A WEAK CONVERGENCE THEOREM FOR PARTICLE
MOTION IN A STOCHASTIC FIELD
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1. INTRODUCTION

Consider the two—dimensional diffusion process indexed by n > 1,
solution of the SDE

Uy R
(1.1) g = b=

dv;" = sin(U")dWy, Vo = v,
where (u,v) € {(km,0), k € Z}. The aim of this note is to prove the

Theorem 1.1. Asn — oo,

1
V"= v+ — x B,

V2

where {By, t > 0} is a standard one-dimensional Brownian motion,
and the convergence is in the sense of convergence in law in C (R4, R).

2. A CHANGE OF TIME SCALE

Note that for any n > 1, the law of {(U;*, V;"), t > 0}, the solution
of (1.1), is characterized by the statement

dUm .
dtt :n‘/t ’ U0:u7
d< V">
V"™ is a martingale, Tt = sin2(Ut")7 Vo' = .
Now define
Xe=Uplasy Yo =0V op,.

We first note that X, = u, Yy = n'/3v, Y is a martingale, and

dX. aor
t_ n—2/3 (n—2/3t) — nl/SVT'LrL_Q/St — }/;,

dt dt
d<yY >
<}f>t:7ﬂﬁ<<¥”1>nqmb-——E?—l

1

= sin?(X;).
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If we use a well-known martingale representation theorem, we can pre-
tend that there exists a standard Brownian motion {B;, ¢t > 0} such
that

Ty, Xy =
(2.1) a v oW

dY; = sin(X,;)dB;, Yo = n'/3v.

Note that the process {(X;,Y;), t > 0} still depends upon n, but only
through the value of Yj.
On the other hand, V;* = n='/3Y »/5,. Hence

n2/3¢
Vi"=v+ n_l/g/ sin(X;)dBs,
0

in other words V" is a martingale such that V' =y and

n2/3¢

< V" >= n_2/3/ sin?(X")ds.
0

Here we recall the fact that the process X depends upon n (through
the initial condition of Y), unless v = 0. Consequently

n2/3t
2.2 lim < V" >=1x lim —— sin®(X7")ds.
( ) N0 t oo n2/3t 0 ( s)
3. QUALITATIVE PROPERTIES OF THE SOLUTION OF (2.1)

We now consider the two—dimensional diffusion process

X,
2y X, =
(3.1) ar v 0T

dY; = sin(X;)dW;, Yy = v,

with values in the state-space F = [0,27) x IR\{(0,0), (7, 0)}, where
27 is identified with 0. We first prove that the process {(X;,Y;), t > 0}
is a conservative E—valued diffusion. Indeed,

Proposition 3.1. Whenever the initial condition (z,y) belongs to E,
inf{t >0, (X:,Y;) € {(0,0),(m,0)}} =400 a. s.
PrOOF: We define the stopping time
7 =inf{t, (X:,Y;) = (0,0)}.
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Let R, = X? + Y2 Z, =log Ry, t > 0. A priori, Z; takes its values in
[—00, +00). It6 calculus on the interval [0, 7) yields

dX}? = 2X,Ydt,

dY? = 2sin(X;)Y;dW; + sin®(X,)dt,

dR, d< R >,
dzy = —
TR, 2R?
_ 22X+ Sin2(Xt)dt B 281n2(X2t)Yt2 0
Rt Rt
+ Q—Yt Sm(Xt)th.
Ry

Now clearly |sin(z)| < |z, sin?(x) < 22, and it follows from the above
and standard inequalities that on the time interval [0, 7),

t
Zy > Zy— 2t +/ psdWs,
0

where |@s| < 1. Hence the process {Z;, t > 0} is bounded from below
on any finite time interval, which implies that 7 = +o00 a. s., since
T =inf{t, Z, = —oc}. A similar argument shows that 7/ = +o0 a. s.,
where

7= inf{t, (Xt,Y;) S {(070)7 (71—70)}}‘
]

We next prove the (here and below Bg stands for the o—algebra of
Borel subsets of F)

Proposition 3.2. The collection of transition probabilities
{p((z,y);t, A) ==P((X},Y}) € A), (z,y) € E, t >0, A€ Bg}

has a smooth density p((x,y);t, (z',y")) with respect to Lebesgque’s mea-
sure dz'dy’ on E.

ProOF: Consider the Lie algebra of vector fields on E generated by
X, = sin(:v)a%, Xy = [Xo, Xy] and X3 = [[Xo, Xy], Xo], where X, =
ya%. This Lie algebra has rank 2 at each point of E. The result is now

a standard consequence of the well-known Malliavin calculus, see e. g.
Nualart [4]. O



4 YVES ELSKENS AND ETIENNE PARDOUX

Proposition 3.3. The E-valued diffusion process {(Xt,Y;), t > 0}
is topologically irreducible, in the sense that for all (x,y) € E, t > 0,
A € Bg with non empty interior,

P,,((X,Y:) e A)>0.

PrROOF: From Stroock—Varadhan’s support theorem, see e. g. Tkeda—
Watanabe [2], the support of the law of (X}, Y;) starting from (X, Yy) =
(x,y) is the closure of the set of points which the following controlled
ode can reach at time ¢ by varying the control function {u(s), 0 <s <

t}:

T =), w0)=x

dy )

7, (8) = sin(z(s))uls),  y(0) =v.

It is not hard to show that the set of accessible points at time ¢ > 0 by
the solution of (3.2) is dense in E. The result now follows from the fact
that the transition probability is absolutely continuous with respect to
Lebesgue’s measure, see Proposition 3.2. O

(3.2)

We next prove the
Lemma 3.4.
IP (|Y;| — o0, as t — o00) = 0.

PrROOF: The Lemma follows readily from the fact that

Y, =W < /0 t sin2(Xs)ds> ,

where {W(t), t > 0} is a scalar Brownian motion. O

Hence the topologically irreducible E—valued Feller process {(X;, Y;),
t > 0} is recurrent. Its unique (up to a multiplicative constant) invari-
ant measure is the Lebesgue measure on F, in particular the process is
null-recurrent. It then follows from (ii) in Theorem 20.21 from Kallen-
berg [3]

Lemma 3.5. For all M > 0, ast — oo,

1

t
—/ 1{|ys|<M}dS—>O a. S.
t Jo -
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4. A PATH DECOMPOSITION OF THE PROCESS {X,,Y;), t > 0}

We first define two sequences of stopping times. Let Ty = 0 and
for ¢ odd, T, =inf{t > Ty, |Yi| > M + 1},
for ¢ even, T, =inf{t > Ty, V3| < M}.

Let now 79 = T1. We next define recursively {7, k > 1} as follows.
Given 75,_1, we first define

Ly =sup{€ >0, 71 > Top41}.
Now let

e = {Tk—b %f Tr—1 < Tor, 42,
Topy 3, if o1 > Top, 1o,
We now define
T, = inf{t >y, | Xy — X, | =20} Adnf{t > ni, |V =Y, | > 1}
It follows from the above definitions that
/t Ly, =41y sin®(X,)ds < Z/w sin?(X,)ds < /t sin?(X,)ds.
0 1 Y kAt 0
Define
KO = {k > 1, |V, — Y| < 1}
K'={k> 1, |Y, — Y| =1}
K, ={k>1, ny <t},
K} =K'NK,
K! = K'NnK,.
We first prove the

Lemma 4.1. .
i > (—m) =0
keK}
in L' () as M — oo, uniformly in t > 0.
PRrROOF: We shall use repeatedly the fact that since |Y;, | > M > 2,

Y, —1 > 1Y,,|/2. We have that (see the Appendix below), since
Te — e < A/ |Yy, ],

]P(k S K1|F"7k) S ]P( sup D/t _}/77k| 2 1|f77k>

N <t<T,

< 2exp(—|Y,,|/8m).
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Consequently, using again the inequality 7, —n, < 47/[Y;, |, we deduce
that

8

E [(Tk - nk>1{keK1}|fnk} < v
Yo

eXp<_|YTik|/87T)

On the other hand, whenever k € K°,
Tk — Tk > 27]-/(’}/;716’ + 1) = W/‘Y;lk‘

Now, provided ¢ > 47 /M,

9> ¢4 o
- M
>E | D (7 —m)
keK?
1
keK, Tk

since

P(k e K°|F,)=1-1P(k € K'|F,,)
>1—2exp(—M/8m)
>1/2,

provided M is large enough. Finally

1 B > her, Yol ']

-IE (e —mi) | < 32exp(—M/8n) =

t keZKtl B [ per, Yol ™']
= 32 exp(—M/8m)

— 0,

as M — oo, uniformly in ¢. 0



PARTICLE MOTION IN A STOCHASTIC FIELD 7

Now, for any k € K°,

Tk _ 27
/ sin?(X,)ds = T — 1k / sin?(z)dx
0

- 2m
Tk _
+/ sin?(X,) [1 - M} ds,
- 2m

and we have

/ " in2(X.) [1 _Ym =) 77’“)} ds

27

Tk [Tk Y;» . Y;
/ / sin?(X,) drds
e 2m

1 Tk Tk
<o | [ W vilaras
27T Mk Mk

Finally we have the
Lemma 4.2. Uniformly int > 0,

ZkeK? fnT: f;: Y, — Y[drds
Zker(Tk — M)

—

a. s., as M — oo.

PROOF: Since |Y; —Y,, | <1 forn, <t <7y,

(TR Y — Y |drds
ZkeK? fnk fnk | ’ < 2 sup (Tk - Uk)
Zkng (7 — k) keKD
< 8r/M

— 0,

as M — oo, uniformly in ¢. O
We are now in a position to prove the following ergodic type theorem,
from which Theorem 1.1 will follow :

Proposition 4.3. Ast — oo,
1/t 1
—/ sin?(X,)ds — -
t )y 2
in probability.

PRrRoOF: We first note that
[0,t] = BYU B} UG,
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where
B) = 10,t] 0 (Ugexo ks ) ,
B = [0,4] N (Upex: [k 78])
Ci = [0,¢]\(B} U By).
We have
1

t 1 t 1 t
L / Sin?(X,)ds = 1 / Lg(s) sin® (X, )ds + / 1 (5) sin®(X,)ds
0 0 0

1 t
—l—;/ 1¢,(s) sin?(X,)ds.
0

Now C; C {s € [0,t], |Ys| < M + 1}, so for each fixed M > 0,
it follows from Lemma 3.5 that the last term can be made arbitrarily
small, by choosing t large enough. The second term goes to zero as
M — oo, uniformly in ¢, from Lemma 4.1. Finally the first term equals
the searched limit, plus an error term which goes to 0 as M — oo,
uniformly in ¢, see Lemma 4.2 and the following fact, which follows
from the combination of Lemma 4.1 and Lemma 3.5 :

LS e -1

keK?

in probability, as n — oo. 0

We can finally proceed with the
PrROOF OF THEOREM 1.1 All we have to show is that (see

2.9))

(

1 n2/3¢ 1 2 1

lim / sin?(X")ds = — sin?(x)dzr = 5
0

n—00 n2/3t 2

in probability. In the case v = 0, the process {(X},Y;")} does not
depend upon n, and the result follows precisely from Proposition 4.3.
Now suppose that v # 0. In that case, the result can be reformulated
equivalently as follows. For some x € IR, y # 0, each ¢ > 0, define the
process { (X%, Y}), 0 < s <t} as the solution of the SDE
dX!
ds
dY! = sin(XHdWs, Y = Vty,

We need to show that

1 t 1 2m
—/ sin®(X!)ds — —/ sin®(z)dx
tJo 2w Jo

=Y} X{=ux,
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in probability, as t — co. Note that in time ¢, the process Y starting
from /ty can come back near the origin.

It is easily seen, by introducing the Markov time 7}, = inf{s >
0, |Y}| < M} and exploiting the strong Markov property, that

1

t
—/ 1{‘yt‘<M}d8 — 0 a.s.
t Jo o=

follows readily from Lemma 3.5. The rest of the argument leading to
Proposition 4.3 is based upon limits as M — oo, uniformly with respect
to t. It thus remains to check that the fact that Y now depends upon
t does not spoil this uniformity, which is rather obvious. 0

5. APPENDIX
For the convenience of the reader, we prove the following

Proposition 5.1. Letn and T be two stopping times such that 0 < n <
T<n+T and M; = f[f 0sdBs, where {By, t > 0} is a standard Brow-
nian motion and {@;, t > 0} is progressively measurable and satisfies
loe] <k a. s., forallt > 0. Then for all ¢ > 0,

C2
P My, —M,|>c) <2 —— .
(s =l z) <260 ()

PROOF: From the optional stopping theorem, it suffices to treat the
case n =0, 7 =T. We have

IP( sup |M;| >¢)=TP(sup M, >c)+1P( inf M, < —c).

0<t<T 0<t<T 0<t<T

We estimate the first term on the right. The second one is bounded by
the same quantity. Define for all A > 0

A N
M7 =exp | AM; — 5 pids | .
0

P( sup M, >c) <P(sup M} > exp(he — NE2T/2))

0<t<T 0<t<T
< exp(AN?k*T/2 — Ae),

from Doob’s inequality, since {M3, t > 0} is a martingale with mean
one. Optimizing the value of A, we deduce that

2
P M, >c) < —
<Oiltl£T 12 ¢) S exp ( 2k2T> ’

from which the result follows. O
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