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Seed banks in population genetics

A variety of species produce seeds or dormant forms which introduce
strong age-structure / seed banks in population genetic models.

Seed banks can act as buffer against evolutionary forces such as
random genetic drift and selection; ‘bet-hedging’ strategy to
overcome unfavourable environmental conditions.

Their presence typically leads to significantly increased genetic
variability .

Classical mechanisms such as fixation and extinction become more
complex : Genetic types can disappear from the active population
while returning later due to the germination of seeds or activation of
dormant forms.
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Dormancy in microbial populations

Seed bank effects have also been suggested to play an important role in
microbial evolution [Lennon & Jones, Nature reviews, 2011]:

Many microbial species exhibit dormant forms. That is, organisms can
enter (and leave) a reversible state of low (resp. vanishing) metabolic
activity. These forms can be short-lived but may also stay inactive for
significant periods of time. A variety of bacteria can produce
endospores or cysts that remain viable for many decades/centuries.

Dormant microorganisms generate a seed bank , which comprises
inactive individuals that are capable of being resuscitated.

Initiation of dormancy may be triggered by environment, but may also
happen spontaneously (responsive vs. spontaneous switching).

A large fraction of the microorganisms in nature seem to be
metabolically inactive.
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Dormancy in microbial communities
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Figure: Percentage of inactive cells in microbial communities, data from
[Lennon & Jones, 2011])
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Modeling and investigating seed-banks

Despite many empirical studies and several theoretical works (including
e.g. [Kaj, Krone & Lascoux 2001], [Vitalis, Glémin, Oliveiri
2004], [Tellier, Laurent, Lainer, Pavlidis, Stephan 2011],
[Živković & Tellier 2011],...), the mathematical modeling of seed
banks in population genetics appears to be still incomplete.

Aim of this talk: Include large seed banks with potentially extended
periods of dormancy in classical Wright-Fisher population models; obtain
scaling limits; investigate ancestral relationships in terms of coalescent
processes, derive expressions for population genetic quantities to describe
genetic variability.
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Known results, I

[Kaj, Krone & Lascoux 2001] include seed bank effect in a
classical Wright-Fisher model: In a population of size N, each
individual independently picks its parent uniformly from a randomly
chosen previous generation B (with law µ) back in time.

They show that if µ is supported on {1, 2, . . . ,m} (independent of
N), then the ancestral process converges, as N →∞, after the usual
time-scaling by N, to a (time-changed) Kingman coalescent, with
coalescence rates multiplied by the constant β2 := 1/E[B]2.

An increase of E [B] thus decelerates the coalescent, leading to an
increase in the effective population size.

However, in a set-up with neutral mutation, since the overall
coalescent tree structure is retained, this leaves the relative genetic
type frequencies in the normalized site frequency spectrum
unchanged. In this case, we speak of a ‘weak’ seed bank effect.
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Known results, II

More generally, [B., González, Kurt, Spanò 2013] show that a
sufficient condition for convergence to the Kingman coalescent (with
similar scaling and rates) is that E [B] <∞ (again, with B resp. µ
independent of N).

Further, they show that an extreme seed-bank effect can completely
alter genealogical behaviour: If the seed bank age distribution µ is
heavy-tailed , say,

µ(k) = L(k)k−α,

where L is slowly varying, then, if α < 1, the expected time to the
most recent common ancestor is infinite, and if α < 1/2 two randomly
sampled individuals do not have a common ancestor at all wpp.

Some related models have been investigated in [B., Eldon,
González, Kurt 2015], but they all either lead to a Kingman
coalescent (potentially on different time-scales) or degenerate
ancestral processes.

Problem: Long-range seed-bank models are highly non-Markovian!
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The Wright-Fisher model with large geometric seed bank
component

In this talk, we investigate a simple Markovian seed bank model, where the
seed bank size is comparable to the original population N, and where the
average dormancy period may also be of order N. This leads to a natural
new ancestral scaling limit, which we call ‘seed bank coalescent’.
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The Wright-Fisher model with geometric seed bank
component - notation

Consider a haploid population of fixed size N reproducing in fixed discrete
generations k = 0, 1, .... Assume that each individual carries a genetic type
from some type-space E , say E = {a,A}.

Further, assume that the population also sustains a seed bank of constant
size M in each generation, which consists of the dormant individuals. For
simplicity, we refer to the N ‘active’ individuals as plants and to the M
dormant individuals as seeds.

Given N,M ∈ N, let ε ∈ [0, 1] such that εN ≤ M and set δ := εN/M (i.e.,
δM = εN), and assume for convenience that all involved products and
fractions are integers. Let c = εN.
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The Wright-Fisher model with geometric seed bank
component - dynamics

The N plants from generation 0 produce (1− ε)N plants in generation 1 by
multinomial sampling with equal weights (ordinary WF dynamics).

Additionally, δM = εN uniformly sampled seeds from the seed-bank of size
M in generation 0 ‘germinate’, that is, they turn into exactly one plant in
generation 1 each, and thus vacate the seed-bank.

The plants from generation 0 are thus replaced by these (1− ε)N + δM = N
new active individuals, forming the plants in generation 1.

For the seed-bank, the N plants from generation 0 produce δM = εN seeds
by multinomial sampling, replacing those seeds that germinated.

The remaining (1− δ)M seeds from generation 0 remain inactive and stay in
the seed-bank.

Throughout reproduction, offspring and seeds copy/resp. maintain the
genetic type of the parent.

Thus, in generation 1, we have again N plants and M seeds. This probabilistic

mechanism is then to be repeated independently in generations k = 2, 3, ...
Jochen Blath (TU Berlin) The seed bank coalescent June 2015 10 / 51
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Formal definition, notation

Definition 1.1 (Wright-Fisher model with geometric seed-bank
component)

Fix pop.-size N ∈ N, seed-bank size M, genetic type space E and
parameters δ, ε as before. Given initial type configurations ξ0 ∈ EN and
η0 ∈ EM , let

ξk :=
(
ξk(i), i ∈ {1, . . . ,N}

)
, k ∈ N,

be the random genetic type configuration in EN of the plants in
generation k (obtained from the above mechanism), and

ηk :=
(
ηk(j), j ∈ {1, . . . ,M}

)
, k ∈ N,

be the genetic type configuration of the seeds in EM . We call the
discrete-time Markov chain (ξk , ηk)k∈N0 with values in EN × EM the type
configuration process of the Wright-Fisher model with geometric
seed-bank component.

Jochen Blath (TU Berlin) The seed bank coalescent June 2015 12 / 51



Age structure in seed bank

Note that the time that a seed stays in the seed bank is iid geometric with
success parameter δ.

We will later let ε, δ (and M) scale with N, and in particular assume that
ε = ε(N) = c/N and N = K ·M(N) for constant c,K ∈ (0,∞).

Then, the seed-bank age distribution is geometric with parameter cK/N,
and in particular the average time spent in the dormant state is
N/cK ∈ O(N).
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Frequency chains of the geometric seed-bank model

We now specialise again to the bi-allelic case E = {a,A}.

Definition 1.2 (Frequency chains)

Let

XN
k :=

1

N

N∑
i=1

1{ξk (i)=a} and Y M
k :=

1

M

M∑
j=1

1{ηk (j)=a}, k ∈ N0. (1)

The pair forms a discrete-time Markov chain taking values in IN × IM ,
where

IN =
{

0,
1

N
,

2

N
, . . . , 1

}
and IM =

{
0,

1

M
,

2

M
, . . . , 1

}
.

Let Px ,y be the law of (XN ,Y M) with initial frequencies x , y .
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The limiting generator of the allele frequency processes
For c ,K ∈ (0,∞) assume

ε = ε(N) =
c

N
, M = M(N) =

N

K
, and δ = δ(N) =

c

M(N)
=

cK

N
.

Proposition 1.3

For the above parameter choices, and suitable test functions f , consider
the discrete generator AN of (XN

k ,Y
M
k )k∈N:

AN f (x , y) := N Ex ,y

[
f
(
XN
1 ,Y

M
1

)
− f (x , y)

]
.

Then, we have

Af (x , y) := lim
N→∞

AN f (x , y)

=c(y − x)
∂f

∂x
(x , y) + cK (x − y)

∂f

∂y
(x , y) +

1

2
x(1− x)

∂f 2

∂x2
(x , y).
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The scaling-limit of the allele frequency process

The result follows from the usual Taylor expansion of AN f about (x , y)
(lengthy details omitted). We arrive at the following

Corollary 1.4 (Wright-Fisher diffusion with seed bank)

Under the conditions of Proposition 1.3,

(XN
bNtc,Y

N
bNtc)t≥0 ⇒ (Xt ,Yt)t≥0

on D[0,∞)([0, 1]2), where (Xt ,Yt)t≥0 is a 2-dimensional diffusion solving

dXt = c(Yt − Xt)dt +
√

Xt(1− Xt)dBt ,

dYt = cK (Xt − Yt)dt, (2)

with X0 = x ,Y0 = y.
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The dual of the seed-bank frequency process

The classical Wright-Fisher diffusion is known to be dual to the block
counting process of the Kingman-coalescent.

Such dual processes are often extremely useful in the analysis of the
underlying system, and it is easy to see that our Wright-Fisher diffusion
with geometric seed-bank component also has a nice dual.
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The dual of the seed-bank frequency process

Definition 1.5

We define the block counting process of the seed-bank coalescent
(Nt ,Mt)t≥0 to be the continuous time Markov chain started in
(N0,M0) ∈ N2 with transitions

(n,m) 7→ (n − 1,m + 1) at rate cn

(n,m) 7→ (n + 1,m − 1) at rate cKm

(n,m) 7→ (n − 1,m) at rate

(
n

2

)

Denote by Pn,m the distribution of (Nt ,Mt)t≥0 if started in
(N0,M0) = (n,m), and denote the corresponding expected value by En,m.
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Moment duality

It is easy to see that eventually , Nt + Mt = 1 (as t →∞), since the sum
M + N can be dominated by a pure death process.

Moreover, it is standard to show that (Nt ,Mt)t≥0 is the moment dual of
(Xt ,Yt)t≥0.

Theorem 1.6

For every (x , y) ∈ [0, 1]2 and every n,m ∈ N,

Ex ,y

[
X n
t Y m

t

]
= En,m

[
xNt yMt

]
.

We aim to exploit this duality in order to learn something about the
long-term behaviour of our system.
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The long-time behaviour (in law)

The long-term behaviour of our system (2) is not obvious. While a
classical Wright Fisher diffusion {Zt}, given by

dZt =
√

Zt(1− Zt)dBt , Z0 = z ∈ [0, 1],

will get absorbed at the boundaries a.s. after finite time (in fact with finite
expectation), hitting 1 with probability z , this is more involved for our
frequency process in the presence of a strong seed-bank.

Obviously, (0, 0) and (1, 1) are absorbing states for the system (2).
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The long-time behaviour (in law)

One can compute its ‘fixation probability’ as t →∞, in a suitable sense
(in law). We prepare this with a moment computation.

Proposition 1.7

All mixed moments of (Xt ,Yt)t≥0 solving (2) converge to the same finite
limit depending only on x , y ,K . More precisely, for each fixed n,m ∈ N,
we have

lim
t→∞

Ex ,y [X n
t Y m

t ] = lim
t→∞

En,m
[
xNt yMt

]
=

y + xK

1 + K
. (3)
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The long-time behavior (in law), II

Corollary 1.8 (Fixation in law)

Given c ,K and (X0,Y0) = (x , y) ∈ [0, 1]2, we have that

lim
t→∞

L
(
Xt ,Yt

)
=

y + xK

1 + K
δ(1,1) +

1 + (1− x)K − y

1 + K
δ(0,0).

Note that this is in line with the classical results for the Wright-Fisher
diffusion:

As K →∞ (that is, the seed-bank becomes small compared to the plant
population), the fixation probability of a alleles approaches x .

Further, if K becomes small (so that the seed-bank population dominates
the plant population), the fixation probability is governed by the initial
fraction y of a-alleles in the seed-bank.
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Almost sure behaviour?

Note that the above result does not fully explain the pathwise/almost-sure
picture.

Indeed, absorption will not happen in finite time, since the dual block
counting process, started from an infinite initial state, does not come
down from infinity , which means that the total (infinite) population does
not have a most-recent common ancestor (we will see this later).

Thus, initial genetic variability in a hypothetical infinite population would
never be completely lost.
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The genealogy of a sample

In view of the form of the block counting process, it is now easy to guess
the stochastic process describing the limiting ancestral process of a sample
taken from the Wright-Fisher model with geometric seed-bank component.
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The genealogy of a sample

N Mc=2

1 2 3
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The genealogy of a sample and marked partitions

For k ≥ 1, let Pk be the set of partitions of [k]. For π ∈ Pk let |π| be the
number of blocks of the partition π. We define the space of marked
partitions to be

P{p,s}k =
{
π × {s, p}|π| : π ∈ Pk

}
.

This enables us to attach to each partition block a flag which can be
either ‘plant’ or ‘seed’ (p or s), so that we can trace whether an ancestral
line is currently in the active or dormant part of the population.

For example, for k = 5, an element π of P{p,s}k is the marked partition

π =
{
{1, 3}p{2}s{4, 5}p

}
.
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The genealogy of a sample and partitions with flags, II

For two marked partitions π, π′ ∈ P{p,s}k we write π � π′ if π′ can be
constructed by merging exactly 2 blocks of π carrying the p-flag, and the
resulting block in π′ again carries a p-flag. For example{

{1, 3}p{2}s{4, 5}p
}
�
{
{1, 3, 4, 5}p{2}s

}
.

We use the notation π 1 π′ if π′ can be constructed by changing the flag
of precisely one block of π, for example{

{1, 3}p{2}s{4, 5}p} 1 {{1, 3}s{2}s{4, 5}p
}
.
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The seed bank coalescent

Definition 1.9

For k ≥ 1 and c ,K ∈ (0,∞) we define the k-seed bank coalescent

(Π
(k)
t )t≥0 with seed-bank intensity c and seed-bank size 1/K to be the

continuous time pure-jump Markov process with values in P{p,s}k , with
transitions:

π → π′ at rate 1 if π � π′,
π → π′ at rate c if π 1 π′ and one p is replaced by one s,

π → π′ at rate cK if π 1 π′ and one s is replaced by one p.

If c = K = 1, we speak of the standard (k-) seed bank coalescent.
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The seed bank coalescent - Illustration

Figure: A possible realisation of the standard 10-seed bank coalescent. Dotted
lines indicate ‘inactive lineages’ (carrying an s-flag, which are prohibited from
merging). At the time marked with the dotted horizontal line the process is in
state {{1, 2}s{3}p{4, 5, 6, 7, 8}p{9, 10}s}.
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The seed bank coalescent as scaling limit

The seed bank coalescent appears as the limiting genealogy of a
sample taken from the Wright-Fisher model with geometric seed-bank
component in the same way as the Kingman coalescent in the
classical Wright-Fisher model.

Indeed, consider the genealogy of a sample of n (� N) individuals,

sampled from present generation 0. Denote by Π
(N,n)
i ∈ P{p,s}n the

partition at generation −i , where two individuals belong to the same

block of Π
(N,n)
i if and only if their ancestral lines have met before

generation −i .

The flag s or p indicates whether the ancestor in generation −i is a
plant or a seed.
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The seed bank coalescent as scaling limit

Standard arguments now give the following:

Corollary 1.10

Under the assumptions of Proposition 1.3, (Π
(N,n)
bNtc ) converges weakly as

N →∞ to the seed-bank coalescent (Π
(n)
t ) started with n plants.
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Properties of the seed bank coalescent

It is not surprising that the seed bank coalescent behaves very differently
from a classical Kingman coalescent.

We illustrate this with two examples.
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Coming down from infinity

The notion of coming down from infinity was introduced by [Pitman
1999] and [Schweinsberg 2000]. They say that an exchangeable
coalescent process comes down from infinity if the corresponding block
counting process (of an infinite sample) has finitely many blocks
immediately after time 0 (i.e. for all t > 0 a.s.).
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Coming down from infinity

Theorem 1.11 ([BGCKWB15])

The seed bank coalescent does not come down from infinity. In fact, its
block-counting process (Nt ,Mt)t≥0 stays infinite, that is, for each infinite
starting configuration (N0,M0) with N0 =∞,

P
{

Nt + Mt =∞, for all t > 0
}

= 1.

Of course, this has to do with lineages immediately ‘escaping’ into the
seed-bank.
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Time to the most recent common ancestor

The seed bank causes a significant delay in the time to the most recent
common ancestor.

Definition 1.12

Let k ∈ N ∪ {∞}. We define the time to the most recent common
ancestor of a sample of n plants to be

TMRCA[n] = inf{t > 0 : |Π(n)
t | = 1 given that Π0 = {{1}p...{n}p}},

or equivalently

TMRCA[n] = inf{t > 0 : (Nt ,Mt) = (1, 0) given that (N0,M0) = (n, 0)}
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Time to the most recent common ancestor

Theorem 1.13

For all c ,K ∈ (0,∞), the seed bank coalescent satisfies

E
[
TMRCA[n]

]
� log log n. (4)

This should be compared with a result for the Bolthausen-Sznitman
coalescent in [Goldschmidt & Martin 2005], which exhibits the same
time scale.
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Time to the most recent common ancestor
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Extensions of the model

The seed-bank model can be extended to include:

Mutation, both in the active and the dormant population. The usual
scaling leads to a seed bank coalescent with mutation, where Poisson
mutations appear with rate θ1/2 on the active lines, and with rate
θ2/2 on the dormant lines.

Mortality in the seed bank: Assume d/N is the death probability per
individual per generation in the seed bank, and assume that vacant
slots due to seed deaths are filled by additional offspring from the
active population. This leads to a model with an ‘effective’ seed bank
parameter

K̃ =
c + d

c
K .

There is a Moran-model formulation, and a corresponding lookdown
construction (work in progress with [Ch. Horvath, TUB]).
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The seed bank coalescent with mutation

1 2 3 4 5 6 7 8

Figure: A possible realisation of the standard 10-seed bank coalescent with
mutation (only on active lineages, that is, θ2 = 0).
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Universality

The seed bank coalescent can be expected to arise as universal scaling
limit under the following assumptions:

The active population, without seeds, is in the domain of attraction
of the Kingamn coalescent, say, with time-scaling N (or, more
generally 1/cN where cN is the probability that two individuals in a
Cannings model share a common ancestor in the previous generation).

The seed bank is of comparable size as the active population (O(N)),
up to fluctuations of smaller order.

Initiation and resuscitation happen at a probability / rate of order
O(1/N). That means that dormancy times are on the order of the
active population size.

Mutations appear at probability / rate O(1/N).
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Relation to other models

The seed bank diffusion is related to two other interesting stochastic
systems (work in progress with [E. Buzzoni, A. González & A.
Etheridge]):

Seed bank diffusion scaling limit (with mutation) can be reformulated
in terms of a stochastic delay differential equation.

Related to the two island model (where coalescences are completely
blocked in one island) and the structured coalescent [Herbots
1997].

Characterization of stationary distribution?
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Seed banks in bacterial communities
The universality assumptions may be fitting relatively well to those stated
in [Jones & Lennon 2010, Lennon & Jones 2011] investigating
bacterial communities:

Active 

cells

Dormant

cells

Reproduction
Reactivation rate cK

Dormancy rate c

Mortality Mortality

b-

-

Figure: Initiaton and resuscitation, à la [Lennon & Jones 2011]
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Genetic variability under the seed bank coalescent

The seed bank coalescent allows the derivation of recursions for expected
values (and variances, covariances...) of

tree quantities, such as TMRCA, total tree length, external branch
lengths, ...

and thus classical population genetic quantities such as segregating
sites, pairwise differences, singletons, SFS, etc...

Also, sampling formulas can be attacked, at least via recursions.

Search for explicit (limiting) distributions poses interesting mathematical
challenges.
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Expected time to MRCA - exact values

We already know that En,0[TMRCA] for the seed bank coalescent, if
started in a sample of active individuals of size n, is O(log log n).

However, this does not give precise information for the exact absolute
value, in particular for ‘small to medium’ n. Instead, we can derive a
recursion:

For n,m ∈ N0 let
tn,m := En,m[TMRCA],

where En,m denotes expectation when started in (N0,M0) = (n,m), ie.
with n active lines and m dormant ones.
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Recursion for the expected time to MRCA

Further, abbreviate

λn,m :=

(
n

2

)
+ cn + cKm,

and

αn,m :=

(n
2

)
λn,m

, βn,m :=
cn

λn,m
, γn,m :=

cKm

λn,m
.

Then, conditioning on the first transition event (which is exponential with
rate λn,m) we get

Proposition 1.14

En,m[TMRCA] = tn,m = λ−1n,m + αn,mtn−1,m + βn,mtn−1,m+1 + γn,mtn+1,m−1,

with initial conditions t1,0 = t0,1 = 0.
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Special case n = 2

For example, one gets

t2,0 = 1 +
2

K
+

1

K 2
.

Interestingly, t2,0 is independent of c , and in particular does not converge
to 1 (the Kingman case) as c → 0.

This effect is similar to the corresponding behaviour of the structured
coalescent if the migration rate goes to 0, cf. [Nath & Griffith 1993]
(but there, the factor is 2).

Yet, the Kingman coalescent times are recovered as the relative seed bank
size decreases to 0 (i.e. K →∞).
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coalescent if the migration rate goes to 0, cf. [Nath & Griffith 1993]
(but there, the factor is 2).

Yet, the Kingman coalescent times are recovered as the relative seed bank
size decreases to 0 (i.e. K →∞).
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Some concrete values for TMRCA

K = 1
sample size n

c 2 10 100
0.01 4 10.21 17.18
0.1 4 9.671 14.97
1 4 8.071 10.02
10 4 7.317 8.221
100 4 7.212 7.954

K = 100
sample size n

c 2 10 100
0.01 1.02 1.846 2.052
0.1 1.02 1.838 2.026
1 1.02 1.836 2.02
10 1.02 1.836 2.02
100 1.02 1.836 2.02
K =∞ 1 1.80 1.98
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A simulated normalized SFS
A normalized expected site frequency spectrum for various seed bank
paramters:

1 2 3 4 5 6+

Kingman
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Figure: Normalized SFS depending on seedbank size
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Empirical distribution of Tajima’s D
Figure 5: Estimates of the distribution of Tajima's DT (24) with all n = 100 sampled lines
assumed active, θ1 = 2, θ2 = 0. The vertical broken lines are the 5%, 25%, 50%, 75%,
95% quantiles and the black square (�) denotes the mean. The entries are normalised to
have unit mass 1. The histograms are drawn on the same horizontal scale. Based on 105

replicates.
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Many open questions and tasks

Tree properties of seed bank coalescent...

Characterization of stationary distribution, properties of system of sdes...

Modeling extensions: Other evolutionary forces, such as selection,
fluctuating population size...

Modeling extensions: Simultaneous vs. spontaneous switching between
dormant and active states

Derivation of universal limit theorem

Derivation of lookdown construction

Statistical analysis: Testing for presence of weak vs. strong seed bank, also
for presence of mutation in seed-bank, etc...

Parameter estimation, efficient simulation, sampling formulas...

Relation to stochastic delay differential equations, two island models,
structured coalescent...

Cooperation with biologists, application of inference methods to data...
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Finally...

... thank you for your attention!

Talk mostly based on:

Blath, Gonzalèz Casanova, Kurt, Wilke Berenguer: A new
coalescent for seed bank models, to appear in Annals of Applied Probability,
2015

Blath, Eldon, Gonzalèz Casanova, Kurt, Wilke Berenguer:
Genetic variability under the seed bank coalescent, to appear in Genetics,
2015
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