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Abstract

We establish an averaging principle for a family of solutions (Xε, Y ε) := (X1, ε, X2, ε, Y ε) of
a system of SDE-BSDE with a null recurrent fast component X1, ε. In contrast to the classical
periodic case, we can not rely on an invariant probability and the slow forward component
X2, ε cannot be approximated by a di�usion process. On the other hand, we assume that the
coe�cients admit a limit in a �Cesaro sense. In such a case, the limit coe�cients may have
discontinuity. We show that we can approximate the triplet (X1, ε, X2, ε, Y ε) by a system of
SDE-BSDE (X1, X2, Y ) where X := (X1, X2) is a Markov di�usion which is the unique (in law)
weak solution of the averaged forward component and Y is the unique solution to the averaged
backward component. This is done with a backward component whose generator depends on the
variable z. As application, we establish an homogenization result for semilinear PDEs when the
coe�cients can be neither periodic nor ergodic. We show that the averaged BDSE is related to
the averaged PDE via a probabilistic representation of the (unique) SobolevW 1,2

d+1,loc(R+×Rd)�
solution of the limit PDEs. Our approach combines PDE methods and probabilistic arguments
which are based on stability property and weak convergence of BSDEs in the S-topology.

Keys words: SDE, BSDEs and PDES with discontinuous coe�cients, weak convergence of SDEs
and BSDEs, homogenization, S-topology, Averaging in �Cesaro sence, Sobolev Spaces, Sobolev solu-
tion to semilinear PDEs.
MSC 2000 subject classi�cations, 60H20, 60H30, 35J60, 60J35.

1 Introduction

The averaging of stochastic di�erential equations (SDE) as well as the homogenization of a partial
di�erential equation (PDE) is a process which consists in showing the convergence of the solution
of an equation with rapidly varying coe�cients towards an equation with simpler (e.g. constant)
coe�cients.

The two classical situations which were mainly studied are the cases of deterministic periodic
and random stationary coe�cients. These two situations are based on the existence of an invariant
probability measure for some underlying process. The averaged coe�cients are then determined as
a certain "means" with respect to this invariant probability measure.
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There is a vast literature on the homogenization of PDEs with periodic coe�cients, see for
example the monographs [5, 19, 31] and the references therein. There also exist numerous works
on averaging of stochastic di�erential equations with periodic structures and its connection with
homogenization of second order partial di�erential equations (PDEs). Closer to our concern here,
we can quote in particular [7, 8, 9, 12, 18, 20, 28, 33, 34] and the references therein.

In contrast to these two classical situations (deterministic periodic and random stationary coef-
�cients) which were mainly studied, we consider in this paper a di�erent situation, building upon
earlier results of [23] and more recently those of [1, 2]. We extend the results of [23] to systems of
SDE-BSDEs and those of [1, 2] to the case where the generator f of the BSDE component depends
upon the second unknown of the BSDE. As a consequence, we derive an homogenization result for
semilinear PDEs when the nonlinear part depends on the solution as well as on its gradient.

In [23], Khasminskii & Krylov consider the averaging of the following family of di�usions process
indexed by ε, 

X1,x,ε
s = x1 +

∫ s

0
ϕ(
X1,x,ε
r

ε
, X2,x,ε

r )dWr,

X2,x,ε
s = x2 +

∫ s

0
b̃(
X1,x,ε
r

ε
, X2,x,ε

r )dr +

∫ t

0
σ̃(
X1,x,ε
r

ε
, X2,x,ε

r )dWr,

(1.1)

where X1,x,ε is a one-dimensional null-recurrent fast component and X2,x,ε
t is a d�dimensional slow

component. The function ϕ = (ϕ1, ..., ϕk) [resp. σ̃ = (σ̃ij)i,j , resp. b̃ = (b̃1, ..., b̃d)] is Rk-valued
[resp. Rd×k-valued, resp. Rd-valued]. W is a k-dimensional standard Brownian motion. They
de�ne the averaged coe�cients as limits in the Cesàro sense. With the additional assumption that
the presumed limiting SDE has a weakly unique (in law) solution, they prove that the process
(X1,x,ε

s , X2,x,ε
s ) converges in distribution towards a Markov di�usion (X1,x

s , X2,x
s ). As a byproduct,

they obtain an homogenization property for the linear PDE associated to (X1,x,ε
s , X2,x,ε

s ) when the
limit Cauchy problem, associated to the limit di�usion (X1,x

s , X2,x
s ), is well posed in the Sobolev

spaceW 1,2
p, loc(R+×Rd) for each p ≥ d+2. Here,W 1,2

p, loc(R+×Rd) is the Sobolev space of all functions
u(s, x) de�ned on R+×Rd such that both u and all the generalized derivatives Dsu, Dxu, and D2

xxu
belong to Lploc(R+ × Rd).

Later, the result of [23] was extended to systems of SDE-BSDE in [1, 2]. Furthermore, in [1, 2]
the uniqueness of the averaged SDE-BSDE as well as that of the averaged PDE were established
under appropriate conditions, building upon the results from [25]. However, in [1, 2] the backward
equation does not depend on the control variable. More precisely, the result of [23] was extended,
in [1, 2], to the following SDE-BSDE.

X1,x,ε
s = x1 +

∫ s

0
ϕ(
X1,x,ε
r

ε
, X2,x,ε

r )dWr,

X2,x,ε
s = x2 +

∫ s

0
b̃(
X1,x,ε
r

ε
, X2,x,ε

r )dr +

∫ s

0
σ̃(
X1,x,ε
r

ε
, X2,x,ε

r )dWr

Y t,x,ε
s = H(Xx,ε

t ) +

∫ t

s
f(
X1,x,ε
r

ε
, X2,x,ε

r , Y t,x,ε
r )dr −

∫ t

s
Zt,x,εr dMXx,ε

r

(1.2)

where MXx,ε
is the martingale part of the process Xx,ε := (X1,x,ε, X2,x,ε).

The system of SDE-BSDE (1.2) is connected to the semilinear PDE,
∂vε

∂s
(s, x) = (Lεvε)(t, x) + f(

x1

ε
, x2, v

ε(t, x)), s ≥ 0

vε(0, x) = H(x); x = (x1, x2) ∈ R× Rd.
(1.3)
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where, Lε is the in�nitesimal generator associated to the Markov process Xx,ε := (X1,x,ε, X2,x,ε).
In the present paper we consider the situation where the coe�cient f depends upon x, y and z.

This more general situation will force us to develop a new methodology. That is, the SDE-BSDE
in consideration is de�ned in [0, t] by,

X1,x,ε
s = x1 +

∫ s

0
ϕ(
X1,x,ε
r

ε
, X2,x,ε

r )dWr,

X2,x,ε
s = x2 +

∫ s

0
b̃(
X1,x,ε
r

ε
, X2,x,ε

r )dr +

∫ s

0
σ̃(
X1,x,ε
r

ε
, X2,x,ε

r )dWr

Y t,x,ε
s = H(Xx,ε

t ) +

∫ t

s
f(
X1,x,ε
r

ε
, X2,x,ε

r , Y t,x,ε
r , Zt,x,εr )dr −

∫ t

s
Zt,x,εr dMXx,ε

r

(1.4)

where MXx,ε
is the martingale part of the process Xx,ε := (X1,x,ε, X2,x,ε), i.e.

MXx,ε

s :=

∫ s

0
σ(
X1,x,ε
r

ε
, X2,x,ε

r )dWr, 0 ≤ s ≤ t.

If we put for i, j = 1, ..., d ,

b :=

(
0

b̃

)
, a00 :=

1

2

k∑
i=1

ϕ2
i , σ̃ := (σ̃)ij , σ :=

(
ϕ
σ̃

)
, ã :=

1

2
(σ̃σ̃∗), a :=

1

2
(σσ∗)

(note that a is a (d+ 1)× (d+ 1) matrix, whose rows and columns are indexed from i = 1 to i = d,

while ã is a d × d matrix), and Xx,ε :=

(
X1,x,ε

X2,x,ε

)
, then the SDE-BSDE (1.4) can be rewritten in

the form 
Xx,ε
s = x+

∫ s

0
b(
X1,x,ε
r

ε
, X2,x,ε

r )dr +

∫ s

0
σ(
X1,x,ε
r

ε
, X2,x,ε

r )dWr,

Y t,x,ε
s = H(Xx,ε

t ) +

∫ t

s
f(
X1,x,ε
r

ε
, X2,x,ε

r , Y t,x,ε
r , Zt,x,εr )dr −

∫ t

s
Zt,x,εr dMXx,ε

r

(1.5)

In this case, the nonlinear part of the PDE associated to the SDE-BSDE (1.5) depends on both
the solution and its gradient. More precisely, this PDE takes the form

∂vε

∂s
(t, x) = (Lεvε)(s, x) + f(

x1

ε
, x2, v

ε(s, x), ∇xvε(s, x)),

vε(0, x) = H(x),
(1.6)

where Lε is the in�nitesimal generator associated to the Markov process Xx,ε := (X1,x,ε, X2,x,ε)
which is more precisely de�ned by

Lε := a00(
x1

ε
, x2)

∂2

∂2x1
+

d∑
j=1

a0j(
x1

ε
, x2)

∂2

∂x1∂x2j
+

d∑
i, j=1

aij(
x1

ε
, x2)

∂2

∂x2i∂x2j
+

d∑
i=1

b
(1)
i (

x1

ε
, x2)

∂

∂x2i
,

ϕ, σ̃ and b̃ are the coe�cients which were de�ned above, f and H are real valued measurable
functions respectively de�ned on Rd+1 × R× Rd+1 and Rd+1.

We want to study the asymptotic behavior of the SDE-BSDE (1.5) when ε→ 0. Note that under
suitable conditions upon the coe�cients, the function {vε(t, x) := Y ε

0 , t ≥ 0, x = (x1, x2) ∈ Rd+1}
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solves the PDE (1.6), see e. g. Remark 2.6 in [32]. Therefore, we will also study the asymptotic
behavior of the PDE (1.6).

As in [1, 2, 23], we consider here the averaged coe�cients as limits in the Cesàro sense. Usually,
the averaged coe�cients are computed as means with respected to the (unique) invariant probability
measure. In our situation, due to the fact that the fast component is null recurrent, we have no
invariant probability measure. Therefore the classical methods do not work. Furthermore, since the
variable Zε enters the generator of the backward component and is not relatively compact in any
reasonable topology, the identi�cation of the limit of the �nite variation process of the backward
component is rather hard to obtain. In particular the methods used in [1, 2] do not work.

In order to prove that the limit problem is well posed, we establish the existence and uniqueness
for the limiting SDE-BSDE as well as the unique solvability of the limiting PDE in the Sobolev
space W 1,2

p, loc(R+ ×Rd), p ≥ d+ 2 . We use Krylov's result [25] and standard arguments of BSDEs
to establish the existence and uniqueness of the limiting SDE-BSDE. The unique solvability of the
limiting PDE is more di�cult to prove. Due to the lack of (Hölder's) regularity of the di�usion
coe�cient, the pointwise estimates of the gradient can not be obtained in our situation. To ovoid
these problems, we develop a method which consists in establishing an Lp-local version of the
Calderón-Zygmund theorem. Our strategy is based on the W 1, 2

p, loc�estimate for solutions of linear
PDE with discontinuous coe�cients proved in [14]. We use the Gagliardo-Nirenberg interpolation
inequality in order establish a W 1, 2

p, loc-estimates for solution of semilinear PDEs. We then obtain a
compactness characterization of a suitable approximating sequence of PDEs from which we derive
the existence of solutions in the space W 1, 2

p, loc. The uniqueness is then deduced from the uniqueness
of the limiting SDE-BSDE and the Itô-Krylov formula.

We now pass to the averaging problem. The lack of a reasonable compactness of (Zε) create
some di�culties in the identi�cation of the limits. Note also that, since (Zε) is not a semimartingale,
then the method developed in [1, 2, 23] do not directly apply. To avoid these di�culties, we give
an approach which combines PDE methods with probabilistic arguments. Indeed, building on the
PDEs, we construct a sequence of semimartingales (Zε,n) that we substitute to (Zε). This allows
us to use the method developed in [1, 2, 23]. Next, we show that the problems with (Zε,n) and
that with (Zε) average to the same limit. The limits are obtained by combining a regularization
procedure, a stability property and weak convergence techniques already used in [1, 2, 12, 23]. Let
also note that, in a periodic media, some authors have studied the asymptotic behavior of the the
PDE (1.6). We refer to Gaudron and Pardoux [15] in the particular PDEs whose nonlinearity term
depends upon the gradient in a quadratic growth manner. The case where the nonlinearity depends
fully upon the gradient have been considered by Delarue [12], who developed some of the methods
which are needed in this paper.

The paper is organized as follows: In section 2, we give the formulation of the problem and state
the main results. Sections 3 and 4 are devoted to the proofs of the two main theorems.

2 Formulation of the Problem and the main results

2.1 Notations

For a given function g(x), we de�ne, whenever they exist, the following limits

g+(x2) := limx1→+∞
1
x1

∫ x1
0 g(t, x2)dt, g−(x2) := limx1→−∞

1
x1

∫ x1
0 g(t, x2)dt

and g±(x) := g+(x2)1{x1>0} + g−(x2)1{x1≤0}.
Let ρ(x) := a00(x)−1. The assumptions we shall make below will allow us to de�ne the averaged
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coe�cients b̄, ā and f̄ by:

b̄i(x) :=
(ρbi)

±(x)

ρ±(x)
, i = 1, ..., d

āij(x) :=
(ρaij)

±(x)

ρ±(x)
, i, j = 0, 1, ..., d (2.1)

f̄(x, y, z) :=
(ρf)±(x, y, z)

ρ±(x)
.

It is worth noting that b̄, ā and f̄ can be discontinuous at x1 = 0.

2.2 Assumptions

The following conditions will be used in this paper.

Assumption (A)

(A1) The functions b̃, σ̃, ϕ are uniformly Lipschitz in (x). Moreover, for each x1 their derivatives
in x2 up to and including second order derivatives are bounded continuous functions of x2.

(A2) There exist positive constants λ and C1 such that for every x and ξ, we have

ξ∗aξ ≥ λ ‖ξ|2

and 
(i) a00(x) ≤ C1

(ii)
∑d

i=1[ãii(x) + b2i (x)] ≤ C1(1 + |x2|2)

Assumption (B) Limits in the Cesàro sense.

(B1) We assume that, as x1 tends to ±∞,

1

x1

∫ x1

0
ρ(t, x2)dt (resp.

1

x1

∫ x1

0
Dx2ρ(t, x2)dt, resp.

1

x1

∫ x1

0
D2
x2ρ(t, x2)dt) tends to

ρ±(x2) (resp. Dx2ρ
±(x2), resp. D2

x2ρ
±(x2)) uniformly in x2.

We refer to ρ±(x2) as a limit in the Cesàro sense.

Here and below Dx2g and D2
x2g respectively denote the gradient vector and the matrix of

second derivatives in x2 of g.

(B2) For i = 0, ..., d, j = 1, ..., d, the coe�cients ρbj , Dx2(ρbj), D2
x2(ρbj), ρãij ,

Dx2(ρãij), D2
x2(ρãij) have averages in the Cesàro sense.

(B3) For any function g ∈ {ρ, ρbj , Dx2(ρbj), D
2
x2(ρbj), ρãij , Dx2(ρãij , D

2
x2(ρãij)}, there

exists a bounded function α such that
1
x1

∫ x1
0 g(t, x2)dt− g±(x) = (1 + |x2|2)α(x),

lim|x1|−→∞ supx2∈Rd |α(x)| = 0.

(2.2)
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Assumption (C)

(C1) There exist K > 0 and p ∈ N∗ such that for every (x, y, y′, z, z′) ∈ Rd+1 × R2 × R1×k × R1×k
(i) |f(x, y, z)− f(x, y′, z′)| ≤ K(|y − y′|+ |z − z′|)

(ii) |f(x, y, z)| ≤ K(1 + |x2|p + |y|+ |z|)

(iii) |H(x)| ≤ K(1 + |x1|p + |x2|p) and H belongs to W2
p, loc(Rd+1)

(C2) ρf has a limit in the Cesàro sense and there exists a bounded measurable function β such that
1
x1

∫ x1
0 ρ(t, x2)f(t, x2, y, z)dt− (ρf)±(x, y, z) = (1 + |x2|2 + |y|2 + |z|2)β(x, y, z)

lim|x1|→∞ sup(x2, y, z)∈Rd×R×R1×(d+1) |β(x, y, z)| = 0,
(2.3)

where (ρf)±(x, y, z) := (ρf)+(x2, y, z)1{x1>0} + (ρf)−(x2, y, z)1{x1≤0}.

(C3) For every x1, ρf has derivatives up to second order in x2, y, z and these derivatives are bounded
and satisfy (C2).

(C4) For every x1, the derivatives of f in x2, y and z up to and including second order derivatives
are bounded continuous functions.

Assume that (A), (B), (C) are satis�ed. It is well known that:

For every ε > 0 and every (t, x), the system of SDE-BSDE (1.5) has a unique solution which we
denote by (Xx,ε

s , Y t,x,ε
s , Zt,x,εs )0≤s≤t such that,

• (Y t,x,ε, Zt,x,ε) is FXx,ε
adapted, where FXx,ε

denotes the �ltration generated by the process
Xx,ε. More precisely, (Xx,ε, Y t,x,ε, Zt,x,ε) is adapted to the �ltration FB generated by the Brownian
motion B.

• supε E
(

sup0≤s≤t |Y
t,x,ε
r |2 +

∫ t
0 |Z

t,x,ε
r σ(Xr)|2dr

)
<∞.

• For every ε > 0, the semilinear PDE (1.6) has a unique solution vε in C1,2.

• Note that, since a is uniformly elliptic, we also have supε E
∫ t

0 |Z
t,x,ε
r |2dr <∞. Moreover, we

have the relation
vε(t, x) = Y t,x,ε

0 .

Let ā, b̄ and f̄ be the averaged coe�cients de�ned by (1.6). For a �xed (t, x), let (Xx
s , Y

t,x
s , Zt,xs )s∈[0,t]

denote the solution of the following system of SDE-BSDE


Xx
s = x+

∫ s
0 b̄(X

x
r )dr +

∫ s
0 σ̄(Xx

r )dWr, 0 ≤ s ≤ t.

Y x
s = H(Xx

t ) +
∫ t
s f̄(Xx

r , Y
t,x
r , Zt,xr )dr −

∫ t
s Z

t,x
r dMXx

r , 0 ≤ s ≤ t,
(2.4)

where MXx
is the martingale part of Xx.

The PDE associated to the averaged SDE-BSDE (2.4) is given by
∂v

∂s
(s, x) = (L̄v)(s, x) + f̄(x, v(s, x), ∇xv(s, x)), s ≥ 0.

v(0, x) = H(x).
(2.5)
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where L̄ is the in�nitesimal generator associated to the process Xx and given by,

L̄(x) :=
∑
i, j

āij(x)
∂2

∂xi∂xj
+
∑
i

b̄i(x)
∂

∂xi
, (2.6)

Our aim is show that,
1) equations (2.4) and (2.5) have (in some sense) unique solutions (Y t,x

s , Zt,xs ) and v.
2) (Xx,ε

s , Y t,x,ε
s , Zt,x,εs ) converges in law to (Xx

s , Y
t,x
s , Zt,xs ),

3) vε converges to v in a topology which will be speci�ed below.

According to Khasminskii and Krylov [23] and Krylov [25], we deduce

Proposition 2.1. Assume that (A), (B) are satis�ed. For each x ∈ Rd+1, the forward com-
ponent Xx,ε := (X1, x, ε, X2, x, ε) converges in law to the continuous process Xx = (X1,x, X1,x)
in C([0, t];Rd+1), equipped with the uniform topology. Moreover, Xx is the unique (in law) weak
solution of the forward component of the system of equations (2.4).

2.3 The main results

Proposition 2.2. (Uniqueness of the averaged BSDE) Assume (A), (B), (C) be satis�ed. Then,
for any (t, x) ∈ R+ × Rd+1, the backward component of the system of equations (2.4) has a unique
solution (Y t,x, Zt,x) such that,

(a) (Y t,x, Zt,x) is FX−adapted and (Y t,x
s ,

∫ t
s Z

t,x
r dMXx

r )0≤s≤t is continuous.

(b) E
(

sup0≤s≤t |Y
t, x
s |2 +

∫ t
0 |Z

t,x
r σ(Xx

r )|2dr
)
<∞.

(c) Moreover, Y t, x
0 is deterministic.

The uniqueness means that, if (Y 1, Z1) and (Y 2, Z2) are two solutions of the backward component

of (2.4) satisfying (a)�(b) then, E
(

sup0≤s≤t
∣∣Y 1
s − Y 2

s

∣∣2 +
∫ t

0

∣∣Z1
rσ(Xr)− Z2

rσ(Xr)
∣∣2 dr) = 0

Proof. Thanks to Remark 3.5 of [33], it is enough to prove existence and uniqueness of solutions
for the BSDE

Y t, x
s = H(Xx

t ) +

∫ t

s
f̄(Xx

r , Y
t, x
r , Zt, xr )dr −

∫ t

s
Zt, xr dWr, 0 ≤ s ≤ t.

Since f satis�es (C) and ρ is bounded, one can easily verify that f̄ is uniformly Lipschitz in (y, z),
i.e. satis�es (C1)(i). Existence and uniqueness of a solution follow from standard results for BSDEs,
see e. g. [32]. Finally, since (Y t, x

s ) is FXx

s −adapted then Y t, x
0 is measurable with respect to a trivial

σ−algebra and hence it is deterministic.

The following theorem is closely related to the previous proposition. It shows that the averaged
PDE is uniquely solved. It will also be used in the averaging of the SDE-BSDE as well as in the
averaging of the PDE. However, this theorem is interesting in its own since it establishes existence,
uniqueness and W 1,2

p,loc([0, t]×Rd)-regularity (for any p ≥ d+ 2) of the solution for semilinear PDEs
with discontinuous coe�cients. It extends, in some sense, the result of [14] to semilinear PDEs.

Theorem 2.3. Assume that (A), (B), (C) are satis�ed. Then, equation (2.5) has a unique solution
v such that v ∈ W 1,2

p,loc([0, t]×Rd) for any p ≥ d+2. Moreover, this solution satis�es v(t, x) = Y t,x
0 .

The averaging of the backward component of equation (1.5) is given by the following theorem.

Theorem 2.4. [Averaging of the SDE-BSDE (1.5)] Assume that (A), (B), (C) hold. Then, the
sequence of processes (Y t,x,ε

s ,
∫ t
s Z

t,x,ε
r dMXε

r )0≤s≤t converges in law to (Y t,x
s ,

∫ t
s Z

t,x
r dMXx

r )0≤s≤t in

D([0, t];R2), equipped with the S�topology. Here MXx
is the martingale part of Xx and (Y t,x

s , Zt,xs )
is the unique solution of the backward component of equation (2.4).
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Remark 2.1. In [23], the proof is mainly based on the fact that Xε is a semimartingale. Similarly,
in [1] the semimartingale property which enjoy Xε and Y ε plays an essential role, see remark 5.1
in [1]. If we try to follow [23] and [1], we need that Zε be a semimartingale also. Unfortunately
Zε is not a semimartingale. Our strategy then consists in replacing Zε by an �approximate� semi-
martingale. The task is to construct a continuous function v, which is smooth enough such that the
process (v(s, Xs), ∇xv(s, Xs)) := (Ys, Zs) is a unique solution of the limit BSDE. To this end, by
a compactness argument, we consider the molli�ed coe�cients (ān, b̄n, f̄n, Hn) and the associated
solution vn. Note that since our di�usion coe�cient a is discontinuous, then we can not obtain a
uniform bound for ∇xvn. We show that the sequence (vn) can be estimated in W1, 2

p, loc uniformly
in n. We then deduce a compactness characterization of the approximate sequence from which we
derive the weak convergence towards the function v. Further, we substitute Zε by ∇xvn(., Xε

. ) in
the BSDE-equation (2.5).

Corollary 2.5. (Averaging of the PDE (1.6)) Assume (A), (B), (C) hold. Then, for every (t, x) ∈
R+ × Rd+1, vε(t, x)→ v(t, x), as ε→ 0.

3 Proof of Theorem 2.3

Let ānij , b̄
n
i , f̄

n, Hn denote a regularizing sequence of āij , b̄i, f̄ , H respectively. For each n ≥ 1,
ānij , b̄

n
i , f̄

n, Hn are in�nitely di�erentiable bounded functions with bounded derivatives of every
order. Hn converges uniformly on compacts sets towards H. Moreover ānij , b̄

n
i , f̄

n converge respec-
tively to ā, b̄, f̄ in Lploc for every p > d+ 2. We assume in addition that the assumptions (A1), (A2)
and (C1) are satis�ed along the sequence, with constants which do not depend upon n.

Let us de�ne

L̄n(x) :=
∑
i, j

ānij(x)
∂2

∂xi∂xj
+
∑
i

b̄ni (x)
∂

∂xi
.

Consider the sequence of PDEs on [0, t]× Rd+1,
∂vn

∂s (s, x) = L̄n(x)vn(s, x) + f̄n(x, vn(s, x), ∇xvn(s, x)) = 0

vn(0, x) = Hn(x)

(3.1)

Note that, for each n, the PDE (3.1) admit a unique solution vn which is twice continuously
di�erentiable in (s, x) and three times continuously di�erentiable in x, see e.g. [27], Theorem 5.1,
p. 320.

Using standard arguments of SDEs and BSDEs one can show that there exists a constant k1 not
depending on n such that, for every (s, x),

|vn(s, x)| ≤ k1(1 + |x|p). (3.2)

Moreover for each n, thanks to Theorem 7.1, chapter VII, in Ladyzhenskaya et al. [27], or Proposi-
tion 3.3 in Ma et al. [29] (see also the probabilistic approach of Delarue [12] Thm. 6.1, pp. 85-89),
there are constants k2

n and k3
n such that

sup
(s, x)∈[0, t]×Rd+1

|∇xvn(s, x)| ≤ kn2 and sup
(s, x)∈[0, t]×Rd+1

∣∣D2
xxv

n(s, x)
∣∣ ≤ kn3 (3.3)
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3.1 Compactness of the sequence vn

We now give an a priori Lp-bounds for the derivatives of vn.

Proposition 3.1. For every p ∈ [1, ∞[ and R > 0 small enough, there exists a positive constant
C(C1, K, p, R, t, k1) not depending on n, such that∫ t

0

∫
B(0, R/2)

[
|∂svn|p + |∇xvn|p + |D2

xxv
n|p
]
dxds ≤ C(C1, K, p, R, t, k1)

Replacing v by v −H, the PDE (2.5) is reduced to a similar PDE with a null terminal datum.
Therefore, we can and do assume, throughout the proof of Proposition 3.1, that H = 0.

To establish this Proposition, we need some preparation and lemmas. We �rst recall the
Gagliardo-Nirenberg interpolation inequality which plays an important role (Theorem 3, sect. 4,
Chap. 8 in Krylov [26], see also Theorem 7.28, Chapter VII, in Gilbarg & Trudinger [16]):

Lemma 3.2. (The Gagliardo-Nirenberg inequality). Let Ω ⊂ Rd+1 be a bounded open set. For any
p ≥ 1, there exists a constant C = C(p, d, diameter(Ω)) such that for every function ψ ∈W 2

p (Ω),

‖∇xψ‖Lp(Ω) ≤ C
{
‖ψ‖W 2

p (Ω)

} 1
2 {‖ψ‖Lp(Ω)

} 1
2 . (3.4)

It follows from this inequality that, for every r > 0 there exists c = c(p, r, d) > 0 such that for
every ε > 0,∫ t

0

∫
B(0, r)

|∇xvn(s, x)|pdxds ≤ ε

∫ t

0

∫
B(0, r)

|D2
xxv

n(s, x)|pdxds (3.5)

+ c(p, r, d)(1 + ε−1)

∫ t

0

∫
B(0, r)

|vn(s, x)|pdxds

Since vn is uniformly bounded on compact set, then according to the previous inequality and the
fact that vn satis�es the PDE (3.1), it remains to show that for any small enough r > 0,

sup
n

∫ t

0

∫
B(0, r)

|D2
xxv

n(t, x)|pdxdt <∞ (3.6)

In order to establish the previous inequality, we use the strategy developed in the proof of
Theorem 9.11 in Gilbarg & Trudinger [16]. We rewrite the PDE (3.1) as follows

∂vn

∂s (s, x) = ānij(x1, 0) ∂2vn

∂xi∂xj
(s, x) + gn(s, x) = 0, s ∈ (0, t)

vn(0, x) = 0

(3.7)

where

gn(s, x) :=
[
ānij(x)− ānij(x1, 0)

] ∂2vn

∂xi∂xj
(s, x) + b̄ni (x)

∂vn

∂xi
(s, x)

+ f̄n(x, vn(s, x), ∇xvn(s, x))

For R > 0 and s ∈ [0, t], we set

• Qs, t, R := [s, t]×B(0, R), where B(0, R) denotes the ball of radius R.
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• meas(Qs,t,R) denotes the Lebesgue measure of the set Qs,t,R.

For σ ∈ (0, 1), we put σ′ :=
(1 + σ)

2
and consider η ∈ C∞0 (BR) a cut�o� function η : Rd+1 → [0, 1]

satisfying the following properties,
η(x) = 1, if x ∈ B(0, σR),
η(x) = 0, if |x| ≥ σ′R,
|∇xη(x)| ≤ 4(1− σ)−1R−1 if σR ≤ |x| ≤ σ′R,
|D2

xxη(x)| ≤ 16(1− σ)−2R−2 if σR ≤ |x| ≤ σ′R

Clearly the function un := ηvn solves the PDE
∂un

∂s (s, x) = ānij(x1, 0) ∂2un

∂xi∂xj
(s, x) +Gn(s, x) = 0, s ∈ (0, T )

un(0, x) = 0

where, Gn(s, x) := vnānij(x1, 0)
∂2η

∂xi∂xj
+ 2ānij(x1, 0)

∂vn

∂xi

∂η

∂xj
+ ηgn(s, x)

Since ān is bounded in x1 and locally Lipschitz with respect to x2, uniformly w.r.t. n, b̄n

satis�es (A2) and f̄n satis�es (C1-ii), we deduce that Gn is bounded on [0, t] × Rd+1. Let D be
an arbitrary bounded subset of Rd+1. Since ānij(., 0) and Gn are bounded, and Gn has a compact
support, then according to Theorem 2.5 from Doyoon & Krylov [14], there exists a positive constant
C = C(d, C1, K) not depending on n such that for every n, we have

un ∈W 1, 2
p ([0, t]×D) and ‖un‖

W 1, 2
p ([0,t]×D)

≤ C‖Gn‖Lp([0,t]×D). (3.8)

From the de�nition of the function η, we see that

‖D2
xxv

n‖Lp(Q0, t, σR) ≤ ‖D2
xxu

n‖Lp(Q0, t, σ′R) (3.9)

According to inequalities (3.8) and (3.9), it remains to estimate
∫ t

0

∫
B(0, σ′R)

|Gn(s, x1, x2)|pdxds.

We have ∫ t

0

∫
B(0, σ′R)

|Gn(s, x1, x2)|pdxds ≤ A1 +A2 +A3 (3.10)

where

A1 := C(p)

∫ t

0

∫
B(0, σ′R)

|vn|p|ānij(x1, 0)|p|D2
xxη(x)|pdxds

A2 := C(p)

∫ t

0

∫
B(0, σ′R)

|ānij(x1, 0)|p |∇xvn|p |∇xη(x)|pdxds

A3 := C(p)

∫ t

0

∫
B(0, σ′R)

|gn(s, x)|pdxds

The following lemma gives estimates for A1, A2 and A3.

Lemma 3.3. Let Q := Q0,t,R. For every p, there exist a positive constant C(p) such that for every
ε > 0,

(i) A1 ≤ C(p)(1− σ)−2pR−2p

∫ t

0

∫
B(0, σ′R)

|vn|pdxds
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(ii) A2 ≤ C(p)(1− σ)−pR−p

[
ε

∫ t

0

∫
B(0, σ′R)

|D2
xxv

n|pdxds+ (1 + ε−1)

∫ t

0

∫
B(0, σ′R)

|vn|pdxds

]

(iii) A3 ≤ C(p)

{
TRd+1 +Rp + (Rp + ε)

∫ t

0

∫
B(0, σ′R)

∣∣D2
xxv

n(s, x1, x2)
∣∣p dxds

+ (1 +Rp) (1 + ε−1)

∫ t

0

∫
B(0, σ′R)

|vn|pdxds

}
.

Proof. C(p) denotes a constant which may vary from line to line.
Inequality (i) follows from the properties of η and the boundness of ānij(x1, 0).
We use the properties of η, the boundedness of ānij(x1, 0) and inequality (3.5) to get inequality (ii).
We now show inequality (iii). We have∫ t

0

∫
B(0, σ′R)

|gn(s, x)|pdxds ≤ (In1 + In2 + In3 )

with

In1 :=

∫ t

0

∫
B(0, σ′R)

∣∣ānij(x)− ānij(x1, 0)
∣∣p ∣∣∣∣ ∂2vn

∂xi∂xj
(s, x)

∣∣∣∣p dxds
In2 :=

∫ t

0

∫
B(0, σ′R)

∣∣b̄ni (x)
∣∣p ∣∣∣∣∂vn∂xi

(s, x)

∣∣∣∣p dxds
In3 :=

∫ t

0

∫
B(0, σ′R)

∣∣f̄n(x, vn(s, x), ∇xvn(s, x))
∣∣p dxds

Since ānij is uniformly Lipschitz in x2, we obtain

In1 ≤ sup
Q

(
|x2|p

) ∫ t

0

∫
B(0, σ′R)

∣∣D2
xxv

n(s, x1, x2)
∣∣p dxds (3.11)

Noticing that b̄n satis�es assumption (A2-ii) then using inequality (3.5), we obtain

In2 ≤ C1

(
1 + sup

Q
|x2|p

) [
ε

∫ t

0

∫
B(0, σ′R)

|D2
xxv

n|pdxds (3.12)

+ c1

(
1 + ε−1

) ∫ t

0

∫
B(0, σ′R)

|vn|pdxds

]

Thanks to assumption (C) and inequality (3.5) we deduce

In3 ≤ K

(
meas(Q) + sup

Q
(|x2|p) +

∫ t

0

∫
B(0, σ′R)

|vn(s, x1, x2)|pdxds (3.13)

+ ε

∫ t

0

∫
B(0, σ′R)

|D2
xxv

n(s, x1, x2)|pdxds+ c1(1 + ε−1)

∫ t

0

∫
B(0, σ′R)

|vn|pdxds

)

Combining (3.11), (3.12) and (3.13), we deduce the desired result. Lemma 3.3 is proved.
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Lemma 3.4. (Lploc estimate of D2
xxv

n). For every p ∈ [1, ∞[ and R > 0 small enough, there
exists a positive constant C ′ = C ′(C1, k, p, R, t, k1) not depending on n, such that∫ t

0

∫
B(0, R/2)

|D2
xxv

n|pdxds ≤ 2R−2pC ′

Proof. Using inequalities (3.8), (3.9), (3.10) and Lemma 3.3, we show that

(1− σ)2pR2p

∫ t

0

∫
B(0, σR)

|D2
xxv

n(s, x)|pdxds

≤ C(p)

{
1 + (1− σ)pRp(1 + ε−1) + (1− σ)2pR2p[1 + 2(1 + ε−1)]

∫ t

0

∫
B(0, σ′R)

|vn(s, x)|pdxds

+ (1− σ)2pR2p

[
ε(1− σ)−pR−p + sup

Q
(|x2|p)(1 + ε) + 2ε

] ∫ t

0

∫
B(0, σ′R)

|D2
xxv

n(s, x)|pdxds

+K(1− σ)2pR2p
(
meas(Q) + sup

Q
(|x2|p)

)}
Using inequality (3.2) and the fact that |x| ≤ R in the set Q := Q0,t,R, we show that there exists
a positive constant C(C1, K,R, p, k1, ε,meas(Q)) such that

(1− σ)2pR2p

∫ t

0

∫
B(0, σR)

|D2
xxv

n|pdxds

≤ C (C1, K, R, p, k1, ε, meas(Q))

+ C(p)(1− σ)−pR−p

[
ε(1− σ)2pR2p

∫ t

0

∫
B(0, σ′R)

|D2
xxv

n|pdxds

]

+ C(p) sup
Q

(|x2|p)

[
(1− σ)2pR2p

∫ t

0

∫
B(0, σ′R)

∣∣D2
xxv

n
∣∣p dxds]

+ C(p)(1 + sup
Q
|x2|p)

[
ε(1− σ)2pR2p

∫ t

0

∫
B(0,σ′R)

|D2
xxv

n|pdxds

]

+ C(p)

[
ε(1− σ)2pR2p

∫ t

0

∫
B(0,σ′R)

|D2
xxv

n|pdxds

]

Let Λ̄ := 1 + sup
Q
|x2|p. We Choose ε :=

1

4

{
22pΛ̄C(p)

[
(1− σ)−pR−p + 2

]}−1
and R be su�ciently

small so that 22pC(p)supQ(|x2|p) ≤ 1
4 then use the fact that 1−σ

2 = 1− σ′ to obtain

(1− σ)2pR2p

∫ t

0

∫
B(0, σR)

|D2
xxv

n|pdxds ≤ 1

2

[
(1− σ′)2pR2p

∫ t

0

∫
B(0, σ′R)

|D2
xxv

n|pdxds

]
+ C(C1, K, p, R, t, k1)

Passing to the sup on σ′ and σ, we get

R2p

[
sup

0<σ<1
(1−σ)2p

∫ t

0

∫
B(0, σR)

|D2
xxv

n|pdxds
]

≤ 1

2
R2p sup

0<σ′<1

[
(1− σ′)2p

∫ t

0

∫
B(0, σ′R)

|D2
xxv

n|pdxds
]

+ C(C1, K, p, R, t, k1)
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It follows that

R2p

[
sup

0<σ<1
(1− σ)2p

∫ t

0

∫
B(0, σR)

|D2
xxv

n|pdxds

]
≤ 2C(C1, K, p, R, t, k1)

The proof is �nished by taking σ := 1/2.

Proof of Proposition 3.1. Thanks to inequality (3.2), inequality (3.5) and Lemma 3.4, we
deduce that supn‖∇xvn‖Lp([0, t]×B(0, R/2)) is bounded. Since v

n satis�es the PDE (3.1), we deduce
that supn‖∂svn‖Lp([0, t]×B(0, R/2)) is bounded also. Therefore, there exists a positive constant C =
C(C1, K, p, R, t, k1) such that

sup
n

∫ t

0

∫
B(0, R/2)

[
|vn|p + |∂svn|p + |∇xvn|p + |D2

xxv
n|p
]
dxds ≤ C (3.14)

Proposition 3.1 is proved.

Proof of Theorem 2.3. Inequalities (3.14) and (3.2) express that for every R > 0 small enough,

sup
n
‖vn‖

W 1, 2
p ([0, t]×B(0, R/2))

≤ C(R, k1, t, p))

Since, any ball B(0, R
′
) can be covered by a �nite number of balls of radius R/2, and the proof of

Proposition 3.1 can be easily adapted to proving the same estimate in a ball of radius R/2 centered
around any point in Rd+1 we deduce that

sup
n
‖vn‖

W 1, 2
p (Q0, t, R′ )

<∞. (3.15)

Therefore vn converges weakly to v in the space W 1, 2
p ([0, t]×Q), and v solves the PDE (2.5) a.e.

We now prove the uniqueness of solution in W 1, 2
p, loc. Let (Xx

s , Y
t,x
s , Zt,xs )0≤s≤t be a solution of

the FBSDE system

Xx
s = x+

∫ s

0
b̄(Xx

r )dr +

∫ s

0
σ̄(Xx

r )dWr, 0 ≤ s ≤ t; (3.16)

Y t,x
s = H(Xx

t ) +

∫ t

s
f̄(Xx

r , Y
t,x
r , Zt,xr )dr −

∫ t

s
Zt,xr dMXx

r , 0 ≤ s ≤ t. (3.17)

For p ≥ d + 2, take any solution v ∈ W 1, 2
p, loc of the PDE (2.5). The Itô-Krylov formula shows

that the process (v(t− s, Xx
s ), ∇xv(t− s, Xx

s ), 0 ≤ s ≤ t) is a solution of (3.17). Hence v(t, x) =
Y t,x

0 = E(Y t,x
0 ). Since (3.17) has a unique solution, v(t, x) is written as the expectation of a uniquely

characterized functional of (Xx
s )0≤s≤t. But uniqueness in law holds for (3.16) (see Proposition 2.1),

consequently the law of Xx is uniquely characterized, hence the solution v of (2.5) is unique in
W 1, 2
p, loc.

As consequence of Theorem 2.3 and the Sobolev embedding Theorem, we have

Corollary 3.5. vn converges uniformly to v on any compact subset of R+× Rd+1.

4 Proof of Theorem 2.4.

In order to simplify the notation throughout the proof of Theorem 2.4, we will suppress the super-
script x (resp. (t, x)) from the processes (Xx, Y t,x, Zt,x) and (Xx,ε, Y t,x,ε, Zt,x,ε) . That is, we will
respectively replace (Xx, Y t,x, Zt,x) by (X, Y, Z) and (Xx,ε, Y t,x,ε, Zt,x,ε) by (Xε, Y ε, Zε).

The following lemma, can be deduced from assumption (A).
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Lemma 4.1. For every p ≥ 1 and t > 0, there exists constant C(p, t) such that for every ε > 0,

E
(

sup
0≤s≤t

[
|X1,ε

s |p + |X2,ε
s |p + |X1

s |p + |X2
s |p
] )
≤ C(p, t).

Proposition 4.2. Assume that (A), (B) are satis�ed. Let ā, b̄, ān and b̄n be de�ned as in section
3. Let X = (X1, X2) denote the solution of the SDE

Xs = x+

∫ s

0
b̄(Xr)dr +

∫ s

0
σ̄(Xr)dWr, 0 ≤ s ≤ t.

Then, for every p ≥ 1,

(j) E
∫ t

0
|ān(Xr)− ā(Xr)|pdr, −→ 0 as n tends to ∞.

(jj) E
∫ t

0
|b̄n(Xr)− b̄(Xr)|pdr, −→ 0 as n tends to ∞.

Proof. Proof of (j) and (jj). Let N > 0 and put DN := {x ∈ Rd+1, |x| ≤ N}. For (g, gn) ∈
{(ā, ān), (b̄, b̄n)}, we have

E
∫ t

0
|gn(Xr)− g(Xr)|pdr ≤ 2p

(
E
∫ t

0
|gn(Xr)− g(Xr)|p11{sups≤ r |Xs|≤N}dr

+E
∫ t

0
|gn(Xr)− g(Xr)|p11{sups≤ r |Xs|>N}dr

)
Since ḡ and gn satisfy (A), (B), there exists a constant C which is independent of n such that,

E
∫ t

0
|gn(Xr)− g(Xr)|pdr ≤ 2p

(
E
∫ t

0
|gn(Xr)− g(Xr)|p11{sups≤ r |Xs|≤N}dr

+
C

Np
E( sup

0≤s≤t
|Xs|2p)

)
By Krylov's estimate, there exists a positive constant K(t,N, d) which is independent of n such
that

E
∫ t

0
|gn(Xr)− g(Xr)|pdr ≤ K(t,N, d+ 1)‖ |gn − g|p ‖Ld+1(DN ) +

C

Np
E( sup

0≤s≤t
|Xs|2p),

Passing successively to the limit in n and N , we get the desired result.

4.0.1 Tightness of the processes (Y ε, M ε :=
∫
ZεrdM

Xε

r )

Recall that the process Y ε is de�ned by

Y ε
s = H(Xε

t ) +

∫ t

s
f(X̄1, ε

r , X2, ε
r , Y ε

r , Z
ε
r )dr −

∫ t

s
Zεr dM

Xε

r , (4.1)

where X̄1, ε
s = X1, ε

ε .

Proposition 4.3. There exists a positive constant C which does not depend on ε such that

sup
ε

{
E
(

sup
0≤s≤t

|Y ε
s |

2 +

∫ t

0
|Zεs |

2 d〈MXε〉s
)}
≤ C. (4.2)
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Proof. Throughout this proof, K and C are positive constants which depend only on (s, t) and
may change from line to line. According to Lemma 4.1 we have, for every k ≥ 1,

sup
ε

E
(

sup
0≤s≤t

[
|X1, ε

s |2k + |X2, ε
s |2k

])
< +∞. (4.3)

Using Itô's formula, we get

|Y ε
s |2 +

∫ t

s
|Zεr |2d〈MXε 〉r ≤ |H(Xε

t )|2 +K

∫ t

s
|Y ε
r |2dr +

∫ t

s
|f(X̄1, ε

r , X2, ε
r , 0, 0)|2dr

+ 2C

∫ t

s
|Y ε
r ||Zεr |dr − 2

∫ t

s
〈Y ε
r , Z

ε
rdM

Xε

s 〉.

Since |σ(X̄1, ε
r , X2, ε

r )|2 = Trace
(
σσ∗

(
X̄1, ε
r , X2, ε

r

))
≥ c > 0, one has

2C|Y ε
r ||Zεr | ≤ C|Y ε

r |2 +
1

2
|Zεr |2|σ(X̄1, ε

r , X2, ε
r )|2.

It follows that

E
(
|Y ε
s |2 +

1

2

∫ t

s
|Zεr |2d〈MXε 〉r

)
≤ E

(
|H(Xε

t )|2
)

+ C1E
(∫ t

s
|f(X̄1, ε

r , X2, ε
r , 0, 0)|2dr

)
+ KE

(∫ t

s
|Y ε
r |2dr

)
.

According to Gronwall's Lemma, there exists a constant which does not depend on ε such that

E
(
|Y ε
s |2
)
≤ CE

(
|H(Xε

t )|2 +

∫ t

0
|f(X̄1, ε

r , X2, ε
r , 0, 0)|2dr

)
, ∀s ∈ [0, t].

We deduce that

E
(∫ t

s
|Zεr |2d〈MXε 〉r

)
≤ CE

(
|H(Xε

t )|2 +

∫ t

0
|f(X̄1, ε

r , X2, ε
r , 0, 0)|2dr

)
(4.4)

Combining (4.4) and Burkhölder-Davis-Gundy's inequality, we get

E
(

sup
0≤s≤t

|Y ε
s |2
)
≤ CE

(
|H(Xε

t )|2 +

∫ t

0
|f(X̄1, ε

r , X2, ε
r , 0, 0)|2dr

)
.

Hence,

E
(

sup
0≤s≤t

|Y ε
t |2 +

1

2

∫ t

0
|Zεr |2d〈MXε 〉r

)
≤ CE

(
|H(Xε

t )|2 +

∫ t

0
|f(X̄1, ε

r , X2, ε
r , 0, 0)|2dr

)
In view of condition (C1-ii and iii) and inequality (4.3), the proof is complete.

Proposition 4.4. Let M ε
s :=

∫ s
0 Z

ε
r dM

Xε

r . The sequence (Y ε, M ε)ε>0 is tight on the space
D
(
[0, t], RL

)
×D

(
[0, t], RL

)
endowed with the S-topology.

Proof. Since M ε is a martingale, then according to [30] or [21], the Meyer-Zheng tightness criteria
is ful�lled whenever

sup
ε

(
CV (Y ε) + E

(
sup

0≤s≤t
|Y ε
s |+ |M ε

s |
))

< +∞, (4.5)

where CV denotes the conditional variation and is de�ned in appendix A.

Clearly

CV (Y ε) ≤ E
(∫ t

0
|f(X̄1, ε

s , X2, ε
s , Y ε

s , Z
ε
s )|ds

)
.

Combining condition (C1) and Proposition 4.3, we derive (4.5).
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4.0.2 A sequence of auxiliary processes, tightness and convergence.

For n ∈ N∗, we de�ne a sequence of an auxiliary process Zε, n by

Zε, ns := ∇xvn(t− s, Xε
s ), s ∈ [0, t] (4.6)

We rewrite the process Y ε in the form,

Y ε
s = H(Xε

t ) +

∫ t

s
f(X̄1, ε

r , X2, ε
r , Y ε

r , Z
ε, n
r )dr +Aε, nt −Aε, ns − (M ε

t −M ε
s ) (4.7)

where

M ε
s :=

∫ s

0
Zεr dM

Xε

r

Aε, ns :=

∫ s

0

[
f(X̄1, ε

r , X2, ε
r , Y ε

r , Z
ε
r )− f(X̄1, ε

r , X2, ε
r , Y ε

r , Z
ε, n
r )

]
dr.

(4.8)

We de�ne

Mε, n
s :=

∫ s

0
Zε, nr σ(X̄1, ε

r , X2, ε
r )dWr

(4.6)
=

∫ s

0
∇xvn(r, Xε

r )σ(X̄1, ε
r , X2, ε

r )dWr

N ε, n
s :=

∫ s

0
1{|Zεr−Zε, nr |>0}

(Zεr − Z
ε, n
r )σ(X̄1, ε

r , X2, ε
r )

|(Zεr − Z
ε, n
r )σ(X̄1, ε

r , X2, ε
r )|

dWr

Lε, ns := 〈N ε, n, M ε −Mε, n〉s

=

∫ s

0
1{|Zεr−Zε, nr |>0}

[(Zεr − Z
ε, n
r )σ(X̄1, ε

r , X2, ε
r )][(Zεr − Z

ε, n
r )σ(X̄1, ε

r , X2, ε
r )]∗

|(Zεr − Z
ε, n
r )σ(X̄1, ε

r , X2, ε
r )|

dr

Proposition 4.5. For every n ∈ N∗, the sequence (Mε, n, N ε, n, Aε, n, Lε, n)ε>0 is tight on the space

(C ([0, t], R))4 endowed with the topology of uniform convergence.

Proof. We prove the tightness of (Lε, n)ε>0. Since Zε, ns := ∇xvn(t − s, Xε
s ), then according to

inequalities (4.2), (3.3) and (4.3), we have for any n, p ∈ N∗:

Max

(
sup
ε

E
∫ t

0
|Zεr |2dr, sup

ε
E
∫ t

0
|Zε, nr |2dr, sup

ε
E sup

0≤r≤t
|X2,ε

r |pdr
)

< ∞. (4.9)

We successively use assumption (A2) and Schwarz's inequality to show that for any n

sup
ε

E

(
sup
|s′−s|≤δ

|Lε, ns′ − Lε, ns |

)
≤ sup

ε
E

(
sup
|s′−s|≤δ

∫ s′

s
|(Zεr − Zε, nr )σ(X̄1, ε

r , X2, ε
r )|dr

)
(4.10)

≤ K sup
ε

E

(
sup
r≤t

(1 + |X2, ε
r |) sup

|s′−s|≤δ

∫ s′

s
|(Zεr − Zε, nr )|dr

)

≤ 2
√
δK sup

ε
E
(

sup
r≤t

(
1 + |X2, ε

r |
) [ ∫ t

0
(|Zεr |2 + |Zε, nr |2)dr

] 1
2

)
≤ C
√
δ. (4.11)

Using inequality (4.9) then letting δ tends to 0, we deduce the tightness of (Lε, n)ε>0 from
Theorem 7.3 in [6]. The tightness of (Aε, n)ε>0, (Mε, n)ε>0 and (N ε, n)ε>0 can be established by
similar arguments.
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Theorem 4.6. For every n, there exists a continuous process (Mn, N n, Ln, An) , a càd-làg process(
Ȳ , M̄

)
such that along a subsequence of ε, we have:

(Mε, n, N ε, n, Lε, n, Aε, n, Y ε, M ε)⇒
(
Mn, N n, Ln, An, Ȳ , M̄

)
on (C ([0, t], R))4×(D ([0, t], R))2

respectively endowed with the topology of the uniform convergence and the S-topology.
Moreover there exists a countable subset D of [0, t] such that for any k ≥ 1, t1, . . . , tk ∈ Dc,

(Y ε
t1 ,M

ε
t1 , . . . , Y

ε
tk
,M ε

tk
)⇒ (Ȳt1 , M̄t1 , . . . , Ȳtk , M̄tk),

where ⇒ denotes the convergence in law.

Proof. From Propositions 4.4 and 4.5, the family (Mε, n, N ε, n, Lε, n, Aε, n, Y ε, M ε)ε is tight on
(C ([0, t], R))4× (D ([0, t], R))2, where the spaces are respectively endowed with the topology of the
uniform convergence and the S-topology. We deduce that along a subsequence (still denoted by ε),
(Mε, n, N ε, n, Lε, n, Aε, n, Y ε, M ε)ε converges in law on (C ([0, t], R))4×(D ([0, t], R))2 to a process(
Mn, N ,n, Ln, An, Ȳ n, M̄n

)
. The last statement follows from Theorem 3.1 in Jakubowski [21].

4.0.3 The �rst identi�cation of the limits in ε

In this subsection, we will determine the equation satis�ed by the limit process (Ȳ , M̄).

Proposition 4.7. Let (Ȳ , M̄), be the process de�ned in Theorem 4.6 as a limit (as ε → 0) of
(Y ε, M ε). Then,
(i) For every s ∈ [0, t]− D, Ȳs = H(Xt) +

∫ t
s f̄(X1

r , X
2
r , Ȳr, ∇xvn(t− r, Xr))dr +Ant −Ans − (M̄t − M̄s),

E
(
sup0≤s≤t |Ȳs|2 + |X1

s |2 + |X2
s |2
)
≤ C.

(4.12)

(ii) Moreover, M̄ is Fns -martingale, where Fns := σ
{
Xr, Ȳr, M̄r,Mn

r , N n
r , L

n
r , A

n
r , 0 ≤ u ≤ s

}
aug-

mented with the P-null sets.

To prove this proposition, we need some lemmas. The �rst one plays a similar role to that played
by the invariant measure in the periodic case. It was introduced in [23] for a forward SDE and later
adapted in [1] to systems of SDE-BSDE in which the generator of the backward component does
not depend on the variable Z. We do not provide a proof, since that of Lemma 4.7 in [1] can be
repeated word to word (also we have a new variable).

Lemma 4.8. Assume (A), (B) and (C2)-(C4). For (x2, y, z) ∈ Rd × R × Rd+1, let V ε(x, y, z)
denote the solution of the PDE: a00(

x1

ε
, x2)D2

x1u(x, y, z) = f(
x1

ε
, x2, y, z)− f̄(x, y, z), x1 ∈ R,

u(0, x2, y, z) = Dx1u(0, x2, y, z) = 0.
(4.13)

Then, for some bounded functions β1 and β2 satisfying (2.3) we have
(i) Dx1V

ε(x, y, z) = x1(1 + |x2|2 + |y|2 + |z|2)β1(x1ε , x2, y, z),
and the same is true with Dx1V

ε replaced by Dx1Dx2V
ε, Dx1DyV

ε and Dx1DzV
ε

(ii) V ε(x, y, z) = x2
1(1 + |x2|2 + |y|2 + |z|2)β2(x1ε , x2, y, z),

and the same is true with V ε replaced by Dx2V
ε, DyV

ε, DzV
ε, D2

x2V
ε, D2

yV
ε, D2

zV
ε, Dx2DyV

ε ,
Dx2DzV

ε and DyDzV
ε.
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Lemma 4.9. We have, for any �xed n ≥ 1,

sup
0≤s≤t

∣∣∣∣∣
∫ t

0

(
f(
X1, ε
r

ε
, X2, ε

r , Y ε
r ,∇xvn(t− r, Xε

r ))− f̄(X1, ε
r , X2, ε

r , Y ε
r , ∇xvn(t− r, Xε

r ))

)
dr

∣∣∣∣∣
tends to zero in probability as ε −→ 0.

Proof. We set

h(X̄1, ε
s , X2, ε

s , Y ε
s , Z

ε, n
s ) = f(

X1, ε
s

ε
, X2, ε

s , Y ε
s , Z

ε, n
s )− f̄(X1, ε

s , X2, ε
s , Y ε

s , Z
ε, n
s ), .

We shall show that for any 0 ≤ s ≤ t

lim
ε→0

∣∣∣∣∫ s

0
h(X̄1, ε

r , X2, ε
r , Y ε

r , Z
ε, n
r )dr

∣∣∣∣ = 0

Let V ε denote the solution of equation (4.13). Note that V ε has �rst and second derivatives in
(x, y, z) which are possibly discontinuous only at x1 = 0. Then, as in [23], since ϕ2 is bounded away
from zero, we can use the Itô-Krylov formula to get

V ε(X1, ε
s , X2, ε

s , Y ε
s , Z

ε, n
s ) = V ε(x, Y ε

0 , Z
ε, n
0 )

+

∫ s

0

[
f(
X1, ε
r

ε
, X2, ε

r , Y ε
r , Z

ε, n
r )− f̄(X1, ε

r , X2, ε
r , Y ε

r , Z
ε, n
r )

]
dr

+

∫ s

0
Trace

[
ã(
X1, ε
r

ε
, X2, ε

r )D2
x2V

ε(X1, ε
r , X2, ε

r , Y ε
r , Z

ε, n
r )

]
dr

+

∫ s

0
[Dx2V

ε(X1, ε
r , X2, ε

r , Y ε
r , Z

ε, n
r )b̃(

X1, ε
r

ε
, X2, ε

r )−DyV
ε(X1,ε

r , X2,ε
r , Y ε

r )f(
X1,ε
r

ε
,X2,ε

r , Y ε
r )]dr

+

∫ s

0
[DxV

ε(X1, ε
r , X2, ε

r , Y ε
r , Z

ε, n
r )σ(

X1, ε
r

ε
, X2, ε

r ) +DyV
ε(X1,ε

r , X2,ε
r , Y ε

r , Z
ε, n
r )Zεrσ(

X1,ε
r

ε
,X2,ε

r )]dWr

+
1

2

∫ s

0
D2
yV

ε(X1,ε
r , X2,ε

r , Y ε
r , Z

ε, n
r )Zεrσσ

∗(
X1,ε
r

ε
,X2,ε

r )(Zεr )∗dr

+
1

2

∫ s

0
DxDyV

ε(X1,ε
r , X2,ε

r , Y ε
r , Z

ε, n
r )σσ∗(

X1,ε
r

ε
,X2,ε

r )(Zεr )∗dr

+
1

2

∫ s

0
DxDzV

ε(X1,ε
r , X2,ε

r , Y ε
r , Z

ε, n
r )d〈Xε, Zε, n〉r

+
1

2

∫ s

0
DyDzV

ε(X1,ε
r , X2,ε

r , Y ε
r , Z

ε, n
r )d〈Y ε, Zε, n〉r

+
1

2

∫ s

0
D2
zV

ε(X1,ε
r , X2,ε

r , Y ε
r , Z

ε, n
r )d〈Zε, n〉r

+

∫ s

0
DzV

ε(X1,ε
r , X2,ε

r , Y ε
r , Z

ε, n
r )dZε, nr (4.14)

In view of Lemma 4.8 and Proposition 4.3,

lim
ε→0

V ε(x, Y ε
0 , Z

ε, n
0 ) = 0
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Using the fact that 1 = 1{|X1, ε
s |<

√
ε} + 1{|X1, ε

s |≥
√
ε} and Lemma 4.8, we obtain

∣∣V ε(X1, ε
s , X2, ε

s , Y ε
s , Z

ε, n
s )

∣∣ ≤ ε[(1 + |X2, ε
s |2 + |Y ε

s |2 + |Zε, ns |2)|β2(
X1, ε
s

ε
, X2, ε

s , Y ε
s , Z

ε, n
s )|

]
+ 1{|X1, ε

s |≥
√
ε}|X

1, ε
s |2

[
(1 + |X2, ε

s |2 + |Y ε
s |2 + |Zε, ns |2)|

β2(
X1, ε
s

ε
, X2, ε

s , Y ε
s , Z

ε, n
s )|

]

Thanks to Lemma 4.8 and Proposition 4.3, we deduce that

E
(

sup
0≤s≤t

|V ε(X1, ε
s , X2, ε

s , Y ε
s , Z

ε, n
s )|

)
≤ K

(
ε+ sup

|x1|≥
√
ε

sup
(x2, y,z)

|β2(
x1

ε
, x2, y, z)|

)
Since β2 satis�es (2.3), the right hand side of the previous inequality tends to zero as ε −→ 0.
Similarly, one can show that each term on the lines from the third to the last one in the above
identity tend to zero. Let us detail the arguments for the term on line six, and on the term on line
eight. Let us start with the term on line 6, which is one of the most delicate ones.∣∣∣∣∣

∫ s

0
D2
yV

ε(X1,ε
r , X2,ε

r , Y ε
r , Z

ε, n
r )Zεrσσ

∗(
X1,ε
r

ε
,X2,ε

r )(Zεr )∗dr

∣∣∣∣∣
≤ C sup

0≤r≤s

∣∣D2
yV

ε(X1,ε
r , X2,ε

r , Y ε
r , Z

ε, n
r )

∣∣Trace ∫ s

0
Zεrσσ

∗(
X1,ε
r

ε
,X2,ε

r )(Zεr )∗dr

Since {Trace
∫ s

0 Z
ε
rσσ

∗(X
1,ε
r
ε , X2,ε

r )(Zεr )∗dr, 0 ≤ s ≤ t} is the increasing process associated to a mar-
tingale which is uniformly L1(P)−integrable, its square root has a bounded expectation. Moreover,
arguing as for V ε, one can show that

sup
0≤r≤s

∣∣D2
yV

ε(X1,ε
r , X2,ε

r , Y ε
r , Z

ε, n
r )

∣∣ tends in probability to 0 as ε→ 0.

We now consider the term on line 8. Since ∇xvn(s, x) ∈ C1,2, we use Itô's formula to get

∇xvn(0, Xε
t ) = ∇xvn(t, Xε

0) +

∫ t

0
Γ(r,

X1,ε
r

ε
,X2,ε

r )dr

+

∫ t

0
D2
xxv

n(t− r, Xε
r )σ(

X1,ε
r

ε
,X2,ε

r )dWr (4.15)

where

Γ(r,
X1,ε
r

ε
,X2,ε

r ) = −∂r (∇xvn(t− r, Xε
r ))−D2

xxv
n(t− r, Xε

r )b(
X1,ε
r

ε
,X2,ε

r )

+
1

2
∂3
x, x, xv

n(t− r, Xε
r )σσ∗(

X1,ε
r

ε
,X2,ε

r )

According to inequalities (3.2) and (3.3), it follows that (4.15) is well-de�ned. Moreover, we have

1

2

∫ s

0
DxDzV

ε(X1,ε
r , X2,ε

r , Y ε
r , Z

ε, n
r )d〈Xε, Zε, n〉r

≤ C sup
0≤r≤s

∣∣DxDzV
ε(X1,ε

r , X2,ε
r , Y ε

r , Z
ε, n
r )

∣∣× ∫ s

0
|Trace σσ∗(X

1,ε
r

ε
,X2,ε

r )D2
xxv

n(t− r, Xε
r )|dr
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In view of condition (A2), (4.3) and the fact that |D2
xxv

n| ≤ kn3 , the L
p(P) norm of the increasing

process
∫ s

0 |Trace σσ
∗(X

1,ε
r
ε , X2,ε

r )D2
xxv

n(t− r, Xε
r )|dr is bounded (by a constant not depending on

ε), for each p ≥ 1. Further, the same argument as above shows that

sup
0≤r≤s

∣∣DxDzV
ε(X1,ε

r , X2,ε
r , Y ε

r , Z
ε, n
r )

∣∣ −→ 0, as ε −→ 0

Similarly, one can show that

1

2

∫ s

0
DyDzV

ε(X1,ε
r , X2,ε

r , Y ε
r , Z

ε, n
r )d〈Y ε, Zε, n〉r +

1

2

∫ s

0
D2
zV

ε(X1,ε
r , X2,ε

r , Y ε
r , Z

ε, n
r )d〈Zε, n〉r

+

∫ s

0
DzV

ε(X1,ε
r , X2,ε

r , Y ε
r , Z

ε, n
r )dZε, nr

converges to zero in probability as ε tends to 0. The proof is complete.

Lemma 4.10. For every n ∈ N∗, the sequence of processes
∫ .

0
f̄(X1, ε

r , X2, ε
r , Y ε

r , ∇xvn(t−r, Xε
r ))dr

converges in law (as ε→ 0) to the process

∫ .

0
f̄(X1

r , X
2
r , Ȳr, ∇xvn(t−r, Xr))dr on (C([0, t], R), || ||∞).

Proof. It can be performed as in [1]-Lemma 4.9.

Proof of Proposition 4.7 Passing to the limit in (4.7) and using Lemma 4.9 and Lemma 4.10,
we derive assertion (i). Assertion (ii) can be proved by using the same argument as those of [34],
section 6.

Let Fns := σ
{
Xr, Ȳr, M̄r,Mn

r , N n
r , L

n
r , A

n
r , 0 ≤ u ≤ s

}
be the �ltration generated by

(X, Ȳ , M̄ ,Mn, N n, Ln, An) and completed by the P-null sets. Combining the estimates in Proposi-
tion 4.3, inequality (4.3), Lemmas (A.3) and (A.4) in Appendix A, we show that M̄ is Fns -martingale.

The following proposition summarizes Proposition 6.5.2 and Corollaries 6.5.3 and 6.5.4 in De-
larue [12]. We will sketch the proof for the convenience of the reader.

Proposition 4.11. For every n ∈ N∗ and every s ∈ [0, t] we have

(i) [N n, M̄ −Mn]s = Lns .

(ii) The process An is of bounded variation, and, for every progressively measurable process

{βs : 0 ≤ s ≤ t} satisfying E
(∫ t

0 |βr|
2dr
)
< +∞ we have for any 0 ≤ s ≤ s′ ≤ t,

∣∣ ∫ s′

s
〈βr, dAnr 〉

∣∣2 ≤ C( ∫ s′

s
|βr|2dr

)(
Trace

{
[M̄ −

∫ .

0
Znr dM

X
r ]s′ − [M̄ −

∫ .

0
Znr dM

X
r ]s
})

(4.16)

Proof. We follow [12]. Assertion (i) is a consequence of Theorem 4.6. We prove assertion (ii).
Thanks to (4.8) and assumption C, there exists C > 0 (which value may change from line to
another) such that for every ε > 0, n ∈ N∗ and s ≤ s′ ≤ t :

∣∣Aε,ns′ −Aε, ns ∣∣ ≤ C ∫ s′

s
|Zεr − Zε,nr |ds

Using the de�nitions of M ε, Mε,n, N ε,n and the fact that the di�usion coe�cient a is uniformly
elliptic, we deduce that :∣∣Aε,ns′ −Aε, ns ∣∣ ≤ C trace

(
[N ε,n, M ε −Mε,n]s′ − [N ε,n, M ε −Mε,n]s

)
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Using Theorem 4.6 and assertion (i), we show that for every n ∈ N∗ and 0 ≤ s ≤ s′ ≤ t

|Ans′ −Ans | ≤ C trace
(
[N n, M̄ −Mn]s′ − [N n, M̄ −Mn]s

)
Hence, thanks to the Kunita-Watanabe inequalities, for every progressively measurable process β,

satisfying E
(∫ t

0 |βr|
2dr
)
< +∞

∣∣ ∫ s′

s
〈βr, dAnr 〉

∣∣ ≤ C( ∫ s′

s
|βr|2d trace[N n]r

) 1
2
(
trace

{
[M̄ −

∫ .

0
Znr dM

X
r ]s′ − [M̄ −

∫ .

0
Znr dM

X
r ]s
}) 1

2

Since for every ε > 0 and n ∈ N∗, the process (|N ε,n|2 − s) is a supermartingale, then for every
n ∈ N∗ the process (|N n|2 − s) is also a supermartingale. Following the proof of Theorem 4.10 of
Chapter I in Kratzas & Shreve, we deduce that (|trace

(
[N n]s′ | − [N n]s). This completes the proof

of assertion (ii).

4.0.4 Identi�cation of the limiting BSDE in n

For s ∈ [0, t] we put

Y n
s := vn(t− s, Xs) and Zns := ∇xvn(t− s, Xs) (4.17)

Proposition 4.12. For every s ∈ [0, t]− D,

lim
n→+∞

(
E
(
|Y n
s − Ȳs|

)
+ E

{(
[M̄ −

∫ .

0
Znr dM

X
r ]t − [M̄ −

∫ .

0
Znr dM

X
r ]s

)})
= 0. (4.18)

Proof. For R > 0, let DR := {x ∈ Rd+1, |x| ≤ R} and τR := inf{r > s, |Xr| > R}, inf{∅} =∞.

Step 1: Estimate of E
(
|Y n
s∧τR − Ȳs∧τR |

2
)
.

By Itô's formula, we have

Y n
s = vn(0, Xt)−

∫ t

s

[
∂vn

∂r
(t− r, Xr) + L̄vn(t− r, Xr)

]
dr −

∫ t

s
∇xvn(t− r, Xr)dM

X
r

= vn(0, Xt)−
∫ t

s

[
∂vn

∂r
(t− r, Xr) + L̄nvn(t− r, Xr)

]
dr

+

∫ t

s

(
L̄n − L̄

)
vn(t− r, Xr)dr −

∫ t

s
Znr dM

X
r

In view of (3.1), (4.12) and (4.17), we have

Y n
s − Ȳs = vn(0, Xt)− Ȳt +

∫ t

s

[
f̄n(Xr, Y

n
r , Z

n
r )− f̄(Xr, Ȳr, Z

n
r )
]
dr

+

∫ t

s

(
L̄n − L̄

)
vn(t− r, Xr)dr −

∫ t

s
dAnr +

∫ t

s

(
dM̄r − Znr dMX

r

)

Using Itô's formula on [s ∧ τR, t ∧ τR], it follows that

E
(
|Y n
s∧τR − Ȳs∧τR |

2
)

+ E
{(

[M̄ −
∫ .

0
Znr dM

X
r ]t∧τR − [M̄ −

∫ .

0
Znr dM

X
r ]s∧τR

)}
(4.19)

= E
∣∣vn(0, Xt∧τR)− Ȳt∧τR

∣∣2 + 2E
∫ t∧τR

s∧τR
〈Y n
r − Ȳr, f̄n(Xr, Y

n
r , Z

n
r )− f̄(Xr, Ȳr, Z

n
r )〉dr

+ 2E
∫ t∧τR

s∧τR
〈Y n
r − Ȳr,

(
L̄n − L̄

)
vn(t− r, Xr)〉dr − 2E

∫ t∧τR

s∧τR
〈Y n
r − Ȳr, dAnr 〉.
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On one hand, since f̄ is uniformly Lipschitz in the y-variable [thanks again to Assumption (C)-(i)],
it follows (where the constant C can change from line to line),

2E
∫ t∧τR

s∧τR
〈Y n
r − Ȳr, f̄n(Xr, Y

n
r , Z

n
r )− f̄(Xr, Ȳr, Z

n
r )〉dr (4.20)

≤ CE
∫ t∧τR

s∧τR
|Y n
r − Ȳr|2dr + E

∫ t∧τR

s∧τR
|f̄n(Xr, Y

n
r , Z

n
r )− f̄(Xr, Y

n
r , Z

n
r )|2

≤ CE
∫ t∧τR

s∧τR
|Y n
r∧τR − Ȳr∧τR |

2dr + E
∫ t∧τR

0
|f̄n(Xr, Y

n
r , Z

n
r )− f̄(Xr, Y

n
r , Z

n
r )|2

≤ CE
∫ t

s
|Y n
r∧τR − Ȳr∧τR |

2dr + E
∫ t∧τR

0
|f̄n(Xr, Y

n
r , Z

n
r )− f̄(Xr, Y

n
r , Z

n
r )|2

The same argument shows that

2E
∫ t∧τR

s∧τR
〈Y n
r − Ȳr,

(
L̄n − L̄

)
vn(t− r, Xr)〉dr

≤ 2E
∫ t

s
|Y n
r∧τR − Ȳr∧τR |

2dr + E
∫ t∧τR

0
|∇xvn(t− r, Xr)|2|b̄n(Xr)− b̄(Xr)|2dr

+ E
(∫ t∧τR

0
|D2

xxv
n(t− r, Xr)|2|ān(Xr)− a(Xr)|2dr

)
.

For each n ∈ N∗ and R > 0, we put

δn,R1 := E
∣∣vn(t− t ∧ τR, Xt∧τR)− Ȳt∧τR

∣∣2 + E
∫ t∧τR

s
|f̄n(Xr, Y

n
r , Z

n
r )− f̄(Xr, Y

n
r , Z

n
r )|2dr

+ E
∫ t∧τR

0
|∇xvn(t− r, Xr)|2|b̄n(Xr)− b̄(Xr)|2dr

+ E
(∫ t∧τR

0
|D2

xxv
n(t− r, Xr)|2|ān(Xr)− a(Xr)|2dr

)
.

In the other hand, we deduce from inequality (4.16), with the choice β := Y n − Ȳ , that for any
α > 0,

2E
∣∣∣∣∫ t∧τR

s∧τR
〈Y n
r − Ȳr, dAnr 〉

∣∣∣∣ ≤ C

α2
E
(∫ t∧τR

s∧τR
|Y n
r − Ȳr|2dr

)
(4.21)

+ Cα2E
({

[M̄ −
∫ .

0
Znr dM

X
r ]t∧τR − [M̄ −

∫ .

0
Znr dM

X
r ]s∧τR

})
.

≤ C

α2
E
(∫ t

s
|Y n
r∧τR − Ȳr∧τR |

2dr

)
+ Cα2E

({
[M̄ −

∫ .

0
Znr dM

X
r ]t∧τR − [M̄ −

∫ .

0
Znr dM

X
r ]s∧τR

})
.

We choose α2 such that Cα2 < 1
2 then we use identity (4.19) to get

E
(
|Y n
s∧τR − Ȳs∧τR |

2
)

+
1

2
E
{(

[M̄ −
∫ .

0
Znr dM

X
r ]t∧τR − [M̄ −

∫ .

0
Znr dM

X
r ]s∧τR

)}
≤ δn,R1 + CE

∫ t

s
|Y n
r∧τR − Ȳr∧τR |

2dr.
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Therefore, Gronwall's Lemma yields that

E
(
|Y n
s∧τR − Ȳs∧τR |

2
)

+ E
{(

[M̄ −
∫ .

0
Znr dM

X
r ]t∧τR − [M̄ −

∫ .

0
Znr dM

X
r ]s∧τR

)}
≤ K1(C, t)δn,R1 . (4.22)

Step 2: lim
R→+∞

lim
n→+∞

δn,R1 = 0.

We have δn,R1 = In1 + In2 + In3 , with

In1 := E
∫ t∧τR

0
|∇xvn(t− r, Xr)|2|b̄n(Xr)− b̄(Xr)|2dr

+ E
∫ t∧τR

0
|D2

xxv
n(t− r, Xr)|2|ān(Xr)− a(Xr)|2dr,

In2 := E
∫ t∧τR

0
|f̄n(Xr, Y

n
r , Z

n
r )− f̄(Xr, Y

n
r , Z

n
r )|2dr

= E
∫ t∧τR

0
|f̄n(Xr, v

n(t− r, Xr), ∇xvn(t− r, Xr))− f̄(Xr, v
n(t− r, Xr), ∇xvn(t− r, Xr))|2dr,

In3 := E
∣∣vn(t− t ∧ τR, Xt∧τR)− Ȳt∧τR

∣∣2 .
Using Hölder's inequality, Krylov's estimate, (3.15) and Proposition 4.2, one can show that In1 tends
to zero as n tends to in�nity.

We show that In2 tends to 0 as n tends to ∞. Let M > 0 and put In2 := In,12 + In,22 , with

In,12 := E
∫ t∧τR

0
|f̄n(Xr, Y

n
r , Z

n
r )− f̄(Xr, Y

n
r , Z

n
r )|21{|Y nr |+|Znr |≤M}dr

and

In,22 := E
∫ t∧τR

0
|f̄n(Xr, Y

n
r , Z

n
r )− f̄(Xr, Y

n
r , Z

n
r )|21{|Y nr |+|Znr |>M}dr.

We have

In, 12 ≤ E
∫ t∧τR

0
sup

{|y|+|z|≤M}
|f̄n(X1

r , X
2
r , y, z)− f̄(X1

r , X
2
r , y, z)|2dr.

We put hn(x) := sup{|y|+|z|≤M}
∣∣f̄n(x, y, z)− f̄(x, y, z)

∣∣.
Thanks to Krylov's estimate, there exists a positive constant N = N(t, R, d) such that

In, 12 ≤ E
∫ t∧τR

0
|hn(Xr)|2dr ≤ N‖hn‖2Ld+2(DR)
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Since f̄n and f̄ satisfy (C1), Y n
s := vn(t− s,Xs) and Zns := ∇xvn(t− s,Xs), we get

In, 22 ≤ E
∫ t∧τR

0
(|f̄n(Xr, Y

n
r , Z

n
r )|+ |f̄(Xr, Y

n
r , Z

n
r )|)21{|Y nr |+|Znr |>M}dr

≤ 2KE
∫ t∧τR

0
(1 + |Xr|+ |Y n

r |+ |Znr |)21{|Y nr |+|Znr |>M}dr

≤ 2K

(
E
∫ t∧τR

0
(1 + |Xr|+ |Y n

r |+ |Znr |)4dr

) 1
2
(
E
∫ t∧τR

0
1{|Y nr |+|Znr |>M}dr

) 1
2

≤ 2K

M
1
2

(
E
∫ t∧τR

0
(1 + |Xr|4 + |Y n

r |4 + |Znr |4)dr

) 1
2
(
E
∫ t∧τR

0
(|Y n

r |+ |Znr |)dr
) 1

2

≤ 2K

M
1
2

(
E
∫ t∧τR

0
(1 + |Xr|4 + |vn(t− r,Xr)|4 + |∇xvn(t− r,Xr)|4)dr

) 1
2

×
(
E
∫ t∧τR

0
(|vn(t− r,Xr)|+ |∇xvn(t− r,Xr)|)dr

) 1
2

According to Krylov's estimate, there exists a constant N = N(R, t, d) such that(
E
∫ t∧τR

0
(1 + |Xr|4 + |vn(t− r,Xr)|4 + |∇xvn(t− r,Xr)|4)dr

) 1
2

≤ N
(

1 +R+ ||vn||4Ld+2([0, t]×DR)

+ ||∇xvn||4Ld+2([0, t]×DR)

) 1
2

and (
E
∫ t∧τR

0
(|vn(t− r,Xr)|+ |∇xvn(t− r,Xr)|)dr

) 1
2

≤ N
(
||vn||Ld+2([0, t]×DR)

+ ||∇xvn||Ld+2([0, t]×DR)

) 1
2

But, thanks to (3.15), vn and ∇vn are bounded in each Lploc([0, t]×Rd+1) uniformly in n. We then
deduce that there exists a positive constant K1 = K1(t, R, d) such that

sup
n
In, 22 ≤ K1

M
1
2

Therefore,

In2 ≤ K(t, R, d)

[
‖hn‖2Ld+2(DR) +

1

M
1
2

]
(4.23)

Passing successively to the limit in n and M , we deduce that In2 tends to zero as n tends to in�nity.

We shall show that In3 tends to 0 as n tends to ∞. We have

In3 = E
∣∣vn(t− t ∧ τR, Xt∧τR)− Ȳt∧τR

∣∣2
= E |vn(t− t ∧ τR, Xt∧τR)− v(t− t ∧ τR, Xt∧τR)|2 + E

∣∣v(t− t ∧ τR, Xt∧τR)− Ȳt∧τR
∣∣2

Since as R tends to ∞, v(t − t ∧ τR, Xt∧τR) tends to v(0, Xt) = H(Xt) and Ȳt∧τR tends to
Ȳt = H(Xt), then we pass to the limit �rst in n and and next in R to deduce that In3 tends to zero
as n tends to in�nity. Consequently lim

R→+∞
lim

n→+∞
δn,R1 = 0.

Since τR tends increasingly to in�nity as R tends to in�nity, then for R large enough t ∧ τR = t

and hence lim
n→+∞

(
E
(
|Y n
s − Ȳs|

)
+ E

{(
[M̄ −

∫ .

0
Znr dM

X
r ]t − [M̄ −

∫ .

0
Znr dM

X
r ]s

)})
= 0.
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We now de�ne
Ys := v(t− s,Xs), Zs := ∇xv(t− s,Xs),

where v is the solution of the PDE (2.5). Note that although ∇xv(·, ·) is only an element of
Lploc([0, t]×Rd+1) (for any p ≥ d+ 2), since X is non degenerate di�usion, it follows from Krylov's
estimate (see [24]) that ∇xv(t− s,Xs) is well de�ned as a random element of L2(0, t).

Proposition 4.13. For every s ∈ [0, t],

lim
n→+∞

(
E (|Y n

s − Ys|) + E
∫ t

s
|Zns − Zs|2d〈MX〉s

)
= 0

Proof. Since v belongs to W1, 2
p, loc, then Itô�Krylov's formula and the uniqueness of the backward

component of equation (2.4) show that for every s ∈ [0, t],

Ys = v(t− s,Xs) (4.24)

In another hand, since

Ys = H(Xt) +
∫ t
s f̄(Xr, Yr, Zr)dr −

∫ t
s ZrdM

X
r

Y n
s = vn(0, Xt)−

∫ t
0 f̄

n(Xr, v
n(t− r, Xr), ∇xvn(t− r, Xr))dr +

∫ t
0

(
L̄n − L̄

)
vn(t− r, Xr)dr

−
∫ t

0 Z
n
r dM

X
r

Using Itô's formula on [s∧ τR, t∧ τR] then arguing as in the proof of Proposition 4.12, it holds that

E|Y n
s∧τR−Ys∧τR |

2 +
1

2
E
∫ t∧τR

s∧τR
|Zns − Zs|2d〈MX〉s

≤ E
(
|vn(t− t ∧ τR, Xt∧τR)− Yt∧τR |

2
)

+ E
∫ t∧τR

s∧τR
〈Y n
r − Yr , f̄n

(
Xr, v

n(t− r, Xr), v
n(t− r, Xr)

)
− f̄(Xr, Yr, Zr)〉ds

+ E
∫ t∧τR

0
|
(
L̄n − L̄

)
vn(t− r, Xr)|2dr

+ CE
∫ t

s
|Y n
r∧τR − Yr∧τR |

2dr

Since (Y n
t , Z

n
t ) = (vn(0, Xt), ∇xvn(0, Xt)), it follows that

E|Y n
s∧τR−Ys∧τR |

2 +
1

2
E
∫ t∧τR

s∧τR
|Zns − Zs|2d〈MX〉s

≤ E
(
|vn(t− t ∧ τR, Xt∧τR)− Yt∧τR |

2
)

+ E
∫ t∧τR

s∧τR
〈Y n
r − Yr , f̄n(Xr, Y

n
r , Z

n
r )− f̄(Xr, Y

n
r , Z

n
r )〉ds

+ E
∫ t∧τR

s∧τR
〈Y n
r − Yr , f̄(Xr, Y

n
r , Z

n
r )− f̄(Xr, Yr, Z

n
r )〉ds

+ E
∫ t∧τR

s∧τR
〈Y n
r − Yr , f̄(Xr, Yr, Z

n
r )− f̄(Xr, Yr, Zr)〉ds

+

∫ t∧τR

s
|
(
L̄n − L̄

)
vn(t− r, Xr)|2dr

+ CE
∫ t

s
|Y n
r∧τR − Yr∧τR |

2dr
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Since f̄ is uniformly Lipshitz in (y, z) with the same Lipshitz constants K as f , then for any α > 0
satisfying K

α < 1
2 , we have

E|Y n
s∧τR−Ys∧τR |

2 +

(
1

2
− K

α

)
E
∫ t∧τR

s∧τR
|Znr − Zr|2d〈MX〉r

≤ E
(
|vn(t− t ∧ τR, Xt∧τR)− Yt∧τR |

2
)

+ E
∫ t∧τR

0
|f̄n(Xr, Y

n
r , Z

n
r )− f̄(Xr, Y

n
r , Z

n
r )|2ds

+ E
∫ t∧τR

0
|
(
L̄n − L̄

)
vn(t− r, Xr)|2dr

+ (C +K + α)E
∫ t

s
|Y n
r∧τR − Yr∧τR |

2dr

We set

δn,R2 := E
(
|vn(t− t ∧ τR, Xt∧τR)− Yt∧τR |

2
)

+ E

∫ t∧τR

0
|f̄n(Xr, Y

n
r , Z

n
r )− f̄(Xr, Y

n
r , Z

n
r )|2ds

+ E
∫ t∧τR

0
|
(
L̄n − L̄

)
vn(t− r, Xr)|2dr

Arguing as for δn,R1 , we show that lim
R→+∞

lim
n→+∞

δn,R2 = 0 and the conclusion follows as in the proof

of Proposition 4.12.

Corollary 4.14. P
{
∀s ∈ [0, t], Ȳs = v(t− s, Xs)

}
= 1, which implies that (Ȳs)s≤t is continuous.

Moreover Y ε ⇒ Y .

Proof. Combining Propositions 4.12 and 4.13, we deduce that for all s ∈ [0, t] − D, Ȳs = Ys =
v(s,Xs) a.s. Hence Ȳ has a continuous modi�cation, which coincides a.s. with Y on [0, t]. But Ȳ
is càlàg, hence it is a.s. continuous and identical to Y .

Since Ȳ was de�ned as the limit in law of an arbitrary converging subsequence of the sequence
Y ε, Ȳs = v(s, Xs), and the law of X is uniquely determined, the law of {v(s,Xs), 0 ≤ s ≤ t} is
uniquely determined. Consequently, the whole sequence converges : Y ε ⇒ Y .

Proof of Corollary 2.5 From equations (4.7) and (4.12), we have
Y ε

0 = H(Xε
t ) +Aε nt +

∫ t
0 f(X̄ε

r , X
2, ε
r , Y ε

r , Z
ε, n
r )dr −M ε

t

Ȳ0 = H(Xt) +Ant +
∫ t

0 f̄(Xr, Ȳr, Z
n
r )dr − M̄t

By Corollary 4.14 and the continuity of the projection at the �nal time t 6∈ D : y 7→ yt, we deduce
from the above two identitites that Y ε

0 converges towards Ȳ0 in distribution. Moreover, since Y ε
0 , Ȳ0

are deterministic, we deduce that limε→0 Y
ε

0 = Ȳ0 = Y0. That is, by using the non simpli�ed
notation,

Y t,x,ε
0 → Y t,x

0 .

In other words, as ε→ 0,
vε(t, x)→ v(t, x).
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A Appendix: S-topology

The S-topology has been introduced by Jakubowski [21] as a topology de�ned on the Skorohod
space of càdlàg functions: D([0, T ]; R). This topology is weaker than the Skorohod topology but
tightness criteria are easier to establish. These criteria are the same as the one used in Meyer-Zheng
[30].
Let Na, b(z) denotes the number of up-crossing of the function z ∈ D([0, T ]; R) in a given level
a < b. We recall some facts about the S-topology.

Proposition A.1. (A criteria for S-tight). A sequence (Y ε)ε>0 is S-tight if and only if it is relatively
compact on the S-topology.
Let (Y ε)ε>0 be a family of stochastic processes in D([0, T ]; R). Then this family is tight for the
S-topology if and only if (‖Y ε‖∞)ε>0 and (Na, b(Y ε))ε>0 are tight for each a < b.

Let (Ω, F , P, (Ft)t≥0) be a stochastic basis. If (Y )0≤t≤T is a process in D([0, T ]; R) such that Yt
is integrable for any t, the conditional variation of Y is de�ned by

CV (Y ) = sup
0≤t1<...<tn=T, partition of [0, T ]

n−1∑
i=1

E[|E[Yti+1 − Yti | Fti ]|].

The process is call quasimartingale if CV (Y ) < +∞. When Y is a Ft-martingale, CV (Y ) = 0. A
variation of Doob inequality (cf. lemma 3, p.359 in Meyer and Zheng [30], where it is assumed that
YT = 0) implies that

P

[
sup

t∈[0, T ]
|Yt| ≥ k

]
≤ 2

k

(
CV (Y ) + E

[
sup

t∈[0, T ]
|Yt|

])
,

E
[
Na, b(Y )

]
≤ 1

b− a

(
|a|+ CV (Y ) + E

[
sup

t∈[0, T ]
|Yt|

])
.

It follows that a sequence (Y ε)ε>0 is S-tight if

sup
ε>0

(
CV (Y ε) + E

[
sup

t∈[0, T ]
|Y ε
t |

])
< +∞.

Theorem A.2. Let (Y ε)ε>0 be a S-tight family of stochastic process in D([0, T ]; R). Then there
exists a sequence (εk)k∈N decreasing to zero, some process Y ∈ D([0, T ]; R) and a countable subset
D ∈ [0, T ] such that for any n and any (t1, ..., tn) ∈ [0, T ]\D,

(Y εk
t1
, ..., Y εk

tn )
Dist−→ (Yt1 , ..., Ytn)

Remark A.1. The projection :πT y ∈ (D([0, T ]; R), S) 7→ y(T )is continuous (see Remark 2.4, p.8
in Jakubowski,1997), but y 7→ y(t) is not continuous for each 0 ≤ t ≤ T .

Lemma A.3. Let (Y ε, M ε) be a multidimensional process in D([0, T ]; Rp) (p ∈ N∗) converging
to (Y, M) in the S-topology. Let (FXε

t )t≥0 (resp. (FXt )t≥0) be the minimal complete admissible
�ltration for Xε (resp.X). We assume that supε>0 E

[
sup0≤t≤T |M ε

t |2
]
< CT ∀T > 0, M ε is a

FXε
-martingale and M is a FX-adapted. Then M is a FX-martingale.

Lemma A.4. Let (Y ε)ε>0 be a sequence of process converging weakly in D([0, T ]; Rp) to Y . We
assume that supε>0 E

[
sup0≤t≤T |Y ε

t |2
]
< +∞. Hence, for any t ≥ 0, E

[
sup0≤t≤T |Yt|2

]
< +∞.

27



References

[1] Bahlali, K., Eloua�in, A., Pardoux, E. Homogenization of semilinear PDEs with discontinuous
averaged coe�cients. EJP, Vol 14 (2009), paper no. 18, pages 477-499.

[2] Bahlali, K., Eloua�in, A., M. A. Diop, A. Said. A singular perturbation for non-divergence
form semilinear PDEs with discontinuous e�ective coe�cients. Preprint (2012).

[3] Bahlali, K. Existence and uniqueness of solutions for BSDEs with locally Lipschitz coe�cient.
Electron. Comm. Probab. 7 (2002), 169�179

[4] Benchérif-Madani, A.; Pardoux, É. Homogenization of a semilinear parabolic PDE with locally
periodic coe�cients: a probabilistic approach. ESAIM Probab. Stat. 11, 385�411 (electronic),
2007.

[5] Bensoussan, A.; Lions, J.-L.; Papanicolaou, G. Asymptotic analysis for periodic structures.
Studies in Mathematics and Its Applications, 5. North-Holland, Amsterdam-New York, 1978.

[6] Billingsley, P. Convergence of probability measures, 2nd ed., Wiley, 1999.

[7] Buckdahn, R.; Ichihara, N. Limit theorem for controlled backward SDEs and homogenization
of Hamilton-Jacobi-Bellman equations. Appl. Math. Optim. 51, no. 1, 1�33, 2005.

[8] Buckdahn, R.; Hu, Y.; Peng, S. Probabilistic approach to homogenization of viscosity solutions
of parabolic PDEs. NoDEA Nonlinear Di�erential Equations Appl. 6, no. 4, 395�411, 1999.

[9] Buckdahn, R.; Hu, Y. Probabilistic approach to homogenizations of systems of quasilinear
parabolic PDEs with periodic structures. Nonlinear Anal. 32, no. 5, 609�619, 1998.

[10] Ca�arelli, L., Crandall, M.G., Kocan, M., �wiech, A. On viscosity solutions of fully nonlinear
equations with measurable ingredients. Comm. Pure Appl. Math. 49, 365-397, 1996.

[11] Crandall, M.G., Kocan, M., Lions, P. L., �wiech, A. Existence results for boundary problems
for uniformly elliptic and parabolic fully nonlinear equations. Electronic Journal of Di�erential
equations., No. 1-20, 1999.

[12] Delarue, F. Equations di�érentielles stochastiques progressives-rétrogrades. Application à
l'homogenéisation des EDP quasi-linéaires. Thèse de Doctorat, (2002), Aix Marseille Université.
Formerly Université de Provence, Aix-Marseille I.

[13] Delarue, F. Auxiliary SDEs for homogenization of quasilinear PDEs with periodic coe�cients.
Ann. Probab. 32 (2004), no. 3B, 2305�2361.

[14] Doyoom, K., Krylov, N. Parabolic equation with measurable coe�cients. Potential analysis,
26, (2006), 345-361.

[15] Gaudron, G., Pardoux, E. EDSR, convergence en loi et homogenéisation d'EDP paraboliques
sémi-linéaires. To appear in Anna. Inst. H. Poincaré, (2001)

[16] Gilbarg, D., Trudinger, N.S. (1983): Elliptic partial di�erential equations of second order,
Second edition. Grundlehren der Mathematischen Wissenschaften, 224, Springer-Verlag, Berlin.

[17] El Karoui, N. Backward stochastic di�erential equations a general introduction, in Backward
stochastic di�erential equations, N. El Karoui and L. Mazliak Edts, Pitman Research Notes in
Mathematics Series 364, 7-27, 1997.

28



[18] Essaky, E. H.; Ouknine, Y. Averaging of backward stochastic di�erential equations and homog-
enization of partial di�erential equations with periodic coe�cients. Stoch. Anal. Appl. 24, no.
2, 277�301, 2006.

[19] Freidlin M. Functional integration and partial di�erential equations. Annals of Mathematics

Studies, 109, Princeton University Press, Princeton, 1985.

[20] Ichihara, N. A stochastic representation for fully nonlinear PDEs and its application to homog-
enization. J. Math. Sci. Univ. Tokyo 12, no. 3, 467�492, 2005.

[21] Jakubowski, A. A non-Skorohod topology on the Skorohod space. Electron. J. Probab. 2 , paper
no. 4, pp.1-21, 1997.

[22] Jikov, V. V.; Kozlov, S. M.; Ole��nik, O. A. Homogenization of di�erential operators and integral
functionals. Translated from the Russian by G. A. Yosi�an. Springer, Berlin, 1994.

[23] Khasminskii, R; Krylov, N. V. On averaging principle for di�usion processes with null-recurrent
fast component. Stochastic Processes and their applications, 93, 229-240, 2001.

[24] Krylov, N. V. Controlled Di�usion Processes, (A. B. Aries, translator), Applications of Math-
ematics, Vol. 14, Springer-Verlag, New York Berlin, 1980.

[25] Krylov, N. V. On weak uniqueness for some di�usions with discontinuous coe�cients. Stochastic
Processes and their applications, 113, 37-64, 2004.

[26] Krylov, N. V. Lectures on Elliptic and Parabolic PDEs in Sobolev Space. Graduate Studies in
Mathematics, 96. American Mathematical Society, Providence, RI, 2008.

[27] Ladyzhenskaya O.A., Solonnikov V.A., Ural'tseva N.N. Linera and quasi-linear Equations of
Parabolic type. American Mathematical Society, Providence, RI, 1968.

[28] Lejay, A. A probabilistic approach to the homogenization of divergence-form operators in pe-
riodic media. Asymptot. Anal. 28 no. 2, 151�162, 2001.

[29] Ma, J., Protter, P., Yong, J. Solving forward backward stochastic di�erential equations explic-
itly: a four step scheme. Probab. Theory Related Fields 98,(1994), 339-359.

[30] Meyer, P. A., Zheng, W. A. Tightness criteria for laws of semimartingales. Ann. Inst. H.
Poincaré Probab. Statist. 20, (4), 217-248, 1984.

[31] Pankov, A. G�convergence and homogenization of nonlinear partial di�erential operators.
Mathematics and Its Applications, 422. Kluwer, Dordrecht, 1997.

[32] Pardoux, E. Backward stochastic di�erential equations and viscosity solutions of systems of
semilinear parabolic and elliptic PDEs of second order, in Stochastic analysis and related topics
VI, Geilo 1996, Progr. Probab., vol. 42, Birkhäuser, Boston, MA, pp. 79�127, 1998

[33] Pardoux, E. BSDEs, weak convergence and homogenization of semilinear PDEs in F. H Clarke
and R. J. Stern (eds.), Nonlinear Analysis, Di�erential Equations and Control, 503-549. Kluwer
Academic Publishers., 1999.

[34] Pardoux, E. Homogenization of linear and semilinear second order parabolic PDEs with periodic
coe�cients: A probabilistic approach. Journal of Functional Analysis 167, 498-520, 1999.

[35] Pardoux, E., Veretennikov, A.Y, Averaging of backward SDEs with application to semi-linear
PDEs. Stochastic and Stochastic Rep.. 60, 255-270, 1999.

29


