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Abstract

We study the homogenization problem for a random parabolic operator with coefficients
rapidly oscillating in both the space and time variables and with a large highly oscillating
nonlinear potential, in a general stationary and mixing random media, which is periodic in
space. It is shown that a solution of the corresponding Cauchy problem converges in law to a
solution of a limit stochastic PDE.
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1. Introduction

We study a homogenization problem for a parabolic reaction diffusion equation with
a rapidly oscillating nonlinear potential, of the form
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, t > 0, x ∈ Rn

uε(0, x) = u0(x), x ∈ Rn.

We assume that the microscopic structure is periodic in space and that the dynamics of
the system is stationary and uniformly mixing. Our methods mix probabilistic arguments
together with some PDE and SPDE techniques.

The same type of equation was treated in [5,14], under the assumptions that the
coefficients depend on chance through a finite-dimensional ergodic Markov process.
Some of the techniques used there do not longer apply in the more general case
considered here. Results similar to those of the present paper, but for a linear parabolic
PDE, were obtained in [4].

In the same way as in [14], the hypothesis of centering for the nonlinear term g
allows us to decompose it into the sum of the spatial average of g over the torus
Tn := Rn/Zn, denoted ḡ, and a process g̃ of zero spatial average on the torus. The
unbounded term 1

ε
ḡ requires the construction of a corrector Ḡ of a new type and

this is related to the semigroup of conditioned shifts and its associated full generator
(see for details [6], Chapter 2, Section 7 and in particular Lemma 2.7.5). In order to
define Ḡ in a rigorous way and to derive some useful estimates for Ḡ and its first and
second derivatives with respect to the solution, we impose an appropriate integrability
condition for the uniform mixing coefficient. One of the key technical steps of this
work is to obtain a rule of differentiation for the process Ḡ(t, uε(t)), where uε is the
unique solution of our family of equations.

Our main result consists in proving that the limiting law of the solutions of the
studied family of equations in a certain function space is the solution of a martingale
problem, in the case ��2, and a Dirac measure concentrated at the solution of the
Cauchy problem for some deterministic parabolic equation with constant coefficients,
if � > 2. In order to prove the uniqueness of the martingale problem, when ��2, we
need to construct a Lipchitzian square root of the limiting diffusion operator, while the
driving Brownian motion takes values in some properly chosen Hilbert space.

While the proof of tightness is the same in the three cases which we consider,
the correctors which are needed in order to take the limit are different in the three
situations. When � < 2, the time scale is slower than the natural diffusive scale, and
some of the correctors are solutions of elliptic equations where time is “frozen”. In that
case, essentially only the “stochastic” part ḡ of the potential g has a real contribution to
the limiting covariance operator. When � > 2, the time scale is faster than the diffusive
one, and the correctors solve elliptic PDEs with averaged in time coefficients. In this
case, essentially only the g̃ part of g remains in the limit. Finally, in the situation
� = 2, the correctors are stationary solutions of parabolic equations. Both ḡ and g̃

appear in the limiting equation.
The paper is organized as follows. The assumptions are stated in Section 2. The

statements of our three results are stated in Section 3. Tightness of the collection
{uε, 0 < ε�1} is established in Section 4. Finally the convergence is proved in Section
5, in the three cases � = 2, � < 2 and finally � > 2.
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2. Setup and assumptions

We investigate the limiting behavior of a solution to the following Cauchy problem

⎧⎪⎪⎪⎪⎨
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)
, x ∈ Rn, t > 0,

uε(x, 0) = u0(x), x ∈ Rn

(1)

as ε ↘ 0. We assume that u0 ∈ L2(Rn). The assumptions on the coefficients of Eq.
(1) are as follows:

• (A.1) (Periodicity). All the coefficients aij (z, s), g(z, s, u) and h(z, s, u) are periodic
in z with period 1 in each coordinate direction.

• (A.2) (Randomness). For each u ∈ R the coefficients aij (s, ·), g(·, s, u) and h(·, s, u)

are stationary random processes with values in C(Tn), defined on a probability space
(�, F, P).

• (A.3) (Smoothness and growth conditions). Uniformly in s ∈ R, z ∈ Tn and � ∈ �
the following bounds hold:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|a(z, s)|�C,

|g(z, s, u)|�C|u|, |g′
u(z, s, u)|�C,

(1 + |u|)|g′′
uu(z, s, u)|�C, |h(z, s, u)|�C(1 + |u|),

|h(z, s, u1) − h(z, s, u2)|�C|u1 − u2|

(2)

for any u, u1, u2 ∈ R; here and afterwards C stands for a generic positive nonrandom
constant.

• (A.4) (Uniform ellipticity). For some c > 0,

aij (z, s)�i�j �c|�|2 ∀� ∈ Rn.

• (A.5) (Centering condition). We assume that

E
∫

Tn

g(z, s, u) dz = 0 ∀u ∈ R.

• (A.6) (Mixing condition). Let �(t) be the uniform mixing coefficient defined by

�(t) := sup |P(A|B) − P(A)|,

where the supremum is taken over all A ∈ F0 and B ∈ F t , and Fs and F t denote

Fs := �{aij (z, r), g(z, r, u), h(z, r, u) | r �s}



4 M.A. Diop et al. / Journal of Functional Analysis 231 (2006) 1–46

and

F t := �{aij (z, r), g(z, r, u), h(z, r, u) | r � t}.

We assume that

∫ ∞

0
�(t) dt < ∞.

The filtration of �-algebras {Fs} is supposed to be right continuous.
• (A.7) The partial derivative �a

�s
(z, s) a.s. belongs to L

p

loc((T
n×(−∞, +∞)), for some

p > n.
• (A.8)

|∇zg(z, s, u)|�C|u| |∇za(z, s)|�C

uniformly in z, s, u.

3. Statements of the main results

We study problem (1) on a time interval (0, T ), where T > 0 is an arbitrary fixed
number. Clearly, under the assumptions (A.3), (A.4) this problem has a unique solution
uε, which is an element of the space

VT = L2(0, T ; H 1(Rn)) ∩ C([0, T ]; L2(Rn)).

Denote by ṼT the space VT endowed with the sup of the weak topology of the space
L2(0, T ; H 1(Rn)) and the strong topology of the space C([0, T ]; L2

w(Rn)), where the
index w indicates that the corresponding space is equipped with its weak topology.
Denote by Qε the law of uε on the space ṼT .

For brevity, for a generic function f (x
ε
, t

ε� , uε(t, x)) or f ( t
ε� , uε(t, x)) we use the no-

tation f ε(t). Also we denote aε(t) := a(x
ε
, t

ε� ) and Aεuε(t) := div[a(x
ε
, t

ε� )∇uε(x, t)].
Let A := A1.

It is convenient to decompose g(z, s, u) as follows:

g(z, s, u) = ḡ(s, u) + g̃(z, s, u)

with

ḡ(s, u) :=
∫

Tn

g(z, s, u) dz.
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The asymptotic behavior of the solution uε(t), as ε → 0, depends crucially on
whether � < 2, � = 2 or � > 2.

3.1. The case � = 2

We first introduce two correctors. To this end, we define (see Lemma 3 below) �
and G̃ as stationary solutions of the following PDEs with random coefficients:

�

�s
�i (z, s) + div

[
a(z, s)∇�i (z, s)

] = − �

�zk

aik(z, s), (z, s) ∈ Tn × R1 (3)

and

�

�s
G̃(z, s, u) + div

[
a(z, s)∇G̃(z, s, u)

]
= −g̃(z, s, u), (z, s) ∈ Tn × R1, (4)

here u ∈ R is a parameter. Consider also the process Ḡ(t, u), defined as

Ḡ(t, u) =
∫ ∞

0
E[ḡ(s + t, u)|Ft ] ds =

∫ ∞

t

E[ḡ(s, u)|Ft ] ds (5)

for t �0 and u ∈ R. Notice that Ḡ(t, u) is a stationary process for each u ∈ R.

Theorem 1. Let � = 2. Under the assumptions (A.1)–(A.6), for all T > 0 the
solutions {uε} of problem (1) converges in law, as ε → 0, in the space ṼT , towards the
unique solution of the martingale problem with drift Â(u(t)) and covariance operator
R(u(t)), where

Â(u) := div(ā∇u) − div F(u) + H(u), (6)

ā := E
∫

Tn
a(z, s)(I + ∇z�(z, s)) dz,

F(u) := E
∫

Tn

(
a(z, s)∇zG̃(z, s, u) + g(z, s, u)�(z, s)

)
dz,

H(u) := E
∫

Tn

(
g(z, s, u)(G̃′

u(z, s, u) + Ḡ′
u(s, u)) + h(z, s, u)

)
dz

and

(R(u)�, �) := 2E[(Ḡ(s, u(·))�)(ḡ(s, u(·)), �)]

= 2E
∫

Rn

∫
Rn

(Ḡ(s, u(x))�(x)ḡ(s, u(y))�(y) dx dy.
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3.2. The case � < 2

Theorem 2. Let � < 2. Under the assumptions (A.1)–(A.7), for all T > 0 uε con-
verges in law, as ε → 0, in the space ṼT , to the unique solution of the martingale
problem with drift Ã(u(s)) and covariance operator R(u(t)), where R(u) has been
defined in the preceding statement, and

Ã(u) := div(â∇u) + ĝ(u),

â := E
∫

Tn
a(z, s)(I + ∇z�

−(z, s)) dz,

ĝ(u) := E
∫

Tn

(
Ḡ′

u(s, u)g(z, s, u) + h(z, s, u)
)
dz,

here �−
i (z, s), 1� i�n, stands for a solution of elliptic equation

A�−
i (z, s) = − �

�zk

aki(z, s),

which satisfies
∫

Tn �−(z, s) dz = 0 for each s�0, s being a parameter.

3.3. The case � > 2

Theorem 3. Let � > 2, then under the assumptions (A.1)–(A.6) and (A.8), uε con-
verges in probability, in the space ṼT , as ε → 0, to a solution of the following Cauchy
problem:

{
�u

�t
(t, x) = div(ã∇u(t, x)) + h̃(u), (t, x) ∈ (0, T ) × Rn,

uε(0, x) = u0(x),

where

ã = E
∫

Tn
a(z, s)(I + ∇z�

+(z)) dz,

h̃(u) = E
∫

Tn
[g(z, t, u)�uG̃

+(z, u) + h(z, s, u)] dz,
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and the functions �+(z) and G̃+(z, u) are defined as solutions of the elliptic equations

Ā�+(z) = − div āi (z),

ĀG̃+(z, u) = − (g̃)(z, u),
(7)

where Ā stands for the operator A “averaged in time”, i.e.

Ā(u)(z) = div(ā(·)∇u(·))(z)

with ā(z) := Ea(z, s) and (g̃)(z, u) := Eg̃(z, s, u) = Eg(z, s, u).

4. Auxiliary results, a priori estimates and tightness

Our first aim is to show that the family {Qε}ε>0 of the laws of uε, is tight in ṼT .
Since

g(z, t, u) = g̃(z, t, u) + ḡ(t, u),

where

ḡ(t, u) =
∫

Tn

g(z, t, u) dz

and consequently

∫
Tn

g̃(z, t, u) dz = 0 ∀t ∈ [0, T ], u ∈ R,

we may construct a z-periodic vector function H̃ such that

divz H̃ (z, t, u) = g̃(z, t, u). (8)

Indeed, the centering condition on g̃ allows us to solve on the torus Tn the equation

�zv = g̃

and thus we can choose

H̃ := ∇v.
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Under our assumptions, H̃ satisfies the estimates

|H̃ (z, t, u)|�C|u|, |H̃ ′
u(z, t, u)|�C (9)

for any (z, t, u) ∈ Tn × [0, T ] × R. From (8) it follows that

divx

[
H̃

(x

ε
, t, uε(t, x)

)]
= 1

ε
g̃
(x

ε
, t, uε(t, x)

)

+H̃ ′
u

(x

ε
, t, uε(t, x)

)
∇uε(t, x). (10)

We thus get a useful representation for the term 1
ε
g̃. In order to get rid of the big term

1
ε
ḡ, we use the process Ḡ(t, u) defined in (5). Notice that by the assumption (A.5), we

have E[ḡ(t, u)] = 0, for all t �0 and u ∈ R. Then it follows from Proposition 7.2.6 in
[6] and from (A.3) and (A.6) that

E[ḡ(s + t, u)|Ft ]�2C|u|�(s).

We next deduce from (A.3), (A.6) that Ḡ(t, u) is well defined and satisfies the estimates

|Ḡ(t, u)|�C|u|, |Ḡ′
u(t, u)|�C, |Ḡ′′

uu(t, u)|� C

1 + |u| . (11)

It is easy to see that the process Ḡ(t, u) is stationary.

Lemma 1. For each u ∈ R, the process Mt := Ḡ(t, u) + ∫ t

0 ḡ(s, u) ds is a martingale
with respect to {Ft }.

Proof. This statement is a consequence of Proposition 2.7.6 in [6]. All we need to check
is that the family { 1

�E[Ḡ(t + �, u) − Ḡ(t, u)|Ft ], � > 0, t �0} is uniformly integrable,
and that

P − lim
�↘0

1

�
E[Ḡ(t + �, u) − Ḡ(t, u)|Ft ] = −ḡ(t, u) for a.e. t.

By the relation (5) we have

1

�
E[Ḡ(t + �, u) − Ḡ(t, u)|Ft ] = −1

�

∫ t+�

t

E[ḡ(s, u)|Ft ] ds.

The integrand is uniformly bounded, for fixed u, and continuous with respect to s, for
any t. We thus deduce the a.s. convergence of the sequence 1

�E[Ḡ(t+�, u)−Ḡ(t, u)|Ft ],
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when � ↘ 0, for any t. The uniform integrability follows from the uniform boundedness
of ḡ(·, u). �

The rule of differentiation of the expression (Ḡ( t
ε� , uε(t)), uε(t)), where uε(t) is the

solution of problem (1), is given by the following

Lemma 2. For any test function � ∈ C∞
0 (Rn) and ε > 0, the processes M

u,ε
t and

M
�,ε
t given by

M
u,ε
t = ε�−(1∧ �

2 )

[(
Ḡ

(
t

ε� , uε(t)

)
, uε(t)

)
− (G(0, u0), u0)

]

+ 1

ε(1∧ �
2 )

∫ t

0

(
ḡ
( s

ε� , uε(s)
)

, uε(s)
)

ds

+ ε�−(1∧ �
2 )

∫ t

0

(
aε(s)∇uε(s), Ḡ′′

uu

( s

ε� , uε(s)
)

∇uε(s)uε(s)

+ 2Ḡ′
u

( s

ε� , uε(s)
)

∇uε(s)
)

ds

− ε�−2(1∧ �
2 )

∫ t

0

(
g
( ·
ε
,

s

ε� , uε(s)
)

, Ḡ′
u

( s

ε� , uε(s)
)

uε(s) + Ḡ
( s

ε� , uε(s)
))

ds

− ε�−(1∧ �
2 )

∫ t

0

(
h
( ·
ε
,

s

ε� , uε(s)
)

, Ḡ′
u

( s

ε� , uε(s)
)

uε(s) + Ḡ
( s

ε� , uε(s)
))

ds

(12)

and

M
�,ε
t := ε�−(1∧ �

2 )

[(
Ḡ

(
t

ε� , uε(t)

)
, �

)
− (Ḡ(0, uε(0)), �)

]

+ 1

ε(1∧ �
2 )

∫ t

0

(
ḡ
( s

ε� , uε(s)
)

, �
)

ds

+ ε�−(1∧ �
2 )

∫ t

0
(aε(s)∇uε(s), Ḡ′′

uu

( s

ε� , uε(s)
)

∇uε(s)�+Ḡ′
u

( s

ε� , uε(s)
)

∇�) ds

− ε�−2(1∧ �
2 )

∫ t

0

(
g
( .

ε
,

s

ε� , uε(s)
)

, Ḡ′
u

( s

ε� , uε(s)
)

�
)

ds

− ε�−(1∧ �
2 )

∫ t

0

(
h
( .

ε
,

s

ε� , uε(s)
)

, Ḡ′
u

( s

ε� , uε(s)
)

�
)

ds (13)

are martingales with respect to the filtration {F t
ε�

, t �0}.
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Proof. Let [t1, t2] be an arbitrary subinterval of [0, T ], � = {s0, s1, . . . , sm} a de-
terministic partition of the interval [t1, t2], and denote h = max1�k �m{(sk − sk−1)}.
Considering the progressive measurability of all the random functions involved,
we have, for each k = 1, . . . , m,

E
[(

Ḡ
( sk

ε� , uε(sk)
)

, uε(sk)
)

−
(
Ḡ

( sk

ε� , uε(sk−1)
)

, uε(sk−1)
)

|F sk−1
ε�

]

= E
[∫ sk

sk−1

d

ds

(
Ḡ

( sk

ε� , uε(s)
)

, uε(s)
)

ds|F sk−1
ε�

]

= E
{∫ sk

sk−1

[〈
Ḡ′

u

( sk

ε� , uε(s)
) �uε

�s
(s), uε(s)

〉

+
〈
Ḡ

( sk

ε� , uε(s)
)

,
�uε

�s
(s)

〉]
ds

∣∣∣F sk−1
ε�

}

= E
{∫ sk

sk−1

[
−
(
aε(s)∇uε(s), Ḡ′′

uu

( sk

ε� , uε(s)
)

∇uε(s)uε(s)

+ 2Ḡ′
u

( sk

ε� , uε(s)
)

∇uε(s)
)

+ 1

ε1∧ �
2

(
g
( ·
ε
,

s

ε� , uε(s)
)

, Ḡ′
u

( sk

ε� , uε(s)
)

uε(s) + Ḡ
( sk

ε� , uε(s)
))

+
(
h
( ·
ε
,

s

ε� , uε(s)
)

, Ḡ′
u

( sk

ε� , uε(s)
)

uε(s) + Ḡ
( sk

ε� , uε(s)
))]

ds|F sk−1
ε�

}

and

E
[(

Ḡ
( sk

ε� , uε(sk−1)
)

, uε(sk−1)
)

−
(
Ḡ

( sk−1

ε� , uε(sk−1)
)

, uε(sk−1)
)

|F sk−1
ε�

]

= − 1

ε� E
[∫ sk

sk−1

(
ḡ
( s

ε� , uε(sk−1)
)

, uε(sk−1)
)

ds|F sk−1
ε�

]
,

here 〈·, ·〉 denotes the duality pairing between H 1(Rn) and H−1(Rn). Summing up
over k gives

E
{[(

Ḡ

(
t2

ε� , uε(t2)

)
, uε(t2)

)
−

(
Ḡ

(
t1

ε� , uε(t1)

)
, uε(t1)

)

+
∫ t2

t1

(
aε(s)∇uε(s), Ḡ′′

uu

( s

ε� , uε(s)
)

∇uε(s)uε(s)
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+ 2Ḡ′
u

( s

ε� , uε(s)
)

∇uε(s)
)

ds

− 1

ε1∧ �
2

∫ t2

t1

(
g
( ·
ε
,

s

ε� , uε(s)
)

, Ḡ′
u

( s

ε� , uε(s)
)

uε(s) + Ḡ
( s

ε� , uε(s)
)

ds

−
∫ t2

t1

(
h
( ·
ε
,

s

ε� , uε(s)
)

, Ḡ′
u

( s

ε� , uε(s)
)

uε(s) + Ḡ
( s

ε� , uε(s)
)

ds

+ 1

ε�

∫ t2

t1

(
ḡ
( s

ε� , uε(s)
)

, uε(s)
)

ds

]
|F t1

ε�

}

= E

{
m∑

k=1

∫ sk

sk−1

(−aε(s)∇uε(s), ∇uε(s)uε(s)

× E
[
Ḡ′′

uu

( sk

ε� , uε(s)
)

− Ḡ′′
uu

( s

ε� , uε(s)
)

|F s
ε�

])
ds|F t1

ε�

}

+ E

{
m∑

k=1

∫ sk

sk−1

−2
(
aε(s)∇uε(s), ∇uε(s)

× E
[
Ḡ′

u

( sk

ε� , uε(s)
)

− Ḡ′
u

( s

ε� , uε(s)
)

|F s
ε�

])
ds|F t1

ε�

}

+ 1

ε1∧ �
2

E

{
m∑

k=1

∫ sk

sk−1

(
g
( ·
ε
,

s

ε� , uε(s)
)

, uε(s)

× E
[
Ḡ′

u

( sk

ε� , uε(s)
)

− Ḡ′
u

( s

ε� , uε(s)
)

|F s
ε�

])
ds|F t1

ε�

}

+ 1

ε1∧ �
2

E

{
m∑

k=1

∫ sk

sk−1

(
g
( ·
ε
,

s

ε� , uε(s)
)

, E
[
Ḡ

( sk

ε� , uε(s)
)

− Ḡ
( s

ε� , uε(s)
)

|F s
ε�

])
ds|F t1

ε�

}

+ E

{
m∑

k=1

∫ sk

sk−1

(
h
( ·
ε
,

s

ε� , uε(s)
)

, uε(s)E
[
Ḡ′

u

( sk

ε� , uε(s)
)

− Ḡ′
u

( s

ε� , uε(s)
)

|F s
ε�

])
ds|F t1

ε�

}
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+ E

{
m∑

k=1

∫ sk

sk−1

(
h
( ·
ε
,

s

ε� , uε(s)
)

, E
[
Ḡ

( sk

ε� , uε(s)
)

− Ḡ
( s

ε� , uε(s)
)

|F s
ε�

])
ds|F t1

ε�

}

− 1

ε� E

{
m∑

k=1

∫ sk

sk−1

[(
ḡ
( s

ε� , uε(sk−1)
)

, uε(sk−1)
)

−
(
ḡ
( s

ε� , uε(s)
)

, uε(s)
)]

ds|F t1
ε�

}
. (14)

For any � > 0, using the bounds (2) and the definition (5) we derive the following
estimates, for each x ∈ Rn

E
[|Ḡ(t + �, uε(t, x)) − Ḡ(t, uε(t, x))|/Ft

]
�C�|uε(t, x)|,

E
[|Ḡ′

u(t + �, uε(t, x)) − Ḡ′
u(t, u

ε(t, x))|/Ft

]
�C�,

E
[|Ḡ′′

uu(t + �, uε(t, x)) − Ḡ′′
uu(t, u

ε(t, x))|/Ft

]
�C�

1

1 + |uε(t, x)| . (15)

The last term on the right-hand side of (14) can be estimated as follows

∣∣∣(ḡ
( s

ε� , uε(sk−1)
)

, uε(sk−1)
)

−
(
ḡ
( s

ε� , uε(s)
)

, uε(s)
)∣∣∣

�
∣∣∣∣∣∣ḡ ( s

ε� , uε(sk−1)
)

− ḡ
( s

ε� , uε(s)
)∣∣∣∣∣∣ ‖uε(sk−1)‖

+
∣∣∣∣∣∣ḡ ( s

ε� , uε(s)
)∣∣∣∣∣∣ ‖uε(sk−1) − uε(s)‖

�(1 + C) sup
0� t �T

‖uε(t)‖‖uε(sk−1) − uε(s)‖.

Writing down the energy estimate for Eq. (1) and using Gronwall’s lemma, we get,
for each ε > 0

sup
0� t �T

‖uε(t)‖2 +
∫ T

0
‖∇uε(t)‖2 dt �	ε, (16)

where 	ε is a deterministic constant which depends on u0, T and the ellipticity constants
and satisfies, for all ε0 > 0, the inequality sup

ε0 �ε�1
	ε < ∞. Since the solution uε(·)
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is continuous on [0, T ] with values in L2(Rn), the Lebesgue dominated convergence
theorem yields

lim
h↘0

E

{
m∑

k=1

∫ sk

sk−1

[(
ḡ
( s

ε� , uε(sk−1)
)

, uε(sk−1)
)

−
(
ḡ
( s

ε� , uε(s)
)

, uε(s)
)]

ds|F t1
ε�

}
= 0.

Using estimates (15) and a Jensen-type inequality for conditional expectations, one can
show that the expectation of the absolute value of all other terms on the r.h.s. of (14)
is not greater than

hCE

[
T sup

0� t �T

‖uε(t)‖2 +
∫ T

0
‖∇uε(s)‖2 ds

]
.

This expression is finite, for each ε > 0, in view of (16). Passing to the limit as h ↘ 0,
we obtain the first statement of the lemma. The second one can be proved in a similar
way. �

We now proceed with a priori estimates.

Proposition 1. The following bounds hold

E

(
sup
t �T

‖uε(t)‖2 +
∫ T

0
‖∇uε(s)‖2 ds

)
�C,

E
[

sup
t �T

‖uε(t)‖4 +
(∫ T

0
‖∇uε(s)‖2 ds

)2]
�C. (17)

uniformly in ε > 0.

Proof. Denote Ḡε(t) = Ḡ
(

t
ε� , uε(t)

)
and 
 := �−(1∧ �

2 ). By formula (12), considering
(10) we get, after integration by parts

d

[
1

2

(
uε(t), uε(t)

) + ε
(Ḡε(t), uε(t)
)]

= −(
aε(t)∇uε(t), ∇uε(t)

)
dt + (

hε(t), uε(t)
)
dt − ε1−(1∧ �

2 )
(
H̃ ε(t), ∇uε(t)

)
dt

− ε1−(1∧ �
2 )
(
H̃ ′,ε

u ∇uε(t), uε(t)
)
dt − ε
(aε(t)∇uε(t), 2Ḡ′,ε

u (t)∇uε(t)
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+ Ḡ′′,ε
uu (t)uε(t)∇uε(t)

)
dt + ε�−2(1∧ �

2 )
(
gε(t), Ḡ′,ε

u uε(t) + Ḡε(t)
)
dt

+ dM
u,ε
t + ε
(hε(t), Ḡ′,ε

u (t)uε(t) + Ḡε(t)
)
dt

or, in the integral form

1

2
‖uε(t)‖2 +

∫ t

0

(
aε(s)∇uε(s), ∇uε(s)

)
ds

= 1

2
‖u0‖2 − ε
(Ḡε(t), uε(t)

) + ε
(Ḡε(0), u0
) +

∫ t

0

(
hε(s), uε(s)

)

− ε1−(1∧ �
2 )

∫ t

0

[(
H̃ ε(s), ∇uε(s)

) + (
H̃ ′,ε

u (s)∇uε(s), uε(s)
)]

ds

− ε

∫ t

0

(
aε(s)∇uε(s), 2Ḡ′,ε

u (s)∇uε(s) + Ḡ′′,ε
uu (s)uε(s)∇uε(s)

)
ds

+ ε�−2(1∧ �
2 )

∫ t

0

(
gε(s), Ḡ′,ε

u (s)uε(s) + Ḡε(s)
)
ds + M

u,ε
t

+ ε

∫ t

0

(
hε(s), Ḡ′,ε

u (s)uε(s) + Ḡε(s)
)
ds. (18)

The following estimates are straightforward:

E
∫ t

0

[∣∣(H̃ ε(s), ∇uε(s)
)| + |(H̃ ′,ε

u (s)∇uε(s), uε(s)
)∣∣] ds

�2CE
∫ t

0
‖uε(s)‖‖∇uε(s)‖ ds

� C

�
E
∫ t

0
‖uε(s)‖2 ds + C�E

∫ t

0
‖∇uε(s)‖2 ds

with arbitrary � > 0. Also, by (10) we have

E
∫ t

0
|(aε(s)∇uε(s), 2Ḡ′,ε

u (s)∇uε(s) + Ḡ′′,ε
uu (s)uε(s)∇uε(s)

)| ds

�CE
∫ t

0
‖∇uε(s)‖2 ds,

E
∫ t

0
|(gε(s), Ḡ′,ε

u (s)uε(s) + Ḡε(s)
)| ds�CE

∫ t

0
‖uε(s)‖2 ds
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and

E
∫ t

0
|(hε(s), Ḡ′,ε

u (s)uε(s) + Ḡε(s)
)| ds�C

(
1 + E

∫ t

0
‖uε(s)‖2 ds

)
.

Choosing now ε and � small enough, and taking the expectation in the relation (18),
with the help of Gronwall’s lemma we obtain

sup
t �T

E‖uε(t)‖2 + E
∫ T

0
‖∇uε(s)‖2 ds�C. (19)

It is easy to see, considering the bounds (2), (10) and (16) that M
u,ε
t is a square inte-

grable martingale. In order to obtain an upper bound for the term E(sup0� t �T |Mu,ε
t |)

we estimate the quadratic variation of the martingale M
u,ε
t , as well as the expectation

E(‖uε(t)‖4). To this end we consider the expression

d

[
1

4
‖uε(t)‖4 + ε
(Ḡε(t), uε(t))(uε(t), uε(t)

)]

= 1

2

(
uε(t), uε(t)

)
d
[(

uε(t), uε(t)
)] + d

[
ε
(Ḡε(t), uε(t)

)](
uε(t), uε(t)

)

+ ε
(Ḡε(t), uε(t)
)
d
[(

uε(t), uε(t)
)]

= ‖uε(t)‖2[ − (
aε(t)∇uε(t), ∇uε(t)

) + (hε(t), uε(t))

− ε1−(1∧ �
2 )
(
H̃ ε(t), ∇uε(t)

) − ε1−(1∧ �
2 )
(
H̃ ′,ε

u (t)∇uε(t), uε(t)
)

− ε
(aε(t)∇uε(t), Ḡ′′,ε
uu (t)∇uε(t)uε(t) + 2Ḡ′,ε

u (t)∇uε(t)
)

+ ε�−2(1∧ �
2 )
(
gε(t), Ḡ′,ε

u (t)uε(t) + Ḡε(t)
)

+ ε
(hε(t), Ḡ′,ε
u (t)uε(t) + Ḡε(t)

)]
dt

+ ‖uε(t)‖2 dMu,ε
t + ε
(Ḡε(t), uε(t)

)[ − 2
(
aε(t)∇uε(t), ∇uε(t)

)

+ 2
1

ε1∧ �
2

(
gε(t), uε(t)

) + 2
(
hε(t), uε(t)

)]
dt, (20)

where the formula of integration by parts for semimartingales has also been used.
It is easy to see that the process

∫ t

0 ‖uε(s)‖2 dMu,ε
s is a square integrable martin-

gale with respect to the filtration Ft . Indeed, considering formulae (12) and (16),
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we have

E
∫ t

0
‖uε(s)‖4 d〈Mu,ε〉s �	2

εE
(〈Mu,ε〉t

) = 	2
εE

(
M

u,ε
t

)2 �Cε.

Taking the expectation in (20) and using the same arguments as those leading to (19),
one can obtain the bound

sup
0� t �T

E
(
‖uε(t)‖4

)
+ E

(∫ T

0
‖uε(s)‖2‖∇uε(s)‖2 ds

)
�C.

Next, Ito’s formula for the square of a semimartingale gives

d

[
1

2
‖uε(t)‖2 + ε
 (Ḡε(t), uε(t)

)]2

= [‖uε(t)‖2 + 2ε
(
Ḡε(t), uε(t)

)]{[ − (
aε(t)∇uε(t), ∇uε(t)

)
+ (

hε(t), uε(t)
)
dt − ε1−(1∧ �

2 )
(
H̃ ε(t), ∇uε(t)

)
− ε1−(1∧ �

2 )
(
H̃ ′,ε

u (t)∇uε(t), uε(t)
) − ε
(aε(t)∇uε(t), Ḡ′′,ε

uu (t)∇uε(t)uε(t)

+ 2Ḡ′,ε
u (t)∇uε(t)

) + ε�−2(1∧ �
2 )
(
gε(t), Ḡ′,ε

u (t)uε(t) + Ḡε(t)
)

+ ε
(hε(t), Ḡ′,ε
u (t)uε(t) + Ḡε(t)

)) ]
dt + dMu,ε

t

} + d〈Mu,ε〉t .

If we subtract now the last equality from (20) and integrate the result over [0, t], we
get after simple rearrangements

〈Mu,ε〉t = ε2
(Ḡε(t), uε(t)
)2−ε2
(Ḡε(0), u0

)2

+ 2ε�−2(1∧ �
2 )

∫ t

0

(
Ḡε(s), uε(s)

)(
ḡε(s), uε(s)

)
ds

+ 2ε2

∫ t

0

(
Ḡε(s),uε(s)

)(
aε(s)∇uε(s),Ḡ′′,ε

uu (s)∇uε(s)uε(s)+Ḡ′,ε
u (s)∇uε(s)

)
ds

− 2ε2�−3(1∧ �
2 )

∫ t

0

(
Ḡε(s), uε(s)

)(
gε(s), Ḡ′,ε

u (s)uε(s) + Ḡε(s)
)
ds

− 2ε2

∫ t

0

(
Ḡε(s), uε(s)

)(
hε(s), Ḡ′,ε

u (s)uε(s) + Ḡε(s)
)
ds

− 2ε

∫ t

0

(
Ḡε(s), uε(s)

)
dMu,ε

s . (21)
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Hence

E
(
〈Mu,ε〉t

)
� CE

(
ε2
‖uε(t)‖4 + ε2
‖u0‖4

+ (2ε�−2(1∧ �
2 ) + 2ε2�−3(1∧ �

2 ) + 2ε2
)

∫ t

0
‖uε(s)‖4 ds

+ ε2

∫ t

0
‖uε(s)‖2 ds + 2ε2


∫ t

0
‖uε(s)‖2‖∇uε(s)‖2 ds

)

� C

(
ε2
 + (ε�−2(1∧ �

2 ) + ε2�−3(1∧ �
2 ) + ε2
)t

)
. (22)

We next get by the Burkholder–Davis–Gundy inequality that

E

(
sup

0� t �T

|Mu,ε
t |

)
� KT E

(√〈Mu,ε〉T
)

� KT

2
+ KT

2
E
(〈Mu,ε〉T

)

� KT

2
+ KT

2
C

(
ε2
 + (ε�−2(1∧ �

2 ) + ε2�−3(1∧ �
2 ) + ε2
)T

)
.

(23)

Now the first inequality of Proposition 1 follows for small ε from the relation (18),
and for all other ε from (16).

The second estimate of Proposition 1 can be obtained in a similar way. We only show
how to estimate the martingale term. Applying the Burkholder–Davis–Gundy inequality
we get

E
[

sup
0� t �T

∣∣∣∣
∫ t

0
‖uε(s)‖2 dMu,ε

s

∣∣∣∣
]

� E

⎛
⎝
√∫ T

0
‖uε(s)‖4 d〈Mu,ε〉s

⎞
⎠

� E

(
sup

0� t �T

‖uε(t)‖2
√〈Mu,ε〉T

)

� �E

(
sup

0� t �T

‖uε(t)‖4

)
+ C�E

(〈Mu,ε〉T
)
,

where as before � stands for an arbitrary positive constant. We already estimated the
expectation of the quadratic variation process associated with the martingale {Mu,ε

t }.
The desired estimate for the expression E

(
sup
t �T

‖uε(t)‖4

)
is now straightforward. �
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The tightness of {uε} in the space ṼT also relies on an equi-continuity result for the
family of functions

{t �→ (uε(t), �)}ε>0

in C([0, T ]; R), where � is an arbitrary element of L2(Rn). In view of Proposition 1
it suffices to prove this equi-continuity for � from a dense subset of L2(Rn).

Proposition 2. Under assumptions (A.1)–(A.6), for any � in C∞
0 (Rn) and any � > 0

there exist � = �(�) > 0 and ε0 > 0 such that

P

{
sup

|t−s|<�
|(uε(t), �) − (uε(s), �)| > �

}
< � ∀ 0 < ε�ε0.

Proof. For each ε > 0 the process M
�,ε,�
t , defined in (13), is a square integrable

martingale. We deduce from (1) and (13) that

d
[(

uε(t), �
) + ε
(Ḡε(t), �

)]
= −(

aε(t)∇uε(t), ∇�
)
dt − ε1−(1∧ �

2 )
(
H̃ ε(t), ∇�

)
dt

− ε1−(1∧ �
2 )
(
H̃ ′,ε

u (t)∇uε(t), �
)
dt + (

hε(t), �
)
dt

− ε
(aε(t)∇uε(t), Ḡ′,ε
u (t)∇� + Ḡ′′,ε

uu (t)�∇uε(t)
)
dt

+ ε�−2(1∧ �
2 )
(
gε(t), Ḡ′,ε

u (t)�
)
dt

+ ε
(hε(t), Ḡ′,ε
u (t)�

)
dt + dM�,ε

t . (24)

In view of the inequalities

∣∣∣∣
∫ t

s

(
aε(r)∇uε(r), ∇�

)
dr

∣∣∣∣ �c
√

t − s‖uε‖L2(0,T ;H 1(Rn))

and

∣∣∣∣ε
∫ t

0

(
Ḡ′′,ε

uu (s)aε(s)∇uε(s), �∇uε(s)
)
ds

∣∣∣∣ �cε‖uε‖2
L2(0,T ;H 1(Rn))

and Proposition 1, the integrals
∫ t

0

(
aε(s)∇uε(s), ∇�

)
ds and ε

∫ t

0

(
Ḡ

′′,ε
uu (s)aε(s)∇uε(s),

�∇uε(s)
)
ds form tight families in C([0, T ]). Similar estimates are valid for all other

absolutely continuous terms on the right-hand side of (24).
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The estimate of the modulus of continuity of the martingale term M
�,ε
t is based on

the bound for the increment of the quadratic variation 〈M�,ε〉t . By the definition of uε

and Ḡε we have

d
[(

uε(t), �
)2 + 2ε
(Ḡε(t), �

)(
uε(t), �

)]

= − 2
(
aε(t)∇uε(t), ∇�

)(
uε(t), �

)
dt − 2ε1−(1∧ �

2 )
(
H̃ ε(t), ∇�

)(
uε(t), �

)
dt

− 2ε1−(1∧ �
2 )
(
H̃ ′,ε

u (t)∇uε(t), �
)(

uε(t), �
)
dt + 2

(
hε(t), �

)(
uε(t), �

)
dt

− 2ε
(Ḡ′,ε
u (t)aε(t)∇uε(t), ∇�

)(
uε(t), �

)
dt

−2ε
(Ḡ′′,ε
uu (t)aε(t)∇uε(t), �∇uε(t)

)(
uε(t), �)

)
dt

+ 2ε�−2(1∧ �
2 )
(
Ḡ′,ε

u (t)gε(t), �
)(

uε(t), �
)
dt

+ 2ε
(hε(t), Ḡ′,ε
u (t)�

)(
uε(t), �)

)
dt − 2ε
(Ḡε(t), �

)(
aε(t)∇uε(t), ∇�

)
dt

+ 2ε�−2(1∧ �
2 )
(
Ḡε(t), �

)(
gε(t), �

)
dt + 2ε
(Ḡε(t), �

)
(hε(t), �

)
dt

+ 2
(
uε(t), �

)
dM�,ε

t .

On the other hand, by the Ito formula we find

d
[(

uε(t), �
) + ε

(
Ḡε(t), �

)]2

= 2
[(

uε(t), �
) + ε

(
Ḡε(t), �

)]{ − (
aε(t)∇uε(t), ∇�

)
dt

− ε1−(1∧ �
2 )
(
H̃ ε(t), ∇�

)
dt − ε1−(1∧ �

2 )
(
H̃ ′,ε

u (t)∇uε(t), �
)
dt

− ε
(Ḡ′,ε
u (t)aε(t)∇uε(t), ∇�

)
dt

− ε
(Ḡ′′,ε
uu (t)aε(t)∇uε(t), �∇uε(t)

)
dt

+ ε�−2(1∧ �
2 )
(
Ḡ′,ε

u (t)gε(t), �
)
dt + (

hε(t), � + ε
Ḡ′,ε
u (t)�

)
dt

+ dM�,ε
t

} + d〈M�,ε〉t .
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Opening the brackets and comparing two previous expressions allows us to write down
the formula for 〈M�,ε〉t :

〈M�,ε〉t = ε2

(

Ḡ

(
t

ε2
, uε(t)

)
, �

)2

− ε2
(Ḡ(0, u0), �
)2

+ 2ε�−2(1∧ �
2 )

∫ t

0

(
Ḡε(s), �

)(
ḡε(s), �

)
ds

+ 2ε2

∫ t

0

(
Ḡε(s), �

)(
aε(s)∇uε(s), Ḡ′,ε

u (s)∇� + Ḡ′′,ε
uu (s)∇uε(s)�

)
ds

− 2ε2�−3(1∧ �
2 )

∫ t

0

(
Ḡε(s), �

)(
gε(s), Ḡ′,ε

u (s)�
)
ds

− 2ε2

∫ t

0

(
Ḡε(s), �

)(
hε(s), Ḡ′,ε

u (s)�
)
ds

− 2ε

∫ t

0

(
Ḡε(s), �

)
dM�,ε

s . (25)

Our aim is to estimate the quantity E
[
(〈M�,ε〉t2 − 〈M�,ε〉t1)2

]
, with 0� t1 < t2 �T .

We have

E

[
4ε4


(∫ t2

t1

(
Ḡε(s), �

)(
aε(s)∇uε(s), Ḡ′,ε

u (s)∇� + Ḡ′′,ε
uu (s)∇uε(s)�

)
ds

)2
]

�Cε4
E

[(∫ t2

t1

(
Ḡε(s), �

)(
aε(s)∇uε(s), Ḡ′,ε

u (s)∇�
)
ds

)2

+
(∫ t2

t1

(
Ḡε(s), �

)(
aε(s)∇uε(s), Ḡ′′,ε

uu (s)∇uε(s)�
)
ds

)2
]

�Cε4
E
[(∫ t2

t1

‖uε(s)‖2 ds

∫ t2

t1

‖∇uε(s)‖2 ds

)]
+ E

[(∫ t2

t1

‖∇uε(s)‖2 ds

)2
]

�Cε4


[
1

2
E
(∫ t2

t1

(‖uε(s)‖)2 ds

)2

+ 3

2
E

((∫ t2

t1

‖∇uε(s)‖2 ds

)2
)]

�Cε4
(1 + (t2 − t1)
2),
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where the relation (17) and the assumptions (A.3), (A.4) have been used. Therefore,

E
[
(〈M�,ε〉t2 − 〈M�,ε〉t1)2]
�CE

(
ε4
‖uε(t2)‖4 + ε4
‖uε(t1)‖4 + (

ε2�−(4∧2�) + ε4�−(6∧3�)
)

×(t2 − t1)
2 sup

0� t �T

‖uε(t)‖4 + ε4
(1 + (t2 − t1)
2)

+ ε4
(t2 − t1)
2

(
sup

0� t �T

‖uε(t)‖2 + sup
0� t �T

‖uε(t)‖4

)

+ Cε2
 sup
0� t �T

‖uε(t)‖2(〈M�,ε〉t2 − 〈M�,ε〉t1)
)

�C
(
ε4
 + (ε4
 + ε2�−(4∧2�) + ε4�−(6∧3�))(t2 − t1)

2)

+ ε2


2
E
[
(〈M�,ε〉t2 − 〈M�,ε〉t1)2].

This yields, for all sufficiently small ε

E
[(〈M�,ε〉t2 − 〈M�,ε〉t1

)2]�C
(
ε4
 + (ε4
 + ε2�−(4∧2�)

+ε4�−(6∧3�))(t2 − t1)
2
)
.

Finally the Burkholder–Davis–Gundy inequality gives

E

[
sup

t1 � s � t2

|M�,ε
s − M

�,ε
t1

|4
]

�CE
[(〈M�,ε〉t2 − 〈M�,ε〉t1

)2
]
.

Combining the last two bounds, by Theorem 8.3 in [1] one can deduce the required
estimate for the modulus of continuity. �

We now state

Theorem 4. The family of measures Qε = L(uε) is tight in ṼT .
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Proof. The result follows from the above bounds by the Prokhorov criterium, whose
applicability in the space ṼT has been justified in [17]. �

5. Passage to the limit and proofs of the main results

In this section we prove the convergence of uε, as ε → 0, and describe its limit.

5.1. Case � = 2: Proof of Theorem 1

Our goal is to introduce a limit martingale problem and to show that any accumulation
point of the sequence {uε, ε > 0} is a solution of this problem. We first state a lemma,
whose proof can be found in [9].

Lemma 3. Eqs. (3) and (4) have stationary solutions. Under the normalizations

∫
Tn

�k(z, s) dz = 0,

∫
Tn

G̃(z, t, u) dz = 0

the solutions are unique and ergodic. Moreover, the following bounds hold:

‖�k‖L∞(Tn×(−∞,+∞)×�) �C,

‖G̃‖L∞(Tn×(−∞,+∞)×�) �C|u|,

‖G̃′
u‖L∞(Tn×(−∞,+∞)×�) �C,

‖G̃′′
uu‖L∞(Tn×(−∞,+∞)×�) �

C

1 + |u| . (26)

We now define two additional correctors as

�ε(x, t) = �

(
x

ε
,

t

ε2

)
, G̃ε(x, t, u) = G̃

(
x

ε
,

t

ε2
, u

)
.

Consider now the process

�ε(t) = (
uε(t), �

) + ε

(
Ḡ

(
t

ε2
, uε(t)

)
, �

)
+ ε

(
�ε(t)uε(t), ∇�

)
+ ε

(
G̃ε(t, uε(t)), �

)
.
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Using Eqs. (1), (3), (4) and the representation (13), we get, after multiple integrations
by parts

d
[(

uε(t), �
)]

= −(
aε(t)∇uε(t), ∇�

)
dt + 1

ε

(
gε(t), �

)
dt + (

hε(t), �
)
dt

= 1

ε

(
divz ai

( ·
ε
,

t

ε2

)
, uε(t)

��

�xi

)
dt + (

aε(t)uε(t), ∇∇�
)
dt

+1

ε

(
ḡε(t), �

)
dt + 1

ε

(
g̃ε(t), �

)
dt + (

hε(t), �
)
dt,

d

[
ε

(
Ḡ

(
t

ε2
, uε(t)

)
, �

)]

= −1

ε

(
ḡε(t), �

)
dt − ε

(
aε(t)∇uε(t), Ḡ′,ε

u (t)∇� + Ḡ′′,ε
uu (t)∇uε(t)�

)
dt

+(
gε(t), Ḡ′,ε

u (t)�
)
dt + ε

(
hε(t), Ḡ′,ε

u (t)�
)
dt + dM�,ε

t ,

d

[
ε

(
�

( ·
ε
,

t

ε2

)
uε(t), ∇�

)]

= − ε

(
divx (aε(t)∇x�

ε
i (t)), u

ε(t)
��

�xi

)
dt − 1

ε

(
divz ai

( ·
ε
,

t

ε2

)
, uε(t)

��

�xi

)
dt

+ ε

(
divx (aε(t)∇uε(t)), �ε

i (t)
��

�xi

)
dt + (

gε(t)�ε(t), ∇�
)
dt

+ ε
(
hε(t)�ε(t), ∇�

)
dt

=
(

aε(t)uε(t), ∇z�

( ·
ε
,

t

ε2

)
∇∇�

)
dt − 1

ε

(
divz ai

( ·
ε
,

t

ε2

)
, uε(t)

��

�xi

)
dt

− ε
(
aε(t)∇uε(t), �ε(t)∇∇�

)
dt + (

gε(t)�ε(t), ∇�
)
dt + ε

(
hε(t)�ε(t), ∇�

)
dt,

d

[
ε

(
G̃

( ·
ε
,

t

ε2
, uε(t)

)
, �

)]

= ( − divx (aε(t)∇xG̃
ε(t, uε(t))), �

)
dt + ε

(
aε(t), ∇xG̃

′,ε(t, uε(t))∇uε(t), �
)
dt



24 M.A. Diop et al. / Journal of Functional Analysis 231 (2006) 1–46

− 1

ε

(
g̃ε(t), �

)
dt + ε

(
divx (aε(t)∇uε(t)), G̃′

u

( ·
ε
,

t

ε2
, uε(t)

)
�

)
dt

+
(

gε(t), G̃′
u

( ·
ε
,

t

ε2
, uε(t)

)
�

)
dt + ε

(
hε(t), G̃′

u

( ·
ε
,

t

ε2
, uε(t)

)
�

)
dt

=
(

aε(t)∇zG̃

( ·
ε
,

t

ε2
, uε(t)

)
, ∇�

)
dt − 1

ε

(
g̃ε(t), �

)
dt

− ε

(
aε(t)∇uε(t), G̃′

u

( ·
ε
,

t

ε2
, uε(t)

)
∇�

)
dt

−ε

(
aε(t)∇uε(t), G̃′′

uu

( ·
ε
,

t

ε2
, uε(t)

)
∇uε(t)�

)
dt

+
(

gε(t), G̃′
u

( ·
ε
,

t

ε2
, uε(t)

)
�

)
dt + ε

(
hε(t), G̃′

u

( ·
ε
,

t

ε2
, uε(t)

)
�

)
dt,

where we denoted by ai(t) the ith row of the matrix a(t).
Summing up the above identities we get

d�ε(t) =
((

I + ∇z�

( ·
ε
,

t

ε2

))
aε(t)uε(t), ∇∇�

)
dt

+
(

aε(t)∇zG̃

( ·
ε
,

t

ε2
, uε(t)

)
+ �ε(t)gε(t), ∇�

)
dt

+ (
(Ḡ′,ε

u (t) + G̃′,ε
u (t, uε(t))gε(t), �

)
dt + (

hε(t), �
)
dt + dM�,ε

t

− ε
[(

aε(t)∇uε(t), G̃′′,ε
uu (t, uε(t))∇uε(t)� + G̃′,ε

u (t, uε(t))∇�
)
dt

+ (
aε(t)∇uε(t), Ḡ′′,ε

uu (t)∇uε(t)� + Ḡ′,ε
u (t)∇�

)
dt

+ (
aε(t)∇uε(t), �ε(t)∇∇�

)
dt

− (
hε(t), �ε(t)∇� + G̃′,ε

u (t, uε(t))� + Ḡ′,ε
u (t)�

)
dt
]
,

from which we derive the expression for(
uε(t), �

)
= (

u0, �
) +

∫ t

0

(〈a(I + ∇�)〉uε(s), ∇∇�
)
ds

+
∫ t

0

[(〈a∇G̃〉(uε(s)), ∇�
)]

ds + (〈g�〉(uε(s)), ∇�
)]

ds
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+
∫ t

0

[(〈gḠ′
u〉(uε(s)), �

) + (〈gG̃′
u〉(uε(s)), �

) + (〈h〉(uε(s)), �
)]

ds

+ M
�,ε
t + Aε(t), (27)

where M
�,ε
t is the martingale introduced in (13) and

Aε(t) = − ε

{[(
Ḡε(t) − Ḡε(0), �

) + (
G̃ε(t, uε(t)) − G̃ε(0, u0), �

)

+ (
�ε(t)uε(t) − �ε(0)u0, ∇�

)]

+
[∫ t

0

(
aε(s)∇uε(s), G̃′′,ε

uu (s, uε(s))∇uε(s)� + G̃′,ε
u (s, uε(s))∇�

)
ds

+
∫ t

0

(
aε(s)∇uε(s), Ḡ′′,ε

uu (s)∇uε(s)� + Ḡ′,ε
u (s)∇�

)
ds

+
∫ t

0

(
aε(s)∇uε(s), �ε(s)∇∇�

)
ds

−
∫ t

0

(
hε(s), �ε(s)∇� + G̃′,ε

u (s, uε(s))� + Ḡ′,ε
u (t)�

)
ds

]}

+
∫ t

0

(
uε(s),

(
aε(s)

(
I + ∇�

( ·
ε
,

s

ε2

))
− 〈a(I + ∇�)〉

)
∇∇�

)
ds

+
∫ t

0

(
aε(s)∇G̃ε(s, uε(s)) − 〈a∇G̃〉(uε(s)), ∇�

)
ds

+
∫ t

0

(
gε(s)�ε(s) − 〈g�〉(uε(s)), ∇�

)
ds

+
∫ t

0

(
gε(s)Ḡ′,ε

u (s) − 〈gḠ′
u〉(uε(s)), �

)
ds

+
∫ t

0

(
gε(s)G̃′,ε

u (s, uε(s)) − 〈gG̃′
u〉(uε(s)), �

)
ds

+
∫ t

0

(
hε(s) − 〈h〉(uε(s)), �

)
ds.
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Here and in what follows the notation 〈
〉(u) stands for E
∫

Tn 
(z, t, u) dz, with periodic
in z and stationary in t random function 
(z, t, u). If 
 does not depend on u we simply
write 〈
〉.

Since all the terms in figure brackets have uniformly bounded expectations, the
contribution of these terms vanishes as ε → 0. The fact that the other terms on the
right-hand side tend to 0 can be proved in the same way as in Proposition 7 in [14].
We conclude that

lim
ε↘0

E

[
sup

0� t �T

|Aε(t)|
]

= 0. (28)

Let Q be an accumulation point of the sequence of probability measures {P ◦ {uε}−1}
defined on B(ṼT ), and denote by u a random variable with law Q.

Let 0�s < t �T , and let �s be a continuous bounded functional defined on Ṽs . If
we set �ε

s = �s(u
ε) and denote by F� the functional

F�(t, u) := (
u(t), �

) − (
u0, �

) −
∫ t

0

(
u(s), 〈a(I + ∇�)〉∇∇�

)
ds

−
∫ t

0

[(〈a∇G̃〉(u(s)), ∇�
) + (〈g�〉(u(s)), ∇�

)]
ds

−
∫ t

0

[(〈gḠ′
u〉(u(s)), �

) + (〈gG̃′
u〉(u(s)), �

) + (〈h〉(u(s)), �
)]

ds

for any u ∈ VT , then from formula (27) it follows that

E[(F�(t, uε) − (F�(s, uε))�ε
s ] = E[(Aε(t) − Aε(s))�

ε
s ].

Using Proposition 6 in [14] and taking into account (19) we can pass to the limit
here as ε → 0 and conclude that the process F� is a Q-martingale with respect to the
natural filtration of �-algebras B(Ṽt ), 0� t �T .

We treat now the martingale term M
�,ε
t through its quadratic variation which was

computed in (25). Notice that all the terms on the right-hand side of (25) vanishes as
ε → 0, except for the third one. Therefore,

E

(
sup

0� t �T

∣∣∣∣〈M�,ε〉t − 2
∫ t

0
(Ḡε(s), �)(ḡε(s), �) ds

∣∣∣∣
)

−−→
ε→0

0. (29)

Denote by (R(v)�, �) the quantity

2E
[(

Ḡ(t, v), �
)(

ḡ(t, v), �
)] = 2E

∫
Rn

∫
Rn

Ḡ(t, v(x))ḡ(t, v(y))�(x)�(y) dx dy (30)
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for v ∈ L2(Rn). The bilinear form R(v) does not depend on t. Using the relation (5)
and the stationarity of the random field ḡ(t, u), for each real u, we derive the following
representation for R(v)

(R(v)�, �) = 2
∫ ∞

t

ds E
∫

Rn

∫
Rn

ḡ(s, v(x))ḡ(t, v(x′))�(x)�(x′) dx dx′

= 2
∫ ∞

0
ds E

∫
Rn

∫
Rn

ḡ(s + t, v(x))ḡ(t, v(x′))�(x)�(x′) dx dx′

= 2
∫ ∞

0
ds E

∫
Rn

∫
Rn

ḡ(s, v(x))ḡ(0, v(x′))�(x)�(x′) dx dx′

for any � ∈ L2(Rn).
The mappings Ḡ(t, ·) and ḡ(t, ·) are Lipschitz continuous uniformly with respect to

t. Now, following exactly the same scheme as that in the proof of Proposition 8 in
[14], we derive

E

(
sup

0� t �T

∣∣∣∣
∫ t

0

[(
Ḡε(s), �

)(
ḡε(s), �

) − (
R(uε(s))�, �

)]
ds

∣∣∣∣
)

−−→
ε↘0

0.

Combining this formula with (28) and (29), we pass to the limit, as ε ↘ 0, in (27)
and arrive at the following statement.

Proposition 3. For every � ∈ C∞
0 (Rn), the process

F�(t, u) = (
u(t), �

) − (
u0, �

) −
∫ t

0

(
Â(u(s)), �

)
ds,

defined over the probability space (VT , B(ṼT ), Q) is a square integrable martingale
w.r.t. the natural filtration of �-algebras, with the associated quadratic variation process
given by

〈F�(·, u)〉t =
∫ t

0

(
R(u(s))�, �

)
ds,

where

Â(v) := div〈a(I + ∇�)〉∇v) − div〈a∇G̃〉(v) − div〈g�〉(v)

+ 〈g(G̃′
u + Ḡ′

u)〉(v) + 〈h〉(v) (31)

and R(u) is defined in (30).
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We prove now that the martingale problem we just stated has a unique solution. To
this end we apply the well-known result of Yamada–Watanabe which specifies that the
uniqueness of the solution of a martingale problem is a consequence of the path-wise
uniqueness for a corresponding SDE. This result may be adapted to our type of SPDE.

We define the Hilbert space K of real valued stationary random processes as follows.
We first denote by W the set of all processes {ḡ(t, u), t �0}, where u varies in R

and let Span(W) be the linear set generated by W. All the processes in Span(W) are
stationary and adapted to the filtration {Ft }. The space Span(W) may be endowed with
the bilinear form

〈ḡu, ḡv〉 :=
∫ ∞

0
E[ḡ(0, u)ḡ(t, v) + ḡ(0, v)ḡ(t, u)] dt,

where for instance ḡu stands for ḡ(·, u). In view of assumption (A.6) this form is well
defined. Also it is easy to see that 〈·, ·〉 is pre-Hilbertian, as considered on the quotient
space Span(W)/N , where N is the null set {h ∈ Span(W)/〈h, h〉 = 0}.

Set now K the closure of Span(W)/N under 〈·, ·〉. In this way K becomes a Hilbert
space. We now define, for each fixed w in L2(Rn), the mapping

C∗(w) : L2(Rn) �→ K

as

[C∗(w)�](t) :=
∫

Rn
ḡ(t, w(x))�(x) dx

and denote by C(w) the adjoint of C∗(w).

It is easy to see that C(w) is a linear operator, for each w, and is Lipschitz with re-
spect to the parameter w, according to assumption (A.3), i.e. ‖C(w2)−C(w1)‖L(K;L2(Rn))

�‖w2 − w1‖L2(Rn). The following relations are straightforward

〈C(w)C∗(w)�, �〉 = 〈C∗(w)�, C∗(w)�〉

=
∫ ∞

0
E[C∗(w)�](0)[C∗(w)�](t) dt

=
∫ ∞

0
E
[∫

Rn

∫
Rn

ḡ(0, w(x))�(x)ḡ(t, w(y))�(y) dx dy

]
dt

= (R(w)�, �).

Consider now the following SPDE in L2(Rn)

{
du(t) = Â(u(t)) dt + C(u(t)) dBt ,

u(0) = u0,
(32)
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where Bt is a standard cylindrical Brownian motion on K, i.e. for any h ∈ K, 〈h, Bt 〉
is a real-valued Brownian motion with covariance t

√〈h, h〉, and Â(u) is defined in (6).
By Theorem 1.1, p. 83 in [12], Eq. (32) has a unique solution u in VT . �

5.2. Case � < 2 : Proof of Theorem 2

We consider first the following elliptic PDEs written in divergence form

A�−
i (z, s) = −div ai(z, s), z ∈ Tn, (33)

1� i�n, s ∈ [0, ∞) being a parameter. For each s ∈ R this equation has a unique up
to an additive constant solution, �−(z, s) denotes the solution which satisfies:

∫
Tn

�−
i (z, s) dz = 0.

Combining now the Theorems 8.3, 8.8 and 8.34 from [7], we deduce that �−
i (·, s) ∈

W 2,2(Tn) ∩ C1,�(Tn), � ∈ (0, 1) being a deterministic constant. The assumption (A.7)

and Theorem 8.22 from [7] tells us now that �−
i (z, s) := ��−

i

�s
(,̇s) ∈ W 1,2(Tn)∪C�(Tn)

and satisfies the equation

A�−
i (z, s) = −� div ai

�s
(z, s) − div

(
�a

�s
(z, s)∇z�

−(z, s)

)
. (34)

It is obvious that

∫
Tn

�−
i (z, s) dz = �

�s

∫
Tn

�−
i (z, s) dz = 0.

Now, like in (8), one can find Ei(z, s) ∈ C1,�(Tn) such that,

��−
i

�s
= div Ei(z, s). (35)

Denote �−,ε(x, t) := �− (
x
ε
, t

ε�

)
and Eε(x, t) = E

(
x
ε
, t

ε�

)
.

For an arbitrary � ∈ C∞
0 set

�ε(t) = (uε(t), �) + ε(�−,ε(t)uε(t), ∇�) + ε
�
2

(
Ḡε

(
t

ε� , uε(t)

)
, �

)
.
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We have

d
(
uε(t), �

) = −(
aε(t)∇uε(t), ∇�

)
dt + 1

ε
�
2

(
gε(t), �

)
dt + (

hε(t), �
)
dt

= 1

ε

(
uε(t), div ai

( ·
ε
,

t

ε�

)
��

�xi

)
dt + (

uε(t), aε(t)∇∇�
)
dt

+ ε1− �
2

(
divx

[
H̃

( ·
ε
,

t

ε� , uε(t)

)]
, �

)
dt

− ε1− �
2

(
H̃ ′

u

( ·
ε
,

t

ε� , uε(t)

)
∇uε(t), �

)
dt

+ ε− �
2 (ḡε(t), �) dt + (hε(t), �) dt,

d

[
ε

�
2

(
Ḡε

(
t

ε� , uε(t)

)
, �

)]
= −ε− �

2 (ḡε(t), �) dt

− ε
�
2
(
aε(t)∇uε(t), Ḡ′,ε

u (t)∇� + Ḡ′′,ε
uu (t)∇uε(t)�

)
dt

+
(

g

( ·
ε
,

t

ε� , uε(t)

)
Ḡ′

u

(
t

ε� , uε(t)

)
, �

)
dt

+ ε
�
2

(
hε(t)Ḡ′

u

(
t

ε� , uε(t)

)
, �

)
dt + dM�,ε

t ,

d[ε(�−,ε(t)uε(t), ∇�)] = ε1−�
(

��−,ε

ds
(t), uε(t)∇�

)
dt

+ ε1
(

�uε(t)

dt
(t), �−,ε(t)∇�

)
dt

= ε2−�(Eε(t), uε(t)∇∇�) dt + ε2−�(Eε(t), ∇uε(t)∇�) dt

+ 1

ε

(∇z(a
ε(t)∇z(�

−,ε(t))uε(t), ∇�
)
dt

+ (
aε(t)∇z�

−,ε(t), uε(t)∇∇�
)
dt

− ε
(
aε(t)∇uε(t), �−,ε(t)∇∇�

)
dt

+ ε1− �
2 (gε(t), �−,ε(t)∇�) dt + ε(hε(t), �−,ε(t)∇�) dt,
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where M
�,ε
t is a square integrable martingale. Summing up gives

�ε(t) = �ε(0) +
∫ t

0

(
uε(s), a

( ·
ε
,

s

ε�

) (
I + ∇z�

− ( ·
ε
,

s

ε�

)
∇∇�

)
ds

+
∫ t

0
(hε(s), �) ds +

∫ t

0

(
g
( ·
ε
,

s

ε� , uε(s)
)

Ḡ′
u

( s

ε� , uε(s)
)

, �
)

ds

+ M
�,ε
t + Rε

t ,

where

E

(
sup

0� t �T

|Rε
t |
)

→ 0

as ε → 0. The quadratic variation of the martingale term M
�,ε
t was computed in (25)

〈M�,ε〉t = ε�
(

Ḡ

(
t

ε2
, uε(t)

)
, �

)2

− ε�(Ḡ(0, u0), �
)2

+ 2
∫ t

0

(
Ḡε(s), �

)(
ḡε(s), �

)
ds

+ 2ε�
∫ t

0

(
Ḡε(s), �

)(
aε(s)∇uε(s), Ḡ′,ε

u (s)∇� + Ḡ′′,ε
uu (s)∇uε(s)�

)
ds

− 2ε
3�
2

∫ t

0

(
Ḡε(s), �

)(
gε(s), Ḡ′,ε

u (s)�
)
ds

− 2ε�
∫ t

0

(
Ḡε(s), �

)(
hε(s), Ḡ′,ε

u (s)�
)
ds

− 2ε
�
2

∫ t

0

(
Ḡε(s), �

)
dM�,ε

s .

We now pass to the limit in the last two expressions in the same way as we did in
the proof of Theorem 1 and the required statement follows. �

5.3. Case � > 2 : Proof of Theorem 3

The proof of convergence is slightly more involved in this last case, comparing to
the two other ones. The general strategy is the same as in the previous subsections,
however, we shall need to introduce and study new types of correctors, and prove some
averaging lemmas adapted to those. In order to try to clarify our strategy, we split this
subsection into smaller units.
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5.3.1. Definition and properties of new correctors
We now define correctors which are obtained via stationary and ergodic solutions

of linear parabolic PDEs with large parameters in front of the time derivative. Let
�+,ε
i (z, s), G̃+,ε(z, s, u) be stationary and ergodic solutions of the equations

1

ε�−2

��+,ε
i

�s
(z, s) + divz

(
a(z, s)∇z�

+,ε
i (z, s)

) = −�aik

�zk

(z, s),

1

ε�−2

�G̃+,ε

�s
(z, s, u) + divz

(
a(z, s)∇zG̃

+,ε(z, s, u)
) = −g̃(z, s, u)

for s ∈ (−∞, +∞), z ∈ Tn, u ∈ R.
As was proved in [8], for each ε > 0 these equations have stationary solutions which

are unique under the centering conditions

∫
Tn

�+,ε(z, s) dz = 0 and
∫

Tn

G̃+,ε(z, s, u) dz = 0.

Define

vε
i (x, t) := �+,ε

i

(
x,

t

ε�−2

)
, wε(x, t, u) := G̃+,ε

(
x,

t

ε�−2
, u

)
. (36)

These functions satisfy the parabolic PDEs

�vε
i

�t
(x, t) + div

[
a

(
x,

t

ε�−2

)
∇vε

i (x, t)

]
= −bi

(
x,

t

ε�−2

)
, (37)

�wε

�t
(x, t, u) + div

[
a

(
x,

t

ε�−2

)
∇wε(x, t, u)

]
= −g̃

(
x,

t

ε�−2
, u

)
, (38)

where u ∈ R is a parameter, and for brevity we have denoted

bi(z, s) =
∑

k

�aik

�zk

(z, s).

The solutions of these equations are periodic in x and stationary ergodic in t, for each
fixed u.

Proposition 4. For any (t, x) ∈ (0, ∞) × Tn,

(a) vε
i (t, x) → �+

i (x),

(b) �+,ε
i (x, t) → �+

i (x),
(39)
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a.s., as ε → 0, where �+
i is a solution to the first equation in (7). Moreover these

convergences are uniform on Tn × [0, T ], for any T > 0.

Proof. First we are going to show that uniformly in ε

‖vε
i ‖L∞(Tn×(−∞,∞)) �C. (40)

To this end we consider the following Cauchy problems:

�

�t
v

N,ε
i +div

[
a

(
x,

t

ε�−2

)
∇v

N,ε
i

]
= −1{N−1� t<N} bi

(
x,

t

ε�−2

)
in Tn × (−∞, N),

v
N,ε
i |t �N = 0

with N = 0, ±1, ±2, . . .. As was shown in the proof of Lemma 4 in [9], the functions
vN,ε satisfy the bound

‖vN,ε
i (t, ·)‖L∞(Tn) �Ce−�(N−t)‖bi‖W−1,∞(Tn×(−∞,∞)) (41)

with constants � > 0 and C > 0 which only depend on the ellipticity constants of
matrix a(x, t).

By the same Lemma 4 in [9], the function vε admits the representation

vε =
∞∑

N=−∞
vN,ε.

Summing up the estimates (41) we obtain the desired bound (40).
Next, combining (40) with the Nash estimate for solutions of parabolic equations,

we conclude that the family of functions {vε, ε > 0, � ∈ �} is Hölder continuous in
Tn × (−∞, ∞) and, moreover for any a ∈ R,

‖vε‖C�(Tn×[a,a+1]) �C

for some � > 0 and C > 0 which do not depend on a. Hence the same estimate
holds for the C�(Tn × (−∞, ∞)) norm. Therefore, for each � ∈ � the function vε

converges along a subsequence, as ε → 0, and the convergence is uniform on compact
sets. Denote the limit function by v0 = v0(x, t).

Now denote V ε
k = �

�xk
vε. Approximating the coefficients {aij } by smooth ones, one

can easily show that V ε
k solves the equation

�

�t
V ε

k + div

[
a

(
x,

t

ε�−2

)
∇V ε

k

]
= − �

�xk

b

(
x,

t

ε�−2

)
− div

[(
�

�xk

a

(
x,

t

ε�−2

))
∇vε

]
.
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We want to show that for any a ∈ R, � ∈ �, V ε
k (�) is a compact family (indexed by

ε > 0) of elements of L2(Tn × (a, a + 1)). The function on the right-hand side of the
V ε

k -equation is uniformly bounded in L2((a − 1, a + 1); H−1(Tn)). Moreover there
exists C > 0 such that

‖V ε
k ‖L2((a−1,a)×Tn) �C

hence for each ε > 0 and � ∈ �, there exists t0 ∈ (a − 1, a) such that

‖V ε
k (t0)‖L2(Tn) �C.

Now from standard parabolic estimate,

‖V ε
k ‖L2(a,a+1;H 1(Tn)) +

∥∥∥∥�V ε
k

�t

∥∥∥∥
L2(a,a+1;H−1(Tn))

�C′,

which implies the whished compactness in L2(Tn × (a, a + 1)).
Let � = �(x, t) be a C∞(Tn × (−∞, ∞)) function with a compact support. Using

� as a test function in the integral identity of the first equation in (7), we get

∫ ∞

−∞

∫
Tn

vε ��

�t
dx dt +

∫ ∞

−∞

∫
Tn

a

(
x,

t

ε�−2

)
∇vε · ∇� dx dt

= −
∫ ∞

−∞

∫
Tn

a

(
x,

t

ε�−2

)
∇� dx dt.

By the Birkhoff ergodic theorem a(x, t

ε�−2 ) converges a.s., as ε → 0, towards ā(x) =
Ea(x, s) weakly in L2

loc(T
n × (−∞, ∞)). Passing to the limit in the above integral

relation we find

∫ ∞

−∞

∫
Tn

v0� dx dt +
∫ ∞

−∞

∫
Tn

ā(x)∇v0 · ∇� dx dt

= −
∫ ∞

−∞

∫
Tn

ā(x)∇� dx dt.

Therefore, v0 is a bounded zero spatial average solution of the equation

�

�t
v0 + div

[
ā(x)∇v0

]
= − div ā(x).

By the uniqueness of a bounded solution, v0 does not depend on t and solves the
elliptic equation div

[
ā(x)∇v0

] = − div ā(x). Thus v(x) = �+(x), and the entire family
vε converges a.s. to �+(x), as ε → 0.
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The second convergence in (39) is the evident consequence of the first one. �

We have also proved the following statement.

Lemma 4. The sequences {�+,ε
i , ε > 0} and

{
��+,ε

i

�xj
, ε > 0

}
are bounded in L∞(Tn ×

[0, ∞)), uniformly in � ∈ �.

Similar results hold for the process G̃+,ε(x, t, u), as well as G̃
+,ε
u (x, t, u).

Lemma 5. (a) For any (t, x) ∈ (0, ∞) × Tn, u ∈ R, the following convergence takes
place:

wε(x, t, u) → G̃+(x, u),

G̃+,ε(x, t, u) → G̃+(x, u),

G̃+,ε,′
u (x, t, u) → G̃+,′

u (x, u)

in probability, as ε → 0.

(b) The function G̃+,ε(x, t, u) is differentiable in x and its partial derivatives
�G̃+,ε

�xj

(x, t, ·) are Lipschitz, uniformly with respect to ε, x, t, �.
(c) The following bounds hold:

|G̃+,ε(x, t, u)|�C|u|,
∣∣∣∣∣�G̃+,ε

�xj

(x, t, u)

∣∣∣∣∣ �C |u| ,

for any (t, x) ∈ [0, ∞) × Tn, u ∈ R.

We now define

�+,ε,�(x, t) = �+,ε

(
x

ε
,

t

ε�

)
, G̃+,ε,�(x, t, u) = G̃+,ε

(
x

ε
,

t

ε� , u

)
.

It is easy to see that these processes satisfy the equations

ε2 ��+,ε,�
i

�t
(x, t) + ε2 divx

(
a

(
x

ε
,

t

ε�

)
∇x�

+,ε,�
i (x, t)

)
= −�aik

�zk

(
x

ε
,

t

ε�

)
,

ε2 �G̃+,ε,�

�t
(x, t, u) + ε2 divx

(
a

(
x

ε
,

t

ε�

)
∇xG̃

+,ε,�(x, t, u)

)
= −g̃

(
x

ε
,

t

ε� , u

)
.
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Moreover G̃
+,ε,�,′
u and G̃

+,ε,�,′′
uu satisfy

ε2 �G̃
+,ε,�,′
u

�t
(x, t, u) + ε2 divx

(
aε

(
x

ε
,

t

ε�

)
∇xG̃

+,ε,�,′
u (x, t, u)

)
= −g̃′

u

(
x

ε
,

t

ε� , u

)
,

ε2 �G̃
+,ε,�,′′
uu

�t
(x, t, u) + ε2 divx

(
aε

(
x

ε
,

t

ε�

)
∇xG̃

+,ε,�,′′
uu (x, t, u)

)
= −g̃′′

uu

(
x

ε
,

t

ε� , u

)
.

5.3.2. Preparation for taking the limit
Consider now the process

�ε,�(t) = (
uε(t), �

) + ε�−1
(

Ḡ

(
t

ε� , uε(t)

)
, �

)
+ ε

(
�+,ε,�(t)uε(t), ∇�

)
+ ε

(
G̃+,ε,�(t, uε(t)), �

)
.

Differentiating the terms on the right-hand side gives

ε�−1d

(
Ḡ

(
t

ε� , uε(t)

)
, �

)

= − 1

ε

(
ḡε(t), �

)
dt − ε�−1(aε(t)∇uε(t), Ḡ′,ε

u (t)∇� + Ḡ′′,ε
uu (t)∇uε(t)�

)
dt

+ ε�−2(gε(t), Ḡ′,ε
u (t)�

)
dt + ε�−1(hε(t), Ḡ′,ε

u (t)�
)
dt + dM�,ε

t ,

εd
(
�+,ε(t)uε(t), ∇�

)

=
(

aε(t)uε(t), ∇z�
+,ε

( ·
ε
,

t

ε�

)
∇∇�

)
dt − 1

ε

(
divz ai

( ·
ε
,

t

ε�

)
, uε(t)

��

�xi

)
dt

− ε
(
aε(t)∇uε(t), �+,ε,�(t)∇∇�

)
dt + (

gε(t)�+,ε,�(t), ∇�
)
dt

+ ε
(
hε(t)�+,ε,�(t), ∇�

)
dt,

εd
(
G̃+,ε(·, t, uε(t)), �

)

=
(

aε(t)∇zG̃
+,ε

( ·
ε
,

t

ε� , uε(t)

)
, ∇�

)
dt − 1

ε

(
g̃ε(t), �

)
dt
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− ε

(
aε(t)∇uε(t), G̃+,ε,′

u

( ·
ε
,

t

ε� , uε(t)

)
∇�

)
dt

− ε

(
aε(t)∇uε(t), G̃+,ε,′′

uu

( ·
ε
,

t

ε� , uε(t)

)
∇uε(t)�

)
dt

+
(

gε(t), G̃+,ε,′
u

( ·
ε
,

t

ε� , uε(t)

)
�

)
dt + ε

(
hε(t), G̃+,ε,′

u

( ·
ε
,

t

ε� , uε(t)

)
�

)
dt.

Summing up the above relations we get

d�ε(t) =
((

I + ∇z�
+,ε

( ·
ε
,

t

ε�

))
aε(t)uε(t), ∇∇�

)
dt

+
(

aε(t)∇zG̃
+,ε

( ·
ε
,

t

ε� , uε(t)

)
+ �+,ε

( ·
ε
,

t

ε�

)
gε(t), ∇�

)
dt

+
(

G̃+,ε,′
u

( ·
ε
,

t

ε� , uε(t)

)
gε(t), �

)
dt + (

hε(t), �
)
dt + dM�,ε

t

− ε
[(

aε(t)∇uε(t), G̃+,ε,�,′′
uu (t, uε(t))∇uε(t)� + G̃+,ε,�,′

u (t, uε(t))∇�
)
dt

+ (
aε(t)∇uε(t), �+,ε(t)∇∇�

)
dt

− (
hε(t), �+,ε(t)∇� + G̃+,ε,�,′

u (t, uε(t))�
)
dt
]

− ε�−1(aε(t)∇uε(t), Ḡ′,ε
u (t)∇� + Ḡ′′,ε

uu (t)∇uε(t)�
)
dt

+ ε�−2(gε(t), Ḡ′,ε
u (t)�

)
dt + ε�−1(hε(t), Ḡ′,ε

u (t)�
)
dt. (42)

Denote, as in the case � = 2, by Q a limit point of the sequence Qε = L(uε).

5.3.3. Some averaging lemmas
The following statements will allow us to pass to the limit in (42).

Lemma 6. Let Eε(z, t, u) be a sequence of continuous z-periodic random fields, such
that

|Eε(z, t, u)|�C|u|,

|Eε(z, t, u2) − Eε(z, t, u1)|�C|u2 − u1|

for any u, u1, u2 ∈ R, uniformly with respect to ε, t, z, �. Moreover, suppose
that for each ε > 0, s > 0, u ∈ R, the function Eε has a.s. zero spatial average:
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∫
Tn Eε(z, s, u) dz = 0, and for each ε > 0, s > 0 the function u → Eε(z, t, u) is a.s.

of class C1. Then for any t ∈ [0, T ] and � ∈ C∞
0 (Rn), the following convergence holds

true:

∫ t

0

∫
K

Eε
(x

ε
,

s

ε� , uε(s, x)
)

�(x) dx ds → 0,

in L1(�), as ε → 0, where K stands for supp(�).

Proof. Making use of the representation

Eε(z, t, u) = divz

[
�ε(z, t, u)

]
,

where u ∈ R is a parameter and �ε(z, t, u) is a z-periodic function satisfying the
estimates

|�ε(x, t, u)|�C|u|,

|�′
u
, ε

(x, t, u)|�C,

we obtain

divx

[
�ε

(x

ε
, t, uε(t, x)

)]
= 1

ε
Eε

(x

ε
, t, uε(t, x)

)
+ �′

u
ε
(x

ε
, t, uε(t, x)

)
∇uε(t, x).

By Proposition 1, we get

E

∣∣∣∣
∫ t

0

∫
K

Eε
(x

ε
,

s

ε� , uε(s, x)
)

�(x) dx ds

∣∣∣∣
= E

∣∣∣∣ε
∫ t

0

∫
K

�ε
(x

ε
,

s

ε� , uε(s, x)
)

∇�(x) dx ds

+ ε

∫ t

0

∫
K

�′
u
, ε

(x

ε
,

s

ε� , uε(s, x)
)

∇uε(s, x)�(x) dx ds

∣∣∣∣
�εC

[
tE sup

0� s � t

‖uε(s)‖L2(K) + E
∫ t

0
‖∇uε(s)‖L2(K) ds

]

�εC(t + 1). �

Let d(z, r) and c(z, r) be stationary, continuous, periodic in z random fields, which
are measurable w.r.t. �{a(z, r), g(z, r, u), h(z, r, u), z ∈ Tn, u ∈ R}, and satisfy,
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for some C > 0,

∫
Tn

c(z, r) dz = 0, | d(z, r)|�C.

Define

f ε(r) =
∫

Tn

d
(
z,

r

ε�−2

)
Fε(z, r) dz, f ε

1 (r) =
∫

Tn

d
(
z,

r

ε�−2

)
∇Fε(z, r) dz,

where Fε stands for a stationary zero average solution of the following parabolic
equation:

�Fε

�t
(z, t) + div

[
a

(
z,

t

ε�−2

)
∇Fε(z, t)

]
= c

(
z,

t

ε�−2

)
.

Lemma 7. For any t > 0, the following convergences hold in L2(�), as ε → 0,

1

t

∫ t

0
f ε

( r

ε2

)
dr − Ef ε(0) → 0,

1

t

∫ t

0
f ε

1

( r

ε2

)
dr − Ef ε

1 (0) → 0.

Proof. Denote by FN,ε(z, t) the solution of the Cauchy problem

�FN,ε

�t
(z, t) + div

[
a

(
z,

t

ε�−2

)
∇FN,ε(z, t)

]
= c

(
z,

t

ε�−2

)
,

FN,ε(z, N) = 0, (z, t) ∈ Tn × (−∞, N),

where N is an arbitrary real number. The difference (FN,ε(z, t) − Fε(z, t)) decays
exponentially, as (N − t) → ∞, uniformly in ε, that is

sup
z∈Tn, t∈[k,k+1]

|FN,ε(z, t) − Fε(z, t)|�Ce−�(N−k)

for any k�N , with nonrandom constants C and �. Denote f N,ε(r) = ∫
Tn d(z, r

ε�−2 )FN,ε

(z, r) dz. By integrating the latter inequality over Tn we get

|f N,ε(t) − f ε(t)|�Ce−�(N−t). (43)
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Since f
t
2 ,ε(0) is measurable with respect to the events before t

2ε�−2 , and f ε(t) is
measurable with respect to the events after time t

ε�−2 , for each t > 0,

|E[(f ε(t)f ε(0) − E(f ε(t)Ef ε(0)]|
= |E[(f ε(t) − E(f ε(t))f ε(0)]|
= |E{(f ε(0) − f

t
2 ,ε(0))(f ε(t) − Ef ε(t)) + f

t
2 ,ε(0)(f ε(t) − Ef ε(t))}|

�2Ce−� t
2 E|f ε(t)| + C�

(
t

2ε�−2

)√
E(f

t
2 ,ε(0))2E(f ε(0))2

�C

(
e−� t

2 + �

(
t

2ε�−2

))
,

where �(t) denotes again the uniform mixing coefficient (for further details [8, Lemmas
3 and 4]). Hence

E

⎡
⎣(

ε2

t

∫ t

ε2

0
(f ε(s) − Ef ε(s)) ds

)2
⎤
⎦

= ε4

t2

∫ t

ε2

0

∫ t

ε2

0
E[f ε(s)f ε(r) − E(f ε(s))E(f ε(r))] ds dr

= 2
ε4

t2

∫ t

ε2

0

∫ s

0
E[f ε(s)f ε(r) − E(f ε(s))E(f ε(r))] dr ds

�2C
ε4

t2

∫ t

ε2

0

∫ s

0

[
e−� s−r

2 + �

(
s − r

2ε�−2

)]
dr ds

�C′ ε2

t
,

where we have used the assumption (A.6) and the stationarity of the random field
f ε(s). The first result follows. The second one can be proved similarly. �

Lemma 8. The following convergence holds, as ε → 0, for any r �0

(a) E
∫

Tn

(
a
(
z,

r

ε�−2

)
(I + ∇zv

ε(z, r))
)

dz − E
∫

Tn

(
a(z, 0)(I + ∇�+(z))

)
dz → 0

(b) E
∫

Tn

(
a
(
z,

r

ε�−2

)
∇zw

ε(z, r, uε(εz, ε2r))
)

dz

−E
∫

Tn

〈a∇zG̃
+〉(uε(εz, ε2r)) dz → 0,
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where for each ε > 0, uε is the solution of the problem (1), vε and wε are defined in
(36).

Proof. Denote

�ε = E
∫

Tn

a
(
z,

r

ε�−2

)
(I + ∇zv

ε(z, r)) dz.

In view of the stationarity of the integrand, we may write

�ε = E
∫

Tn

∫ 1

0
a
(
z,

r

ε�−2

)
(I + ∇zv

ε(z, r)) dr dz.

By the definition of vε we have

E
∫ 1

0

∫
Tn

a
(
z,

r

ε�−2

)
∇�+(z)(I + ∇zv

ε(z, r)) dz dr

= −E
∫ 1

0

∫
Tn

div
[
a
(
z,

r

ε�−2

)
(I + ∇zv

ε(z, r))
]

�+(z) dz dr

= E
∫

Tn

∫ 1

0

�vε

�s
(z, s)�+(z) ds dz = 0.

Hence

�ε = E
∫ 1

0

∫
Tn

a
(
z,

r

ε�−2

)
(I + ∇�+(z))(I + ∇zv

ε(z, r)) dr dz

= E
∫ 1

0

∫
Tn

a
(
z,

r

ε�−2

)
(I + ∇�+(z)) dz

− E
∫ 1

0

∫
Tn

div
[
a
(
z,

r

ε�−2

)
(I + ∇�+(z))

]
vε(z, s) dz ds

= E
∫

Tn

a(z, 0)(I + ∇�+(z)) dz − E
∫

Tn

div
[
a(z, 0)(I + ∇�+(z))

]
�+(z) dz

− E
∫ 1

0

∫
Tn

div
[
a
(
z,

r

ε�−2

)
(I + ∇�+(z))

]
(vε(z, r) − �+(z)) dz dr.

The second term on the r.h.s. is equal to 0 by (7). The third term tends to 0 by
Proposition 4, Lemma 4 and the boundedness of the first factor of the integrand.
Statement (b) can be proved in an analogous way, using Proposition 1, Lemma 5, and
the argument developed in the last part of the proof of Lemma 9 below (the study of
the term I ε

2 ). �
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5.3.4. Passage to the limit
Let {uε} denote a subsequence of solutions of (1) that converges in law, as ε → 0,

in the space ṼT . We denote by Q the limit law, and by u the generic element of ṼT .

Proposition 5. For any � ∈ C∞
0 (Rn), the process M

�
t defined on the probability space

(VT , B(ṼT ), Q) by the formula

M
�
t := (u(t), �) − (u0, �) −

∫ t

0

(
u(s), ã∇∇�

)
ds

+
∫ t

0

(
b̂(u(s)), ∇�

)
ds −

∫ t

0

(
ĥ(u(s)), �

)
ds

is a martingale with respect to the natural filtration of �-algebras B(Ṽt ), 0� t �T .

Proof. Fix 0�s < t �T and let again �s denote an arbitrary bounded continuous
functional defined on Ṽs . We denote �ε

s = �s(u
ε), and write �s for �s(u). By the

formula (42), we have

0 = E
[
(M

�,ε
t − M

�,ε
s )�ε

s

] = E
[
(uε(t), �) − (uε(s), �)

]
�ε

s

− E
[∫ t

s

(
aε(r)

(
I + ∇z�

+,ε
( ·
ε
,

r

ε�

))
uε(r), ∇∇�

)
dr

]
�ε

s

− E
[∫ t

s

(
aε(r)∇zG̃

+,ε
( ·
ε
,

r

ε� , uε(r)
)

+ �+,ε
( ·
ε
,

r

ε�

)
gε(r), ∇�

)
dr

]
�ε

s

− E
[∫ t

s

(
G̃+,ε,′

u

( ·
ε
,

r

ε� , uε(r)
)

gε(r), �
)

dr

]
�ε

s

− E
[∫ t

s

(
hε(r), �

)
dr

]
�ε

s + ε�−2Rε,

where Rε is bounded. We proceed with the following statement.

Lemma 9. For any test function � ∈ C∞
0 (Rn) and 0 < s < t < T , the following

convergence takes place, as ε → 0,

(a) E
∫ t

s

(
a
( ·
ε
,

r

ε�

) (
I + ∇z�

+,ε
( ·
ε
,

r

ε�

))
uε(r), ∇∇�

)
�ε

s dr

→ EQ

∫ t

s

(〈a(I + ∇z�
+)〉u(r), ∇∇�

)
�s dr,
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where 〈a(I +∇z�+)〉 = E
∫

Tn a(z, r)(I +∇�+(z)) dz, and EQ denotes expectation with
respect to the measure Q;

(b) E
∫ t

s

(
a
( ·
ε
,

r

ε�

)
∇zG̃

+,ε
( ·
ε
,

r

ε� , uε(r)
)

, ∇�
)

�ε
s dr

→ EQ

∫ t

s

(
〈a∇zG̃

+〉(u(r)), ∇�
)

�s dr,

(c) E
∫ t

s

(
�+,ε

( ·
ε
,

r

ε�

)
g
( ·
ε
,

r

ε� , uε(r)
)

, ∇�
)
�ε

s

→ EQ

∫ t

s

(
〈�+g〉(u(r)), ∇�

)
�s dr,

(d) E
∫ t

s

(
G̃+,ε,′

u

( ·
ε
,

r

ε� , uε(s)
)

g
( ·
ε
,

r

ε� , uε(r)
)

+ hε(r), �
)
�ε

s dr

→ EQ

∫ t

s

(
〈G̃+,′

u g + h〉(u(r)), �
)
�s dr.

Proof. We prove the first statement only. Essentially similar arguments apply to the
others. Denote K := supp(�). In (a), we only consider the most complex term

∣∣∣E ∫ t

s

(
a
( ·
ε
,

r

ε�

)
∇z�

+,ε
( ·
ε
,

r

ε�

)
uε(r), ∇∇�

)
�ε

s dr

− EQ

∫ t

s

〈a∇z�
+〉u(r), ∇∇�

)
�s dr

∣∣∣
� E

∫ t

s

∣∣∣ ∫
K

[
a
(x

ε
,

r

ε�

)
∇z�

+,ε
(x

ε
,

r

ε�

)

−
∫

Tn

a
(
z,

r

ε�

)
∇�+,ε

(
z,

r

ε�

)
dz

]
uε(x, r)∇∇�(x) dx

∣∣∣ dr |�ε
s |

+ E
∫

K

∣∣∣ ∫ t

s

[ ∫
Tn

a
(
z,

r

ε�

)
∇�+,ε

(
z,

r

ε�

)
dz

− E
∫

Tn

a(z, 0)∇zv
ε(z, 0) dz

]
uε(x, r)∇∇�(x) dr

∣∣∣ dx|�ε
s |

+
∣∣∣E ∫

K

{ ∫ t

s

[
E
∫

Tn

a(z, 0)∇zv
ε(z, 0) dz − 〈a∇z�

+〉
]
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× uε(x, r)∇∇�(x) dr
}

dx

∣∣∣|�ε
s |

+
∣∣∣ ∫

K

E
∫ t

s

〈a∇z�
+〉uε(x, r)∇∇�(x) dr dx�ε

s

−
∫

K

EQ

∫ t

s

〈a∇z�
+〉u(x, r)∇∇�(x) dr dx�s

∣∣∣
= I ε

1 + I ε
2 + I ε

3 + I ε
4 .

From the convergence in law of the uniformly integrable subsequence {uε} it follows
that I ε

4 → 0, as ε → 0. The uniform integrability is a direct consequence of Proposition
1. The convergence of I ε

1 to 0 follows from Lemma 6 and Lebesgue’s dominated
convergence theorem, while the same result for the integral I ε

3 is proved in Lemma 8.
It remains to consider the second term I ε

2 . Fix a small � > 0. The tightness of
the sequence (uε) allows us to choose, for any t > 0 and any compact set K, the

step functions qj (r, x), 1�j �N , defined on (0, T ) × K , such that: P
(⋂

j (B
ε
j )c

)
<

�, ∀ε > 0, where the events Bε
j , 1�j �N , are disjoint and such that

Bε
j ⊆ {‖uε(x, r) − qj (r, x)‖L2((0,t)×K) < �}.

This �-net can be chosen in such a way that all its elements qj have the form:

qj (r, x) =
∑

i

�j
i 1[tji−1,t

j
i ]×K

j
i

(r, x),

where {tji , 1� i�N}, is a partition of [0, t] and the sets {Kj
i , 1� i�N} are disjoint

and such that their union contains K. Denote

Aε :=
⋂
j

{‖uε(x, r) − qj (r, x)‖L2((0,t)×K) > �}

and

eε(r) :=
∫

Tn

a
(
z,

r

ε�−2

)
∇zv

ε(z, r) dz

We then obtain

I ε
2 � C

∫
Aε

∫
K

∫ t

s

∣∣∣eε
( r

ε2

)
− E(eε(0))

∣∣∣ |uε(x, r)| dr dx dP

+ C
∑
j

∫
Bε

j

[∑
i

∣∣∣∣
∫ ti

ti−1

[
eε

( r

ε2

)
− E(eε(0))

]
dr

∣∣∣∣ �j
i

]
dP
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+ C
∑
j

∫
Bε

j

∫ t

s

∫
K

|uε(r, x) − qj (r, x)| dr dx dP

= J ε
1 + J ε

2 + J ε
3 .

It is clear that J ε
1 < C�, due to the fact that P(Aε) < �. Lemma 7 implies that J ε

2 → 0.
Finally, J ε

3 satisfies the estimate

J ε
3 < C

√
t
∑
j

∫
Bε

j

‖uε − qj‖L2((0,t)×K) < C
√

T �.

The convergence of I ε
2 to 0 is now obvious. �

The quadratic variation of the martingale term M�,ε was computed in the formula
(21) from which it easily follows that

lim
ε→0

E
(〈M�,ε〉t

) = 0.

This implies

〈M�〉t = 0, 0� t �T . �

Combining this with Proposition 5, we conclude that, on the probability space
(VT , B(ṼT ), Q), we have:

(v(t), �) − (u0, �) −
∫ t

0

(
v(s), ã∇∇�

)
ds

+
∫ t

0

(
b̂(v(s)), ∇�

)
ds −

∫ t

0

(
ĥ(v(s)), �

)
ds = 0,

Q a.s. In the latter relation we have used the notation

b̂(u) := E
∫

Tn
[a(z, s)∇zG̃

+(z, u) + g(z, s, u)�+(z)] dz, u ∈ R.

Let us show that b̂ = 0. Indeed, by the definition of �+ and G̃+ one has

E
∫

Tn
[a(z, s)∇zG̃

+(z, u) + g(z, s, u)�+(z)] dz

=
∫

Tn
[ā(z)∇zG̃

+(z, u) + (g̃)(z, u)�+(z)] dz
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= −
∫

Tn
[div(ā(z))G̃+(z, u)] dz +

∫
Tn

[Ā(G̃+(·, u))(z)�+(z)] dz

= −(
Ā�+, G̃+(u)

)
L2(Tn)

+ (
ĀG̃+(u), �+)

L2(Tn)
= 0,

where we have also used the assumption (A.5). Hence Q is the Dirac mass concentrated
at a solution of the Cauchy problem

⎧⎨
⎩

�u

�t
(t, x) = div(ã∇u(t, x)) + ĥ(u); 0 < t < T, x ∈ Rn,

uε(0, x) = u0(x), x ∈ Rn.

Since this problem has a unique solution, the whole sequence {uε, ε > 0} converges
in probability to the solution of the above Cauchy problem.
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