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Abstract

Although the detection of metastases radically changes prognosis of and treatment
decisions for a cancer patient, clinically undetectable micrometastases hamper a
consistent classification into localised or metastatic disease. This chapter discusses
mathematical modelling efforts that could help to estimate the metastatic risk in
such a situation. We focus on two approaches: 1) a stochastic framework describing
metastatic emission events at random times, formalised via Poisson processes, and
2) a deterministic framework describing the micrometastatic state through a size-
structured density function in a partial differential equation model. Three aspects
are addressed in this chapter. First, a motivation for the Poisson process framework
is presented and modelling hypotheses and mechanisms are introduced. Second, we
extend the Poisson model to account for secondary metastatic emission. Third, we
highlight an inherent crosslink between the stochastic and deterministic frameworks
and discuss its implications. For increased accessibility the chapter is split into an
informal presentation of the results using a minimum of mathematical formalism
and a rigorous mathematical treatment for more theoretically interested readers.

Keywords. Poisson process, structured population equation, metastasis, mathe-
matical modelling

1 Introduction

Metastasis is the spread of cancer cells to distant tissues, broadly divided into two
steps, physical dissemination and tissue-specific colonisation (Chaffer and Weinberg,
2011). While the first part is facilitated by a reversible phenotypic change of cancer
cells (Yu et al, 2013), successful colonisation involves complex tumour-microenvironment
interactions and is still not well understood (Sahai, 2007; Nguyen et al, 2009).

Being responsible for most cancer-related deaths, metastasis is a pivotal point in dis-
ease history (WHO, 2015). However, since metastases smaller than approximately 107

cells remain undetectable by medical imaging or other diagnostic tools, the clinical ap-
pearance of nonmetastatic disease may not reflect the true metastatic state of a patient.
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Therefore, estimating the metastatic risk in cancer patients without visible metastases
is of major clinical importance (Pantel et al, 1999). In this respect, mathematical and
statistical techniques have the potential to derive risk scores from clinical data.

Today, there is a large body of mathematical oncology literature; a recent review by
Scott et al (2013b) specifically focuses on the metastatic process. Here, we will briefly
summarise modelling efforts focusing on the metastatic risk.

The emergence of a metastatic phenotype is governed by a number of key muta-
tions (Gupta and Massagué, 2006; Hanahan and Weinberg, 2011). Michor et al (2006)
and Haeno and Michor (2010) translated this assumption into mathematical models,
thereby deriving a metastatic risk score from evolutionary principles. In an opinion pa-
per, Anderson and Quaranta (2008) qualified approaches explaining emergent behaviour
through lower-level mechanisms as “the essence of integrated mathematical oncology”.
While acknowledging the importance of such approaches for improving our understand-
ing of cancer biology, we will here focus on more data-driven models, featuring simpler
principles and thereby better matching the limited amount of information available in a
clinical situation.

In an early work, Koscielny et al (1984) established a link between primary tumour
size at surgery and risk of recurrence from a large cohort of breast cancer patients.
Later, Michaelson et al (2002) explained these and other data heuristically (see also
Section 2.1). In addition to such phenotypic characteristics, specific genetic signatures
of the primary tumour have been found to be associated with increased metastatic risk
(van de Vijver et al, 2002). These risk prediction models are static; they do not aim at
representing the time evolution of the disease.

In contrast, dynamic models allow to predict the modelled system at different times,
and more easily integrate data obtained at different observation times. To represent the
dependency of the metastatic process on the primary tumour, a dynamic description of
primary tumour growth is also integrated into metastatic models. The simplest dynamic
model for tumour growth is the exponential model, which adequately describes growth
under no restrictions (e.g. in vitro). In many cases of interest however, especially
in vivo, sigmoidal (s-shaped) models with an initial exponential phase and subsequent
deceleration are better suited to describe growth dynamics. The Gompertz model is a
classical example that has been commonly used (Wheldon, 1988; Norton, 1988; Hahnfeldt
et al, 1999). Power growth models have also been used for the description of clinical (Hart
et al, 1998) and preclinical tumour growth data (Benzekry et al, 2014b). Although much
more complicated models have been developed, e.g. describing the spacial evolution of a
tumour, here we restrict our discussion of primary tumour growth to the simple models
introduced above.

A stochastic dynamic model for metastasis was proposed by Bartoszyński et al (2001).
Their approach described the emission times of metastases as random events, formalised
through a so-called non-homogeneous Poisson process with an emission rate increasing
with primary tumour size (more details in Section 2.2). A variant of this model success-
fully described data on bone lesions from a metastatic breast cancer case (Hanin et al,
2006). The Poisson law allows for an interpretation of the emission process as being
“memoryless” and many of its properties can be analysed mathematically.

Dynamic models for metastasis can also be used to infer parts of the process that
cannot be observed experimentally or clinically. In this respect, Iwata et al (2000) pro-
posed a partial differential equation (PDE) model to describe the size distribution of
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metastatic colonies (the approach is explained further in Section 3.1). Thereby, they
characterised the micrometastatic state of a hepatocellular carcinoma patient from clin-
ical information on visible metastatic colonies. Later, this size-structured model was
also successfully incorporated into mixed-effects models to predict the size evolution of
metastases in animal models without (Hartung et al, 2014) and with (Benzekry et al,
2015) surgical removal of the primary tumour. A unique feature of this approach is
that it allows to integrate secondary metastatic emission into the model. Indirect ev-
idence on the capacity of metastases to spread further was given both through cancer
network models (Chen et al, 2009; Newton et al, 2012, 2013) and through the discovery
of self-seeding mechanisms (Comen et al, 2011; Scott et al, 2013a).

Outline

In this chapter, we focus on the two dynamical frameworks for metastasis described
above, the Poisson process and the size-structured model. Three aspects are covered:

• an accessible introduction to the Poisson process framework with an example mo-
tivating the approach,

• an extension of the Poisson model to account for secondary metastatic emission,

• the inherent link between the (extended) Poisson model and the size-structured
model.

Finally, we exploit the crosslink between the two frameworks in order to evaluate the
adequacy of the modelling assumptions in the deterministic model and to realise simu-
lations using both frameworks together.

We restrict our discussion to models describing the natural history of metastatic
progression. While surgery of the primary tumour can be represented in these models,
to incorporate the effect of systemic treatments a more general formalism would be
required. For the ease of presentation, we will not include this layer of complexity here,
although we point out that both frameworks have been extended to cover much more
general cases, including systemic treatment (Hanin and Zaider, 2011; Verga, 2010) and
more complex interactions between primary tumour and metastases (Benzekry et al,
2014a).

For increased accessibility for readers with a non-mathematical background, the
present work is split into two parts. First, the concepts behind these approaches are
presented informally (Sections 2 and 3), breaking down the mathematical formalism
as much as possible. Then, Section 4 contains rigorous definitions of all mathematical
objects; detailed proofs can be found in Appendix A.

2 A probabilistic framework for metastatic emission

2.1 Metastatic risk

Predicting the probability of metastatic disease at diagnosis of the primary tumour is
of major clinical importance since it is strongly linked to survival expectancy. One
possibility to build such a prediction model is by using large databases to correlate
information on the presence of metastases to primary tumour characteristics at diagnosis
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or surgery. As an example, we show a relationship established by Michaelson et al (2002)
between primary tumour size at surgery and probability of metastasis, based on clinical
data on breast cancer:

P(no metastases) = exp(−c dz), (1)

where d is the largest diameter of the primary tumour at surgery, and c, z are parameters,
which were determined from the cohort data. Such a relationship can be given by a
mechanistic interpretation on the following premises:

Power growth. The growth of the largest primary tumour diameter d follows a power
law, i.e. it is the solution of the ordinary differential equation d′(t) = aPG d(t)α.
In this equation, aPG determines growth speed and α allows to describe different
growth shapes: exponential growth (α = 1), linear growth (α = 0), and a spectrum
of sigmoidal growth patterns in between (0 < α < 1).

Power law of emission. During each (infinitesimal) time interval, there is a chance
that the primary tumour emits a metastasis. The emission intensity λ depends on
the current size of the primary tumour through a power law: λ(t) = b d(t)β. In this
context, the parameter b can be interpreted as the metastatic aggressiveness of the
emitting tumour. Iwata et al (2000) linked β to the mode of vascularisation of the
primary tumour: a uniform vascularisation would correspond to β = 3 (dimension
of space) and a surficial vascularisation to β = 2 (dimension of a surface).1

Memorylessness. The probability of emission of a metastasis is independent of the
previous emission history.

A typical model allowing a mathematical formalisation of the above premises is the
Poisson process. In principle, randomness of the metastatic emission process could
also be represented through different probability laws, thereby dropping the memory-
lessness property (as done e.g. by Bethge et al, 2015). However, the Poisson model
has several advantages: it does not require any additional statistical parameters, it has
a high degree of analytical tractability (i.e., many of its properties can be investigated
through mathematical analysis, not only by simulations), and there are efficient numer-
ical routines to simulate the process (e.g. by thinning, see Lewis and Shedler, 1979).
The detailed derivation of the empirical relationship is presented in Section 4.2.

2.2 Poisson processes

A Poisson process (PP) is a model for counting a series of events occurring at random
times. The precise definition of this process is given in Section 4, but its basic properties
are the two following ones (see Fig. 1 for an illustration):

1. The number of events in disjoint time intervals are independent. This translates
the memorylessness property since given some time t, the number of future events
(those happening at any time tfuture > t) do not depend on the past events (those
happening at any time tpast < t), but only depend on the present state of the
system at time t. For example, in Fig. 1), the time elapsed between t and T (4)

1The interpretation of β depends on the unit of the primary tumour measure. As an example, a
surficial vascularisation would correspond to β = 2 if size is measured in diameter, but to β = 2/3 (the
fractal dimension of a surface in space) if size is measured in volume.
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Figure 1: Schematic trajectory of a Poisson process. Here, T (1), . . . , T (4) are the times
at which events occur, and by time t we have 3 events, i.e. Nt = 3.

is independent of when exactly T (3) occurred. In other words, the system forgot
what happened up to time t.

2. The number of events Nt that occurred by time t has a Poisson distribution with
parameter

Λ(t) =
∫ t

0
λ(s)ds,

meaning that for the probability of having observed exactly k events until time t
is given by

P(Nt = k) = Λ(t)k

k! e−Λ(t).

These two properties characterise the PP, and can even serve as a definition in addition
to N0 = 0. From these two properties, one can show that the probability that the next
event time lies between times t and t+∆t is approximately λ(t)∆t. Hence, λ determines
the event frequency, and this is the reason why it is called the intensity function.

In the setting of this chapter, we are interested in describing the inception times
of new metastatic lesions via PPs. This means that Nt is the number of metastases
emitted until time t in our context. Following Bartoszyński et al (2001) and Hanin et al
(2006), we will first suppose that only the primary tumour has the capacity of seeding
metastases.

A constant emission intensity λ (called a homogeneous PP) would mean that a
tumour consisting of a few cells is equally likely to shed a metastasis as a large tumour
of several grams. Since such a model is not realistic, we need to consider time-varying
intensities λ (called non-homogeneous PPs). We will consider an emission intensity λ
that depends on some measure of primary tumour size Xp(t) (diameter, volume, number
of cells,...). The relationship between primary tumour size and emission intensity is
given by a size-dependent emission law γ, i.e. λ(t) = γ(Xp(t)).
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Before going into more detail, let us introduce a set of clinical parameters (sum-
marised in Table 1), which will be used throughout this chapter to further illustrate the
concepts. These parameters were estimated by Iwata et al (2000) from clinical data on
a hepatocellular carcinoma with multiple liver metastases. Although derived within the
deterministic framework of the size-structured model (see Section 3.1 for more details),
the inherent link with the PP framework described in Section 3.2 ensures that these
parameters are relevant in the PP model also; we will therefore use the same set of
parameters in both frameworks. Also, we will make use of a slight modification of this
clinical setting to predict the risk of distant metastasis after surgery. To represent the
impact of a surgery at time tsurgery, the emission intensity will be set to zero for all times
larger than tsurgery.

Model Parameter Symbol Value Unit
Growth (Gompertz law) Initial size x0 1 cells
g(x) = aGomp x log(x∞p /x) Growth rate aGomp 0.00286 days−1

Maximum size x∞p 7.3 · 1010 cells
Emission (power law) Rate constant b 5.3 · 10−8 days−1 cells−β

γ(x) = b xβ Emission power β 0.663 –

Table 1: Growth and emission laws derived by Iwata et al (2000) from clinical data
of a hepatocellular carcinoma case with multiple liver metastases. Primary tumour size
is given by X ′p = g(Xp), Xp(0) = x0, and primary tumour emission rate is given by
λ(t) = γ(Xp(t)). This set of parameters is used throughout the chapter; when used in
the PP framework, the emission rate λ is taken as the emission intensity.

Randomness of emission means that each emission time can be represented via its
probability density function; this is illustrated for the emission time of the first metastasis
T (1) in Fig. 2.

The number of metastases Nt is itself random in this model, but relevant determinis-
tic quantities can be derived from Nt, such as the expected number of metastases E[Nt]
or the probability of metastatic disease P(Nt > 0). Exploiting the memorylessness prop-
erty of PPs, these quantities can be computed without any need to simulate the process
(all the following formulas are proven in Appendix A):

E[Nt] =
∫ t

0
λ(s)ds (2)

and
P(Nt > 0) = 1− exp

(
−
∫ t

0
λ(s)ds

)
.

Also, a formula for the variance of Nt is obtained readily:

var[Nt] =
∫ t

0
λ(s)ds. (3)

The concepts Nt, E[Nt] and var[Nt] are illustrated in Fig. 3.
If a metastatic growth law is added to the model, the total metastatic mass (or total

cell count, sum of lesion volumes) Mt -again a random quantity- can be represented
via the emission times of the PP. Mt can be compared to quantitative measures of
total metastatic biomass, obtainable e.g. via bioluminescence imaging (Hartung et al,
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Figure 2: Probability density function of the time of emission of the first metastasis
T (1), for clinical parameters (Table 1). Its analytical formula is fT (1)(t) = λ(t)e−Λ(t).
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Figure 3: Illustration of the non-homogeneous Poisson process Nt, representing the
number of metastases emitted by the primary tumour (clinical parameters, Table 1). To
simulate the process, a set of random times is simulated, which then yields a random tra-
jectory. Repeated simulation would lead to different trajectories, and for a large number
of random trajectories the “average trajectory” is approximately given by the expectation
of the process E[Nt], which can be directly computed via Eq. (2). Variability around E[Nt]
can be computed as E[Nt]± 2 ·

√
var[Nt], where var[Nt] is the variance of Nt, computed

via Eq. (3).

7



2014). We will assume that all metastases follow the same deterministic growth law Xm,
but which can be different from the primary tumour growth law. Therefore, the size
difference among metastases is entirely explained by differences in metastatic inception
times, and Mt can be written as

Mt =
Nt∑
k=1

Xm(t− T (k)),

where Xm(0) = x0
m is the initial size of a metastasis. Expectation and variance of the

metastatic burden can also be calculated analytically:

E[Mt] =
∫ t

0
λ(s)Xm(t− s)ds. (4)

var[Mt] =
∫ t

0
λ(s)

(
Xm(t− s)

)2
ds. (5)

The assumption of equal growth law for the metastases greatly simplifies the model,
which has both its advantage (for identifiability from clinical data) and drawback (for
correct representation of cancer biology). Although beyond the scope of this chapter,
it could be replaced by a less restrictive assumption, e.g. by supposing that individual
growth parameters are drawn randomly from a normal distribution. However, even if
easily integrated into numerical algorithms, such a feature would be prohibitive for any
characterisation of the model through mathematical analysis.

2.3 Secondary emission

In the model described above, metastases do not have the capacity to emit metastases
themselves. However, it is easy to think of a case in which such a property would
make a difference in the model. For example, suppose that only a single metastasis is
emitted prior to surgery of the primary tumour2. If this metastasis cannot emit further
metastases, its successful removal cures the patient, but the second surgery may fail if
the metastasis is able to seed as well. Of course, there are other mechanisms potentially
leading to treatment failure (e.g. local recurrence, surgery impossible, etc.), but for
simplicity these are not considered here.

In this section, we extend the previously shown PP model to account for secondary
metastatic emission, using PPs as building blocks. Many of the advantages and limi-
tations of the PP model carry over to the extended model, and we do not claim that
a comprehensive framework for cancer metastasis is built in that way. The model does
have the virtue, however, that it is simple enough to have a chance to be parametrised
reasonably from clinical data.

Conceptually, the extension is straightforward: as before, the primary tumour grows
according to Xp and metastatic emission by the primary tumour is represented by a
PP with intensity λp. In addition, any emitted metastasis has the same capacities as
the primary tumour, but possibly with different growth and emission rates (Xm instead
of Xp, λm instead of λp). If we consider a metastasis emitted at time s, this means
that at a later time t, it reaches the size Xm(t− s) and emits metastases with intensity
λm(t − s). Every newly emitted metastasis starts a new PP. Also, each metastasis has

2We remind the reader that a surgery at time tsurgery is represented by setting the emission intensity
λ to zero for all times larger than tsurgery.
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a precursor (either the primary tumour or another metastasis). The whole model then
consists of the metastatic emission times from all of these PPs. Since each PP can start
other PPs, we call this model a PP cascade. We then need to make a hypothesis on how
the different emission processes play together.

Independence of emission. We assume that each metastasis emits independently
of any other metastasis, and also independently of the primary tumour. In other words,
all the PPs involved in the dynamics are independent.

Such an assumption is very important to be able to characterise the properties of the
PP cascade with mathematical techniques. Note that simply ordering all emission events
including secondary emissions by increasing emission time would not allow to use above
independence assumption since the inception time of each metastasis depends on its level
in the generational hierarchy (primary tumour, metastases emitted from the primary
tumour, metastases emitted from the metastases emitted from the primary tumour,
etc.). Therefore, in our model we have to account for the filiation of each metastasis.
For example, the emission time of the first metastasis emitted by the primary tumour
is denoted by T (1), and the emission time of the first metastasis emitted by the first
metastasis emitted by the primary tumour is denoted by T (1,1), which depends on T (1).
More precisely, T (1,1) = T (1) + T̃ (1,1) where T̃ (1,1) is the first emission time for the PP
generated at time T (1). Filiation in the cascaded model is further illustrated in Fig. 4;
a rigorous definition is provided in Section 4.4.

T (3) T (4)

T (1,1) T (1,2) T (1,3)

T (2,1) T (2,2) T (2,3)

T (2)

T (1,1,1) T (1,1,2)

PP (λp; 0)

PP (λm;T (1,1))

PP (λm;T (1))

PP (λm;T (2))

T (1)

Figure 4: Illustration of the first three generations in the Poisson process (PP) cascade.
Each long horizontal arrow represents a PP (from top to bottom: primary tumour, first
metastasis of first generation, second metastasis of first generation, first metastasis of
second generation emitted by first metastasis of first generation). Each short vertical
arrow represents an emission by the PP it points towards. This starts a new PP, con-
nected by a dashed line. In the notation PP (λ;T ), λ is the intensity of the PP and T
is its starting time for the new PP (emission times are counted from the start of the
respective PP and not from zero).
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3 Crosslink to a structured population model

3.1 Size-structured model

Let us consider a different framework for the description of metastasis, which also rep-
resents the metastatic process purely as growth and emission dynamics. To describe the
micrometastatic state of cancer patients, Iwata et al (2000) developed a size-structured
model. The model describes the time evolution of a density function ρ(t, x) representing
the size distribution of metastatic colonies: the integral

∫ x2
x1
ρ(x, t)dx represents the num-

ber of metastases at time t with size between x1 and x2. Therefore, ρ is like a smoothed
histogram of the number of metastases within different size ranges.

To better understand why a size density is considered, it is instructive to draw
an analogy to Lagrangian and Eulerian description of a fluid flow. In a Lagrangian
description, the observer follows individual particles through the flow field. In contrast,
in a Eulerian description, the observer considers the flow density through fixed reference
points. These two frames of reference are illustrated in Fig. 5. In this picture, metastatic
growth becomes “flow through size space”. In the PP model, this is represented in a
Lagrangian fashion: a growth function is associated to each individual metastasis. In
the size-structured model, a Eulerian frame of reference is used: the entire population of
metastatic tumours is described through a density function moving through size space
at a “speed” g(x) (i.e., the growth rate), in other words a size-structured density.

t

Time

s

Size
Xm(t− s)

Time

Size

Figure 5: Representation of the Lagrangian (left) and Eulerian (right) frames of ref-
erence for describing a population of growing metastases. Left: the observer (the eye
symbol) follows the growth curves of individual metastases; time and size coordinates
determine the observer’s position. Right: a static observer looks from the outside at the
growth speed g in fixed time-size areas. The relationship X ′m(t) = g(Xm(t)) holds.

Formalising metastatic growth from an Eulerian point of reference leads to a PDE
model. Metastatic emission is the boundary condition of the PDE, which means that
it describes the “arrival of new particles into size space” (see Eq. (9)). In contrast to
the PP cascade model, where metastatic emission was a stochastic process, emission is
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deterministic in the size-structured model. The emission dynamics consist of a primary
tumour contribution and a contribution of the metastases themselves, both depending
on the size of the emitting tumour. The size-dependency of the metastatic emission rate
entwines metastatic growth with metastatic emission dynamics, which requires special
attention during mathematical analysis of the model (Barbolosi et al, 2009) as well as
for designing an efficient numerical resolution scheme (Hartung, 2015).

To illustrate the model dynamics, the clinical parameters of Table 1 were used to
simulate the metastatic density function at different times (see Fig. 6). The model
equations, together with relevant properties of the size-structured model, are presented
in Section 4.3.
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t = 1 year

Nmicro = 0.1
Nmacro = 0
M = 320

t = 2 years

Nmicro = 14
Nmacro = 0.1
M = 8.5 · 106

t = 3 years

Nmicro = 118
Nmacro = 15
M = 3.8 · 109

with t
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Figure 6: Time evolution of the metastatic density in the size-structured model for
metastasis. Each solid line represents a snapshot of the metastatic density ρ at a par-
ticular point in time (1/2/3 years after inception of the primary tumour). Due to the
growth dynamics, the density is transported to the right. Several quantities computable
from the density are represented in the legend: Nmicro, number of metastases smaller
than 108 cells; Nmacro, number of metastases larger than 108 cells; M , total metastatic
mass (number of cells of all metastases together).

3.2 Bridging the gap: model observables

We now describe how the size-structured model and the PP cascade model are related.
At first view, the two frameworks describe quite different objects. While the PP cascade
is concerned with a collection of emission times with a generational hierarchy, the size-
structured model features a density function. Nevertheless, as we will see, the latter
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can be seen as the expectation of the PP cascade model. To describe precisely the
relationship between the models, we need to introduce model observables as a common
theme. In fact, we have already introduced some model observables without naming
them so, namely the number of metastases, the number of micro-/macro-metastases,
and the total metastatic mass.

Let us start with the size-structured model. For each function f , a model observable
(MO) is defined by

MOf (t) :=
∫ x∞m

x0
m

f(x)ρ(x, t)dx, (6)

where x0
m is the size of a newly emitted metastasis and x∞m denotes the theoretical upper

boundary, i.e. it is integrated over all possible sizes of metastases. Different choices for f
are possible, and each of them corresponds to one observable (this dependency is made
explicit through the subscript f in MOf ). The definition includes the above mentioned
quantities:

• The number of metastases is obtained for f = 1, i.e. the function that equals 1
for all x: MO1(t) =

∫ x∞m
x0

m
1 · ρ(x, t)dx = N(t)

• Similarly, the number of macrometastases is obtained with

fmacro(x) =
{

1 if x ≥ c
0 if x < c.

and the number of micrometastases with

fmicro(x) =
{

0 if x ≥ c
1 if x < c.

where c is the detectability threshold, which depends on the imaging modality.

• The total metastatic mass M is obtained with the identity function fId(x) = x for
all x:

MOfId(t) =
∫ x∞m

x0
m

xρ(x, t)dx = M(t).

Apart from allowing us to consider all these model-derived quantities at once, it is
important for the mathematical proofs in Section 4 to consider such a general notion of
observable.

Writing down the model observables in the PP cascade model is slightly more com-
plicated and it will be easier to illustrate it with an observable in the PP model without
secondary emission. There, a stochastic model observable (SMO) is defined by

SMOf (t) :=
Nt∑
k=1

f
(
Xm(t− T (k))

)
. (7)

The observables are defined in such a way that their interpretation is the same in both
frameworks. For example, f = 1 yields the number of metastases Nt

SMO1(t) =
Nt∑
k=1

1 = Nt,
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and fId yields the metastatic mass Mt

SMOfId(t) =
Nt∑
k=1

Xm(t− T (k)) = Mt. (8)

If we ordered all emission events including secondary emissions by increasing emission
time (and still called these times T (1),T (2), etc.), this could also be used as the definition
of a stochastic model observable in the PP cascade. However, in order to carry out
the calculations required for bridging the gap between the two frameworks, we need to
account for the filiation of a metastasis, i.e. its level in the generational hierarchy. An
explicit definition of the SMO using filiation is provided by Eq. (13) in Section 4.4.

Similarly to Eq. (2), where the expected number of metastases E[Nt] was computed
in the PP model without secondary emission, an expression for the expectation and
variance of each SMO can be derived in the PP cascade model. These computations are
more complicated and are presented in detail in Appendix A. It is then shown that the
expected value of each SMO is equal to the corresponding MO in the size-structured
model; in this sense, the size-structured model describes the mean behaviour of the PP
cascade model:

MOf (t) = E[SMOf (t)].

A rigorous mathematical statement of these results is given in Section 4.4.
The relationship between model observables in the two frameworks is a consequence

of a relationship between more fundamental mathematical objects (a random measure in
the PP cascade and an absolutely continuous measure in the size-structured model). For
the sake of simplicity, we do not present this additional layer here and refer to Section 4.4
for more details.

3.3 Implications

In physics, a density is usually derived on the hypothesis of a large number of constituting
particles. In their derivation of the size-structured model, Iwata et al (2000) applied these
principles to metastasis. However, this density notion is challengeable during the early
phase of metastasis where the number of metastases is low: what is one single metastasis
spread over the whole size range? The alternative interpretation as the expected value
of a cascade of PPs provides a more flexible framework. For any model observable (e.g.
the number of metastases), the adequacy of the size-structured model can be evaluated
by quantifying the variance of the corresponding PP cascade.

Let us illustrate this approach by an example. When Iwata et al (2000) parametrised
the size-structured model from clinical data on the size distribution of metastatic colonies,
their model did not represent randomness inherent in the emission process. To account
for this neglected source of variability, we use the crosslink between size-structured and
PP cascade models. By simulating the PP cascade model with the same parameters
(Table 1), standard deviation as well as typical trajectories of the stochastic model can
be taken as a measure of variability around the prediction by the size-structured model.
We choose the observables that Iwata et al (2000) used to parametrise their model, i.e.
the number of metastases exceeding certain size thresholds c (i.e. fmacro with different
thresholds). Simulation results are shown in Fig. 7.

The deviation of the data from the size-structured model prediction are much smaller
than the stochastic fluctuation of the PP cascade model, and we can interpret this from
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two different perspectives. Since these deviations are consistent with typical trajectories,
the data are in principle explainable by stochasticity of emission. On the other hand, if
we simulate a new patient with the stochastic model, the model parameters are likely to
change purely due to stochasticity of emission. To put it differently, the precision of the
parameters of the size-structured model is probably overestimated since the variability
by randomness of emission is not taken into account.
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Figure 7: Comparison of residual variability from the size-structured model fit and
stochastic variability of the PP cascade model. Expectation (bold solid line) is the size-
structured model prediction Nmacro(t), which was used to fit the clinical data from (Iwata
et al, 2000) (computed via Eq. (10)). Variability of the corresponding PP cascade model
is displayed in two ways: through a selection of stochastic trajectories (thin lines) and
E[Nmacro,t] ± 2 ·

√
var[Nmacro,t], with var[Nmacro,t] computed via Eq. (15) (Variability,

bold dashed line). As Iwata et al (2000), we count time from inception of the first
primary tumour cell, which was back-calculated from primary tumour data assuming
Gompertzian growth (hence the first CT scan with metastatic disease is approximately 3
years post-inception).

Parameter estimation is much easier in deterministic than in stochastic models. Nev-
ertheless, Hanin et al (2006) were able to estimate model parameters in their PP model
without secondary emission. However, if the statistical model becomes more compli-
cated, e.g. a mixed-effects model to deal with population data (Lavielle, 2014), the com-
putational and even methodological feasibility limit is quickly reached with a stochastic
structural model (Tornøe et al, 2005). In this case, the crosslink described in Section 3.2
can be exploited to derive reasonable parameters for simulations from the PP cascade
model by estimating the parameters of its mean, i.e. the size-structured model.

We applied this reasoning already in Fig. 7, in which the variability due to stochas-
ticity of emission was discussed. To give an example using the stochastic nature of
the PP cascade model more explicitly, we now use the stochastic framework to assess
the impact of secondary metastatic emission following surgery of the primary tumour.
Using the clinical parameters stated above, we assume that the primary tumour is sur-
gically removed 500 days after its inception, where it has reached a tumour mass of
180 g, and assess the number of metastases another 500 days later (Fig. 8). Since ev-
ery secondary emission is preceded by at least one primary emission, the probability
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of metastatic disease is the same in both models. However, on average a much larger
number of metastases is predicted from the model with secondary emission (E[Nt] = 4.7
with secondary emission vs. E[Nt] = 1.2 without).
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Figure 8: Probability of metastatic disease after surgery with (top panel) or without
(bottom panel) secondary metastatic emission (each based on 10.000 simulations). In
addition to the clinical parameters derived by Iwata et al (2000), it is assumed that the
primary tumour is surgically removed 500 days after its inception, and that the number
of metastases is evaluated another 500 days later.

This chapter focused on Poisson processes as possible frameworks describing metastatic
emission, usable to predict metastatic risk or micrometastatic dynamics. Although rep-
resenting randomness in a relatively simple way, PPs have appealing properties which
we have illustrated here. They are easily included as building blocks in larger models,
which has been shown with the PP cascade model, but which applies in a much more
general way. Also, they allow for a high degree of analytical tractability, which was
exploited here to characterise the mean behaviour of the PP cascade model.

Without doubt, further improvements of these techniques are required. In particular,
to allow for individualised risk predictions, patient characteristics have to be matched
to model parameters. In this respect, circulating biomarkers, such as circulating tu-
mour cells or circulating tumour DNA, can be a useful source of information, especially
since quantification methods are rapidly getting more reliable (Yu et al, 2013; Bulfoni
et al, 2016; Paoletti and Hayes, 2016). Both frameworks presented here allow for such
an extension. Once validated, a mathematical model can serve as a powerful tool for
informed treatment decisions for cancer patients by integrating case-specific information
into a consistent quantitative framework.
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4 Mathematical formalism and results

This section is devoted to the mathematical formalism and the derivations of the results
of sections 2 and 3. We provide here precise definitions of the mathematical objets and
rigorous computations and results. We start by introducing the non-homogeneous Pois-
son process and derive formula (1) from the Poisson assumption. Next, we summarise
key results for the size structured model, we introduce the probabilistic framework for
secondary emissions, and then derive rigorously the link between these two models.

Throughout this section (Ω,F ,P) will be a probability space on which all the random
variables we consider are defined.

4.1 Definition of a Poisson process and basic properties

The Poisson distribution is a standard way to count the occurrences of some events.

Definition 4.1 (Poisson distribution) Let µ ≥ 0. A random variable Y with values
in N is said to have a Poisson distribution with parameter µ, that we denote by Y ∼ P(µ),
if for all k ∈ N

P(Y = k) = e−µ
µk

k!
for µ > 0, and if P(Y = 0) = 1 in the case µ = 0.

The parameter µ ∈ R+ can be interpreted as the expected number of occurrences
since

E[Y ] = µ with Y ∼ P(µ).

In our context, it counts the number of metastases. However, at this level, we have
no information on the event times we are counting, nor how this number evolves with
respect to time. To handle the random nature of these times, let us introduce the Poisson
processes.

Definition 4.2 (Non-homogeneous Poisson process) Let λ : R+ → R+ be a con-
tinuous function. We say that (Nt)t≥0 is a non-homogeneous Poisson process with in-
tensity λ if:

1. N0 = 0;

2. the number of occurrences in disjoint time intervals are independent, i.e. for t0 <
· · · < tn, the random variables Ntk −Ntk−1, k = 1, . . . , n are independent;

3. For all t > 0, Nt has a Poisson distribution with parameter Λ(t), given by

Λ(t) =
∫ t

0
λ(u)du.

The terminology non-homogeneous comes from that the intensity function λ can vary in
time, as opposed to a homogeneous Poisson process for which λ is constant. Also, there
are several equivalent definitions for a non-homogenous Poisson process. For instance,
the third item above can be replaced by the following properties:

P(Nt+∆t −Nt = 1) = λ(t)∆t+ o(∆t) and P(Nt+∆t −Nt ≥ 2) = o(∆t),
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where o(∆t) stands for a function satisfying o(∆t)/∆t → 0 as ∆t → 0. In the previous
definition, we chose λ continuous since it is the case in the situations we consider.
Nevertheless, this assumption can be relaxed to more general non-negative functions.

Finally, from a Poisson process (Nt)t≥0, one can define the event times recursively as

T (k) = inf(t > T (k−1), Nt = Nt− + 1) for k = 1, 2, . . .

with T (0) = 0. We refer to Fig. 1 for an illustration of the relation between (Nt)t≥0 and
the event times. From these times, one can consider the following (random) measure on
R+:

P (du) :=
+∞∑
k=1

δT (k) ,

where δx stands for the Dirac distribution at point x. This measure is called the Poisson
random measure associated to (Nt)t≥0. From this definition of P , it is direct to see that
for any t ≥ 0,

Nt = P ([0, t]) =
+∞∑
k=1

1(T (k)≤t).

Here, 1A is the indicator function of A, that is it takes the value 1 if A is true and
0 otherwise. In the same way, the total metastatic biomass (8), for instance, can be
rewritten as

Mt =
+∞∑
k=1

1(T (k)≤t)Xm(t− T (k)) =
∫ t

0
Xm(t− u)P (du).

Expressions involving an integral with respect to the Poisson measure allow convenient
manipulations, as we will see in Appendix A using Proposition A.1.

4.2 Derivation of empirical formula from Poisson assumptions

Let us assume that the primary tumour diameter d(t) follows a power law:

d′(t) = a d(t)α, d(0) = d0, 0 < α < 1.

Power growth of volume with a power between 2/3 and 1 has been described in the
literature, leading to the above model if we assume a spherical shape of the tumour.

Furthermore, let us assume that metastatic emission is governed by a Poisson process
with intensity λ(t) = b d(t)β. We will require β > 0, since the emission rate should
increase with primary tumour size. Then, the number of metastases Nt by time t is
Poisson distributed with parameter Λ(t) =

∫ t
0 λ(s)ds and the probability of metastasis-

free disease at time t is given by

P(no metastases) = P(Nt = 0) = exp
(
− b

∫ t

0
d(s)βds

)
.

Here, we have

b

∫ t

0
dβ(s)ds = b

a

∫ t

0
d′(s)d(s)β−αds = b

a

∫ t

0

d

dt

(d(s)β−α+1

β − α+ 1
)
ds

= b

a(β − α+ 1)
(
d(t)β−α+1 − dβ−α+1

0
)
,
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and assuming that the tumour is initiated with a negligible size (d0 � d(t)), one obtains

b

∫ t

0
d(s)βds ≈ b

a(β − α+ 1)d(t)β−α+1.

This then yields the empirical formula

P(no metastases) = exp
(
− c d(t)z

)
,

with c = b
a(β−α+1) , z = β −α+ 1. Since β > 0 and α ≤ 1, we have z > 0, and the above

manuipulation is justified.
It should be noted that although c and z can be determined unambiguously from

information on metastatic status and primary tumour size at surgery if the patient
cohort is large enough, this does not hold for the growth and emission parameters of the
underlying Poisson process. To distinguish the growth and emission processes additional
information is required, such as repeated tumour size measurements over time.

4.3 Summary of key results on the size-structured model

The framework proposed by Iwata et al (2000) focuses on the evolution of a size-
structured metastatic density ρ. Originally, it was assumed that primary and secondary
tumours have the same growth and emission patterns. Here, we present an extended
version, described e.g. in Hartung (2015), where primary and secondary growth and
emission dynamics can be different.

As before, Xp denotes the size of the primary tumour and γp the primary tumour
emission law. The size of a metastasis is given by Xm, which is the solution of an
autonomous ordinary differential equation

X ′m(t) = g(Xm(t)), Xm(0) = x0
m.

The emission law of the metastases is γm. Then, the metastatic density function ρ solves
the following equation:

∂tρ(x, t) + ∂x[g(x)ρ(x, t)] = 0, (x, t) ∈ (x0
m, x

∞
m )× (0,+∞),

g(x0
m)ρ(x0

m, t) = γp(Xp(t)) +
∫ x∞m

x0
m

γm(x)ρ(x, t)dx, t ∈ (0,+∞),

ρ(x, 0) = 0, x ∈ [x0
m, x

∞
m ].

(9)
We also introduce the emission rates of the primary tumour and the metastases, respec-
tively:

λp(t) := γp(Xp(t)), and λm(t) := γm(Xm(t)).

Existence of a unique weak solution ρ to this model has been shown under general
conditions by Barbolosi et al (2009). For the purpose of this chapter, it is sufficient to
assume that λp, γm, and g are continuously differentiable nonnegative functions, and
that limt→+∞ λp(t) < +∞ and g(x∞m ) = 0.

Model observables for the size-structured model have been introduced in Eq. (6).
As shown by Hartung (2015), they can be characterised as the solutions of a Volterra
convolution equation:
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Theorem 4.1 For any f ∈ L∞([x0
m, x

∞
m ]), MOf is the unique solution of the following

renewal equation:

MOf (t) =
∫ t

0
λp(s)f(Xm(t− s))ds+

∫ t

0
λm(s)MOf (t− s)ds. (10)

This alternative formulation will be important to bridge the gap between the stochastic
and deterministic frameworks. Of note, it is also the basis of an efficient numerical
resolution algorithm (Hartung, 2015).

4.4 Probabilistic framework for secondary emission

Let us first remind the reader that we assume all the emissions of the primary tumour and
the metastasis to be independent. To exploit this property in calculations, we have to
take care of the filiation of each metastasis, i.e. the generational hierarchy (the primary
tumour, the metastases emitted from the primary tumour, the metastases emitted from
the metastases emitted from the primary tumour, etc.). We will therefore introduce a
cascade of independent PPs, and define recursively the emission times with respect to
the generational hierarchy.

• The emission times for the first generation of metastases, that is, the one emitted
by the primary tumour, are the event times of a PP (N (1))t≥0 with intensity λp;
we will write Π(1) := (T (j))j≥1 for the set of random emission times.

The emission times for the next generations of metastases are defined recursively.

• Let k ≥ 2 and n1, . . . , nk−1 ≥ 1. The j-th emission time for the k-th generation of
metastasis with filiation n1, . . . , nk−1 is defined by

T (n1,...,nk−1,j) := T (n1,...,nk−1) + T̃ (n1,...,nk−1,j) (11)

This is the time it takes for the offspring with filiation n1, . . . , nk−1 to give birth to
its j-th offspring. Here, (T̃ (n1,...,nk−1,j))j≥1 are the event times of a PP (N (n1,...,nk−1))t≥0
with intensity λm.

We refer to Fig. (4) for an illustration of these emission times, but for instance, T (2,3,4) is
the inception time of the 4th offspring produced by the 3rd offspring of the 2nd offspring
of the primary tumour. Using biologically relevant parameters, the expected emission
times for all but the first few generations are larger than any reasonable observation
timeframe. However, even if the contribution of late generations is very small, we need
to consider the whole cascade of emission times to bridge the gap to the size-structured
model.

Finally, assuming that{
(N (n1,...,nk))t≥0, k ≥ 1, n1, . . . , nk ≥ 1

}
is a family of independent PPs implies the biological assumption we made, which is that
the primary tumours and all the metastases emit independently from each other.

In the PP model without secondary emission, model observables were defined in
Eq. (7). With the PP cascade defined above, we are now able to extend this concept
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to secondary emission constructively. For f ∈ L∞([x0
m, x

∞
m ]), the SMO for the k-th

generation can be expressed by

SMO(k)
f (t) :=

∑
n1,...,nk≥1

1(T (n1,...,nk)≤t)f
(
Xm

(
t− T (n1,...,nk))), (12)

and we have the following definition.

Definition 4.3 (Model observables with secondary emission) The SMOs with sec-
ondary emission are given by

SMOf (t) :=
+∞∑
k=1

SMO(k)
f (t). (13)

In this definition, SMO(k)
f describes the contribution of the k-th generation to the SMO.

The following proposition links the MOs from the stochastic and deterministic frame-
works.

Proposition 4.1 (Link to the model observables) Let f ∈ L∞([x0
m, x

∞
m ]). The SMO

(13) is well defined in the sense that

P
(
∀t ≥ 0, 0 ≤ SMOf (t) < +∞

)
= 1.

Moreover, the expected value
ef (t) := E[SMOf (t)]

is finite for all t ≥ 0 and satisfies (10), so that

ef (t) = MOf (t).

Let us remark that the SMO (13) may also be seen as integrals w.r.t. a random measure

SMOf (t) =
∫
f(x)Mt(dx),

for any t ≥ 0, with
Mt :=

∑
k≥1

∑
n1,...,nk≥1

δXm(t−T (n1,...,nk)). (14)

This description is the key point to bridge the gap to the description of metastasis via
a structured population equation.

Theorem 4.2 (Link to the structured population model) For all t ≥ 0, the mea-
sure

µt := E[Mt]

is σ-finite, absolutely continuous with respect to the Lebesgue measure, and its Radon-
Nikodýn density is given by ρ(·, t),

dµt
dx

= ρ(·, t),

where ρ is the solution of the structured population equation (9).

20



The last result we present here concerns the variability of the SMO (13) with respect to
its mean MOf .

Proposition 4.2 (Variance of observables) Let f ∈ L∞([x0
m, x

∞
m ]). The variance of

the SMO
vf (t) := var[SMOf (t)]

is finite for any t ≥ 0, and satisfies a renewal equation:

vf (t) =
∫ t

0
λp(s)(f(Xm(t− s)) + em,f (t− s))2 +

∫ t

0
λm(s)vf (t− s). (15)

Here,
em,f (t) := E[SMOm,f (t)],

and where SMOm,f is defined as (13), but for a different cascade of PPs, which has only
λm for intensity (both for the first and subsequent generations).

This result is of great interest to design confidence intervals as illustrated in Sec-
tion 3.3. In fact, the renewal equation (15) allows the use of an efficient numerical
resolution algorithm (Hartung, 2015).

A Appendix: Proofs of results of Section 4.4

The proofs provided in this section are based on the following classical result on Poisson
random measures. We refer to Çınlar (2011, Chap. 6 pp. 251) for further details. Also,
note that this result directly yields Eqs. (2) through (5).

Proposition A.1 Let (Nt)t≥0 be a PP with intensity λ and P the corresponding Poisson
random measure. We have for φ, ψ ∈ L1(R+, λ(u)du) ∩ L2(R+, λ(u)du)

E
[∫

φ(u)P (du)
]

=
∫
φ(u)λ(u)du,

and

E
[∫

φ(u1)P (du1)
∫
φ(u2)P (du2)

]
=
∫
φ(u1)λ(u1)du1

∫
ψ(u2)λ(u2)du2

+
∫
φ(u)ψ(u)λ(u)du.

In other words, we can write the first order moment of the Poisson random measure P
in a more compact form

E[P (du)] = λ(u)du,

as well as its second order moment

E[P (du1)P (du2)] = λ(u1)λ(u2)du1du2 + δ(u1 − u2)λ(u1)du1du2.

Moreover, to simplify notations in the forthcoming computations, we introduce the fol-
lowing convolution-like notation: for functions φ, ψ

φ ∗ ψ(t) :=
∫ t

0
φ(t− u)ψ(u)du. (16)
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A.1 Proof of Proposition 4.1

We first need to establish the following lemma, which is proven further below.

Lemma A.1 We have
ef = λp ∗ (f(Xm) + em,f ), (17)

where em,f has been introduced in Proposition 4.2.

This is not exactly the renewal equation we want. To derive the desired equation (10)
we just have to make the following remark. Taking λp = λm, Lemma A.1 gives that em,f
satisfies

em,f = λm ∗ (f(Xm) + em,f ).

Hence, from (17), we have

ef = λp ∗ f(Xm) + λp ∗ (λm ∗ f(Xm) + λm ∗ em,f )
= λp ∗ f(Xm) + λm ∗ (λp ∗ f(Xm) + λp ∗ em,f )
= λp ∗ f(Xm) + λm ∗ ef .

(18)

Now, let T > 0, we have from the last line of (18) that for all t ∈ [0, T ],

ef (t) ≤ ‖f‖L∞([x0
m,x
∞
m ])‖λp‖L∞([0,T ])T + ‖λm‖L∞([0,T ])

∫ t

0
ef (u)du,

which gives using Gronwall’s inequality

sup
t∈[0,T ]

ef (t) ≤ CT,f,λp,λm‖f‖L∞([x0
m,x
∞
m ]) < +∞. (19)

As a result, ef (t) < +∞ for all t ≥ 0 since T is arbitrary, and also

P
(
SMOf (T ) < +∞

)
= 1.

Finally, using that t 7→ SMOf (t) is an increasing non-negative function, we have

P
(
∀t ∈ [0, T ], SMOf (t) < +∞

)
= 1,

and then

P
(
∀t ≥ 0, SMOf (t) < +∞

)
= lim

n→+∞
P
(
∀t ∈ [0, n], SMOf (t) < +∞

)
= 1.

Proof (of Lemma A.1) Let us start with the following remark. According to the
recursive definition (11) of our PP cascade, one has

T (n1,...,nk) = T (n1) + T̄ (n1,...,nk), (20)

where all the times {
T̄ (n1,...,nk), k ≥ 2, n1, . . . , nk ≥ 1

}
are independent of Π(1) := (T (n1))n1≥1.
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Now, from this consideration, by taking apart the first generation of metastasis, we
can rewrite SMOf as follows,

SMOf (t) =
∑
n1≥1

1(T (n1)≤t)f
(
Xm

(
t− T (n1)))+

∑
n1≥1

1(T (n1)≤t)SMOn1,f (t− T (n1))

:= I + J,

(21)

with
SMOn1,f (t) :=

∑
k≥2

∑
n2,...,nk≥1

1(T̄ (n1,...,nk)≤t)f
(
Xm

(
t− T̄ (n1,...,nk))),

which are independent of Π(1). Note that all the times

Π̄n1 :=
{
T̄ (n1,...,nk), k ≥ 2, n2, . . . , nk ≥ 1

}
,

can be defined following (11), but with λm as intensity for all the PPs since we consider
all the times from the second generation. Therefore, (SMOn1,f )n1≥1 are all independent.
Moreover, the shape of all the SMOn1,f is similar to SMOf except that the PPs in the
cascade have all λm for intensity. Hence, all the SMOn1,f have the same law as SMOm,f .

Using Proposition A.1 with the Poisson random measure P (1)(du) associated to
(N (1))t≥0 (with intensity λp), it is direct to see that

E[I] = E
[∫ t

0
f(Xm(t− u))P (1)(du)

]
=
∫ t

0
λp(u)f(Xm(t− u))du

= λp ∗ f(Xm)(t).

For the second term, using standard properties of the conditional expectation (especially
E[X] = E[E[X|Y ]]), one has

E[II] = E
[ ∑
n1≥1

1(T (n1)≤t)E
[
SMOn1,f (t− T (n1))

∣∣Π(1)]]
with

E
[
SMOf,n1(t− T (n1))

∣∣Π(1)] = E[SMOn1,f (t− u)]|u=T (1)
n1

= E[SMOm,f (t− u)]|u=T (n1)

= em,f (t− T (n1)),

(22)

and then ∑
n1≥1

1(T (n1)≤t)E
[
SMOn1,f (t− T (n1))

∣∣Π(1)] =
∫ t

0
em,f (t− u)P (1)(du).

This, together with Proposition A.1, yields

E[II] = E
[ ∫ t

0
em,f (t− u)P (1)(du)

]
=
∫ t

0
λp(u)em,f (t− u)du = λp ∗ em,f (t),

which concludes the proof of (17). �
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A.2 Proof of Proposition 4.2

Using the same strategy as for (18), the proof of (15) consists only in proving the
following relation:

vf = λp ∗
(
f(Xm) + em,f

)2 + λp ∗ vm,f , (23)

with vm,f (t) := var[SMOm,f (t)]. Knowing Proposition 4.1 and the formula of the vari-
ance, one can focus on the term e

(2)
f (t) := E[SMO2

f (t)]. Using (21), we have to compute
three terms

e
(2)
f (t) = E[I2] + 2E[IJ ] + E[J2].

The term E[I2]. Reminding that I =
∫ t

0 f
(
Xs
(
t− u

))
P (1)(du), and using Proposition

A.1, it is direct that

E[I2] =
( ∫ t

0
λp(u)f(Xm(t− u))du

)2
+
∫ t

0
λp(u)f2(Xm(t− u))du.

The term E[IJ ]. Using standard properties of the conditional expectation, and that
for all n1 ≥ 1

em,f (t) = E
[
SMOn1,f (t)

]
,

we have using (22)

E[IJ ] = E

 ∑
n1

1,n
2
1≥1

1(
T

(n1
1)≤t

)1(
T

(n2
1)≤t

)f(Xm
(
t− T (n1

1)))E[SMOn2
1,f

(
t− T (n2

1))∣∣∣Π(1)
]

= E

 ∑
n1

1,n
2
1≥1

1(
T

(n1
1)≤t

)1(
T

(n2
1)≤t

)f(Xm
(
t− T (n1

1)))em,f (t− T (n2
1))
 .

As result, according to Proposition A.1, we have

E[IJ ] = E
[∫ t

0
f
(
Xm(t− u)

)
P (1)(du)

∫ t

0
em,f (t− u)

)
P (1)(du)

]
=
∫ t

0
λp(u1)f

(
Xm(t− u1)

)
du1

∫ t

0
λp(u2)em,f (t− u2)du2

+
∫ t

0
λp(u)f

(
Xm(t− u)

)
em,f (t− u)du.

The term E[J2]. To compute this term we have to consider two cases

J2 =
∑
n1≥1

1(T (n1)≤t)SMO2
n1,f (t− T (n1))

+
∑

n1
1,n

2
1≥1

n1
1 6=n2

1

1
(T (n1

1)≤t)
1

(T (n2
1)≤t)

SMOn1
1,f

(t− T (n1
1))SMOn2

1,f
(t− T (n2

1))

:= J1 + J2.
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Following (22), but with SMO2
n,f instead, we have

E[J1] = E

∑
n1≥1

1(
T

(n1
1)≤t

)E[SMO2
n1,f

(
t− T (n1))∣∣∣Π(1)

]
= E

[ ∫ t

0
e

(2)
m,f (t− u)P (1)(du)

]
=
∫ t

0
λp(u)e(2)

m,f (t− u)du,

where e(2)
m,f (t) := E[SMO2

m,f (t)]. Now using that SMOn1
1,f

and SMOn2
1,f

are independent
for n1

1 6= n2
1, we have, using (22) and Proposition A.1 one more time,

E[J2]

= E
[ ∑
n1

1 6=n2
1

1
(T (n1

1)≤t)
1

(T (n2
1)≤t)

E
[
SMOn1

1,f
(t− T (n1

1))
∣∣Π(1)]E[SMOn2

1,f
(t− T (n2

1))
∣∣Π(1)]]

= E
[( ∑

n1≥1
1(T (n1)≤t)em,f (t− T (n1))

)2]
− E

[ ∑
n1≥1

1(T (n1)≤t)e
2
m,f (t− T (n1))

]
= E

[( ∫ t

0
em,f (t− u)P (1)(du)

)2]
− E

[ ∫ t

0
e2
m,f (t− u)P (1)(du)

]
=
( ∫ t

0
λp(u)em,f (t− u)du

)2
.

Combining the three previous computations, we obtain

e
(2)
f = (λp ∗ (f(Xm) + em,f ))2 + λp ∗ f2(Xm) + 2λp ∗ (f(Xm)em,f ) + λp ∗ e(2)

m,f . (24)

Considering this equation for λp = λs, we obtain, as for the expectation, a renewal
equation for e(2)

m,f , which yields for all t > 0

e
(2)
m,f (t) ≤ C1 + C2

∫ t

0
e

(2)
s,f (u)du,

and then for all T > 0,

sup
t∈[0,T ]

e
(2)
s,f (t) ≤ C1,T + C2,T sup

t∈[0,T ]
e2
s,f < +∞,

using Gronwall’s inequality and Proposition 4.1. This proves that E[SMO2
m,f (t)] < +∞

for all t ≥ 0, and then E[SMO2
f (t)] < +∞ by going back to (24). Now, rewriting (24),

we obtain
e

(2)
f = e2

f + λp ∗ (f(Xs) + es,f )2 + λp ∗ vs,f ,
which is (23).

A.3 Proof of Theorem 4.2

Using that Xm(s) ∈ [x0
m, x

∞
m ] for all s ∈ R+, the σ-finiteness and absolute continuity of

µt (for any t ≥ 0) are direct consequences of (19). Denoting by ρ̃t its Radon-Nikodým
density, Proposition 4.1 and Theorem 4.1 then yield∫ x∞m

x0
m

f(x)µt(dx) =
∫ x∞m

x0
m

f(x)ρ̃t(x)dx =
∫ x∞m

x0
m

f(x)ρ(t, x)dx,

for all f ∈ C([x0
m, x

∞
m ]) ∩ L∞([x0

m, x
∞
m ]), which concludes the proof.
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