
LOCALLY PERIODIC HOMOGENIZATION

A. BENCHÉRIF-MADANI AND É. PARDOUX

Abstract. In this paper, two linear second PDEs are homoge-

nized. The coefficients are supposed to be locally periodic, Lipschitz

and bounded. Compared to our previous work [1], we provide a new

and simpler proof and weaken the hypotheses of the main theorem.

We use both probabilistic and analytic arguments.

1. Introduction

In this paper we deal with the problem of the homogenization prop-
erty of two singular second order PDE’s with locally periodic coeffi-
cients, namely first the elliptic PDE in the bounded smooth domain
D ⊂ Rd with a Dirichlet boundary condition :

Lεuε(x) + f
(
x,
x

ε

)
uε(x) = 0, x ∈ D,

uε(x) = g(x), x ∈ ∂D,
(1.1)

where f is bounded from above (see (6.2)), f and g are continuous,
and second the following parabolic equation with a Cauchy type initial
condition

∂tu
ε(t, x) = Lεuε(t, x) + λε

(
x,
x

ε

)
uε(t, x),

uε(0, x) = g(x),
(1.2)

where λε(x, x
ε
) = ε−1e(x, x

ε
)+f(x, x

ε
), and g is continuous with at most

polynomial growth at infinity. The operator acting on x

(1.3) Lε =
1

2

d∑

i,j=1

aij(x,
x

ε
)∂2

xixj
+

d∑

i=1

(
1

ε
bi(x,

x

ε
) + ci(x,

x

ε
))∂xi

,

with the symmetric matrix a(x, y) = [aij(x, y)], for x and y in Rd, is
supposed to be uniformly elliptic. That is ∃β strictly positive s.t. for
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all x, y and ξ in Rd

(1.4) β ‖ξ‖2 ≤ (a(x, y)ξ, ξ).

All the coefficients are periodic with respect to the second variable with
period one in each direction of Rd.

We intend here to improve upon our earlier paper [1] by slightly
relaxing our assumptions, and giving a simpler proof, based on a more
efficient approximation of our coefficients.

1.1. Probabilistic approach. After the pioneer work of Freidlin [4],
the probabilistic approach to homogenization has been developed by
several authors, see in particular Bensoussan and al. [2], Olla [6], Par-
doux [7]. We refer to the introduction in [1] for an outline of Freidlin’s
approach. Let (Ω,F ,Ft, Bt,P) a filtered probability space, where {Bt}
is under P an Ft–Brownian motion starting at zero. We define the Rd–
valued diffusion Xε

t as the solution of the SDE

(1.5) Xε
t = x+

∫ t

0

(
1

ε
b(Xε

s ,
Xε

s

ε
) + c(Xε

s ,
Xε

s

ε
))ds+

∫ t

0

σ(Xε
s ,
Xε

s

ε
)dBs,

where the matrix σ satisfies σσ∗(x, y) = a(x, y). The following operator
will play an important role in our derivation :

(1.6) Lx,y =
1

2

d∑

i,j=1

aij(x, y)∂
2
yiyj

+

d∑

i=1

bi(x, y)∂yi
.

Lx,y is the infinitesimal generator of the following diffusion process
indexed by x, with transition densities px(t, y, y

′)

Y x
t = y +

∫ t

0

b(x, Y x
s )ds+

∫ t

0

σ(x, Y x
s )dBs,

which may rather be considered as a diffusion on the torus Td, i.e.

Ẏ x
t = y +

∫ t

0

b(x, Ẏ x
s )ds+

∫ t

0

σ(x, Ẏ x
s )dBs,

with transition density ṗx(t, y, y
′) =

∑
k∈Zd px(t, y, y

′+
∑d

i=1 kiei), {ei}
being the canonical basis of Rd. In what follows we shall drop the dots
when no ambiguity arises. For each x ∈ Rd, this diffusion possesses a
unique invariant probability measure µ(x, dy), with density px(∞, y).
We shall need the following crucial centering assumption on b :

(1.7)

∫

Td

b(x, y)µ(x, dy) = 0, for each x ∈ Rd,
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under which we can solve the Poisson equation

(1.8) Lx,yb̂(x, y) = −b(x, y),

where the solution b̂ belongs to the space W 2,p(Td) and also satisfies∫
Td b̂(x, y)µ(x, dy) = 0, x ∈ Rd.
We now prove a Lemma which will be used several times below, and

is a variant of Lemma 9.17 from Gilbarg, Trudinger [5].

Lemma 1. Let p ∈ (1,∞). There exists a constant c such that for all
x in Rd and all h(x, ·) ∈ W 2,p(Td), satisfying

∫

Td

h(x, y)µ(x, dy) = 0, for each x ∈ Rd.

Then

‖h(x, ·)‖W 2,p(Td) ≤ c‖Lx,·h(x, ·)‖Lp(Td).

Proof. We drop the parameter x for notational simplicity. Let us sup-
pose that the result is not true. Then there would exist a sequence hn

s.t. ‖hn‖Lp(Td) = 1 and ‖Lhn‖Lp(Td) → 0. On the other hand, upon
decomposing the torus into two domains, we are able to apply Theorem
9.11 in Gilbarg, Trudinger [5], and we can find a constant c obviously
independent of x, s.t. for all n

‖hn‖W 2,p(Td) ≤ c(‖hn‖Lp(Td) + ‖Lhn‖Lp(Td)).

Hence the sequence hn is bounded in W 2,p(Td), and we can extract
a subsequence, still noted hn, which converges weakly to some h in
W 2,p(Td). Note that h is also centered. By the Sobolev embedding
theorems, ‖hn‖Lp(Td) → ‖h‖Lp(Td) = 1. On the other hand, Lh = 0 by
weak convergence. Since h is centered, this entails h = 0, which is a
contradiction. �

1.2. Notations. Let ξ denote any coefficient a, b, c, e, f . For the sake
of simplifying the notations, the process ξ(Xε

s , X
ε
s/ε) will be denoted

by ξ(s, s). There should be no confusion with ξ(x, y), since we use
different letters for space and time variables. Unimportant constants
will invariably be designated by c, the value of which may vary from line
to line while proofs are in process but when there are many constants
within a string of relations, we will use c, c′, ...

1.3. Assumptions on the coefficients. Our standing assumptions
are, next to (1.4), in which β is fixed, and (1.7), (7.2) below,
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Condition 1. The coefficients are continuous and bounded, in parti-
cular there exists a constant k s.t. for any ξ = a, b, c, e and f ,

‖ξ(x, y)‖ ≤ k, ∀x ∈ Rd, y ∈ Td.

Condition 2. Global Lipschitz condition : there exists a constant kL

s.t. for any ξ = a, b and e

‖ξ(x, y)− ξ(x′, y′)‖ ≤ kL(‖x− x′‖+ ‖y − y′‖), ∀x, x′ ∈ Rd, y, y′ ∈ Td.

Moreover ∂xξ exists and is continuous in x, uniformly with respect to
y ∈ Td, and the same is true for ξ = b̃, where b̃i = bi −

1
2

∑
j ∂yj

aij is
uniformly Lipchitz with respect to x, 1 ≤ i ≤ d.

Note that our conditions imply the existence and uniqueness of a
global weak solution of equation (1.5), and that the operator Lx,y can
be rewritten as

(1.9) Lx,y =
1

2
divy (a∇y·) + b̃∇y·

2. A regularization procedure

The key idea, which allows us to maintain minimal regularity as-
sumptions, is to use a regularization procedure, which we now describe.

Let ϕ be a standard mollifier, which satisfies :

(2.1)

∫

Rd

xiϕ(x)dx = 0, i = 1, . . . , d.

For any measurable and locally bounded h : Rd × Td → R, we
define

(2.2) hε(x, y) = ε−d

∫

Rd

h(x− x′, y)ϕ

(
x′

ε

)
dx′.

We also define the regularized second order operator

(2.3) Lε
x,y =

1

2

d∑

i,j=1

aε
ij(x, y)∂

2
yiyj

+
d∑

i=1

bεi (x, y)∂yi
,

where aε and bε are defined as in (2.2). It generates a diffusion {Y x,ε
t , t ≥

0} on the torus Td, whose associated x–dependent invariant probability
measure on Td will be denoted µε(x, dy).

We can define moreover the solution ĥε of the regularized Poisson
equation

(2.4) Lε
x,yĥ

ε(x, y) + ȟε(x, y) = 0,

where

(2.5) ȟε(x, y) = hε(x, y)− h̄ε(x),
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and

(2.6) h̄ε(x) =

∫

Td

hε(x, y)µε(x, dy).

We also define

(2.7) hε(x, y) = h(x, y)− hε(x, y),

and when h(x, ·) is centered with respect to µ(x, ·) for all x ∈ Rd,

ĥε(x, y) = ĥ(x, y)− ĥε(x, y).

Lemma 2. Let h : Rd × Td → R be jointly continuous, and such
that for some p > d and all x ∈ Rd, h(x, ·) is in W 1,p(Td) and the
W 1,p(Td) norm of h(x, ·) is bounded uniformly with respect to x. Then
the following identity holds

∫ t

0

hε(s, s)ds = ε

∫ t

0

[∂xĥ
εb+ ∂yĥ

εc+ Tr(∂2
xyĥ

εa)](s, s)ds

+ ε

∫ t

0

(∂yĥ
εσ)(s, s)dBs

+

∫ t

0

(h̄ε(s) + (Ls,s − Lε
s,s)ĥ

ε(s, s))ds

+ ε2

∫ t

0

[∂xĥεc+
1

2
Tr(∂2

xĥ
εa)](s, s)ds+ ε2

∫ t

0

(∂xĥεσ)(s, s)dBs

+ ε2(ĥε(0, 0)− ĥε(t, t)).

(2.8)

Proof. Since hε is of class C∞ in x, with x–derivatives uniformly bounded

on Rd × Td, we can show that ĥε ∈ C2(Rd × Td) in a similar way as

in the proof of Lemma 3 below. It then suffices to compute ĥε(t, t) −

ĥε(0, 0) with the help of Itô’s formula. �

We deduce easily from Lemma 2 the

Corollary 1. Suppose in addition to the hypotheses of Lemma 2 that
h is centered, i.e. satisfies

∫

Td

h(x, y)µ(x, dy) = 0, for each x ∈ Rd.

Then we have

ε−1

∫ t

0

h(s, s)ds =

∫ t

0

Fh(s, s)ds+

∫ t

0

Gh(s, s)dBs +Rh,ε
t ,
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where

Fh(x, y) = (∂xĥb + ∂yĥc+ Tr(∂2
xyĥa))(x, y)

Gh(x, y) =
(
∂yĥσ

)
(x, y)

and

Rh,ε
t = Rh,1,ε

t +Rh,2,ε
t +Rh,3,ε

t

in which

Rh,1,ε
t = −

∫ t

0

[∂xĥεb+ ∂yĥεc+ Tr(∂2
xyĥεa)](s, s)ds−

∫ t

0

∂yĥεσ(s, s)dBs,

Rh,2,ε
t = ε−1

∫ t

0

(h
ε
(s) + [hε + (Ls,s − Lε

s,s)ĥ
ε)](s, s))ds

and

Rh,3,ε
t = ε

(∫ t

0

[∂xĥεc+
1

2
Tr(∂2

xĥ
εa)](s, s)ds+

∫ t

0

(
∂xĥεσ

)
(s, s)dBs

+ĥε(0, 0)− ĥε(t, t)
)
.

3. Rewriting our SDE

It follows from Corollary 1 applied to each component of b that

Xε
t = X

ε

t +Rε
t ,(3.1)

where

X
ε

t = x+

∫ t

0

F (s, s)ds+

∫ t

0

G(s, s)dBs,(3.2)

with

F =
(
∂xb̂b+ (I + ∂y b̂)c+ Tr∂2

xyb̂a
)

(x, y), G = ((I + ∂y b̂)σ)(x, y),

and Rε
t = Rb,ε

t . The next section establishes all the technical results
needed in order to prove that Rε

t → 0 in probability as ε→ 0, uniformly
with respect to t ≤ T .
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4. Technical facts

4.1. Regularity of the solution of the Poisson equation.

Lemma 3. Under the above conditions, there exists a constant c > 0
s.t. for all x in Rd and y in Td

∥∥∥b̂(x, y)
∥∥∥ +

∥∥∥∂xb̂(x, y)
∥∥∥ +

∥∥∥∂y b̂(x, y)
∥∥∥ +

∥∥∥∂2
y b̂(x, y)

∥∥∥ +
∥∥∥∂2

xy b̂(x, y)
∥∥∥ ≤ c.

Moreover ∂xb̂, ∂y b̂ and ∂2
xyb̂ are continuous in x, uniformly with respect

to y ∈ Td.

Proof. Let x be an arbitrary point in Rd. It follows from the Sobolev
embedding theorem that the first part of the Lemma is a consequence
of the existence of a constant c such that

(4.1) ‖b̂(x, ·)‖W 3,p(Td) + ‖∂xb̂(x, ·)‖W 2,p(Td) ≤ c, ∀x ∈ Rd,

for some p > d. We note that from (1.8),

L∂xb̂ = −(∂xL)̂b− ∂xb,

and
L∂y b̂ = −(∂yL)̂b− ∂yb.

Hence (4.1) follows from

‖(∂xL)̂b(x, ·) + ∂xb(x, ·)‖Lp(Td) + ‖(∂yL)̂b(x, ·) + ∂yb(x, ·)‖Lp(Td) ≤ c,

and Lemma 1. The continuity in the last assertion of the Lemma
is easily established by varying the coefficient x in the corresponding
Poisson equation. �

A similar proof yields the

Lemma 4. There exists a constant c > 0 such that for all x in Rd, y
in Td and ε ∈ (0, 1],
∥∥∥b̂ε(x, y)

∥∥∥+
∥∥∥∂xb̂

ε(x, y)
∥∥∥+

∥∥∥∂y b̂
ε(x, y)

∥∥∥+
∥∥∥∂2

y b̂
ε(x, y)

∥∥∥+
∥∥∥∂2

xy b̂
ε(x, y)

∥∥∥ ≤ c.

4.2. An estimate of the invariant density. The following estimate
will be needed below. It follows from Proposition 2.1 in [7] and the
proof of Lemma 18 in [1] that the invariant measure µε(x, dy) has a
density pε

x(∞, y) which satisfies

Lemma 5. Under the above conditions, there is a constant c > 0 s.t.
for any (ε, x, y) ∈ (0, 1]×Rd ×Td

|pε
x(∞, y)|+ ‖∂yp

ε
x(∞, y)‖ ≤ c.

Moreover pε
x(∞, y) is also bounded away from zero, uniformly in (ε, x, y).
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4.3. Fine properties of the regularization procedure. The aim
of this subsection is to establish the

Proposition 1. There exists a mapping θ from (0, 1] × Rd into R+

such that
sup

(ε,x)∈(0,1]×Rd

θ(ε, x) <∞

and
θ(ε, x) → 0, as ε→ 0,

uniformly for x in a compact subset of Rd, and the following holds for
each (ε, x, y) ∈ (0, 1]×Rd ×Td

ε−1 (‖aε(x, y)‖+ ‖bε(x, y)‖) ≤ θ(ε, x),(4.2)

ε−1‖b̄ε(x)‖ ≤ θ(ε, x),(4.3)

‖∂y b̂ε(x, y)‖ ≤ θ(ε, x),(4.4)

‖∂xb̂ε(x, y)‖+ ‖∂2
xy b̂ε(x, y)‖+ ε

∥∥∥∂2
xb̂

ε(x, y)
∥∥∥ ≤ θ(ε, x).(4.5)

The following Lemma contains the proof of (4.2) and prepares that
of the other estimates.

Lemma 6. For ξ = a, b or e, the quantities

ε−1ξε(x, y), ∂xξε(x, y), and ε∂2
xξ

ε(x, y)

are bounded uniformly with respect to 0 < ε ≤ 1, x ∈ Rd, y ∈ Td,
and tend to zero as ε→ 0, uniformly for (x, y) in a compact subset of
Rd ×Td.

Proof. We consider only the term ε∂2
xξ

ε(x, y), since it is the most deli-
cate one. We note that for 1 ≤ i, j ≤ d, we have
∥∥∥ε∂2

xixj
ξε(x, y)

∥∥∥ = ε−d

∥∥∥∥
∫

Rd

∂xi
ξ(x− x′, y)∂xj

ϕ

(
x′

ε

)
dx′

∥∥∥∥

= ε−d

∥∥∥∥
∫

Rd

(∂xi
ξ(x− x′, y)− ∂xi

ξ(x, y))∂xj
ϕ

(
x′

ε

)
dx′

∥∥∥∥
≤ c′ sup

‖x′‖≤cε,y∈Td

‖∇xξ(x− x′, y)−∇xξ(x, y)‖,

where c is the radius of the support of ϕ and

c′ = sup
j
ε−d

∫

Rd

∣∣∣∣∂xj
ϕ

(
x′

ε

)∣∣∣∣ dx
′ = sup

j

∫

Rd

∣∣∂xj
ϕ(x)

∣∣ dx.

The above quantity is bounded, and tends to zero as ε → 0 locally
uniformly in x, thanks to Condition 2. Note that the proof of each
of the two other estimates is similar and uses in an essential way the
relation (2.1). �
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We can now prove the

Lemma 7. (4.3)and (4.4) hold.

Proof. Note that

ε−1b̄ε(x) = ε−1

∫

Td

(bε − b)(x, y)µε(x, dy)

+ ε−1

∫

Td

b(x, y) (µε(x, dy)− µ(x, dy)) ,

and consequently (4.3) follows from Lemma 3, Lemma 6 and the fol-
lowing computation

∫

T d

pε
x(∞, y)Lε

x,yb̂(x, y)dy =

∫

T d

px(∞, y)Lx,yb̂(x, y)dy

∫

T d

pε
x(∞, y)(Lε

x,y − Lx,y )̂b(x, y)dy =

∫

T d

px(∞, y)Lx,yb̂(x, y)dy

−

∫

T d

pε
x(∞, y)Lx,yb̂(x, y)dy

=

∫

T d

(pε
x(∞, y)− px(∞, y))b(x, y)dy.

Now (4.4) follows from the arguments in the proof of Lemma 3, Lemma
4, (4.2) and (4.3). �

It remains to establish (4.5). The bounds on ∂xb̂ε and ∂2
xy b̂ε are

treated as in the proof of (4.4), i.e. by means of Lemma 1. Next, we
need to consider the quantities

∂xb̂ε(x, y) and ∂2
xb̂

ε(x, y).

It follows from the equation for b̂ε that for 1 ≤ i, j ≤ d,

Lε
x,y∂xi

b̂ε + ∂xi
Lε

x,yb̂
ε + ∂xi

b̌ε = 0,

and

Lε
x,y∂

2
xixj

b̂ε + ∂xj
Lε

x,y∂xi
b̂ε + ∂xi

Lε
x,y∂xj

b̂ε + ∂2
xixj

Lε
x,y b̂

ε + ∂2
xixj

b̌ε = 0.

Hence from Lemma 1, there exists a constant c independent of x such
that

∥∥∥∂xi
b̂ε(x, ·)

∥∥∥
W 2,p(Td)

≤ c

(∥∥∥∂xi
Lε

x,yb̂
ε(x, ·)

∥∥∥
Lp(Td)

+
∥∥∂xi

b̌ε(x, ·)
∥∥

Lp(Td)

)
,
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and
∥∥∥∂2

xixj
b̂ε(x, ·)

∥∥∥
W 2,p(Td)

≤ c

(
1 +

∥∥∥∂2
xixj

Lε
x,yb̂

ε(x, ·)
∥∥∥

Lp(Td)

+
∥∥∥∂2

xixj
b̌ε(x, ·)

∥∥∥
Lp(Td)

)
.

Clearly, only the last term of the right hand side of the two above
inequalities needs some care. In fact, we need only to study

b̄ε(x) =

∫

Td

bε(x, y)µε(x, dy).

The result now follows from

Lemma 8. For any 1 ≤ i, j ≤ d the quantities

‖∂xi
pε

x(∞, ·)‖L2(Td) and ε‖∂2
xixj

pε
x(∞, ·)‖L2(Td)

are bounded uniformly in (ε, x) ∈ (0, 1]×Rd and the second one tends
to zero as ε→ 0, locally uniformly in x.

Proof. In order to keep as few terms as possible, inspired by Pardoux
[7] Proposition 2.2, we will work with µε(x, dy) as a reference measure.
The scalar product of functions relative to this measure will be denoted
by (·, ·)ε, while both the scalar product relative to Lebesgue measure
and the ordinary scalar product in Rd are denoted, when no ambiguity
arises, by (·, ·). It is easy to check that (see Pardoux [7], page 501)

Lemma 9. For any x in Rd and ψ in H1(Td) we have

(Lε
x,yψ, ψ)ε = −

1

2

∫

Td

(aε∇yψ,∇yψ)µε(x, dy).

Let pε
x(t, ν, y) stand for the density of the law of Y x,ε

t when the process
starts with the distribution ν , which we drop when no ambiguity arises.
For 1 ≤ i, j ≤ d the derivatives ∂xi

pε
x(t, y) and ∂xixj

pε
x(t, y) are denoted

respectively by qi,ε
x (t, y) and ri,j,ε

x (t, y). We have the PDE with Cauchy
initial value pε

x(0) = ν

(4.6) ∂tp
ε
x(t, y) = (Lε

x,y)
∗pε

x(t, y)

For fixed 1 ≤ i, j ≤ d, the ratios of pε
x(t, y), q

i,ε
x (t, y) and ri,j,ε

x (t, y)
to pε

x(∞, y) are denoted respectively by uε
x(t, y), v

ε
x(t, y) and wε

x(t, y).
Our bounds are derived by an iterative scheme. Applying Lemma 9
with ψ = uε

x(t, y), we deduce from (4.6) that

d

dt
‖uε

x(t)‖
2
2,ε +

∫

Td

(aε∇yu
ε
x(t),∇yu

ε
x(t))µ

ε(x, dy) = 0.
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After choosing a suitable ν (e.g. with constant density 1, which we
assume from now on) we obtain thanks to ellipticity that there exists
a constant c > 0 s.t. for all (ε, x) in (0, 1]×Rd,

(4.7) sup
0≤t

‖uε
x(t)‖

2
2,ε +

∫ ∞

0

‖∇yu
ε
x(s)‖

2
2,ε ds ≤ c.

Let us now turn to the first derivative. We obviously have for 1 ≤
i ≤ d and Cauchy initial value qi,ε

x (0) = 0

∂tq
i,ε
x (t, y) = (Lε

x,y)
∗qi,ε

x (t, y) + (∂xi
Lε

x,y)
∗pε

x(t, y) .

The same procedure as above gives

d

dt
‖vε

x(t)‖
2
2,ε +

∫

Td

(aε∇yv
ε
x(t),∇yv

ε
x(t))µ

ε(x, dy)

= −(∂xi
aε∇yp

ε
x(t),∇yv

ε
x(t)) + 2(∂xi

b̃εpε
x(t),∇yv

ε
x(t)).

It is then easy to see that there exist three positive constants c, c′ and
c′′, c′ sufficiently small thanks to an interpolated Young’s inequality,
s.t.

d

dt
‖vε

x(t)‖
2
2,ε+c ‖∇yv

ε
x(t)‖

2
2,ε ≤ c′ ‖∇yv

ε
x(t)‖

2
2,ε+c

′′(‖pε
x(t)‖

2
2+‖∇yp

ε
x(t)‖

2
2).

Now clearly ∫

Td

vε
x(t, y)µ

ε(x, dy) = 0.

It then follows from the Poincaré inequality that there exist three
positive constants c, c′ and c′′, s.t. for all (ε, x) in (0, 1]×Rd

(4.8)
d

dt
‖vε

x(t)‖
2
2,ε +c ‖vε

x(t)‖
2
2,ε +c′ ‖∇yv

ε
x(t)‖

2
2,ε ≤ c′′(‖pε

x(t)‖
2
2 +‖∇yp

ε
x(t)‖

2
2).

We will need the following variant of the Gronwall-Bellman Lemma

Lemma 10. Let f be a real function in L1
loc([0,∞)) and α ∈ R. If the

following differential inequality holds

ψ′(t) + αψ(t) ≤ f(t),

then

ψ(t) ≤ exp(−αt)ψ(0) +

∫ t

0

exp(−α(t− s))f(s)ds.

Proof. It suffices to write ϕ(t) = exp(αt)ψ(t) and to notice that ϕ′(t) ≤
exp(αt)f(t). �
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It follows from equation (4.8) and Lemma 10 that there are two
positive constants c and α s.t.

‖vε
x(t)‖

2
2,ε + c

∫ t

0

e−α(t−s) ‖∇yv
ε
x(s)‖

2
2,ε ds

≤ c′
∫ t

0

e−α(t−s)(‖pε
x(s)‖

2
2 + ‖∇yp

ε
x(s)‖

2
2)ds

≤ c′
∫ t

0

e−α(t−s)(‖uε
x(s)‖

2
2‖p

ε
x(∞)‖2

W 1,∞(Td) + ‖∇yu
ε
x(s)‖

2
2‖p

ε
x(∞)‖2

∞)ds.

Now from Lemma 5 and equation (4.7), we conclude that there exists
a constant c such that for all x ∈ Rd, ε > 0,

(4.9) sup
0≤t

(
‖vε

x(t)‖
2
2,ε +

∫ t

0

exp(−α(t− s)) ‖∇yv
ε
x(s)‖

2
2,ε ds

)
≤ c.

Considering the second derivative, again we have for 1 ≤ i, j ≤ d
and Cauchy initial value ri,j,ε

x (0) = 0

∂tr
i,j,ε
x (t, y) = (Lε

x,y)
∗ri,j,ε

x (t, y) + (∂xi
Lε

x,y)
∗qj,ε

x (t, y) + (∂xj
Lε

x,y)
∗qi,ε

x (t, y)

+ (∂xixj
Lε

x,y)
∗pε

x(t, y),

hence

d

dt
‖wε

x(t)‖
2
2,ε + c ‖∇yw

ε
x(t)‖

2
2,ε

≤ c′(
∥∥qi,ε

x (t)
∥∥2

2
+

∥∥∇yq
i,ε
x (t)

∥∥2

2
+

∥∥qj,ε
x (t)

∥∥2

2
+

∥∥∇yq
j,ε
x (t)

∥∥2

2

+
∥∥∂xixj

aε
i,j

∥∥2

∞
‖∇yp

ε
x(t)‖

2
2 +

∥∥∥∂xixj
b̃ε

∥∥∥
2

∞
‖pε

x(t)‖
2
2),

therefore we deduce from similar arguments as above, using (4.7) and
(4.9),

‖wε
x(t)‖

2
2,ε ≤ c

∫ t

0

exp(−α(t− s))(‖qε
x(s)‖

2
2 + ‖∇yq

ε
x(s)‖

2
2)ds

+c(
∥∥∂2

xa
ε
∥∥2

∞
+

∥∥∥∂2
xb̃

ε
∥∥∥

2

∞
)

∫ t

0

exp(−α(t− s))(‖pε
x(s)‖

2
2 + ‖∇yp

ε
x(s)‖

2
2)ds

≤ c(1 +
∥∥∂2

xa
ε
∥∥2

∞
+

∥∥∥∂2
xb̃

ε
∥∥∥

2

∞
),

where c is a constant independent of t, x and ε. This concludes the
proof of Lemma 8.
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5. Convergence in law

Define again

F (x, y) =
(
∂xb̂b + (I + ∂y b̂)c+ Tr∂2

xyb̂a
)

(x, y)(5.1)

and

G(x, y) = ((I + ∂y b̂)σ)(x, y).(5.2)

Note that F and G are continuous and bounded. We can now state
the following Theorem, whose proof is carried out as in [1].

Theorem 1. The sequence of processes {X ε
t , 0 ≤ t ≤ T ; 0 < ε ≤ 1} is

tight in C([0, T ];Rd), and

sup
0≤t≤T

‖Rε
t‖ → 0 in probability, as ε→ 0.

In order to identify the limit, we need in addition the following result,
namely a locally periodic ergodic theorem, which is an improvement
over Theorem 3 in [1]. We first define Λ(x, y) = GG∗(x, y),

F (x) =

∫

Td

F (x, y)µ(x, dy)(5.3)

and

Λ(x) =

∫

Td

Λ(x, y)µ(x, dy).(5.4)

Observe that the continuity of F and G has already been proved in [1].

Theorem 2. Let ϕ be a smooth function with compact support from
Rd into R, and h(x, y) be a bounded continuous function from Rd×Td

into R such that for all x ∈ Rd

∫

Td

h(x, y)µ(x, dy) = 0.

Then

Hε(t) =

∫ t

0

ϕ(X
ε

s)h(X
ε
s ,
Xε

s

ε
)ds

converges to zero in L1(Ω) for any t > 0.

Proof. Since Hε(t) is bounded, it suffices to prove convergence in prob-
ability. We use tightness in an essential way, as in Theorem 3 in [1]. We
first need to regularize h(x, y) with respect to both variables, i.e. we
define (our notation differs here from the one used above) for 0 < δ < 1

hε(x, y) = ε−2δd

∫

R2d

h(x− x′, y − y′)ψ(
x′

εδ
,
y′

εδ
)dx′dy′,
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where ψ is a standard mollifier. Next, we solve the Poisson equation

Lε
x,yĥ

ε(x, y) + ȟε(x, y) = 0,

where ȟε is formally defined as in (2.5). However, Lε
x,y stays the same

as in Section 2, i.e. a and b are regularized only in x, with a symmetric
kernel. We now write the analog of (2.8).

Let ϕ be an infinitely differentiable function with compact support
and define

Φ(X
ε

t , X
ε
t ) = ϕ(X

ε

t )ĥ
ε(Xε

t ,
Xε

t

ε
).

We have
∫ t

0

ϕ(X
ε

s)h(s, s)ds =

∫ t

0

ϕ(X
ε

s)hε(s, s)ds+

∫ t

0

ϕ(X
ε

s)h̄
ε(Xε

s )ds

+

∫ t

0

ϕ(X
ε

s)((Ls,s − Lε
s,s)ĥ

ε)(s, s)ds

+ ε(

∫ t

0

ϕ(X
ε

s)(∂xĥεb + ∂yĥεc)(s, s)ds

+

∫ t

0

Trϕ′(X
ε

s)(∂yĥεGσ)(s, s)ds

+

∫ t

0

Trϕ(X
ε

s)(∂
2
xyĥ

εa)(s, s)ds) + ε

∫ t

0

ϕ(X
ε

s)(∂yĥεσ)(s, s)dBs

+ ε2(

∫ t

0

ϕ′(X
ε

s)(ĥ
εF )(s, s)ds

+

∫ t

0

ϕ(X
ε

s)(∂xĥεc)(s, s)ds

+
1

2

∫ t

0

Trϕ′′(X
ε

s)(ĥ
εΛ)(s, s)ds+

∫ t

0

Trϕ′(X
ε

s)(∂xĥεGσ)(s, s)ds

+
1

2

∫ t

0

Trϕ(X
ε

s)(∂
2
xĥ

εa)(s, s)ds)

+ ε2(

∫ t

0

ϕ′(X
ε

s)(ĥ
εG)(s, s)dBs +

∫ t

0

ϕ(X
ε

s)(∂xĥεσ)(s, s)dBs)

+ ε2(Φ(X
ε

0, X
ε
0)− Φ(X

ε

t , X
ε
t )).

It remains to let ε go to 0. In that respect, the only nontrivial
estimates are those of the terms

∫ t

0

ϕ(X
ε

s)[(Ls,s − Lε
s,s)ĥ

ε](s, s)ds.
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and

ε2

∫ t

0

Trϕ(X
ε

s)
(
∂2

xĥ
εa

)
(s, s)ds.

Thanks to Lemma 1,

ε‖∂2
y ĥ

ε‖L∞(Rd×Td) ≤ cε1−δ,

and as ε→ 0,

ε2‖∂2
xĥ

ε‖L∞(K×Td) = o(ε1−δ),

where K is any compact subset of Rd. It remains to use (4.2). �

We are now in the position to state our main result :

Theorem 3. There is only one limit point as ε → 0 of the family
{Xε, ε > 0}, namely X0, the solution of the SDE

(5.5) X0
t = x +

∫ t

0

F (X0
s )ds+

∫ t

0

Λ
1/2

(X0
s )dBs,

where F (x) and Λ(x) are defined in (5.3) (see also (5.1), (5.2)).

Proof. The fact that any limit point of {Xε} solves the martingale
problem associated to the SDE (5.5) follows from Theorem 1 and 2,
since both F (x, y)− F̄ (x) and Λ(x, y)− Λ̄(x) satisfy the assumptions
of Theorem 2. Next, uniqueness in law of the solution of (5.5) follows
from Corollary 2 in [1]. �

6. Convergence of the solution of the elliptic equation

We need to formulate additional assumptions. Let τ ε denotes the
random time defined as

τ ε = inf{t ≥ 0, Xε
t 6∈ D},

and α ≥ 0 be such that for each x ∈ D,

(6.1) sup
ε>0

Ex exp(ατ ε) <∞,

where Ex denotes expectation under the law of {Xε
t } such that Xε

0 = x.
We assume that f is jointly continuous and for some δ > 0, all x ∈ Rd,
y ∈ Td,

(6.2) f(x, y) ≤ (α− δ)+.

The solution of equation (1.1) is given by the Feynman-Kac formula

uε(x) = Ex

[
g(Xε

τε) exp

(∫ τε

0

f(s, s)ds

)]
.
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Since the matrix Λ(x) is non degenerate,

τ(X0) = inf{t ≥ 0, X0
t 6∈ D}

is a.s. a continuous function of the trajectory X0. Moreover from
Theorem 1 and 2

∫ t

0

f(s, s)ds⇒

∫ t

0

C(X0
s )ds,

where ⇒ means “converges in law towards”, and

C(x) =

∫

Td

f(x, y)µ(x, dy).

Consequently, by uniform integrability (see (6.1) and (6.2)), we have
the (below τ = inf{t ≥ 0, Xt 6∈ D})

Theorem 4. Under Condition 1, Condition 2, (6.1) and (6.2), for all
x ∈ D,

uε(x) → Ex

[
g(X0

τ ) exp

(∫ τ

0

C(X0
s )ds

)]
,

which is the solution of the elliptic PDE

Lu(x) + C(x)u(x) = 0, x ∈ D,

u(x) = g(x), x ∈ ∂D,

with

L =
1

2

d∑

i,j=1

Λij(x)∂
2
xixj

+

d∑

i=1

F i(x)∂xi
.

7. Convergence of the solution of the parabolic

equation

For us, the solution uε(t, x) to equation (1.2) for all ε > 0, where g(x),
it is reminded, is supposed to be continuous with at most polynomial
growth at infinity, is given by the Feynman–Kac formula

(7.1) uε(t, x) = Exg(X
ε
t ) exp

∫ t

0

λε(s, s)ds.

Clearly, e(x, y) must be centered, i.e. we assume that

(7.2)

∫

Td

e(x, y)µ(x, dy) = 0, ∀x ∈ Rd.
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It follows from Condition 1, Condition 2 and (7.2) that Lemma 3,
Lemma 4 and Proposition 1 are true with b replaced by e. Hence, if
we set

Y ε
t =

∫ t

0

λε(s, s)ds,

then

Y ε
t = Y

ε

t +Re,ε
t ,

where

Y
ε

t =

∫ t

0

(f + Fe)(s, s)ds+

∫ t

0

Ge(s, s)dBs,

and Re,ε
t converges to zero in probability (uniformly in t ≤ T ), as ε→ 0.

Some care is needed to deal with the stochastic integral in the ar-
gument of the exponential in (7.1). The reader is referred to [1] for a
complete treatment. Let us define

Λe = GeG
∗
e and f̃(x, y) = (f + Fe +

1

2
Λe)(x, y).

We now state the final result :

Theorem 5. Under Conditions 1 and 2, for any t ≤ T and x in Rd,

uε(t, x) → u(t, x),

as ε→ 0, and the limiting PDE is the following equation

∂tu(t, x) =
1

2

d∑

i,j=1

Λij(x)∂
2
xixj

u(t, x) +
d∑

i=1

Ei(x)∂xi
u(t, x) + C(x)u(t, x),

where

E(x) =

∫

Td

(F + (I + ∂y b̂)a∂y ê
∗)(x, y)µ(x, dy),

and

C(x) =

∫

Td

f̃(x, y)µ(x, dy).
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