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Abstract

The percolated random geometric graph Gn(λ, p) has vertex set given by a Poisson Point Process in
the square [0,

√
n]2, and every pair of vertices at distance at most 1 independently forms an edge with

probability p. For a fixed p, Penrose proved that there is a critical intensity λc = λc(p) for the existence
of a giant component in Gn(λ, p). Our main result shows that for λ > λc, the size of the second-largest
component is a.a.s. of order (log n)2. Moreover, we prove that the size of the largest component rescaled
by n converges almost surely to a constant, thereby strengthening results of Penrose.

We complement our study by showing a certain duality result between percolation thresholds asso-
ciated to the Poisson intensity and the bond percolation of G(λ, p) (which is the infinite volume version
of Gn(λ, p)). Moreover, we prove that for a large class of graphs converging in a suitable sense to
G(λ, 1), the corresponding critical percolation thresholds converge as well to the ones of G(λ, 1).

Keywords: random geometric graph, second-largest component, giant component, continuum percolation,
bond percolation, Schramm’s locality conjecture,
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1 Introduction

The theory of percolation was introduced by Broadbent and Hammersley [5] more than 60 years ago. In
the most classical setting, one is given a subgraph of Zd for some d ≥ 2 where every edge appears with
probability p ∈ [0, 1], independently of all other edges. While the model has a very simple definition, it
undergoes a phase transition for the existence of an infinite component which is not completely understood
to this day.

Several years after Broadbent and Hammersley, Gilbert [11] proposed a new mathematical model of
wireless networks, which gave rise to the field of continuum percolation. His model, known as the Random
Geometric Graph, is defined as follows: given λ,R > 0, the vertices of the graph are given by a Poisson
Point Process with intensity λ in R2, and whose edges are given by the pairs of points at distance at most
R. In fact, as mentioned in his paper, one of the two parameters λ and R may be put to 1 by a suitable
homothety of the plane. Later, Meester and Roy [18] generalized Gilbert’s model by connecting randomly
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by grant Fondecyt 1220174.
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and independently pairs of points in the Poisson process with a probability depending on their relative
positions, thus introducing the random connection model. In this paper, we aim at studying a particular
example of the random connection model obtained by performing standard Bernoulli bond percolation on
top of Gilbert’s model, often called soft random geometric graph or percolated random geometric graph.

1.1 Formal setup and our results

For λ > 0, denote by Po(λ) a Poisson Point Process in R2 of intensity λ. Then, we define G(λ, 1) as
the random geometric graph with vertex set Po(λ) and edge set the set of pairs of vertices at Euclidean
distance at most one. Given p ∈ [0, 1], we further define G = G(λ, p) as the graph obtained from G(λ, 1)
after Bernoulli bond percolation with probability p.

We will often consider Po(λ) conditioned on containing the origin, that is, we add artificially the origin
to the point process (this construction is known in a more general setup under the name Palm theory,
see for instance [19]). Then, we shall denote by θ(λ, p) the probability that the connected component of
the origin in G is infinite. By classical considerations from ergodic theory (see e.g. [18]) one may deduce
the existence of a deterministic threshold λ0 ∈ [0,∞] (in fact, a standard coupling argument with site
percolation on Z2 (see [18, 19]) shows that λ0 ∈ (0,∞)) such that:

• for all λ > λ0, the graph G(λ, 1) contains an infinite connected component almost surely, and in
particular θ(λ, 1) > 0;

• for all λ < λ0, the graph G(λ, 1) contains no infinite component almost surely, and in particular
θ(λ, 1) = 0.

For every p ∈ (0, 1] we define then

λc(p) = inf{λ ∈ R : θ(λ, p) > 0}. (1)

Moreover, for n ≥ 1, we consider the restriction Gn = Gn(λ, p) of G to the square [0,
√
n]2. Also, we

denote by L1(Gn) the number of vertices in the largest connected component of Gn.
We say that a sequence of events (En)n≥0 holds asymptotically almost surely (which we abbreviate

by a.a.s.) if P(En) → 1 as n → ∞. A sequence of random variables (Xn)n≥0 is said to be a.a.s. of
order Θλ,p(fn) if there exist positive constants c and C, which might depend on λ and p, such that
P(cfn ≤ Xn ≤ Cfn)→ 1 as n→∞.

Our main contribution is a sharp result on the size of the second largest component of G(λ, p) restricted
to a square of area n. It extends a recent result by Penrose [20] who proved that the size of the largest
connected component of Gn rescaled by n converges in probability to λθ(λ, p), while the size of the second-
largest component divided by n converges in probability to 0. More precisely, we have the following main
theorem:

Theorem 1.1. Fix λ > 0 and p ∈ (0, 1], such that λ > λc(p). Then (n−1L1(Gn))n≥1 converges al-
most surely to λθ(λ, p). Moreover, the size of the second-largest component in Gn is a.a.s. of order
Θλ,p

(
(log n)2

)
.

The proof of the almost sure convergence for the largest component is based on estimates for the
probability of crossing large rectangles with a fixed length-to-width ratio. The main difficulty here is that
two edges that intersect (geometrically) in an interior point may still be in different connected components
because of the bond percolation. To solve this problem, we use the classical technique of sprinkling, which
consists of revealing the Poisson Point Process in two steps with the idea to locally connect two crossing
edges present after the first step with positive probability.

The result on the size of the second-largest component is the most delicate part. Proving the lower
bound is the easier part: it consists simply in observing that in the square [0,

√
n]2, there is a.a.s. a

subsquare of side length of order log n with no point at distance 1 from its boundary and that contains
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at least c(log n)2 points for some c > 0. The proof of the upper bound is more elaborate. The main idea
is the following: we begin by proving that a.a.s. every point x in the square [0,

√
n]2 is surrounded by

‘many’ cycles in the giant component of Gn close to x. Hence, if the connected component of x ∈ Gn has
‘large’ Euclidean diameter, it necessarily intersects geometrically each of the above cycles. In this case, the
argument of sprinkling that was used for the largest component does not work directly: although adding
new points would help to connect x to the giant component, it could also create new components with
large diameter. We overcome this difficulty by using local sprinkling only rather than global sprinkling.
This allows us to prove that components with large diameter (which thus cross many cycles) must be part
of the giant component, and at the same time no new components with large diameter are created.

Remark 1.2 (A generalization of the model.). In fact, a careful inspection of our proof shows that
Theorem 1.1 holds for the more general random connection model mentioned above. More precisely,
denote by D the unit disc centered at the origin, and fix an even function g : D → (0, 1] with bounded
support. Then, the random graph G(λ, g) may be defined as a subgraph of G(λ, 1) in which every edge
between two vertices x and y is retained with probability g(x − y), independently of all other edges. In
particular, the graph G(λ, p) is a special case of this generalized setting with g constant equal to p. Then,
by defining λc(g) and θ(λ, g) as before, Theorem 1.1 holds for this more general setup with almost the
same proof. However, in order to keep the notation of the paper simple, we decided to present a proof in
the simpler percolated random geometric graph model only.

Remark 1.3 (Stretched exponential decay in the supercritical regime.). The proof of Theorem 1.1 easily
implies that in the infinite volume setting, the origin is in a component of size at least n without being
part of the infinite component with probability at least exp(−c

√
n) for some c = c(λ, p) > 0. For more

details, see Remark 5.10.

Remark 1.4. We note that the question about the size of the second largest component of the graph
Gn in dimension more than two remains open. Unfortunately, our techniques do not shed light on this
more general setting as we substantially use the properties of the planar embedding of Gn: Indeed,
planarity allows to “glue” paths that intersect each other via sprinkling (see the proofs of Theorem 5.1
and Proposition 5.2), and to use duality in an auxiliary percolation on the Z2 lattice in the proof of
Corollary 5.8.

Besides the study of the largest component sizes, a second motivation for studying G(λ, p) is the
following ‘duality’ question. Recalling the definition of λc(p) in (1), for every λ ∈ [λ0,∞), we define in a
similar way

pc(λ) = inf{p ∈ [0, 1] : θ(λ, p) > 0}.

It is natural to ask whether the two functions λc(p) and pc(λ) are strictly monotone, continuous, and
inverse of each other. We give an answer to this question in the following proposition:

Proposition 1.5. For any λ ∈ (λ0,∞) and p ∈ (0, 1), one has λc(pc(λ)) = λ and pc(λc(p)) = p,
respectively. In particular, λc and pc are inverse bijections, and hence continuous and strictly decreasing.

The most difficult part of this proposition is the equality pc(λc(p)) = p, which essentially follows from
the results proved by Franceschetti, Penrose and Rosoman in [10]. Thus, our contribution here is to prove
the other equality, which is the easier part. For this, we rely on a classical bound by Hammersley [13]
stating that for any infinite locally finite graph, the bond percolation threshold is bounded from above by
the site percolation threshold, which implies that pc is a strictly decreasing function of λ.

Finally, a third motivation for analyzing the graph G(λ, p) is related to Schramm’s locality conjecture,
see [3] and also [7, 9, 15, 17] for some recent progress. Suppose that we are given an integer k ≥ 1
and a real λ > 0. Then, remove all vertices of the random geometric graph G(λ, 1) which have degree
larger than some constant k together with all the edges emanating from them. This defines a subgraph
of G(λ, 1) in which all vertices have degree bounded by k. Moreover, as k →∞, these random subgraphs
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(say rooted at the origin) converge locally in the Benjamini–Schramm sense to G(λ, 1) (see e.g. [2, 4] for
more on this notion of local convergence). Thus, we were initially aiming to understand whether the bond
percolation thresholds on these subgraphs converge to pc(λ), the bond percolation threshold of G(λ, 1).
Our first main result confirms a more general version of this statement. We remark that, while Schramm’s
locality conjecture was stated in terms of vertex-transitive graphs, we assume translation invariance of
the distribution of our graphs. First, a random set embedded in R2 is said to be locally finite if for any
bounded domain Ω, the restriction of the set to Ω is almost surely finite.

Definition 1.6. Let K ≥ 0 be given. We say that a random graph with a locally finite vertex set
embedded in R2 is a K-dependent graph of geometric type if the following two conditions are satisfied:

• The law of the graph is invariant by any translation of R2.

• For any two domains Ω1 and Ω2 at Euclidean distance at least K, the restrictions of the graph to
Ω1 and Ω2 are independent.

We also say that a graph is of geometric type if there exists K ≥ 0 such that it is a K-dependent graph
of geometric type.

In particular, each of the graphs G(λ, p), or more generally any random connection model with a
connection function having bounded support, is of geometric type. The example mentioned above where
vertices with degree larger than a constant k are removed is another example of a 2-dependent graph of
geometric type. In this setting, a convenient notion of local convergence is the following.

Definition 1.7. A sequence (Gk)k≥1 of graphs of geometric type in the sense of Definition 1.6 is said to
converge locally to another graph G of geometric type if for any bounded domain Ω ⊆ R2, the distribution
of the restriction of Gk to Ω converges to the distribution of the restriction of G to Ω as a sequence of finite
graphs. In other words, for any finite graph H,

lim
k→∞

P
(
(Gk)|Ω = H

)
= P

(
G|Ω = H

)
.

Examples of graph sequences of geometric type which converge to G(λ, p) include:

• G(λk, pk) for any sequence (λk)k≥1 and (pk)k≥1 converging respectively to λ and p;

• Gk, obtained after removing all vertices in G(λ, p) with degree larger than k;

• Ĝε, obtained after removing all vertices in G(λ, p) with another vertex at distance at most ε (in Rd)
from them.

A natural guess is that both the bond and the site percolation thresholds are continuous for this notion
of convergence in the following sense. Fix K ≥ 0 and any sequence (Gk)k≥1 of K-dependent graphs of
geometric type converging locally to some other graph G. Denote by pc(Gk) and sc(Gk) respectively the
bond and the site percolation thresholds of Gk (and similarly for pc(G) and sc(G)). Then, one should
always have

lim
k→∞

pc(Gk) = pc(G) and lim
k→∞

sc(Gk) = sc(G).

We are able to prove one direction of this claim for bond percolation when the limiting graph is G(λ, 1).
We do not address the question of site percolation here, which is a harder problem, see below for some
comments on it.

Proposition 1.8. Fix λ > λ0, K ≥ 0, and a sequence of K-dependent graphs (Gk)k≥1 of geometric type
which converges locally to G(λ, 1) in the sense of Definition 1.7. Then, with the previous notation, one
has

lim sup
k→∞

pc(Gk) ≤ pc(λ).
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If in addition Gk is a subgraph of G(λ, 1) for any k ≥ 1, then

lim
k→∞

pc(Gk) = pc(λ).

In particular this proposition applies to the example of the graph Gk obtained after removing from
G(λ, 1) vertices with degree larger than k.

Moreover, we remark that the proof works for bond percolation and not for site percolation. The
reason for this hides in the fact that, in general, comparison between bond and site percolation fails for
graphs of unbounded maximum degree. In particular, our proof technique of sprinkling in new vertices,
which might potentially have high degrees, breaks down for site percolation. This lack of symmetry is also
apparent from (the statement of) Theorem 1.1 and Remark 3.1.

Plan of the paper. In Section 2 we introduce notation and several preliminary results. Then, Sections 3
and 4 are dedicated to the proofs of Proposition 1.5 and Proposition 1.8. Finally, in Section 5 we present
the proof of Theorem 1.1.

2 Notation and preliminaries

2.1 Notation

Given a graph G, we denote by |G| its number of vertices, which we also call its size, and by L1(G) the
size of its largest connected component. Given an event A, we denote by A the complementary event.

We use classical asymptotic notation: for sequences (an)n∈N and (bn)n∈N, we say that an = O(bn),
an = Θ(bn), and an = Ω(bn) when there exist constants 0 < c1 < c2 < ∞ and n0 ∈ N such that for all
n ≥ n0, an ≤ c2bn, c1bn ≤ an ≤ c2bn, and an ≥ c1bn, respectively. Moreover, we say that an = o(bn) when
limn→∞ an/bn = 0. By default the limit variable is n, and the constants associated to O(·), Θ(·) and Ω(·)
are independent from the parameters of the problem; if this is not the case, the parameters influencing
the constants will be given as lower indices, for example Op(·) or Θλ,p(·).

For any x = (x1, x2) ∈ R2 and r ≥ 0, denote Λx(r) := [x1 − r, x1 + r] × [x2 − r, x2 + r], and simply
write Λ(r) when x = 0 := (0, 0) (the origin). Furthermore, for all n ∈ N, we define Λn := [0,

√
n]2 and

given a domain Ω ⊆ R2, we set ∂Ω to be the boundary of Ω. We also write ‖x‖ for the Euclidean norm
of x ∈ R2.

Given two domains Ω1,Ω2 ⊆ R2 and a graph G with vertex set included in R2, we denote by Ω1
G←→ Ω2,

or simply by Ω1 ↔ Ω2 when G is clear from the context, the event that there is a path in G starting from
a vertex in Ω1 and ending at a vertex in Ω2. Given a domain Ω ⊆ R2, we shall also write Ω1

Ω←→ Ω2, the
same event with the restriction that the path is contained in Ω. Furthermore, when Ω1 (or Ω2) is reduced
to a singleton {x}, we simply write x.

Now, we introduce some standard notation from percolation theory. Given a fixed graph G = (V,E)
(which in our case shall mostly be Z2 or a subgraph of it), a configuration ω is an element of {0, 1}E . As
usual, we often identify ω with the subgraph of G with vertex set V and edge set {e : ωe = 1}. Edges
from this set are called open, and the other edges of G are called closed. For q ∈ [0, 1], Bernoulli bond
percolation with parameter q on G is the product probability measure Pq for which every edge is open
with probability q, independently of the other edges (we omit the reference to the base graph G in this
notation, as it should always be clear from the context to which graph it applies). Note that by definition,
when the base graph G is the random geometric graph G(λ, 1), the subgraph obtained after Bernoulli bond
percolation with parameter p is G(λ, p). We shall either denote its distribution by Pλ,p, when we want to
emphasize which parameters we consider, or simply by P, when they are clear from the context.

Given a fixed graph G = (V,E), a configuration ω is smaller than ω′ if for every e ∈ E one has ωe ≤ ω′e.
An event A ⊆ {0, 1}E is increasing if whenever ω ∈ A and ω ≤ ω′, then also ω′ ∈ A, and an event A is
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decreasing if A is increasing. Then, when considering the random geometric graph G = G(λ, p), we say
that an event A is increasing if whenever ω and ω′ are two instances of G such that ω is a subgraph of ω′

and ω is in A, then ω′ is also in A.

2.2 Preliminaries

The following well-known inequality shows that two increasing events are positively correlated. It applies
to a wide variety of random models, and both Bernoulli percolation and the percolated random geometric
graph model are among them, see e.g. [8, 20].

Lemma 2.1 (Harris inequality / FKG inequality). For any q ∈ [0, 1] and any increasing events A and B,
one has

Pq(A ∩ B) ≥ Pq(A)Pq(B).

Similarly, for any λ > 0, p ∈ [0, 1] and any two increasing events A and B,

Pλ,p(A ∩ B) ≥ Pλ,p(A)Pλ,p(B).

A consequence of Lemma 2.1 is the so-called square-root trick : given k increasing (or decreasing) events
(Ai)ki=1, and any q ∈ [0, 1],

max
1≤i≤k

Pq(Ai) ≥ 1− (1− Pq(∪ki=1Ai))1/k, (2)

and similarly with Pλ,p instead of Pq.

Now, we present a couple of results concerning Bernoulli bond percolation on Z2 which will be used
several times in this work. First we need a result on dependent bond percolation. For any k ∈ N, we say
that a bond percolation on a graph is k-dependent if the states of any two (families of) edges at graph
distance larger than k are independent.

Theorem 2.2 (see Theorem 0.0 in [16]). For every k ≥ 1 and p ∈ [0, 1), there is q0 = q0(k, p) < 1 such
that every k–dependent bond percolation measure on Z2, satisfying that any edge is open with probability
q > q0, dominates Bernoulli bond percolation with parameter p.

Next, we state a result providing exponential decay of correlations in the subcritical regime.

Theorem 2.3 ([8], Theorem 3.3). For every q ∈ [0, 1/2), there exists cq > 0 such that, for all x ∈ Z2,

Pq(0↔ x) ≤ exp(−cq‖x‖).

The last result we shall need on Bernoulli percolation on Z2 provides some concentration for the size
of the largest component in finite volume.

Theorem 2.4 (see [21], Theorem 4). Fix n ≥ 1, Hn = Z2 ∩ [0,
√
n]2 and q ∈ (1/2, 1]. Denote by Hn,q the

graph obtained from Hn after Bernoulli bond percolation with parameter q. Then, for every ε > 0, there
exists c = c(q, ε) > 0 such that Pq(L1(Hn,q) ≤ (1− ε)EL1(Hn,q)) ≤ exp(−cn).

Since the vertices of our graph are given by a homogeneous Poisson Point Process, the next formula,
known under the name Campbell-Mecke formula, will be useful in our analysis. We refer to [20] for this
version of the theorem, which can simply be deduced from more standard versions by integrating first
against the Bernoulli percolation measure, conditionally on the Poisson Point Process.

Lemma 2.5 (Campbell-Mecke formula). Fix λ > 0, p ∈ [0, 1], and let G = G(λ, p). For any non-negative
measurable function f on the set of pairs (x,G), where G is a graph whose vertex set is a locally finite
subset of R2 and x is a vertex of G, one has

E
[ ∑
X∈Po(λ)

f
(
X,G

)]
= λ

∫
R2

E[f(x,Gx)] dx,
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where Gx is obtained by adding x to the vertex set of G, and independently for each other vertex y of G
at distance smaller than one from x, an edge is added between x and y with probability p.

We continue with a particular case of a theorem by Franceschetti, Penrose and Rosoman [10] on the
critical intensity for the appearance of a giant component in G(λ, p).

Theorem 2.6 (see Theorem 2.3 in [10]). For every p1, p2 ∈ [0, 1] such that p1 < p2, λc(p1) > λc(p2).

Finally, we state a standard Chernoff-type inequality for Poisson random variables.

Lemma 2.7. Let X be a Poisson random variable with mean λ > 0. Then, for any ε > 0,

P(|X − λ| ≥ ε) ≤ 2 exp

(
− ε2

2(λ+ ε)

)
.

3 Proof of Theorem 1.5

First, we fix λ ∈ (λ0,∞) and show that λc(pc(λ)) = λ. We argue by contradiction, assuming that
λc(pc(λ)) 6= λ. We distinguish two cases:

• if λc(pc(λ)) > λ, then there is ε > 0 such that λ + ε < λc(pc(λ)) and thus θ(λ + ε, pc(λ)) = 0, and
hence pc(λ+ ε) ≥ pc(λ). However, pc is a non-increasing function, so pc(λ+ ε) = pc(λ);

• if λc(pc(λ)) < λ, then there is ε > 0 such that λ − ε > λc(pc(λ)) and thus θ(λ − ε, pc(λ)) > 0, and
hence pc(λ− ε) ≤ pc(λ). However, pc is a non-increasing function, so pc(λ− ε) = pc(λ).

In both cases, our assumption leads to the existence of λ1, λ2 ∈ (λ0,∞) satisfying λ1 < λ2 and pc(λ1) =
pc(λ2).

Now, set p = pc(λ2) + δ for some δ > 0 to be chosen sufficiently small. It thus holds that G(λ2, p) is
supercritical. On the one hand, by a classical result of Hammersley [13] the bond percolation threshold
of G(λ2, p), which is pc(λ2)/p, is dominated by its site percolation threshold, which is λc(p)/λ2. Hence,
λ2
p ≤

λc(p)
pc(λ2) . Hence, we find that pc(λ2)/p ≤ λc(p)/λ2. On the other hand, θ(λ1, p) > 0 since p > pc(λ1),

so λc(p) ≤ λ1. We conclude that λ2
p ≤

λ1
pc(λ2) , which rewrites as λ2

λ1
≤ p

pc(λ2) = 1 + δ
pc(λ2) . Choosing δ

sufficiently small (and using that pc(λ2) > 0) leads to a contradiction, which proves the equality.
To deduce the equality pc(λc(p)) = p for any fixed p ∈ (0, 1), a similar reasoning provides two distinct

p1, p2 ∈ (0, 1) satisfying λc(p1) = λc(p2), which contradicts the statement of Theorem 2.6. �

Remark 3.1. For an infinite connected graph H with site percolation threshold sc, bond percolation
threshold pc and maximum degree D ≥ 3, the equality pc(sc(p)) = p holds along similar lines without
using Theorem 2.6 as a black box. We provide a sketch of the argument. Suppose for contradiction
that pc(sc(p)) 6= p for some p as above. Then, as in the proof of Theorem 1.5, there exist p1 < p2 with
sc(p1) = sc(p2) ∈ (0, 1). Set s = sc(p2) + δ for some δ ∈ (0, 1 − sc(p2)) to be chosen below, and consider
the graph H(s, p2) obtained from H after site percolation with parameter s and bond percolation with
parameter p2. By a result of Grimmett and Stacey [12] we have sc ≤ 1 − (1 − pc)D−1, or equivalently
(1 − pc)D−1 ≤ 1 − sc (see also [6] for stronger results in this direction). Moreover, note that θ(s, p1) > 0
since s > sc(p1), and thus pc(s) ≤ p1. Hence, applying the above inequality from [12] for Ĥ = H(s, p2)
(which has maximum degree at most D, site percolation threshold sc(pc)/s and bond percolation threshold
pc(s)/p2), we infer(

1− p1

p2

)D−1

≤
(

1− pc(s)

p2

)D−1

= (1− bc(Ĥ))D−1 ≤ 1− sc(Ĥ) =
s− sc(pc)

s
=
δ

s
.

Hence, choosing δ sufficiently small (and using sc(p2) > 0), we have the desired contradiction, and thus
pc(λc(p)) = p.
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4 Proof of Proposition 1.8

We first prove that Bernoulli bond percolation preserves local convergence. For completeness, we also
include the case of site percolation as it may be of independent interest.

Lemma 4.1. Let (Gk)k≥1 be a sequence of graphs of geometric type converging locally to G in the sense of
Definitions 1.6 and 1.7. For p ∈ [0, 1], consider the subgraphs Gbk(p) and Gsk(p) obtained after performing
respectively Bernoulli bond and site percolation on Gk, and similarly for Gb(p) and Gs(p). Then, these
graphs are of geometric type and moreover (Gbk(p))k≥1 and (Gsk(p))k≥1 converge locally respectively to Gb(p)
and Gs(p).

Proof. The fact that a graph of geometric type remains in this class after bond or site percolation is
immediate from the definition. Now, assume that (Gk)k≥1 converges locally to G, and let p ∈ [0, 1] be
fixed. Let us consider first the case of bond percolation, which is slightly easier. Fix Ω to be some bounded
domain of R2, and let H be some finite graph. Note that if H is obtained from another graph H ′ after
bond percolation, then H ′ belongs to the finite set A(H) of finite graphs with the same vertex set as H
and containing H as a subgraph. Therefore, denoting by E(H) the set of edges of a graph H, and taking
advantage of the fact that A(H) is a finite set, we get

lim
k→∞

P
(
Gbk(p)|Ω = H

)
= lim

k→∞

∑
H′∈A(H)

P
(
(Gk)|Ω = H ′

)
p|E(H)|(1− p)|E(H′)|−|E(H)|

=
∑

H′∈A(H)

P
(
G|Ω = H ′

)
p|E(H)|(1− p)|E(H′)|−|E(H)| = P

(
Gb(p)|Ω = H

)
.

We now consider the case of site percolation. The only additional difficulty is that now the set B(H) of
graphs which can give rise to a fixed graph H after site percolation is infinite. However, denoting by V (H)
the set of vertices of a graph H, and using Fatou’s lemma, we deduce

lim inf
k→∞

P
(
Gsk(p)|Ω = H

)
≥

∑
H′∈B(H)

lim inf
k→∞

P
(
(Gk)|Ω = H ′

)
p|V (H)|(1− p)|V (H′)|−|V (H)|

=
∑

H′∈B(H)

P
(
G|Ω = H ′

)
p|V (H)|(1− p)|V (H′)|−|V (H)| = P

(
Gs(p)|Ω = H

)
.

Since this holds for any finite graph H, by another application of Fatou’s lemma, we infer

1 = lim inf
k→∞

∑
H finite

P
(
Gsk(p)|Ω = H

)
≥

∑
H finite

lim inf
k→∞

P
(
(Gk)|Ω = H

)
≥

∑
H finite

P
(
Gs(p)|Ω = H

)
= 1.

Hence, for any finite graph H, limk→∞ P
(
Gsk(p)|Ω = H

)
= P

(
Gs(p)|Ω = H

)
, which concludes the proof of

the lemma.

Now, we prove Theorem 1.8. Let λ > λ0, and K ≥ 0 be given. Let also (Gk)k≥1 be a sequence of
K-dependent graphs of geometric type converging to G(λ, 1). We need to prove that lim supk→∞ pc(Gk) ≤
pc(λ). To this end, we fix some p > pc(λ) and show that, with the notation from Lemma 4.1, for all k
sufficiently large, Gbk(p) contains an infinite connected component.

The proof relies on a finite-size criterion. Consider a tessellation T of R2 into squares of side length√
m, where m is a constant to be chosen sufficiently large later. For each square Q in T , consider a

partition of the square into 4 smaller squares of side length
√
m/2, say {Qi}1≤i≤4. Then, for a random

graph with vertex set embedded in R2, consider the event AQ that the following holds:

• The second-largest component in Q has size at most λθ(λ,p)
10 m.

• The largest components in each of the squares Qi, for i ∈ {1, 2, 3, 4}, have size at least λθ(λ,p)
8 m.
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Also, for two squares Q and Q′ of T sharing a common edge, consider the square Q′′ of side length
√
m

in-between Q and Q′, which is the union of the two smaller squares of Q touching Q′ together with the
two smaller squares of Q′ touching Q. Then, define

AQ,Q′ := AQ ∩ AQ′ ∩ AQ′′ .

On the one hand, on AQ,Q′ , the two largest components of Q and Q′ are connected by construction.
On the other hand, by Theorem 1.1 (or by the results of [20]) we know that for every δ > 0 and every
sufficiently large m, Pλ,p(AQ,Q′) > 1 − δ. Now, with a slight abuse of notation, denote by Pk,p the
distribution of Gbk(p). Then, by definition of the local convergence, Lemma 4.1 and the fact that AQ,Q′ is
a local event one has that, for any sufficiently large k and any two squares Q and Q′ sharing a common
edge, Pk,p(AQ,Q′) ≥ 1−2δ. On the other hand, considering the graph isomorphic to Z2 with vertex set the
squares in T , and declaring the edge between two neighboring squares Q and Q′ open if the event AQ,Q′
holds, defines a bond percolation process on Z2. For every m ≥ K, by hypothesis, this bond percolation is
1-dependent for each of the graphs Gbk(p). Therefore, by Theorem 2.2, choosing δ small enough (and then
m large enough) allows us to make this graph supercritical for any sufficiently large k, and thus proving
that all the graphs Gbk(p) have an infinite connected component.

The last part of the theorem is immediate since the critical bond percolation is a decreasing function
for the partial order given by the inclusion of graphs. This concludes the proof of Proposition 1.8.

5 Proof of Theorem 1.1

From now on, λ > 0 and p ∈ (0, 1] are fixed parameters such that λ > λc(p). This in particular ensures
that G = G(λ, p) contains an infinite connected component almost surely.

The proof of Theorem 1.1 is divided into three parts. In Section 5.1 we prove that a.a.s. Gn contains
a connected component of size Ωλ,p(n). Despite the fact that this result has already been proved very
recently by Penrose [20], its proof serves as a base for the second and third steps. In Section 5.2 we prove
that a.a.s. the second-largest component in Gn has size Θλ,p((log n)2), and finally in Section 5.3 we show
that n−1L1(Gn) converges almost surely to λθ(λ, p) as n→∞.

We introduce some additional notation, which will be used throughout this section. A horizontal
crossing of a rectangle [a, b]× [c, d] in G is a path in G with edges, embedded as straight segments in the
plane, such that:

• the first edge intersects the segment connecting (a, c) and (a, d);

• all edges in the path but the first and the last ones are included in the rectangle [a, b]× [c, d];

• the last edge intersects the segment connecting (b, c) and (b, d).

A vertical crossing is defined analogously. We denote by H([a, b] × [c, d]) (respectively V([a, b] × [c, d]))
the event “a path in G crosses the rectangle [a, b] × [c, d] horizontally (vertically, respectively)”. We also
let H(b, d) and V(b, d) denote the events H([0, b]× [0, d]) and V([0, b]× [0, d]), respectively.

5.1 The existence of a giant component

This section is devoted to the proof of the fact that, in the supercritical regime, a.a.s. the graph Gn
contains a component of linear size, which we state as a separate theorem.

Theorem 5.1. Assume that λ > 0 and p ∈ (0, 1] are such that λ > λc(p). Then a.a.s. one has L1(Gn) =
Θλ,p(n).

9



0R
3R

Figure 1: Connecting the box Λ(R/6) to the box Λ(R/2): in this case, the rectangles associated to the
events CR and DR are separated from the rest of the R×R square by dashed lines, and the path traverses
vertically the rectangle on top, so the event CR is realized (the rotated rectangles associated to the events
AR and BR are not explicitly separated).

The proof of this theorem is divided into two main parts. Firstly, we show in Proposition 5.2 that for
any κ > 0 the event H(κR,R) holds a.a.s. as R → ∞. The proof of this part is inspired by the proof
of Corollary 4.2 in [1] in the context of a closely related model but, since we perform bond percolation
on top of the random geometric graph, two intersecting edges need not necessarily be part of the same
connected component (as is the case for the random geometric graph without percolation). To circumvent
this difficulty, we use a carefully designed sprinkling procedure, as was sketched in the introduction.

In the second part, we construct an auxiliary graph that dominates a supercritical Bernoulli bond
percolation on Z2. Then, we rely on known results for supercritical bond percolation on finite boxes of Z2

and transfer them to the original graph by using that, by construction, any linear-sized subgraph of the
auxiliary graph corresponds to a linear-sized subgraph of the original graph.

We start with the first part.

Proposition 5.2. Assume that λ > 0 and p ∈ (0, 1] are such that λ > λc(p). Then for every κ > 0, one
has Pλ,p(H(κR,R))→ 1, as R→∞.

Proof. The proof has four steps. The first one is to prove the result for κ = 1/3. The second step uses a
result of Penrose [20] saying that with probability bounded away from zero, for some large enough constant
K and two squares of side length K at distance R from each other, there exist one vertex in the first square
and another in the second square that are connected by a path that stays within a box of side length 4R
containing its endpoints. Note that K is a large but fixed constant, and that we let R tend to infinity,
so that R � K. In a third step, we prove that with probability bounded away from zero there is a path
surrounding the box Λ(R) inside Λ(3R). Finally, as a last step, we prove that if the result holds for a
given κ > 0, then it also holds for all κ′ ∈ [κ, 2κ).

Step 1. We show that P(H(R/3, R))→ 1 as R→∞. Define the events

AR = H([R/6, R/2]× [−R/2, R/2]), BR = H([−R/2,−R/6]× [−R/2, R/2]),

CR = V([−R/2, R/2]× [R/6, R/2]), DR = V([−R/2, R/2]× [−R/2, R/6]).

Note that all four events correspond to crossing a rectangle with aspect ratio 3 along its shorter side.
Then, connecting the box Λ(R/6) to the right (respectively the left, the top, or the bottom) side of
Λ(R/2) ensures that the event AR (respectively BR, CR, or DR) is realized, see Figure 1.
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Thus, the square-root trick (2) and the fact that all four events have probability P(H(R/3, R)) implies
that

P(H(R/3, R)) ≥ 1− (1− P(AR ∪ BR ∪ CR ∪ DR))1/4 ≥ 1− (1− P(Λ(R/6)↔ R2 \ Λ(R/2)))1/4.

Since by definition G(λ, p) contains an infinite component almost surely, the probability that the box
Λ(R/6) intersects the infinite component tends to 1 as R→∞, which finishes the proof of Step 1.

Step 2. For every sufficiently large constant K > 0, one has

lim inf
R→∞

P
(
Λ(K)

Λ(R)←−−→ Λ(R/2,0)(K)
)
> 0.

This result is proved in [20], see the proof of Proposition 2.6 therein, and we refer to this paper for details.
Let us stress that, in particular, both Steps 1 and 2 use the hypothesis λ > λc(p).

For the third step, we need a couple of new definitions. For x ∈ R2 and r,R > 0 satisfying 0 < r < R,
we define the annulus

Ax(r,R) := Λx(R) \ Λx(r),

and the event
Circx(r,R) := {Ax(r,R) contains a cycle of G}.

We also simply write A(r,R) and Circ(r,R) for A0(r,R) and Circ0(r,R), respectively. In the next step,
we prove that large annuli with constant ratio of their radii contain a cycle of G with probability bounded
away from zero.

Step 3. We show that lim infR→∞ P(Circ(R, 3R)) > 0. Set r = R/2. For i ∈ {1, . . . , 8}, let

vi = (ir − 2R, 2R), vi+8 = (2R, 2R− ir), vi+16 = (2R− ir,−2R), vi+24 = (−2R,−2R+ ir).

Note that the points (vi)
32
i=1 divide ∂Λ(2R) into 32 equal segments of length r. By Step 2 we know that

for every sufficiently large K and R = R(K) and for every i ∈ {1, . . . , 32}, we have

P
(

Λvi(K)
Λvi (R)
←−−−→ Λvi+1(K)

)
≥ 1

2
, (3)

where v33 = v1, see Figure 2.
Since each of the events in (3) is increasing, we conclude by the FKG inequality (Lemma 2.1) that

their intersection, which we call A, has probability at least 2−32. Now, for every i ∈ {1, . . . , 32}, fix a
tessellation Ti of the box Λvi(K) into squares of side length 1/

√
5 (this is possible by choosing K to be an

integer multiple of
√

5) and let

B = {Q ∩ Po(λ) 6= ∅, for all Q ∈ Ti and all 1 ≤ i ≤ 32}.

Since A and B are both increasing events, by the FKG inequality there is ρ > 0 such that P(A ∩ B) > ρ,
for all sufficiently large R. Also, choose M > 0 so that the event

C = {|Λvi(K) ∩ Po(λ)| ≤M, for all 1 ≤ i ≤ 32}

holds with probability at least 1− ρ/2. Then, in particular, P(A ∩ B ∩ C) ≥ ρ/2.
Now, observe that all three events A, B and C are independent of the state of the edges inside the

squares (Λvi(K))32
i=1. Indeed, B and C depend only on Po(λ), and A depends on Po(λ) and the state

of the edges with at least one endpoint outside these squares. Thus, calling D the event that, for all
i ∈ {1, . . . , 32}, the vertices Λvi(K) ∩ Po(λ) induce a single connected component from G(λ, p), we get
P(D | A ∩ B ∩ C) ≥ p32M2 . Hence, since A ∩ B ∩ C ∩ D ⊆ Circ(R, 3R), we get

P(Circ(R, 3R)) ≥ P(A ∩ B ∩ C ∩ D) ≥ P(A ∩ B ∩ C)P(D | A ∩ B ∩ C) ≥ ρp32M2

2
,
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Λ(R)

Λv11 (K)

Λv12 (K)

Λv11(R)

0

Figure 2: An illustration of the event described in (3) for i = 11.

which finishes the proof of Step 3.

For the last step, we use a sprinkling argument.

Step 4. If Pλ′,p(H(κR,R)) → 1 as R → ∞ for some fixed positive parameters κ, λ′ and p, then for any
λ > λ′ one also has Pλ,p(H(2κR,R))→ 1.

Suppose that the statement holds for some given κ, λ′ and p, and consider the rectangles

Π = [0, 2κR]× [0, R], Π1 = [0, κR]× [0, R], Π2 = [κR, 2κR]× [0, R].

In particular, Π1 and Π2 are respectively the left and right halves of Π. Then, divide the segment between
the points (κR, 0) and (κR,R) into N segments I1, . . . , IN , of equal length, where N ∈ N will be chosen
appropriately later. Also, for any i ∈ {1, . . . , N} and j ∈ {1, 2}, let Bi,j be the event that Πj contains
a horizontal crossing which intersects Ii. For any fixed N , using our assumption and the square-root
trick (2), we have for both j ∈ {1, 2} that

max
1≤i≤N

Pλ′,p(Bi,j) ≥ 1− (1− Pλ′,p(H(κR,R)))1/N ,

which tends to 1 as R→∞. Denote by i0 the smallest index realizing the maximum above (it is the same
for both j ∈ {1, 2} by symmetry of Π1 and Π2), and let x0 be the midpoint of the interval Ii0 .

By Step 3, there exist R0 and δ > 0 such that for every R ≥ R0, Pλ′,p(Circ(R, 3R)) ≥ δ. Assume now
that R/N ≥ R0 and define

K :=
⌊

log4

(
min(κ, 1/2)N

)⌋
− 1, and D := R/N.

For every k ∈ {0, . . . ,K}, define further the annulus Ak := Ax0(4kD, 3 · 4kD) and note that, by construc-
tion, any horizontal crossing of Π1 or Π2 that intersects Ii0 also crosses each of these annuli. Denote by Dk
the event that there is a cycle inside the annulus Ak. Recall that by Step 3 and our choice of constants,
each of these events has probability at least δ > 0 under Pλ′,p. Let D := {

∑K
k=0 1Dk ≥ δK/2} denote the

event that in at least δK/2 many annuli Ak there exists a cycle. Since (1Dk)Kk=0 dominates an independent
family of K + 1 Bernoulli random variables with parameter δ, Chernoff’s inequality implies that D holds
with probability at least 1 − exp(−Ω(δK)). In particular, for every ε > 0 and for every sufficiently large
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γ′k` γ′k`+1

x0

Ak`

Ak`+1

Π

Figure 3: In the figure, the central vertex is x0; around it, there are two cycles, γk` and γk`+1
, positioned

in the annuli Ak` and Ak`+1
. Note that γ′k` = γk` but γ′k`+1

( γk`+1
(γ′k` and γ′k`+1

are thickened while
γk`+1

\ γ′k`+1
is transparent). The proportions of the side lengths of the boxes, centered at x0, are not the

real ones in the above schematic representation.

R (allowing for N and K to be sufficiently large as well), the event Bi0,1 ∩Bi0,2 ∩D holds with probability
at least 1− ε.

Now, we first sample the graph G(λ′, p), and perform a sprinkling to connect the crossings of Π1 and
Π2 intersecting Ii0 to one of the cycles around x0 on the event Bi0,1 ∩ Bi0,2 ∩ D. For this, fix some λ > λ′

and recall that by some well-known properties of Poisson Point Processes one may construct the graph
G(λ, p) by first sampling independent copies of G(λ′, p) and G(λ− λ′, p), and then adding independently
an edge between any pair of vertices v ∈ G(λ′, p) and v′ ∈ G(λ − λ′, p) satisfying ‖v − v′‖ ≤ 1 with
probability p.

So, assume that the event Bi0,1 ∩Bi0,2 ∩D holds for G(λ′, p), and let P1 and P2 be horizontal crossings
of Π1 and Π2, respectively. Also, set L = bδK/2c and let (γk`)

L
`=1 be cycles of G(λ′, p) provided by D

in the annuli (Ak`)
L
`=1, respectively. Note that parts of these paths may be outside Π. Thus, for every

` ∈ {1, . . . , L}, denote by γ′k` ⊆ γk` a path or a cycle whose vertices, except possibly the first and the last
one, are in Π and which separates x0 from the left and the right side of Π, see Figure 3. Then, connecting
the paths P1 and P2 to the same path or cycle among (γ′k`)

L
`=1 within Π forms a horizontal crossing of Π.

Now, for each j ∈ {1, 2} and each ` ∈ {1, . . . , L}, there are two edges, one in Pj and one in γ′k` ,
that intersect. By the triangle inequality, we claim that there is one endvertex of the first edge and one
endvertex of the second edge which both lie in Πj and are at distance at most 3/2 from each other: indeed,
letting uj,` and vj,` be the two endvertices of the first edge, wj,` be one of the endvertices of the second
edge that lies in Πj , and z be the intersection point of the two edges,

min{‖uj,`−wj,`‖, ‖wj,`−vj,`‖} ≤
‖uj,` − wj,`‖+ ‖wj,` − vj,`‖

2
≤
‖uj,` − z‖+ ‖z − vj,`‖+ 2‖z − wj,`‖

2
≤ 3

2
.

Fix two vertices as above, and note that the area of the region, obtained by intersecting the two unit
balls centered around them and Πj , is at least the area of the intersection of the unit balls around 0,
around (3/2, 0) and the quarter-plane {(x, y) : x, y ≥ 0}, which we denote by α. We conclude that,
for every ` ∈ {1, . . . , L}, P1 and P2 connect to γk` after adding G(λ − λ′, p), with probability at least
((1 − e−(λ−λ′)α)p2)2 and these events are all independent of each other since the annuli (Ak)

K
k=0 are

disjoint. Thus, for every sufficiently large R, the probability that G(λ, p) contains a horizontal crossing of
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Π is at least
(1− ε)(1− (1− (1− e−(λ−λ′)α)2p4)L) ≥ 1− 2ε.

Since this statement holds for any ε ∈ (0, 1), the proof of Step 4 is completed.

To conclude, note that altogether the four steps prove Proposition 5.2.

In the proof of Step 4 above we saw how to glue crossings of two parallel copies of the same rectangle
to form a longer crossing. In the next remark, we extend this gluing procedure to the setting of two
orthogonal copies of the same rectangle, as we shall need this later, e.g. in the proof of Theorem 5.1 below.
We omit its proof since it requires only minor modifications to the proof of Step 4 above.

Remark 5.3. Fix κ > 1 and some λ > λc(p). Then, consider the rectangles Π3 = [0, κR] × [0, R]
and Π4 = [0, R] × [0, κR]. Also, fix any positive integer N ≥ 3 and denote αN = 1/2 − N−1 and
βN = 1/2 +N−1. From Proposition 5.2 we know that the rectangle Π′3 := [1, κR− 1]× [αNR, βNR] ⊆ Π3

(respectively Π′4 := [αNR, βNR] × [1, κR − 1] ⊆ Π4) is crossed horizontally (vertically, respectively) in
G(λ′, p) a.a.s. as R → ∞, where λ′ = λ+λc(p)

2 . By considering a number of disjoint annuli around the
square [αNR, βNR]2, we deduce as in Step 4 that any horizontal crossing of Π′3 and any vertical crossing
of Π′4 connect within Π3∩Π4 in G(λ, p) with probability arbitrarily close to 1 when N is sufficiently large.

We are now in position to conclude the proof of the fact that a.a.s. Gn has a component of linear size.

Proof of Theorem 5.1. Fix some large R > 0 so that
√
n/R ∈ N. Then, tessellate the square Λn into

R × R squares and combine these into horizontal and vertical dominos, that is, rectangles of dimensions
2R×R and R×2R, respectively. By identifying dominos with vertices and declaring that two dominos are
neighbors if they are orthogonal and their intersection is an R×R square, this defines a graph isomorphic to
(a finite subgraph of) Z2. We now construct an auxiliary random subgraph Haux by applying the following
bond percolation on Z2: let λ′ := λ+λc(p)

2 , and call a domino admissible if a thinner inner rectangle, as
described in Remark 5.3, is crossed by an open path in G(λ′, p). In this case, we associate to this domino an
arbitrary one of these paths. Then, we say that the edge between two neighboring admissible dominos Π1

and Π2 is open if their corresponding paths are connected by a path in Π1∩Π2∩G(λ, p). By Proposition 5.2
and Remark 5.3, every edge is open with a probability that can be made arbitrarily close to 1 by choosing
R sufficiently large (see the proof of Step 4 above). Moreover, the states of two edges at distance larger
than 2 are independent. In other words, Haux is obtained via a 2–dependent bond percolation on Z2.
Thus, by applying Theorem 2.2 we deduce that, by choosing R sufficiently large, one can ensure that Haux

dominates an independent bond percolation with parameter q = 3/4, say. Moreover, it is well known
that the critical threshold for independent bond percolation on Z2 is equal to 1/2 and also that, in the
supercritical regime, by Theorem 2.4, the largest component in the box Λn is a.a.s. of size Ωq(n) as n→∞.
Finally, notice that, since R is a large but fixed constant, if Haux contains a component of linear size, then
Gn does as well, which concludes the proof of Theorem 5.1.

5.2 The second-largest component

This section is dedicated to the proof of the following theorem. Recall that we assume throughout that λ
and p satisfy λ > λc(p).

Theorem 5.4. A.a.s. the second-largest component in Gn(λ, p) has size Θλ,p((log n)2).

The proof is divided into two parts. We start with the lower bound.

Proposition 5.5. A.a.s. the second-largest component in Gn(λ, p) has size Ωλ,p((log n)2).
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Proof. Tessellate the square Λn into subsquares of side length logn
5λ . On the one hand, for any given square

of the tessellation, the probability that there is no point of Po(λ) in it at distance at most 1 from its
boundary is equal to exp

(
−λ
(

4 logn
5λ − 4

))
≥ n−4/5. On the other hand, by Theorem 5.1, the probability

that in such a square there is a connected component of size Ωλ,p((log n)2), whose vertices are all at distance
at least one from its boundary, is equal to 1 − o(1). In particular, for any square in the tessellation, the
probability that it contains a connected component of size Ωλ,p((log n)2) which is disconnected from the
rest of the graph Gn is at least (1 − o(1))n−4/5. Since there are n1−o(1) squares in the tessellation, by
Chernoff’s inequality a.a.s. there is a square that satisfies the above condition, concluding the proof of the
proposition.

We now aim at showing the upper bound. This will be done in several steps. The first point is to
show that, roughly speaking, in supercritical Bernoulli bond percolation on Z2 large boxes are typically
crossed by many disjoint paths (more precisely, the number of crossings typically has the same order as
the side length of the box), see Corollary 5.8 below for a more precise statement. Then, we use the fact
observed in the previous section that, in a sense, the continuous model dominates supercritical Bernoulli
bond percolation. We deduce that any small window of side length of order log n in Λn contains many
disjoint cycles surrounding its center. Finally, some delicate sprinkling allows us to conclude that a.a.s.
for each vertex v in Λn, no path from v exits the window around v without connecting to at least one of
these cycles.

Theorem 5.4 will then follow immediately by combining Proposition 5.5 with the following upper bound
for the second-largest component, which we state as a separate proposition.

Proposition 5.6. A.a.s. the second-largest component in Gn(λ, p) has size Oλ,p((log n)2).

To prove this proposition, we first need some preliminary results on ordinary Bernoulli bond percola-
tion, as mentioned above. For k ≥ 1 and x ∈ Z2, we define Ck(x) the k-th order connected component of
x as the set of vertices y ∈ Z2 which are connected to x by a path made of any number of open edges
and at most k− 1 closed edges. In particular, the first order connected component is the usual connected
component of x. Also, for A ⊆ Z2, define CAk (x) as the k-th order connected component of x in Z2 \ A.
We prove the following lemma:

Lemma 5.7. For any q ∈ [0, 1/2), there are positive constants α and C such that, for any positive integers
k and t, one has

Pq
(

sup
x∈Ck(0)

‖x‖ ≥ t
)
≤ Ck exp(−αt).

Proof. The proof proceeds by induction on k. The result for k = 1 follows immediately from Theorem 2.3.
Now assume that it holds for some k. Then, for any t ≥ 1, we aim to obtain an upper bound for
Pq(supx∈Ck+1(0) ‖x‖ ≥ t). To do this, we take a union bound over all pairs of neighbors v ∈ C1(0) and
w ∈ C2(0) \ C1(0) (that is, vertex v is in the component of the origin C1(0) and w is a neighbor of v in the
complement of C1(0)). Then, by the triangle inequality, the distance of a vertex x to the origin is at most

‖x‖ ≤ ‖x− w‖+ 1 + ‖v‖,

where we use that ‖v − w‖ = 1 as v and w are neighbors. As such, using a union bound yields

Pq
(

sup
x∈Ck+1(0)

‖x‖ ≥ t
)
≤

∑
v,w∈Z2

‖w−v‖=1

Pq
(
0↔ v, 0 6↔ w, sup

x∈CC1(0)k (w)

‖x− w‖ ≥ t− 1− ‖v‖
)
.

Then, by conditioning on C1(0) and using the induction hypothesis together with the fact that, for any
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fixed A ⊆ Z2, CAk (w) is dominated by Ck(w), we get

Pq
(

sup
x∈Ck+1(0)

‖x‖ ≥ t
)
≤ 4

∑
v∈Z2

Pq
(
0↔ v) · Pq

(
sup

x∈Ck(0)
‖x‖ ≥ t− 1− ‖v‖

)
≤ Cke−αt ·

(
4eα

∑
v∈Z2

Pq(0↔ v)eα‖v‖
)
, (4)

where the factor of 4 in the first inequality comes from the fact that every vertex in Z2 has 4 neighbors.
Applying again Theorem 2.3 yields the existence of a sufficiently small α so that the sum in (4) is finite,
which concludes the proof of the induction step for C = 4eα

∑
v∈Z2 Pq(0↔ v)eα‖v‖.

As a corollary, we obtain the following fact.

Corollary 5.8. Fix q > 1/2. There exist positive constants C and α, such that for any positive integers
k and N ,

Pq
(
There exists k disjoint horizontal crossings in [0, 2N ]× [0, N ]

)
≥ 1− Ck exp(−αN).

Proof. Consider the dual graph of Z2 (its vertices are the faces delimited by the edges of the graph Z2, and
two faces are adjacent if they share an edge). Recall that one can couple Bernoulli bond percolation with
parameter q (and 1− q, respectively) on Z2 (and its dual, respectively) by declaring an edge between two
vertices of the dual graph open if the edge separating the two corresponding faces of the original graph is
closed, and vice versa. Now it suffices to observe that if there are no k disjoint horizontal crossings of the
rectangle [0, 2N ]× [0, N ], then the k-th order connected component of one of the vertices, corresponding
to the squares with centers {(1/2 + i,−1/2)}2N−1

i=0 in the dual graph, reaches the top of the rectangle. By
Lemma 5.7, we know that for any such vertex this happens with probability at most Ck exp(−αN) for
some positive constants α and C. Then, using a union bound over the 2N dual vertices on the bottom
side and reducing α by factor of 2, say, concludes the proof.

We are now ready to prove the upper bound on the size of the second-largest component of Gn. Its
proof goes roughly as follows: To begin with, recall the dominos and the auxiliary graph Haux from the
proof of Theorem 5.1, and fix a vertex x ∈ Gn. We perform some delicate exploration of the space and
use sprinkling only in a few carefully chosen dominos which have the potential to connect a path from
x at distance at most 1 from them with a cycle in Gn going through them. When doing the sprinkling,
we require the formation of a dense net of well-connected points after the second stage, thus making sure
that all new points participate in the giant.

We will write Gxn for the percolated random geometric graph with vertex set (Po(λ) ∪ {x}) ∩ Λn.

Proof of Proposition 5.6. Fix λ′ = λ+λc(p)
2 and recall the construction of G(λ, p) from the independent

copies of G(λ′, p) and G(λ − λ′, p) used in Step 4 of the proof of Proposition 5.2. Consider a sufficiently
large R so that

√
n/R ∈ N. We construct a version of the auxiliary graph Haux from the proof of

Theorem 5.1 as follows: First, reveal G(λ′, p) and construct a vertex in Haux if its corresponding domino
contains a path as described in Remark 5.3. Then, construct an edge between two neighboring vertices of
Haux if, firstly, the paths in their corresponding dominos Π1 and Π2 intersect at a point surrounded by at
least K disjoint cycles in G(λ′, p) as in Remark 5.3, with K to be fixed, and secondly, they are connected
within Π1∩Π2 in G(λ, p). Note that, up to choosing R andK sufficiently large, Haux dominates a Bernoulli
bond percolation with parameter 3/4 in a box of Z2 with side length roughly

√
n/R. We next tessellate

this new box into overlapping horizontal and vertical rectangles with side lengths C1 log n and 2C1 log n

called log-dominos, where C1 is some large constant satisfying
√
n

RC1 logn ∈ N, which will be fixed later. Set

W :=

⌊
αC1

2 logC
· log n

⌋
,
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with α and C as in Corollary 5.8. Then, consider the event An that all log-dominos are crossed by at
least W disjoint paths in Haux along their longer side. Note that on An, since crossings of two orthogonal
overlapping log-dominos have a common vertex of Haux, all these paths are connected in Haux and thus
correspond to a connected component Ĝn of Gn of size Θ(n). Moreover, a union bound and Corollary 5.8
tell us that if C1 is chosen sufficiently large, then

P(An) ≥ 1− n2 exp

(
−αC1 log n

2

)
= 1− o(1). (5)

We aim to bound the probability that there is a connected component of Gn whose diameter is at least
4C1 log n without being connected to this giant component. For this, the strategy will be roughly to
show that if such a component exists, say in a square of side length of order log n centered at a point
X ∈ Po(λ)∩Λn, it will have to cross many cycles surrounding X in this window, and we estimate the cost
of this scenario by sprinkling G(λ−λ′, p) on top of G(λ′, p). Note that some care is required here; indeed,
adding a bit of intensity to the Poisson process could also help to create new connected components with
large diameter. In our proof, we first discover the cycles of Haux surrounding X by an exploration from
the boundary of a small box around it towards its center, then find possible paths starting from X and
coming close to these cycles, and finally perform a sprinkling only in constant-sized regions with the aim
to connect the path from X to any of the cycles with probability bounded away from 0.

To be more precise now, for any x ∈ Λn, consider the box Λxn := Λx(4C1 log n) and define the event

Oxn :=
{
x

Gxn←−→ R2 \ Λxn
}
,

that is, the connected component of x in Gxn reaches the complement of Λxn. Let also Uxn be the event
that in the graph Haux ∩ Λxn there are W disjoint cycles surrounding x or, in case x is at distance less
than 4C1 log n from ∂Λn, paths from the boundary of Haux to itself, which all surround the point x when
seen as cycles (parts of which may coincide with the boundary of Λn). Note the important fact that, by
construction,

An ⊆
⋂
x∈Λn

Uxn . (6)

On the event Uxn , we denote by C1 the outermost cycle of Haux in Λxn that surrounds x (or possibly the
outermost path from the boundary of Haux to itself in case x is at distance smaller than 4C1 log n from
∂Λn). With a slight abuse of notation, we alternatively view C1 as a cycle in the graph Haux, a set
of dominos in Λxn, or a cycle in Gn obtained by connecting the crossings associated to the sequence of
admissible dominos forming the cycle in Haux. Let also C+

1 be the enlarged cycle made of the points in Λxn
at distance smaller than one from C1 (viewed here as a union of dominos).

We next define C2 as the outermost cycle surrounding x in the restriction of Haux to the region enclosed
by C+

1 . Note that on Uxn , by repeating again this procedure, one can define inductively a sequence of disjoint
cycles C3, . . . , CW/2 (from now on, we assume W to be even since decreasing it by 1 does not modify the
argument), which all surround x and are at distance at least 1 from each other. Let us define the event Ũxn
that the cycles C1, . . . , CW/2 as constructed above exist. In particular, Uxn ⊆ Ũxn ; it will turn out later that
it is more convenient to work with the latter for some reasons related to measurability of these events.

Now, for i = 1, . . . ,W/2, denote

Bxn,i := Ũxn ∩ {none of the paths from x to R2 \ Λxn shares a vertex with Ci in Gxn},

and

Bxn :=

W/2⋂
i=1

Bxn,i.
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Recall that on the event An, the cycles C1, . . . , CW/2, are all part of the same connected component in
Gn. Therefore, if An holds and the connected component of a point X ∈ Po(λ) ∩ Λn reaches ∂ΛXn in Gn
without being part of the connected component containing the cycles C1, . . . , CW/2, then necessarily BXn
must hold. Thus, our aim now is to bound the probability of these events.

We start by observing that a union bound and Lemma 2.5 yield

P
( ⋃
X∈Po(λ)∩Λn

OXn ∩ BXn
)
≤ E

[ ∑
X∈Po(λ)∩Λn

1OXn ∩BXn

]
= λ

∫
Λn

P
(
Oxn ∩ Bxn

)
dx,

and our goal is thus to bound the probabilities on the right-hand side from above.

Claim 5.9. For any sufficiently large C1 and for every x ∈ Λn, P(Oxn ∩ Bxn) = o(n−1).

Proof of Claim 5.9. Fix x ∈ Λn, and for simplicity assume that it is at distance at least 4C1 log n from
∂Λn; the proof in the case of x being closer to ∂Λn is analogous. We first show that the probability that a
path in Gxn between x and R2 \Λxn does not intersect C1 is bounded away from 1. For this, note that C1 can
be determined by exploring the restriction of Haux to Λxn by starting from its boundary. More precisely, it
suffices to reveal only the connected components of the dual graph that touch the boundary of Haux ∩Λxn.

Let U1 denote the region inside Λxn which is enclosed by C1 (seen as a set of dominos). Then, con-
ditionally on C1, the distribution of the point configuration in U1 is still that of an independent Poisson
Point Process with intensity λ. Moreover, on the event Oxn, the connected component of x in Gxn ∩ U1

contains at least one vertex at distance smaller than one from C1. We define the first one of these vertices
as follows.

First, explore G(λ, p) in the entire region R1 ⊆ U1 enclosed by C+
1 . Then, for t ≥ 0, let Bt be the set

of points at distance at most t from R1, and let

T := inf{t ≥ 0 : there exists y ∈ ∂Bt such that x
Gxn∩Bt←−−−→ y}.

Note that T is a stopping time with respect to the filtration (Ft)t≥0 defined by

Ft := σ(C1, G
x
n ∩Bt), for all t ≥ 0.

Moreover, as we already mentioned, one has

Oxn ⊆ {T <∞}. (7)

Let XT be the (almost surely unique) point on ∂BT which is connected to x in Gxn ∩ BT . Let QT
be the (almost surely unique) closest R × R square from XT which is part of C1 (when viewing C1 as a
succession of R × R squares by dividing every domino in half), and let ST := ΛXT (1) ∩ (U1 \ BT ) be the
part of the box ΛXT (1) which is still unexplored when only C1 and BT has been revealed, see Figure 4. We
now define an event Exn on which XT connects to C1. Firstly, recall that we set λ′ = λ+λc(p)

2 , and we view
Po(λ) as the union of two independent Poisson Point Processes with intensities λ′ and λ−λ′, respectively.
Then, consider a tessellation into squares of side length 1/

√
5 of QT , and let Exn =

⋂
i≤3 Exn,i be the event

that the following three conditions are satisfied:

• Exn,1: There exists a set P ⊆ Po(λ−λ′) containing exactly one point in every square of the tessellation,
and such that every pair of points of P in adjacent squares is connected by an edge in G(λ− λ′, p)
(points in adjacent squares are always at distance smaller than one by construction).

• Exn,2: One of the points in P is connected by an edge between G(λ− λ′, p) and G(λ′, p) to the path
associated to one of the dominos in C1 containing QT (we recall that by definition these paths are
part of G(λ′, p)).
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QT

x

XT

Figure 4: The figure depicts x, XT and the square QT . The dominos in the cycle C1 are the ones
intersecting the blue curve. The black contour corresponds to the boundary of C+

1 while the red contour
is the boundary of BT .

19



• Exn,3: If XT is at distance smaller than 0.1 from QT , we ask that it is connected by an edge in
G(λ − λ′, p) to the closest point of P (this is possible since 0.1 +

√
2/5 < 1, where

√
2/5 is the

length of a diagonal of a square in the tessellation). If not, we require that in ST there is a point of
Po(λ− λ′) that is connected by an edge in G(λ− λ′, p) to both XT and a point of P.

Note that, conditionally on G(λ′, p), Exn is an increasing event which is measurable with respect to G(λ−
λ′, p). Moreover, by construction, conditionally on the event Exn , XT is connected to C1 (seen here as a
cycle in the original graph Gn) in G(λ, p). We claim that there exists ε > 0 (only depending on R, λ and
p) such that almost surely

P(Exn | FT ) · 1Ũxn∩{T<∞} ≥ ε · 1Ũxn∩{T<∞}. (8)

(Note that, while T is clearly FT -measurable, Ũxn is also FT -measurable since each of C2, . . . , CW/2 is
included in R1. In particular, this explains why it is more convenient to work with Ũxn instead of Uxn .) To
see this, notice first that, since T is a stopping time, conditionally on FT , the distribution of Gxn in the
region U1 \ BT is that of an independent percolated random geometric graph. Thus, given that the first
two conditions are satisfied, the third one is achieved at a constant cost independently of FT . Otherwise
said, there is ε′ > 0, such that

P(Exn | FT ) · 1Ũxn∩{T<∞} ≥ ε
′ · P(Exn,1 ∩ Exn,2 | FT ) · 1Ũxn∩{T<∞}.

On the other hand, the first two conditions are more delicate to handle. Observe that, by construction,
conditionally on FT , the only information that we have on QT is that it is part of one, two or three
admissible dominos whose associated paths get connected in QT when sprinkling Po(λ−λ′). In particular,
all dominos disjoint from the interior of U1 that contain QT are admissible and participate in the cycle C1.
This has as an important consequence that, conditionally on G(λ, p) in Λxn \ (QT ∪ U1) and on G(λ′, p)
in QT , the event that QT indeed closes the cycle C1 when sprinkling Po(λ − λ′) is increasing. Therefore,
by the FKG inequality (see Lemma 2.1), conditionally on this event, the probability that the first two
conditions of Exn are satisfied is greater than its corresponding probability without the conditioning. More
precisely,

P(Exn,1 ∩ Exn,2 | FT ) · 1Ũxn∩{T<∞} = P(Exn,1 | FT ) · P(Exn,2 | Exn,1,FT ) · 1Ũxn∩{T<∞}

≥
(

1− exp

(
−λ− λ

′

5

))|P|
p2|P| · p · 1Ũxn∩{T<∞},

where we used that there are at most 2|P| edges between adjacent squares in the tessellation of QT in the
definition of Exn,1. This proves our claim (8).

Now, letting B̃xn :=
⋂W/2
i=2 Bxn,i and observing that it is FT -measurable, we can write

P(Bxn ∩ {T <∞}) ≤ P(Exn ∩ B̃xn ∩ {T <∞}) ≤ E
[
P(Exn | FT ) · 1B̃xn∩{T<∞}

]
≤ (1− ε)P(B̃xn ∩ {T <∞}),

where for the last inequality we used that the event Exn has the same distribution conditionally on B̃xn and
Ũxn , respectively, and we can use claim (8) with 1B̃xn∩{T<∞} instead of 1Ũxn∩{T<∞}; indeed, the fact whether
or not there are edges between paths starting from x and some cycle among C2, . . . , CW/2 is independent
from the state of the edges between these paths and C1. Hence, by (7) and an immediate induction we
deduce that

P
(
Oxn ∩ Bxn

)
≤ P(Bxn ∩ {T <∞}) ≤ (1− ε)W/2.

Then, by choosing the constant C1 (defined in the beginning of the proof) large enough, we can make the
previous bound o(n−1), as desired.
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As a consequence of Claim 5.9, we get

P

 ⋃
X∈Po(λ)∩Λn

OXn ∩ BXn

 = o(1).

Together with (5) this shows that, with probability going to 1 as n→∞, any connected component which
is not connected to Ĝn is such that it does not exit the box ΛXn for any of the vertices X in this component.
To conclude, it suffices to observe that, by concentration of Poisson random variables, it is very unlikely
that one of these boxes contains much more than (log n)2 points. Indeed, applying again Lemma 2.5 gives

P
( ⋃
X∈Po(λ)∩Λn

{
|Gn ∩ ΛXn | > 2λ(8C1 log n)2

})
≤ E

[ ∑
X∈Po(λ)∩Λn

1|Gn∩ΛXn |>2λ(8C1 logn)2

]
= λ

∫
Λn

P
(
|Gxn ∩ Λxn| > 2λ(8C1 log n)2

)
dx ≤ λnP

(
|G ∩ Λ(4C1 log n)| > 2λ(8C1 log n)2 − 1

)
= o(1),

where we use Lemma 2.7 for the last equality. This concludes the proof of the proposition.

Remark 5.10. Apart from the size of the second-largest component in Gn, with minor modifications
the proof also implies a stretched exponential decay of |C1(0)| in the infinite-volume limit conditionally
on |C1(0)| < ∞. As above, the key point is to establish an upper bound on the diameter of C1(0). By
similar arguments one may show that the event En that ‘A(n, 2n) = Λ(2n) \Λ(n) contains Θ(n) cycles in
G(λ′, p) (with the notation from the previous proof) that are pairwise at distance at least 1 from each other
which all participate in the infinite component of G(λ′, p)’ is satisfied with probability 1− exp(−Ωλ,p(n)).
Thus, partitioning R2 \ Λ(1) into the annuli (A(2k, 2k+1))k≥0 and applying the argument from the proof

of Proposition 5.6 to each of them shows that, conditionally on E2k , the event 0
G(λ,p)←−−→ (R2 \ Λ(2k)) and

simultaneously |C1(0)| < ∞ holds with probability at most exp(−Ωλ,p(2
k)). Hence, since Λ(2blognc−2) is

included in the ball of radius n/2 around 0, the probability that the Euclidean diameter of C1(0) is at
least n is at most

P(C1(0) ∩ (R2 \ Λ(2blognc−2)) 6= ∅) ≤ P(C1(0) ∩ (R2 \ Λ(2blognc−2)) 6= ∅ | E2blognc−1) + P(E2blognc−1)

= exp(−Ωλ,p(n)).

5.3 The convergence of (n−1L1(Gn))n≥1.

First, we recall that the convergence in probability of (n−1L1(Gn))n≥1 to λθ(λ, p) is proved in [20]. On
the other hand, L1(Gn) is bounded by the total number of points of Po(λ) in Λn (which is distributed as
a Poisson random variable with parameter λn), so this sequence is also bounded in Lp for all p ≥ 1 (e.g.
as a consequence of Lemma 2.7). Therefore, the convergence to λθ(λ, p) holds in fact in Lp for all p ≥ 1.

We now prove the almost sure convergence by using the results of Section 5.2. Fix δ < 1/2, and for
any large integer n, let Tn be a tessellation of Λn into k := bn(1−δ)/2c2 squares with volume roughly nδ.
Then, consider the event An that:

• in each square in Tn, the largest component has a size of order at least cnδ, where c > 0 is some
sufficiently small constant, and any other component has diameter at most (log n)2;

• in Λn, the second-largest component has size at most (log n)3.

The proof of Proposition 5.6 shows that, if c is sufficiently small, An holds with probability 1− o(n−2).
Moreover, observe that on the event An, L1(Gn) is equal to the sum of k independent terms (Xi)

k
i=1, all

distributed as L1(Gnδ), up to some error term, which is due to the components lying in the region R of all
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points in Λn at distance at most (log n)2 from the boundaries of the squares of Tn. For all i ∈ {1, . . . , k}, let
us denote Yi = min{n−δXi, 2}, and Y = Y1 + . . .+Yk. Then, since Xi ≥ cnδ on the event An, EYi = Θ(1)
for any i ∈ {1, . . . , k}. Therefore, by Hoeffding’s inequality (which is a version of Chernoff’s inequality
for bounded random variables, see for example [14]), P(|Y − EY | ≥ k

logn) = exp(−nΩ(1)). At the same
time, Yi = n−δXi on the event that the i-th square in the tessellation contains at most 2nδ points, which
happens with probability at least 1−exp(−nΩ(1)) (see Lemma 2.7), and in particular EY = n−δEX+o(1).
As a consequence,

P
(
|X − EX| ≥ n

log n

)
≤ P

(
|Y − EY | ≥ k

2 log n

)
+

k∑
i=1

P(Yi 6= n−δXi)

≤ P
(
|Y − EY | ≥ k

2 log n

)
+ k exp(−Ω(nδ)) = exp(−nΩ(1)).

On the other hand, the event Dn that there are at most n1−δ/2(log n)3 points in R (which has area
O(n1−δ/2(log n)2)) holds with probability 1− o(n−2).

Finally, together with the fact that

1

n
E [X]→ λθ(λ) as n→∞,

we deduce that,

P
(
|L1(Gn)− EL1(Gn)| ≥ n

2 log n

)
≤ P

(
|X − E [X]| ≥ n

log n

)
+ P(An) + P(Dn) = o(n−2),

and the fact that
∑

n≥1 n
−2 <∞ together with the Borel-Cantelli lemma concludes the proof of the almost

sure convergence.
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