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1. Introduction

Consider the two–dimensional diffusion process indexed by n ≥ 1,
solution of the SDE

(1.1)


dUn

t

dt
= nV n

t , U0 = u,

dV n
t = sin(Un

t )dWt, V0 = v,

where (u, v) 6∈ {(kπ, 0), k ∈ ZZ}. The aim of this note is to prove the

Theorem 1.1. As n→∞,

V n ⇒ v +
1√
2
×B,

where {Bt, t ≥ 0} is a standard one–dimensional Brownian motion,
and the convergence is in the sense of convergence in law in C(IR+, IR).

2. A change of time scale

Note that for any n ≥ 1, the law of {(Un
t , V

n
t ), t ≥ 0}, the solution

of (1.1), is characterized by the statement
dUn

t

dt
= nV n

t , U0 = u,

V n is a martingale,
d < V n >t

dt
= sin2(Un

t ), V n
0 = v.

Now define

Xt = Un
n−2/3t, Yt = n1/3V n

n−2/3t.

We first note that X0 = u, Y0 = n1/3v, Y is a martingale, and
dXt

dt
= n−2/3dU

n

dt
(n−2/3t) = n1/3V n

n−2/3t = Yt,

< Y >t = n2/3 < V n >n−2/3t,
d < Y >t

dt
= sin2(Xt).

1
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If we use a well–known martingale representation theorem, we can pre-
tend that there exists a standard Brownian motion {Bt, t ≥ 0} such
that

(2.1)


dXt

dt
= Yt, X0 = u,

dYt = sin(Xt)dBt, Y0 = n1/3v.

Note that the process {(Xt, Yt), t ≥ 0} still depends upon n, but only
through the value of Y0.

On the other hand, V n
t = n−1/3Yn2/3t. Hence

V n
t = v + n−1/3

∫ n2/3t

0

sin(Xs)dBs,

in other words V n is a martingale such that V n
0 = y and

< V n >t= n−2/3

∫ n2/3t

0

sin2(Xn
s )ds.

Here we recall the fact that the process X depends upon n (through
the initial condition of Y ), unless v = 0. Consequently

(2.2) lim
n→∞

< V n >t= t× lim
n→∞

1

n2/3t

∫ n2/3t

0

sin2(Xn
s )ds.

3. Qualitative properties of the solution of (2.1)

We now consider the two–dimensional diffusion process

(3.1)


dXt

dt
= Yt, X0 = x,

dYt = sin(Xt)dWt, Y0 = y,

with values in the state–space E = [0, 2π) × IR\{(0, 0), (π, 0)}, where
2π is identified with 0. We first prove that the process {(Xt, Yt), t ≥ 0}
is a conservative E–valued diffusion. Indeed,

Proposition 3.1. Whenever the initial condition (x, y) belongs to E,

inf{t > 0, (Xt, Yt) ∈ {(0, 0), (π, 0)}} = +∞ a. s.

Proof: We define the stopping time

τ = inf{t, (Xt, Yt) = (0, 0)}.
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Let Rt = X2
t + Y 2

t , Zt = logRt, t ≥ 0. A priori, Zt takes its values in
[−∞,+∞). Itô calculus on the interval [0, τ) yields

dX2
t = 2XtYtdt,

dY 2
t = 2 sin(Xt)YtdWt + sin2(Xt)dt,

dZt =
dRt

Rt

− d < R >t

2R2
t

=
2YtXt + sin2(Xt)

Rt

dt− 2
sin2(Xt)Y

2
t

R2
t

dt

+ 2
Yt sin(Xt)

Rt

dWt.

Now clearly | sin(x)| ≤ |x|, sin2(x) ≤ x2, and it follows from the above
and standard inequalities that on the time interval [0, τ),

Zt ≥ Z0 − 2t+

∫ t

0

ϕsdWs,

where |ϕs| ≤ 1. Hence the process {Zt, t ≥ 0} is bounded from below
on any finite time interval, which implies that τ = +∞ a. s., since
τ = inf{t, Zt = −∞}. A similar argument shows that τ ′ = +∞ a. s.,
where

τ ′ = inf{t, (Xt, Yt) ∈ {(0, 0), (π, 0)}}.

�

We next prove the (here and below BE stands for the σ–algebra of
Borel subsets of E)

Proposition 3.2. The collection of transition probabilities

{p((x, y); t, A) := IP((Xt, Yt) ∈ A), (x, y) ∈ E, t > 0, A ∈ BE}

has a smooth density p((x, y); t, (x′, y′)) with respect to Lebesgue’s mea-
sure dx′dy′ on E.

Proof: Consider the Lie algebra of vector fields on E generated by
X1 = sin(x) ∂

∂y
, X2 = [X0, X1] and X3 = [[X0, X1], X0], where X0 =

y ∂
∂x

. This Lie algebra has rank 2 at each point of E. The result is now
a standard consequence of the well–known Malliavin calculus, see e. g.
Nualart [4]. �
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Proposition 3.3. The E–valued diffusion process {(Xt, Yt), t ≥ 0}
is topologically irreducible, in the sense that for all (x, y) ∈ E, t > 0,
A ∈ BE with non empty interior,

IPx,y((Xt, Yt) ∈ A) > 0.

Proof: From Stroock–Varadhan’s support theorem, see e. g. Ikeda–
Watanabe [2], the support of the law of (Xt, Yt) starting from (X0, Y0) =
(x, y) is the closure of the set of points which the following controlled
ode can reach at time t by varying the control function {u(s), 0 ≤ s ≤
t} :

(3.2)


dx

ds
(s) = y(s), x(0) = x;

dy

ds
(s) = sin(x(s))u(s), y(0) = y.

It is not hard to show that the set of accessible points at time t > 0 by
the solution of (3.2) is dense in E. The result now follows from the fact
that the transition probability is absolutely continuous with respect to
Lebesgue’s measure, see Proposition 3.2. �

We next prove the

Lemma 3.4.

IP (|Yt| → ∞, as t→∞) = 0.

Proof: The Lemma follows readily from the fact that

Yt = W

(∫ t

0

sin2(Xs)ds

)
,

where {W (t), t ≥ 0} is a scalar Brownian motion. �

Hence the topologically irreducible E–valued Feller process {(Xt, Yt),
t ≥ 0} is recurrent. Its unique (up to a multiplicative constant) invari-
ant measure is the Lebesgue measure on E, in particular the process is
null–recurrent. It then follows from (ii) in Theorem 20.21 from Kallen-
berg [3]

Lemma 3.5. For all M > 0, as t→∞,

1

t

∫ t

0

1{|Ys|≤M}ds→ 0 a. s.
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4. A path decomposition of the process {Xt, Yt), t ≥ 0}

We first define two sequences of stopping times. Let T0 = 0 and

for ` odd, T` = inf{t > T`−1, |Yt| ≥M + 1},
for ` even, T` = inf{t > T`−1, |Yt| ≤M}.

Let now τ0 = T1. We next define recursively {τk, k ≥ 1} as follows.
Given τk−1, we first define

Lk = sup{` ≥ 0, τk−1 ≥ T2`+1}.
Now let

ηk =

{
τk−1, if τk−1 < T2Lk+2,

T2Lk+3, if τk−1 ≥ T2Lk+2,

We now define

τk = inf{t > ηk, |Xt −Xηk
| = 2π} ∧ inf{t > ηk, |Yt − Yηk

| > 1}.
It follows from the above definitions that∫ t

0

1{|Ys|≥M+1} sin2(Xs)ds ≤
∞∑
k=1

∫ τk∧t

ηk∧t
sin2(Xs)ds ≤

∫ t

0

sin2(Xs)ds.

Define

K0 = {k ≥ 1, |Yτk − Yηk
| < 1},

K1 = {k ≥ 1, |Yτk − Yηk
| = 1},

Kt = {k ≥ 1, ηk < t},
K0
t = K0 ∩Kt,

K1
t = K1 ∩Kt.

We first prove the

Lemma 4.1.
1

t

∑
k∈K1

t

(τk − ηk)→ 0

in L1(Ω) as M →∞, uniformly in t > 0.

Proof: We shall use repeatedly the fact that since |Yηk
| ≥ M > 2,

|Yηk
| − 1 ≥ |Yηk

|/2. We have that (see the Appendix below), since
τk − ηk ≤ 4π/|Yηk

|,

IP(k ∈ K1|Fηk
) ≤ IP( sup

ηk≤t≤τk
|Yt − Yηk

| ≥ 1|Fηk
)

≤ 2 exp(−|Yηk
|/8π).
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Consequently, using again the inequality τk−ηk ≤ 4π/|Yηk
|, we deduce

that

IE
[
(τk − ηk)1{k∈K1}|Fηk

]
≤ 8π

|Yηk
|

exp(−|Yηk
|/8π)

≤ 8π

|Yηk
|

exp(−M/8π)

On the other hand, whenever k ∈ K0,

τk − ηk ≥ 2π/(|Yηk
|+ 1) ≥ π/|Yηk

|.

Now, provided t ≥ 4π/M ,

2t ≥ t+
4π

M

≥ IE

∑
k∈K0

t

(τk − ηk)


≥ πIE

[∑
k∈Kt

1{k∈K0}
1

|Yηk
|

]

≥ π

2
IE

[∑
k∈Kt

1

|Yηk
|

]
,

since

IP(k ∈ K0|Fηk
) = 1− IP(k ∈ K1|Fηk

)

≥ 1− 2 exp(−M/8π)

≥ 1/2,

provided M is large enough. Finally

1

t
IE

∑
k∈K1

t

(τk − ηk)

 ≤ 32 exp(−M/8π)
IE
[∑

k∈Kt
|Yηk
|−1
]

IE
[∑

k∈Kt
|Yηk
|−1
]

= 32 exp(−M/8π)

→ 0,

as M →∞, uniformly in t. �
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Now, for any k ∈ K0,∫ τk

ηk

sin2(Xs)ds =
τk − ηk

2π

∫ 2π

0

sin2(x)dx

+

∫ τk

ηk

sin2(Xs)

[
1− Ys(τk − ηk)

2π

]
ds,

and we have∣∣∣∣∫ τk

ηk

sin2(Xs)

[
1− Ys(τk − ηk)

2π

]
ds

∣∣∣∣ =

∣∣∣∣∫ τk

ηk

∫ τk

ηk

sin2(Xs)
Yr − Ys

2π
drds

∣∣∣∣
≤ 1

2π

∫ τk

ηk

∫ τk

ηk

|Yr − Ys|drds.

Finally we have the

Lemma 4.2. Uniformly in t > 0,∑
k∈K0

t

∫ τk
ηk

∫ τk
ηk
|Yr − Ys|drds∑

k∈K0
t
(τk − ηk)

→ 0

a. s., as M →∞.

Proof: Since |Yt − Yηk
| ≤ 1 for ηk ≤ t ≤ τk,∑

k∈K0
t

∫ τk
ηk

∫ τk
ηk
|Yr − Ys|drds∑

k∈K0
t
(τk − ηk)

≤ 2 sup
k∈K0

t

(τk − ηk)

≤ 8π/M

→ 0,

as M →∞, uniformly in t. �

We are now in a position to prove the following ergodic type theorem,
from which Theorem 1.1 will follow :

Proposition 4.3. As t→∞,

1

t

∫ t

0

sin2(Xs)ds→
1

2

in probability.

Proof: We first note that

[0, t] = B0
t ∪B1

t ∪ Ct,
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where

B0
t = [0, t] ∩

(
∪k∈K0

t
[ηk, τk]

)
,

B1
t = [0, t] ∩

(
∪k∈K1

t
[ηk, τk]

)
,

Ct = [0, t]\(B0
t ∪B1

t ).

We have

1

t

∫ t

0

sin2(Xs)ds =
1

t

∫ t

0

1B0
t
(s) sin2(Xs)ds+

1

t

∫ t

0

1B1
t
(s) sin2(Xs)ds

+
1

t

∫ t

0

1Ct(s) sin2(Xs)ds.

Now Ct ⊂ {s ∈ [0, t], |Ys| ≤ M + 1}, so for each fixed M > 0,
it follows from Lemma 3.5 that the last term can be made arbitrarily
small, by choosing t large enough. The second term goes to zero as
M →∞, uniformly in t, from Lemma 4.1. Finally the first term equals
the searched limit, plus an error term which goes to 0 as M → ∞,
uniformly in t, see Lemma 4.2 and the following fact, which follows
from the combination of Lemma 4.1 and Lemma 3.5 :

1

t

∑
k∈K0

t

(τk − ηk)→ 1

in probability, as n→∞. �

We can finally proceed with the
Proof of Theorem 1.1 All we have to show is that (see (2.2))

lim
n→∞

1

n2/3t

∫ n2/3t

0

sin2(Xn
s )ds =

1

2π

∫ 2π

0

sin2(x)dx =
1

2

in probability. In the case v = 0, the process {(Xn
t , Y

n
t )} does not

depend upon n, and the result follows precisely from Proposition 4.3.
Now suppose that v 6= 0. In that case, the result can be reformulated
equivalently as follows. For some x ∈ IR, y 6= 0, each t > 0, define the
process {(X t

s, Y
t
s ), 0 ≤ s ≤ t} as the solution of the SDE

dX t
s

ds
= Y t

s , X
t
0 = x,

dY t
s = sin(X t

s)dWs, Y
t
0 =
√
ty,

We need to show that

1

t

∫ t

0

sin2(X t
s)ds→

1

2π

∫ 2π

0

sin2(x)dx
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in probability, as t→∞. Note that in time t, the process Y t starting
from

√
ty can come back near the origin.

It is easily seen, by introducing the Markov time τ tM = inf{s >
0, |Y t

s | ≤M} and exploiting the strong Markov property, that

1

t

∫ t

0

1{|Y t
s |≤M}ds→ 0 a. s.

follows readily from Lemma 3.5. The rest of the argument leading to
Proposition 4.3 is based upon limits as M →∞, uniformly with respect
to t. It thus remains to check that the fact that Y t

0 now depends upon
t does not spoil this uniformity, which is rather obvious. �

5. Appendix

For the convenience of the reader, we prove the following

Proposition 5.1. Let η and τ be two stopping times such that 0 ≤ η ≤
τ ≤ η + T and Mt =

∫ t
0
ϕsdBs, where {Bt, t ≥ 0} is a standard Brow-

nian motion and {ϕt, t ≥ 0} is progressively measurable and satisfies
|ϕt| ≤ k a. s., for all t ≥ 0. Then for all c > 0,

IP

(
sup
η≤t≤τ

|Mt −Mη| ≥ c

)
≤ 2 exp

(
− c2

2k2T

)
.

Proof: From the optional stopping theorem, it suffices to treat the
case η = 0, τ = T . We have

IP( sup
0≤t≤T

|Mt| ≥ c) = IP( sup
0≤t≤T

Mt ≥ c) + IP( inf
0≤t≤T

Mt ≤ −c).

We estimate the first term on the right. The second one is bounded by
the same quantity. Define for all λ > 0

Mλ
t = exp

(
λMt −

λ2

2

∫ t

0

ϕ2
sds

)
.

IP( sup
0≤t≤T

Mt ≥ c) ≤ IP( sup
0≤t≤T

Mλ
t ≥ exp(λc− λ2k2T/2))

≤ exp(λ2k2T/2− λc),

from Doob’s inequality, since {Mλ
t , t ≥ 0} is a martingale with mean

one. Optimizing the value of λ, we deduce that

IP( sup
0≤t≤T

Mt ≥ c) ≤ exp

(
− c2

2k2T

)
,

from which the result follows. �
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