ 2 sinh(s2− s1) = 4 sinh s2
2 cosh s1

2 .
(3.12)

Firstly, observe that

s1





>

=
<



 s2 ⇐⇒ s1





>

=
<



 s2 ⇐⇒ δ1





>

=
<



 δ2

and

δj = 0 ⇐⇒ sj = 0 .
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Secondly, by adding up the equations in (3.12), we get

h(s) |δ| = 2 (sinh s1+ sinh s2 ).

On the one hand, we deduce that

1− |δ| = 2 e−s1+2 e−s2+cosh(s1−s2)

h(s)
≈ e|s1−s2|

e s1∨s2
≈ e−s1∧s2 ,

hence
|δ| → 1 ⇐⇒ |s| →+∞ .

On the other hand, given s∈cl(a+), (3.12) defines δ∈cl(a+) with

|δ| = sinh s1+sinh s2

cosh s1+cosh s2+cosh(s1−s2) < 1 .

Thirdly, by substracting the equations in (3.12), we get

h(s) |δ1− δ2 | = 2 | sinh s1− sinh s2 |+ 4 sinh |s1− s2 |

=
(
4 cosh s1+s2

2 + 8 cosh s1−s2

2

)
sinh |s1−s2|

2 ,

hence

|δ1− δ2 | ≈
e

s1+s2

2 sinh |s1−s2|
2

e s1∨s2
≈ 1− e−|s1−s2| ≈ 1∧ |s1− s2 | ≈ 1∧ |s1− s2 |

and
δ1− δ2 → 0 ⇐⇒ s1− s2 → 0 .

Fourthly, by rewriting (3.12) as follows :
{

h(s)
2 (1− δ1) = cosh s2+ e−s1+ es

2−s1 ,
h(s)
2 (1− δ2) = cosh s1+ e−s2+ es

1−s2 ,

we get on the one hand

1− δ1∨ δ2 ≈ e−|s1−s2|

and on the other hand
1− δ1∨δ2
δ1∨δ2

= e−|s1−s2| +O
(
e−s1∧s2

)
.

This concludes the proof of Lemma 3.7 �

By symmetry, we may assume from now that x1 ≥ x2 , which amounts to either
condition δ1≥ δ2 , s

1≥ s2 or s1≥ s2 , according to Lemma 3.7.(g). Beside the walls
{α1 = 0} = Rλ1 and {α2 = 0} = Rλ2 of the Weyl chamber a+, consider the extra
wall

{α1= α2} = {λ1= λ2} = R ρ . (3.13)

Corollary 3.8. Assume that δ or equivalently s stays away from 0.

(a) The following estimate holds, provided that x+ stays far enough from the extra
wall (3.13) : ∣∣ h(s+iθ)+ 2 n+1

n+3

∣∣ & h(s)
n .

(b)The improved estimate ∣∣ h(s+iθ)+ 2 n+1
n+3

∣∣ ≈ h(s)

holds in the following two cases :
• θ is close enough to the extra wall (3.13) and n is large enough,
• δ or equivalently s stays away from the extra wall (3.13) and n is large

enough.
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Proof. The upper estimate
∣∣ h(s+iθ)+ 2 n+1

n+3

∣∣ ≤ h(s)+ 2 ≤ 4
3 h(s)

is elementary and holds in full generality. Let us turn to the lower estimates. We
deduce from (3.6) that

|h(s+iθ)+ 2 | ≥
{
es

1− 1
}{

1− e−s2
} ∣∣e i(θ1−θ2)+ e−(s1−s2)

∣∣

and we use Lemma 3.7 to estimate the three factors on the right hand side. On the
one hand,

es
1− 1 ≈ es

1 ≈ h(s) and 1− e−s2 ≈ 1 .

On the other hand,
∣∣e i(θ1−θ2)+ e−(s1−s2)

∣∣ ≥ 1− e−(s1−s2) ≈ δ1− δ2 =
x1−x2

n+2

in general and ∣∣e i(θ1−θ2)+ e−(s1−s2)
∣∣ ≈ 1

if θ1−θ2 is small. Consequently,
∣∣h(s+iθ)+ 2 n+1

n+3

∣∣ ≥ |h(s+iθ)+ 2 | − 4
n+3

is bounded from below by h(s)
n , if x1−x2 is large enough, and by h(s), if n is large

enough and if δ1− δ2 stays away from 0 or if θ1−θ2 is sufficiently small. �

3.4. Complex phase Ψ. In this subsection, we study the function

Ψ(θ) = log h(s+iθ)
h(s) − i〈δ, θ〉,

which does depend on δ , or equivalently on s, and which is well defined in a
neighborhood of the origin in a, but independently of δ and s. We have Ψ(0) = 0
by definition and dΨ(0) = 0 according to our choice of s. Next lemma describes
more precisely the behavior of Ψ near the origin.

Lemma 3.9. The following results hold uniformly with respect to δ and s :

(a) The Hessian d2Ψ(0) is negative definite and B =− d2Ψ(0) satisfies

B(θ, θ) ≈ e−(s1−s2) (θ1− θ2)2 + e−s2(θ1+ θ2)2 ∀ θ∈a ,
with e−(s1−s2) ≥ e−s2.

(b)For θ small,

−ReΨ(θ) ≈ B(θ, θ) and ImΨ(θ) = O
(
|θ|B(θ, θ)

)
.

Proof. Let us compute the Hessian of Ψ, as we did for log h in (3.11) :

d2Ψ(θ) = −1
2 h(s+iθ)2

∑
λ,λ′∈Λ

e〈λ+λ′,s+iθ 〉 (λ−λ′)⊗(λ−λ′)

= −1
2 |h(s+iθ)|4

∑
λ,λ′,µ,µ′∈Λ

e〈λ+λ′+µ+µ′,s〉ei〈λ+λ′−µ−µ′,θ 〉(λ−λ′)⊗(λ−λ′) .
(3.14)

Observe that, in the nonnegative quadratic form

B(θ, θ) = 1
2h(s)2

∑
λ,λ′∈Λ

e〈λ+λ′,s〉〈λ−λ′, θ〉2 ,

the leading coefficients arise when

{λ, λ′} =
{
{λ1, λ2},
{λ1, λ1−λ2}.

(3.15)
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Consequently,

B(θ, θ) ≈ h(s)−2
{
e〈ρ,s〉 〈λ1−λ2, θ〉2+ e〈α1,s〉 〈λ2, θ〉2

}
, (3.16)

with h(s) ≈ e〈λ1,s〉 . Furthermore, as e〈ρ,s〉 ≥ e〈α1,s〉 , one may replace in (3.16)
〈λ2, θ〉2 by 〈λ1+λ2, θ〉2 . This proves (a) and the proof of (b) is somewhat similar.
According to Taylor’s formula and (3.14), we have indeed

Ψ(θ) =

∫ 1

0

〈d2Ψ(tθ)θ, θ〉 (1− t) dt ,

with

〈d2Ψ(tθ)θ, θ〉 = −1
2 |h(s+itθ)|4

∑

λ,λ′,µ,µ′∈Λ

e〈λ+λ′+µ+µ′,s〉ei〈λ+λ′−µ−µ′,tθ 〉〈λ−λ′, θ〉2 .

(3.17)

The leading coefficients in (3.17) are obtained by taking {λ, λ′} as in (3.15) and
µ= µ ′= λ1. Hence, if θ is small,

−Re 〈d2Ψ(tθ)θ, θ〉 = |h(s+itθ)|−4

×
∑

λ,λ′,µ,µ′∈Λ

e〈λ+λ′+µ+µ′,s〉 cos 〈λ+λ′−µ−µ ′, t θ〉︸ ︷︷ ︸
≥ const.> 0

〈λ−λ′, θ〉2

is comparable to (3.16), while

− Im 〈d2Ψ(tθ)θ, θ〉 = |h(s+itθ)|−4

×
∑

λ,λ′,µ,µ′∈Λ

e〈λ+λ′+µ+µ′,s〉 sin 〈λ+λ′−µ−µ ′, t θ〉︸ ︷︷ ︸
O(|θ|)

〈λ−λ′, θ〉2

is O
(
|θ|B(θ, θ)

)
. �

Beside the local behavior of Ψ, we shall need the following global estimate.

Lemma 3.10. For every θ∈U,
− log |h(s+iθ)|

h(s) & B(θ, θ).

Remark 3.11. Such a global estimate is hard to obtain for general random walks
on affine buildings (see [26]).

Proof of Lemma 3.10. Let us expand

h(s)2− |h(s+iθ)|2 =
∑

λ,λ′∈Λ
e〈λ+λ′,s〉

{
1− cos 〈λ−λ′, θ〉

}

= 2
∑

λ,λ′∈Λ
cosh〈λ+λ′, s〉 sin2 〈λ−λ ′,θ 〉

2 .

By taking

{λ, λ′} =
{
±{λ1, λ2},
±{λ1, λ1−λ2},

we get the lower bound

h(s)2− |h(s+iθ)|2 ≥ 8 cosh〈ρ, s〉 sin2 〈λ1−λ2,θ 〉
2 + 8 cosh〈α1, s〉 sin2 〈λ2,θ 〉

2 .

As ‖λ1−λ2‖2= 2
3 and ‖λ2‖2= 2

3 , we have
∣∣ 〈λ1−λ2,θ 〉

2

∣∣≤ 2π
3 and

∣∣ 〈λ2,θ 〉
2

∣∣≤ 2π
3
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0

•

U

πα1πα2

πρ 2πλ12πλ2

2π(λ1−λ2)

Figure 2. Picture for the proof of Lemma 3.10

on U (see Figure 2), hence

sin2 〈λ1−λ2,θ 〉
2 ≈ 〈λ1−λ2, θ〉2 and sin2 〈λ2,θ 〉

2 ≈ 〈λ2, θ〉2 .
By using h(s) ≈ e〈λ1,s〉 , we deduce that

h(s)2−|h(s+iθ)|2

2h(s)2 & e−〈λ1−λ2,s〉 〈λ1−λ2, θ〉2+ e−〈λ2,s〉 〈λ2, θ〉2 ,

where we may again replace 〈λ2, θ〉2 by 〈λ1+λ2, θ〉2 . We conclude by using Lemma
3.9.(a) and the elementary estimate

− log |h(s+iθ)|
h(s) = − 1

2 log
{
1− h(s)2−|h(s+iθ)|2

h(s)2

}
≥ h(s)2−|h(s+iθ)|2

2h(s)2 .

�

3.5. Amplitudes. In this subsection, we study the following amplitudes occurring
in (3.4) :

a1(θ) = |c(iθ)|−2 , (3.18)

a2(θ) =
ei〈x++ρ,θ〉

π(x++ρ)
π

(
i ∂
∂θ

) e−i〈x++ρ,θ 〉

b(s+iθ)
, (3.19)

a3(θ) =
h(s+iθ) ei〈x++ρ,θ〉

π(x++ρ)
π

(
i ∂
∂θ

) e−i〈x++ρ,θ〉

b(s+iθ) [h(s+iθ)+2 n+1
n+3 ]

. (3.20)

Lemma 3.12. (a) The function (3.18) has the following behavior:

a1(θ) = π(θ)2
{(

q
q−1

)6
+ O(|θ|)

}
.

(b)The function (3.19) is uniformly bounded, as well as its derivatives. Moreover
|a2(0)| ≈ 1 provided that x is large enough.
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(c) The function (3.20) is O(n4), provided that x1− x2 is large enough. It is
actually bounded, as well as its derivatives, in the following two cases :
• |θ1− θ2| is small enough and n is large enough,
• δ1− δ2 or equivalently s1− s2 stays away from 0 and n is large enough.
Moreover |a3(0)| ≈ 1 provided that x and s are large enough.

Proof. (a) is elementary, as well as the first claim in (b). The first claims in (c) are
deduced similarly from Corollary 3.8. Let us turn to the lower estimate

|a2(0)| & 1 (3.21)

in (b) and let us expand for this purpose the expression (3.19) at θ = 0. The main
term b(s)−1 ≈ 1 is obtained by applying π

(
i ∂
∂θ

)∣∣
θ=0

to e−i〈x++ρ,θ 〉. All other
terms are O

(
1

x1+1

)
, except for

1

x2+1

∂α2b(s)

b(s)2
.

This term, which is obtained by differentiating b(s+ iθ)−1 in the direction of α2

and e−i〈x++ρ,θ 〉 in the directions of α1 and ρ, happens to be positive, as

∂α2b(s)

b(s)
= − q−1e−s1

1−q−1e−s1
+ 2 q−1e−s2

1−q−1e−s2
+ q−1e−s1−s2

1−q−1e−s1−s2

>
q−1e−s2

1−q−1e−s2
− q−1e−s1

1−q−1e−s1
≥ 0 .

Hence

|a2(0)| ≥
1

b(s)
+

1

x2+1

∂α2b(s)

b(s)2
− |remainder| ≥ 1

b(s)
−O

( 1

x1+1

)

is ≥ 1
2b(s) ≈ 1, provided that x is large enough. This concludes the proof of (3.21).

The lower estimate

|a3(0)| & 1 (3.22)

in (c) is proved similarly. In the expansion of the expression (3.20) at θ = 0, the
main term is now

T1 =
h(s)

b(s) [h(s)+2 n+1
n+3 ]

≈ 1

and all other terms are O
(

1
x1+1

)
, except for

1

x2+1

h(s)

b(s) [h(s)+2 n+1
n+3 ]

{
∂α2b(s)

b(s)
+

∂α2h(s)

h(s)+2 n+1
n+3

}
. (3.23)

As
∂α2 [h(s)+2]

h(s)+2
= − e−s2

e−s2+1
+

es
2−s1

es2−s1+1
,

(3.23) is the difference of the positive expressions

T2 =
1

x2+1

h(s)

b(s) [h(s)+2 n+1
n+3 ]

{
∂α2b(s)

b(s)
+

h(s)+2

h(s)+2 n+1
n+3

es
2−s1

es2−s1+1

}

and

T3 =
1

x2+1

h(s) [h(s)+2]

b(s) [h(s)+2 n+1
n+3 ]

2

e−s2

e−s2+1
= O

(
e−s2

)
.

Hence

|a3(0)| ≥ T1+ T2− T3− |remainder| ≥ T1−O
(
e−s2

)
−O

( 1

x1+1

)

is ≥ T1

2 ≈ 1, provided that x and s are large enough. This concludes the proof of
(3.22). �
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3.6. Proof of Theorem 3.1 when n remains bounded. Then (3.1) reduces to

pn(x) ≈ 1 ∀ |x| ≤ n . (3.24)

While the upper bound in (3.24) is trivial, the lower bound amounts to the nonva-
nishing of pn(x). This follows in turn from the fact, already used in the proof of
Corollary 3.5, that the random walk is aperiodic and hence that the random walk
may join in n steps any two points at distance ≤ n, as soon as n≥ 2.

3.7. Proof of Theorem 3.1 when x remains bounded while n is large.

Then (3.1) amounts to

pn(x) ≈ n−4
σ

n (3.25)

as, in this case, the Gaussian type factor

enφ(δ) ≈ e(n+2)φ(δ)

is bounded both from above and from below. The latter claim follows indeed from
the mean value theorem, applied to the function φ, from the vanishing φ(0) = 0
and from the boundedness of dφ, according to (3.9).
Although (3.25) is a consequence of the general local limit theorem in [19], we
include a short proof, which will be refined in the next two subsections. First of
all, according to Corollary 3.5, we can reduce to x = 0. Next, by setting x = 0 in
(3.3), we see that (3.25) amounts to the estimate J(n) ≈ n−4 for the nonnegative
expression

J(n) =

∫

U

[ h(iθ)
6

]n
a1(θ) dθ . (3.26)

Let us collect some information about (3.26). On the one hand, for θ small, the

phase function −Ψ(θ) = − log h(iθ)
6 and the amplitude a1(θ) are nonnegative and

behave as follows, according to Lemma 3.9.(b) and Lemma 3.12.(a) :

− Ψ(θ) ≈ |θ|2 and a1(θ) ≈ π(θ)2 . (3.27)

On the other hand, for θ ∈ U , the following global estimates hold, according to
Lemma 3.10 and Lemma 3.12.(a) :

|h(iθ)|
6 . e− const. |θ|2 and a1(θ) . π(θ)2 . (3.28)

The upper bound of (3.26) is easily deduced from (3.28) :

J(n) .

∫

U

e− const. n |θ|2
π(θ)2 dθ . n−4 .

In order to prove the lower bound, let us split up
∫

U

=

∫

εU

+

∫

Ur εU

and

J(n) = J1(n) + J2(n)

accordingly, where ε∈(0, 1) is chosen small enough, so that (3.27) holds for θ∈εU .
Then it follows from (3.27) and (3.28) that

J1(n) ≈ n−4 while J2(n) . e− const. n .

In conclusion, J(n)≈ n−4 provided that n is large enough.

Assume from now on that x and hence n are large.
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3.8. Proof of Theorem 3.1 when
|x|
n stays away from 1. Assume that |δ| ≤

1− η , with η∈ (0, 1) small. Then the stationary point s considered Subsection 3.3
remains bounded, according to Lemma 3.7.e.
To begin with, let us modify the integral expression (3.3). Firstly, by using (2.1)
and (2.2), together with the W0 -invariance of h and U, we get

pn(x) =
1

4π2 σ
n q−〈ρ,x+〉

∫

U

h(iθ)n ∆(iθ) e−i〈x++ρ,θ〉

b(iθ) dθ .

Secondly, by deforming the contour of integration in aC and by using the 2πQ -
periodicity in θ, we get

pn(x) =
1

4π2 σ
n q−〈ρ,x+〉e−〈x++ρ,s〉

∫

U

h(s+ iθ)n ∆(s+iθ) e−i〈x++ρ,θ〉

b(s+iθ) dθ .

Thirdly, after performing an integration by parts based on (3.7), we get

pn(x) = C(n, x+)J(n, x+) , (3.29)

where
C(n, x+) = 1

4π2

π(x++ρ)
(n+3)2 (n+2) σ

nq−〈ρ,x+〉h(s)n+2e−〈x++ρ,s〉 (3.30)

and

J(n, x+) =

∫

U

[ h(s+iθ)
h(s) e−i〈δ,θ 〉

]n+2
a3(θ) dθ . (3.31)

Let us make two observations about the latter expressions. On the one hand, as




π(x++ρ) = (x1+1)(x2+1)(|x|+1),

σ
n = 6n σn ,

enφ(δ) ≈ e(n+2)φ(δ) = e(n+2)Φ(s) = 6−n−2 h(s)n+2 e−〈x++ρ,s〉 ,

we have

C(n, x+) ≈ (1+ |x|)(1+x1)(1+x2)
n3 σ

n q−〈ρ,x+〉enφ(δ) . (3.32)

Hence (3.1) amounts to

J(n, x+) ≈ 1
n (3.33)

under the current assumptions. On the other hand, (3.31) is meaningful as long
as the denominator h(s+ iθ)+ 2 n+1

n+3 in (3.20) doesn’t vanish, which may happen
when x+ gets close to the extra wall (3.13), according to Corollary 3.8.(a). We get
around this problem by considering

p̃n(x) = C̃(n, x+) J̃(n, x+)

instead of (3.29), where

p̃n(x) = pn(x) + 2 n
n+2 σ pn−1(x) , (3.34)

C̃(n, x+) = (n+3)2

(n+2)(n+1) C(n, x+) ≈ C(n, x+) ,

J̃(n, x+) =

∫

U

[ h(s+iθ)
h(s) e−i〈δ,θ 〉

]n+2
a2(θ) dθ . (3.35)

Notice indeed that

pn(x) ≤ p̃n(x) . pn+2(x). (3.36)

Here the first inequality is elementary while the second one follows from the local
Harnack inequality (see Remark 3.6).

Let us prove the estimate (3.33) for the integral (3.35) and, to this end, let us
resume the analysis carried out for (3.26) in Subsection 3.7. The upper bound of
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(3.35) follows again easily from Lemma 3.10 and Lemma 3.12.(b). More precisely,
the Gaussian estimate

|h(s+iθ)|
h(s) . e− const. B(θ,θ) ≤ e− const. |θ|2 ∀ θ∈U (3.37)

and the uniform boundedness of a2 yield

J̃(n, x+) .

∫

U

e− const. n |θ|2 dθ . 1
n .

In order to prove the lower bound, let us split up this time

J̃(n, x+) =
∑ 4

k=1
J̃k(n, x

+) , (3.38)

where

J̃1(n, x
+) = a2(0)

∫

εU

e(n+2)ReΨ(θ) dθ ,

J̃2(n, x
+) = a2(0)

∫

εU

{
e(n+2)Ψ(θ)− e(n+2)ReΨ(θ)

}
dθ ,

J̃3(n, x
+) =

∫

εU

e(n+2)Ψ(θ)
{
a2(θ)− a2(0)

}
dθ ,

J̃4(n, x
+) =

∫

UrεU

[ h(s+iθ)
h(s) e−i〈δ,θ 〉

]n+2
a2(θ) dθ .

Here ε∈(0, 1) is chosen small enough, so that Lemma 3.9.(b) holds for θ∈εU. The
first term in (3.38) which yields the main contribution, is estimated as follows. On
the one hand, according to Lemma 3.12.(b), we have |a2(0)| ≈ 1, provided that x

is large enough. On the other hand, we deduce from Lemma 3.9 that
∫

εU

e(n+2)ReΨ(θ) dθ ≈
∫

εU

e− const.(n+2)B(θ,θ) dθ ≈
∫

εU

e− const. n |θ|2dθ ≈ 1
n .

Hence

|J̃1(n, x+)| ≈ 1
n .

As

e i(n+2) ImΨ(θ)− 1 = O
(
n|θ|3

)
and a2(θ)− a2(0) = O(|θ|) ,

the next two terms in (3.38) are estimated similarly from above :

|J̃2(n, x+)| . n− 3
2 and |J̃3(n, x+)| . n− 3

2 .

For the last term in (3.38), we obtain

|J̃4(n, x+)| . e− const. n

by using again the Gaussian estimate (3.37) and the uniform boundedness of a2 .
Thus,

J̃(n, x+) ≥ |J̃1(n, x+)| −
∑ 4

k=2
|J̃k(n, x+)| & 1

n ,

provided that n and x are large enough.
In summary, we have obtained the following estimates :

{
pn(x) ≤ p̃n(x) .

1
n C(n, x+) ,

pn(x) & p̃n−2(x) &
1

n−2 C(n−2, x+)
(3.39)
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In order to conclude, observe that the right hand sides in (3.39) are comparable
and more precisely the Gaussian type factors entering these expressions. Setting

δ̃ = x++ρ
n and writing

φ(δ) − φ(δ̃) = −
∫ 1

n

1
n+2

〈dφ
(
t(x++ρ)

)
, x++ρ〉 dt ,

we deduce indeed from (3.9) that 0≤ φ(δ)− φ(δ̃ ). 1
n , hence

e(n+2)φ(δ) ≈ enφ(δ̃ ) . (3.40)

3.9. Proof of Theorem 3.1 when
|x|
n gets close to 1, while n− |x| and

x1− x2 remain large. This is the most delicate range to handle. Assume that
1− η < |δ|<1, with η∈(0, 1) small. Then (3.1) amounts to the estimate

J(n, x+) ≈ (n−|x|)− 1
2 (n−x1)

− 1
2 (3.41)

for the integral (3.31).

The upper bound in (3.41) is proved as in Subsection 3.8. Firstly, we deduce from
(3.36) that J(n, x+). J̃(n, x+). Secondly, the following global estimate is obtained
by combining Lemma 3.10, Lemma 3.9.(a), Lemma 3.7.(e) and Lemma 3.7.(f) :

∣∣ h(s+iθ)
h(s)

∣∣n+2 ≤ e− const.(n+2)B(θ,θ) ∀ θ∈U ,

with

(n+2)B(θ, θ) ≈ (n−x1)(θ
1− θ2)2+ (n−|x|)(θ1+ θ2)2 . (3.42)

Thirdly, recall from Lemma 3.12.(b) that the amplitude (3.19) is uniformly bounded.
Hence the upper bound

J(n, x+) . J̃(n, x+)

.

∫

U

e− const.{(n−|x|)(θ1+θ2)2+(n−x1)(θ
1−θ2)2} dθ

. (n−|x|)− 1
2 (n−x1)

− 1
2 .

Let us turn to the lower bound in (3.41), which is harder to prove. Our task consists
in analyzing the integral

J(n, x+) =

∫

U

[ h(s+iθ)
h(s) e−i〈δ,θ 〉

]n+2
a3(θ) dθ , (3.31)

which cannot be replaced anymore by the simpler expression J̃(n−2, x+), as the
crucial estimate e(n+2)φ(δ) . enφ(δ̃ ) fails to hold in (3.40), when s becomes un-
bounded. For this purpose, let us split up

J(n, x+) =
∑ 5

k=1
Jk(n, x

+) , (3.43)
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where (see Figure 3)

J1(n, x
+) = a3(0)

∫

εU

e(n+2)ReΨ(θ) dθ ,

J2(n, x
+) = a3(0)

∫

εU

{
e(n+2)Ψ(θ)− e(n+2)ReΨ(θ)

}
dθ ,

J3(n, x
+) =

∫

εU

e(n+2)Ψ(θ) {a3(θ)− a3(0)} dθ ,

J4(n, x
+) =

∫

U∩ ε(SrU)

[ h(s+iθ)
h(s) e−i〈δ,θ 〉

]n+2
a3(θ) dθ ,

J5(n, x
+) =

∫

Urε(S∪U)

[ h(s+iθ)
h(s) e−i〈δ,θ 〉

]n+2
a3(θ) dθ .

U

S

εU

εS

2πλ12πλ2

2π(λ1−λ2)

Figure 3. Picture for the decomposition (3.43)

Here, S denotes the vertical strip

{ θ∈a | |〈λ1−λ2, θ〉|≤ 2
3 π }

and ε∈(0, 1) is chosen small enough, so that

• Lemma 3.9.(b) holds for θ∈εU ,
• a3(θ) and da3(θ) are uniformly bounded for θ∈ε(S∪U) and n large, according

to Lemma 3.12.(c).

We use again (3.42) to estimate the five integrals Jk(n, x
+) occurring in (3.43). Let

us elaborate. By arguing as for the first three terms in (3.38), we obtain
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|J1(n, x+)| ≈ (n−x1)
− 1

2 (n−|x|)− 1
2 ,

|J2(n, x+)| . (n−x1)
− 1

2 (n−|x|)−1 ,

|J3(n, x+)| . (n−x1)
− 1

2 (n−|x|)−1 ,

provided that η is small enough and n is large enough, which we assume from now
on. We obtain similarly

|J4(n, x+)| . (n−x1)
− 1

2 e− const.(n−|x|)

by using the uniform boundedness of a3(θ) for θ∈εS and the estimate
[ |h(s+iθ) |

h(s)

]n+2 ≤ e− const.(n−x1)(θ
1−θ2)2e− const.(n−|x|) ∀ θ ∈ U ∩ ε(SrU ) ,

which follows from Lemma 3.10 and (3.42). For the last integral, which is most
troublesome, we use the estimate

[ |h(s+iθ) |
h(s)

]n+2 ≤ e− const.(n−x1) ∀ θ ∈ Ur εS ,

which follows again from Lemma 3.10 and (3.42), together with the estimates of
a3(θ) contained in Lemma 3.12.(c). On the one hand, if δ1−δ2 stays away from 0,
say δ1− δ2 ≥ 1

4 , then a3(θ) is uniformly bounded, hence

|J5(n, x+)| . e− const.(n−x1) .

On the other hand, if δ1− δ2<
1
4 , then

x1 =
x1+x2

2
+

x1−x2

2
<

n−1

2
+

n+2

4
= 3

4 n ,

hence n−x1≈ n. As a3(θ) =O(n4), under the additionnal assumption that x1−x2

is large enough, we obtain again

|J5(n, x+)| . e− const.(n−x1) .

In conclusion, we obtain the expected bound

J(n, x+) ≥ |J1(n, x+)| −
∑ 5

k=2
|Jk(n, x+)| & (n−x1)

− 1
2 (n−|x|)− 1

2 ,

provided that η is small enough and that n, n−|x|, x1−x2 are all large enough.

3.10. Completion of the proof of Theorem 3.1 when
|x|
n gets close to 1,

while n− |x| remains large. In this subsection, we extend up to the extra wall
(3.13) the lower bound proved in Subsection 3.9. Specifically, assume that the lower
bound in (3.1) holds in the range{

x1− x2 ≥ m,

n− |x| ≥ m,

for some fixed m∈N∗, and let us deduce it under the following conditions :




0 ≤ x1− x2 < m ,

n− |x| ≥ m,

1− η <
|x|

n < 1, with 0< η < 1 small enough,

n or equivalently |x| is large enough.

In this case, x1 and x2 are close to |x|
2 . Thus the lower estimate in (3.1), which we

aim for, amounts to

pn(x) & n− 1
2 (n−|x|)− 1

2 σ
n q−〈ρ,x+〉enφ(δ) . (3.44)

Consider ñ= n−m and x̃= x+−mλ2 . Then

pn(x) & p ñ(x̃),
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according to the local Harnack inequality (3.5). Besides x̃∈a+ provided that |x| is
large enough. Moreover {

x̃1− x̃2 = x1− x2 +m ≥ m,

ñ− |x̃| = n− |x| ≥ m.

Thus (3.44) holds for p ñ(x̃) by assumption, hence

p ñ(x̃) & n− 1
2 (n−|x|)− 1

2 σ
n q−〈ρ,x+〉e ñφ(δ̃) ,

where δ̃ = x̃+ρ
ñ+2 . In order to conclude the proof of (3.44), it remains for us to

compare
e ñφ(δ̃) & enφ(δ) .

Firstly, ñ φ(δ̃) ≥ nφ(δ̃), as φ ≤ 0. Secondly, we claim that φ(δ̃ ) ≥ φ(δ), if η is
small enough and n large enough. For this purpose, let us write

φ(δ̃ )− φ(δ) =

∫ 1

0

〈(dφ ◦ δ)(t), δ̃− δ 〉 dt , (3.45)

where δ(t) = (1−t)δ+tδ̃ . In this expression, (dφ◦δ)(t) =− s(t), according to (3.9),
and

δ̃− δ = m
(n+2)(n+2−m)

{
(x1+1)λ1+ (x2−n−1)λ2

}
.

Hence,

〈(dφ◦δ)(t), δ̃−δ 〉 = m
(n+2)(n+2−m)

{
(n−|x|) s2(t)−(x1+1) [s1(t)−s2(t)]

}
. (3.46)

On the one hand,

δ1(t)− δ2(t) = (1− t) x1−x2

n+2 + t
x1−x2+m
n+2−m = O

( 1
n

)
.

Thus, if n is large enough,

(x1+1) [s1(t)−s2(t)] = O(1) , (3.47)

according to Lemma 3.7.(g). On the other hand,

1− |δ(t)| = (1− t) n−|x|
n+2 + t

n−|x|
n+2−m ≤

n−|x|
n+2−m =

(
1− m−2

n

)−1 (
1− |x|

n

)

is smaller than 2η , if n is large enough, and

es
2(t) ≈ 1

1−|δ(t)|
,

according to Lemma 3.7.(e). Thus,

(n−|x|) s2(t) ≥ m
[
− log(2η)− const.

]

is positive and even larger than (3.47), if η is small enough. In conclusion, (3.46)
is positive and (3.45) too, provided that η is small enough and n large enough.

3.11. Proof of Theorem 3.1 close to the boundary |x|= n . In this subsection,
we give a combinatorial proof of Theorem 3.1 in the range n−m≤ |x| ≤ n, where
m is any fixed positive integer and n is large. Still assuming that x1≥ x2 , let us
first show that (3.1) amounts then to

pn(x) ≈ σn q−n nn+d x−x1
1 (x2+1)−x2−d− 1

2 , (3.48)

where d= n− |x|. Firstly,
(1+ |x|)(1+x1)(1+x2)

n3
√

n−|x|
√

n−x1

≈
√

x2+1

n

as x1≈ |x| ≈ n and n−x1= x2+ d ≈ x2+1. Secondly,

σ̃n = 6nσn and q−〈ρ,x+〉 = q−|x| ≈ q−n .
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Thirdly,

enφ(δ) ≈ e(n+2)φ(δ) ≈ 6−n h(s)n+2 e−〈x++ρ,s〉 ,

with h(s) = es
1{

1+ e−(s1−s2)+O
(
e−s2

)}
. According to Lemma 3.7,

h(s) = es
1{ 1

δ1
+O(1− |δ|)

}
= es1

δ1

{
1+O( 1n )

}
,

hence

h(s)n+2 e−〈x++ρ,s〉 ≈ nn+1 x−n−1
1 e(x2+d+1)(s1−s2) eds

2

,

with eds
2≈ (1−|δ|)−d ≈ nd . On the one hand, if x2 is large enough,

e(x2+d+1)(s1−s2) ≈
{

1−δ1
δ1

+O(1− |δ|)
}−x2−d−1

≈
(
1−δ1
δ1

)−x2−d−1 {
1+O

(
1

x2+d+1

)}−x2−d−1

≈
(

x1+1
x2+d+1

)x2+d+1 ≈
(

x1

x2+1

)x2+d+1
.

On the other hand, as long as x2 is bounded,

e(x2+d+1)(s1−s2) ≈
(
1−δ1
δ1

)−x2−d−1
=

(
x1+1

x2+d+1

)x2+d+1 ≈
(

x1

x2+1

)x2+d+1
.

Thus
h(s)n+2 e−〈x++ρ,s〉 ≈ nn+d+1 x−x1

1 (x2+1)−x2−d−1

in all cases and the right hand side of (3.1) is comparable to (3.48), as claimed.

Let us next turn to the proof of (3.48). Instead of the simple random walk in X ,
it is more convenient to work with the corresponding radial random walk in P+,
whose transition probability is given by the following table where, let us recall,
σ = 1

2(q+1+q−1) .

λ∈P++
p+(λ, λ+λ1) = p+(λ, λ+λ2) = σq

p+(λ, λ+λ1−λ2) = p+(λ, λ−λ1+λ2) = σ

p+(λ, λ−λ1) = p+(λ, λ−λ2) = σq−1

λ∈N∗λ1

p+(λ, λ+λ2) = σ(q+1)
p+(λ, λ+λ1) = σq

p+(λ, λ−λ1+λ2) = σ(1+ q−1)
p+(λ, λ−λ1) = σq−1

λ∈N∗λ2

p+(λ, λ+λ1) = σ(q+1)
p+(λ, λ+λ2) = σq

p+(λ, λ+λ1−λ2) = σ(1+ q−1)
p+(λ, λ−λ2) = σq−1

λ= 0 p+(λ, λ+λ1) = p+(λ, λ+λ2) =
1
2

We claim that, in the range n−m≤ |x| ≤ n, (3.48) amounts to showing that

M ≈ nn+d x−x1
1 (x2+1)−x2−d− 1

2 , (3.49)

where M denotes the number of paths in P+ between 0 and λ = x+. This claim
is obtained by combining the following two facts. On the one hand, p+n(0, λ) =
Nλ pn(λ), where Nλ ≈ qtλ = q2〈ρ,λ〉 = q2 |λ| ≈ q2n . On the other hand, according
to the table above, the transition probability of the radial random walk equals σq

or σ(q+1) at each step, except for finitely many.
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Let us turn to the proof of (3.49) and, for this purpose, consider the sequence of
increments of the radial random walk up to time n :

ε = (ε1, . . . , εn) with εj∈{±λ1,±λ2 ,±λ1∓λ2} .
On the one hand, choose x1−d times λ1, x2+d times λ2, and d times λ1−λ2, the
latter occurring after at least d increments λ2, in order to remain within P+. The
number of such choices equals

n !
(x1−d)! (x2+2d)!

(x2+d)!
x2 ! d ! ,

which is comparable to

n
n+ 1

2 x
−x1+d− 1

2
1 (x2+1)

−x2−d− 1
2 ,

according to Stirling’s formula, hence to nn+dx−x1
1 (x2+1)−x2−d− 1

2 . This proves
the lower bound. On the other hand, in order to reach λ = x1λ1+ x2λ2 in n

steps, one needs k increments λ1, ℓ increments λ2 and n− k − ℓ increments in
{−λ1,−λ2,±λ1∓λ2}. Notice that |x| ≤ k+ ℓ ≤ n and |k− x1| ≤ d, |ℓ− x2| ≤ d.
Thus

M ≤
∑

k,ℓ∈N

|k−x1|≤d, |ℓ−x2|≤d

n !
k ! ℓ ! . (3.50)

According to Stirling’s formula, each term n !
k ! ℓ ! on the right hand side of (3.50) is

comparable to nn+ 1
2 k−k− 1

2 (ℓ+1)−ℓ−1
2 hence to nn x−k

1 (x2+1)−ℓ− 1
2 . The upper

bound
M . nn+d x−x1

1 (x2+1)−x2−d− 1
2

follows from the fact that the sum in (3.50) is finite and

xx1−k
1 (x2+1)x2+d−ℓ . nn−k−ℓ ≤ nd .

This concludes the proof of Theorem 3.1. �

Remark 3.13. Most of the analysis carried out in this section applies actually to
any isotropic nearest neighbor random walk

A = c1 Aλ1+ c2 Aλ2 ,

where c1 > 0, c2 > 0 and c1+ c2 = 1. More precisely, such a random walk has
transition density

pn(x) =
1

4π2 σ
n q−〈ρ,x+〉

∫

U

h(iθ)n ∆(iθ) e−i〈x++ρ,θ〉

b(iθ) dθ

with

h = 2c1
∑

λ∈W0.λ1

eλ + 2c2
∑

λ∈W0.λ2

eλ .

As for the simple random walk, its spectral radius is σ = 6σ = 3
q+1+q−1 and h

enjoys remarkable product and differentiation formulae (see Appendix A). Thus
the same analysis yields again the upper and lower bound

n−4
σ

nF0(x) e
nφ(δ)

in the range |x| ≤ (1−η)n. In the range (1−η)n< |x|<n, there is a problem with
the lower bound, but we get the upper bound

eC(n−|x|)

n3
√

n−|x|
√

n−x1∨x2

σ
nF0(x) e

nφ(δ)

by arguing as in Subsection 4.2. Here C is a positive constant.
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4. Heat kernel estimates in higher rank

Let us generalize the notation of Section 3. Given an integer n≥ 2 and x∈X with

|x|<n, set δ = x++ρ
n+r and denote by φ(δ)∈(− logN, 0] the minimum of the function

Φ(z) = log h(z)
N − 〈δ, z 〉 ∀ z∈a, (4.1)

where
N = h(0) =

∑ r

j=1
|W0 .λj | = 2(2r−1) .

Here is a partial generalization of Theorem 3.1.

Theorem 4.1. Let 0<η<1 (small ). Then

pn(x) ≈ n− r
2−|R+|

σ
nF0(x) e

nφ(δ) (4.2)

uniformly in the range |x| ≤ (1− η)n. Moreover,

pn(x) ≤ n− r
2−|R+|

σ
nF0(x) e

nφ(δ) en(1−|δ|)

∏
α∈R+

√
1−〈α,δ〉

(4.3)

in the range |x|< n.

Remark 4.2. Notice that the power r
2 + |R+| is half of the pseudo-dimension, as

in the symmetric space case.

The proof of Theorem 4.1 is similar to the proof of Theorem 3.1 in Section 3.
Therefore, we just outline the proof, elaborating on higher rank features. Let us
begin with analogs of (3.6), (3.7) and (A.3).

Lemma 4.3. The following product and differentiation formulae hold :

h+2 =
∏

λ∈W0.λ1

(eλ+1) =

r∏

1≤j≤r+1

(eλj−λj−1+1) , (4.4)

where we set λ0 = λr+1= 0, and

π(∂)hn+|R+| = (n+|R+|)!
n !︸ ︷︷ ︸

≈n|R+|

rn(h)h
n∆ , (4.5)

where

rn(h) = (h+2)|R
+|−r +

∑

r≤k<|R+|

O
(
n−(|R+|−k)

)
︷ ︸︸ ︷
ck

n !
(n+|R+|−k)! (h+2)k−r h |R+|−k

is a polynomial in h with coefficients ck ∈ Z. Moreover,

π(∂)(h+2)n+r = dn (h+2)n∆ , (4.6)

where dn is a constant, which is positive and ≈ n−|R+| for n large enough.

Proof. Let us first prove (4.4). Recall that the fundamental weights satisfy

〈λj , z 〉= z1+ . . . + zj hence 〈λj−λj−1, z 〉= zj

for every 1≤ j≤ r+1 and z∈a. We deduce on the one hand that
∑

λ∈W0.λj

e〈λ,z〉 =
∑

1≤k1<...<kj≤r+1
e
zk1+ ...+zkj (4.7)

and on the other hand that∏
λ∈W0.λ1

(
e〈λ,z〉+1

)
=

∏
1≤j≤r+1

(
ezj+1

)
=

∏
1≤j≤r+1

(
e〈λj−λj−1,z 〉+1

)
. (4.8)
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By adding up (4.7) over 1 ≤ j ≤ r, we obtain that h(z)+ 2 is equal to the sum
of products

∏
j∈J ezj , where J runs through all subsets of {1, . . . , r+1}, which is

equal in turn to ∏
1≤j≤r+1

(
ezj +1

)
.

Together with (4.8), this concludes the proof of (4.4). Let us turn to the proof of
(4.5). Setting

πI(λ) =
∏

α∈I
〈α, λ〉 ∀ I⊂R+,

we have

π(∂)hn+|R+| =
∑ |R+|

k=1
(n+ |R+|) · · · (n+ |R+|−k+1)hn+|R+|−kfk ,

where

fk =
∑

I1⊔I2⊔ ...⊔Ik=R+

I1 6=∅, ...,Ik 6=∅

[
πI1(∂)(h+2)

]
· · ·

[
πIk(∂)(h+2)

]
(4.9)

is an exponential polynomial, which belongs to the Z- span of {eλ |λ ∈ P }. As
fk is skew, it is divisible by ∆ and the quotient gk is a symmetric exponential
polynomial of degree ≤ k−r. Here, the degree of an exponential polynomial

g =
∑

λ∈P
g(λ)eλ

is defined by

deg g =

{
max{|λ| |g(λ) 6= 0}∈N if g 6= 0,

−∞ if g= 0.

We deduce in particular that gk vanishes when k < r and it remains for us to show
that gk is proportional to (h+2)k−r when r ≤ k ≤ |R+|. For this purpose, notice
that, for every positive root α = ej − ek (1≤ j < k ≤ r+1) and for every weight
〈λ,z 〉= zℓ (1≤ ℓ≤ r+1) in W0.λ1, we have

〈α, λ〉 =





1 when ℓ= j ,

−1 when ℓ= k ,

0 otherwise.

(4.10)

Consequently,

(a) for every α∈R+, there are exactly two weights λ∈W0.λ1 such that 〈α, λ〉 6= 0,
(b) for every λ∈W0.λ1 , there are exactly r roots α∈R+ such that 〈α, λ〉 6= 0.

On the one hand, we deduce from (4.4) and (4.10) that

∂α[h(z)+2]
h(z)+2 = ezj

ezj+1
− ezk

ezk+1 = e
zj+zk

2 e
α
2 −e−

α
2

(ezj+1)(ezk+1)
(α= ej− ek)

and obtain this way the leading term

f |R+| =
∏

α∈R+
∂α(h+2) = (h+ 2)|R

+|−r∆ .

On the other hand, we deduce from (b) above that each term on the right hand side
of (4.9) is divisible by (eλ+1)k−r, for every λ∈W0.λ1 , and hence by (h+2)k−r. In
summary, fk is divisible by and hence proportional to (h+2)k−r∆. This concludes
the proof of (4.5) and (4.6) is proved similarly. �

Let us next generalize partially Lemma 3.7
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Lemma 4.4. (a) The function Φ is strictly convex, tends to +∞ at infinity and
reaches its minimum φ(δ) ∈ (− logN, 0] at a single point s ∈ cl(a+), which is

the unique solution to the equation dh(s)
h(s) = δ. Moreover s←→ δ is an analytic

bijection between cl(a+) and {δ∈ cl(a+)| |δ|<1}.
(b) The following properties hold :

• s= 0 ⇐⇒ δ = 0,

• h(s)≈∏
1≤j≤r+1

(
1∨esj

)
= e

∑
1≤j≤r+10∨sj ,

•
2

h(s) ≤ 1−|δ|.

Proof. (a) and the first claim in (b) are proved as in Section 3. The second claim
in (b) follows from (4.4) and more precisely from

h(s) ≈ h(s)+ 2 =
∏

1≤j≤r+1

(
1+esj

)
. (4.11)

Let us turn to the third claim in (b). We use (4.4) and actually the right hand side
of (4.11) to compute the logarithmic derivative

dh(s)
h(s)+2 =

∑
1≤j≤r+1

esj

esj+1
ej − 1

r+1

(∑
1≤k≤r+1

esk

esk+1

)(∑
1≤k≤r+1

ek

)
.

As δ = dh(s)
h(s) , we deduce that

|δ| =
∑

1≤j≤r
〈αj , δ〉 = δ1− δr+1 =

h(s)+2
h(s)

es1−esr+1

(es1+1)(esr+1+1) ,

hence h(s)(1−|δ|)=̟(s)− 2, where

̟(s) =
[
h(s)+2

][
1− es1−esr+1

(es1+1)(esr+1+1)

]

=
(
es1+sr+1+2esr+1+1

)∏
1<j<r+1

(
esj+1

)
. (4.12)

By expanding the product (4.12), we obtain a sum of positive terms including

es1+sr+1 ×
∏

1<j<r+1
esj = 1 ,

1×
∏

1<j<r+1
1 = 1 ,

es1+sr+1 ×
∏

1<j<r+1
1 = es1+sr+1 ,

1×
∏

1<j<r+1
esj = e−s1−sr+1 .

Thus ̟(s)≥ 2+2cosh(s1+sr+1)≥ 4 and we conclude that

h(s)(1−|δ|)=̟(s)− 2≥ 2 .

�

4.1. Proof of (4.2) for n large. The inversion formula yields first

pn(x) = C0 σ
nq−〈ρ,x+〉

∫

U

h(iθ)n ∆(iθ) e−i〈x++ρ,θ〉

b(iθ) dθ (4.13)

and next

pn(x) = C0 σ
n q−〈ρ,x+〉e−〈x++ρ,s〉

∫

U

h(s+ iθ)n ∆(s+iθ) e−i〈x++ρ,θ〉

b(s+iθ) dθ (4.14)
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after a shift of contour. Notice that s remains bounded, under the present assump-
tion |x| ≤ (1−η)n, and that the function

Ψ(θ) = log h(s+iθ)
h(s) − i〈δ, θ〉

satisfies

− ReΨ(θ) ≈ |θ|2 and | ImΨ(θ)| . |θ|3 (4.15)

in a neighborborhood of the origin, uniformly in s and δ. All these properties are
established as in Section 3. With the notation of Lemma 4.3, let us first replace
hn∆ by

rn+r−|R+|(h)h
n+r−|R+|∆ = (n+r−|R+|)!

(n+r)! π(∂)hn+r

in (4.13) or (4.14), and let us denote by p̃n(x) the resulting expression. Then,
after an integration by parts, we obtain the desired estimate (4.2) for |p̃n(x)| as
we did for (3.35) in Subsection 3.8. For any r ≤ k ≤ |R+|, let us next replace hn

by hn+r−k (h+2)k−r in (4.13) or (4.14), and let us denote by p̃n,k(x) the resulting
expression. By applying the binomial formula to powers of h+2, we get

pn(x) = p̃n,r(x)≤ . . . ≤ p̃n,k(x)≤ p̃n,k+1(x)≤ . . . ≤ p̃n, |R+|(x) .

With the notation of Lemma 4.3, assume that n is large enough so that
∑

r≤k<|R+|
|ck| (n+r−|R+|)!

(n+r−k)! p̃n,k(x) ≤ 1
2 p̃n, |R+|(x) .

Then

p̃n(x) = p̃n, |R+|(x) +
∑

r≤k<|R+|
ck

(n+r−|R+|)!
(n+r−k)! p̃n,k(x) ≥ 1

2 p̃n, |R+|(x)

is nonnegative with leading term p̃n, |R+|(x). Hence p̃n, |R+|(x) and consequently
p̃n(x) satisfy (4.2). �

4.2. Proof of (4.3) for n large. Let us replace hn by (h+2)n in (4.13) and (4.14)
and let us denote by p̃n(x) the resulting kernel. On the one hand, we deduce again
from the binomial formula that p̃n ≥ pn. On the other hand, by performing an
integration by parts based on (4.6) and by resuming our overall strategy, we obtain

p̃n(x) . n− r
2−|R+|

σ̃
n
F0(x)

enφ̃(δ)

∏
α∈R+

√
1−〈α,δ〉

,

where σ̃ = σ(N+2), Φ̃(z) = log h(z)+2
N+2 −〈δ, z 〉 and φ̃(δ) = minz∈a Φ̃(z). In order

to conclude, let us compare the expressions enφ̃(δ) and enφ(δ). It follows from

0 ≤
[
Φ̃(z)+ log(N+2)

]
−
[
Φ(z)+ logN

]
= log

[
1+ 2

h(z)

]
≤ 2

h(z) ∀ z ∈ a,

that

0 ≤
[
φ̃(δ)+ log(N+2)

]
−
[
φ(δ)+ logN

]
≤ 2

h(s) ,

which is ≤ 1−|δ|, according to the last inequality in Lemma 4.4.(b). Thus

σ̃
n
enφ̃(δ) ≤ σ

n enφ(δ) en(1−|δ|)

and this concludes the proof of (4.3). �

This concludes the proof of Theorem 4.1.
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Appendix A. Some formulae

This appendix is devoted to the following remarkable formulae in rank 2. Consider

h = c1

h1︷ ︸︸ ︷
(eλ1+ e−λ2+ eλ2−λ1) + c2

h2︷ ︸︸ ︷
(eλ2+ e−λ1+ eλ1−λ2) ,

where c1 and c2 are arbitrary real constants.

Lemma A.1. For every integer n∈N,

π(∂)hn = c1c2 n
2 (n−1)hn−2∆+ (c31+ c32)n(n−1)(n−2)hn−3∆ . (A.1)

Proof. We have

∂α1∂α2∂ρ h
n = nhn−1A

+ n(n−1)hn−2B

+ n(n−1)(n−2)hn−3C ,

where 



A = ∂α1∂α2∂ρh ,

B = (∂α1h)(∂α2∂ρh)+ (∂α2h)(∂α1∂ρh)+ (∂ρh)(∂α1∂α2h) ,

C = (∂α1h)(∂α2h)(∂ρh) .

Elementary computations yield first

∂α1h = c1
(
eλ1 − eλ2−λ1

)
+ c2

(
eλ1−λ2 − e−λ1

)

=
(
e

α1
2 − e−

α1
2

)(
c1e

λ2
2 + c2 e

−
λ2
2

)
,

∂α2h = c1
(
eλ2−λ1 − e−λ2

)
+ c2

(
eλ2− eλ1−λ2

)

=
(
e

α2
2 − e−

α2
2

)(
c1e

−
λ1
2 + c2 e

λ1
2

)
,

∂ρh = c1
(
eλ1 − e−λ2

)
+ c2

(
eλ2 − e−λ1

)

=
(
e

ρ
2− e−

ρ
2

)(
c1e

λ1−λ2
2 + c2 e

λ2−λ1
2

)
,

∂α2∂ρh = c1e
−λ2 + c2 e

λ2 ,

∂α1∂ρh = c1e
λ1 + c2 e

−λ1 ,

∂α1∂α2h = − c1e
λ2−λ1 − c2 e

λ1−λ2 ,

and next 



A = 0 ,

B = 2 c1c2 ∆ ,

C =
(
c1c2 h+ c31 + c32

)
∆ .

This concludes the proof of Lemma A.1. �

Remark A.2. When c1 or c2 is equal to 0, notice that (A.1) reduces to

π(∂)hn
j = n(n−1)(n−2)hn−3

j ∆ (j = 1, 2).

Lemma A.3. Assume that c1 and c2 are nonzero. Then the following product

and differentiation formulae hold for h̃= c1c2 h+ c31+ c32 :

h̃ =
(
c2 e

λ1
2 + c1 e

−
λ1
2

)(
c2 e

−
λ2
2 + c1 e

λ2
2

)(
c2 e

λ2−λ1
2 + c1 e

λ1−λ2
2

)
, (A.2)

π(∂) h̃n = c31 c
3
2 n

2 (n−1) h̃n−2∆ . (A.3)

Proof. The proof of (A.2) is straightforward and (A.3) is proved as (A.1). �
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