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Abstract
We study in this paper a compartmental SIR model for a population distributed in a
bounded domain D of R

d , d = 1, 2 or 3. We describe a spatial model for the spread
of a disease on a grid of D. We prove two laws of large numbers. On the one hand,
we prove that the stochastic model converges to the corresponding deterministic patch
model as the size of the population tends to infinity. On the other hand, by letting
both the size of the population tend to infinity and the mesh of the grid go to zero, we
obtain a law of large numbers in the supremum norm, where the limit is a diffusion
SIR model in D.

Keywords Spatial model · Deterministic · Stochastic · Law of large numbers

0 Introduction

There is by now a good number of books and a huge number of papers treating
mathematical models of epidemics. Most of them treat deterministic models, while
some of them discuss as well stochastic models. Let us quote among many others
Kermack and McKendrick [13], Anderson and Britton [6], Britton and Pardoux [9].
These last two works show that the standard deterministic models are law of large
numbers limits of individual-based stochastic models. They also study fluctuations
around the law of large numbers limit, via the central limit theorem, and concerning
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the last reference, the large deviations. Those fluctuations allow to explain extinction
of an endemic disease, which is a stable equilibrium of the deterministic model.

The classical SIR model ignores the fact that a population spreads over a spatial
region. However environmental heterogeneity, spatial connectivity and movement of
individuals play important roles in the spread of infectious diseases. Spatially uniform
models are not sufficient to give a realistic picture of the spread of the disease. There
is by now quite an important literature on spatial epidemics model, both in discrete
and in continuous space, see e.g. Allen et al. [3,5] and the references therein.

In the present paper, we consider both deterministic and stochastic models in dis-
crete and continuous space.More precisely,we startwith an individual based stochastic
model for a population with constant size Nε−d , distributed on the nodes of a regular
grid discretizing [0, 1]d , with d = 1, 2 or 3 (we shall concentrate mainly on the case
d = 2, which seems to us most relevant). Letting first N → ∞, while ε, the mesh
size, is kept fixed, we shall obtain as law of large numbers limit a system of ODEs on
the grid, which is a patch epidemics model. Letting then ε → 0, we will show that
the system of ODEs converges to a system of PDEs on [0, 1]d , which is a determin-
istic epidemic model in continuous space. It is rather clear that one cannot hope to
get the same result by letting first ε → 0, and then N → ∞. Indeed, the first limit
should be a continuous space model for quantities which take their values in the set
{k/N, 0 ≤ k ≤ N}, with a partial differential operator for the displacement of the
population, which would not make much sense. Consequently, if one wants to obtain
a limit while letting jointly N → ∞ and ε → 0, there must be a constraint which
limits the speed of convergence of ε to 0, in terms of the speed of convergence of N to
+∞. The weakest possible such constraint seems to be the one which has been first
introduced by Blount [8] for chemical reaction models, namely the restriction that
N/ log(1/ε) → ∞, see also Debussche and Nankep [10]. We shall extend that result
to our situation where the limit is not a single PDE, but a system of PDEs.

Themodel is constructed on ad–dimensional boundeddomain [0, 1]d (d = 1, 2, 3).
We first suppose that the population is spatially distributed on the nodes of a grid Dε :=
[0, 1]d ∩ εZ

d = {
xi , 1 ≤ i ≤ ε−d

}
of [0, 1]d , where 0 < ε < 1 (two neighboring

sites are at distance ε apart, see Fig. 1). Nodes represent communities in which the
disease can grow. The population is divided in three compartments S, I and R. For a
space-time coordinate (t, xi ), we denote by

• Sε(t, xi ) the number of susceptibles at site xi at time t ,
• I ε(t, xi ) the number of infected at site xi at time t ,
• Rε(t, xi ) the number of removed at site xi at time t .

In this case the deterministic model is given by a system of ordinary differential
equation (ODE) and the stochastic one by a jump Markov process. Note that Arnold
and Theodosopulu [7], Kotelenez [14], Blount [8], and also some of the references
therein, describe such spatial models for chemical reactions. The resulting process has
one component and is compared with the corresponding deterministic model.

In the present paper, we focus our attention on the law of large numbers. In future
works, we intend to discuss the fluctuations around the law of large numbers.

Let us briefly describe the content of this paper. In Sect. 1, we introduce a determin-
istic model on the grid Dε of the bounded domain [0, 1]d and we recall the relation
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Fig. 1 [0, 1] × [0, 1] grid

between this model and the limiting PDE model on [0, 1]d as ε → 0. Then we intro-
duce the stochastic model on the same grid for a population of total size Nε−d . In
Sect. 2, we fix the parameter ε and let the initial average number N of individuals
in each site tend to infinity: the limiting law of large numbers limit is the already
introduced deterministic model. As ε → 0 our system of ODEs converges towards a
system of PDEs. Finally in Sect. 3, we prove a law of large numbers in the supremum
norm when we let both the size of the population go to infinity and the mesh of the

grid go to zero, under the weak restriction that
N

log(1/ε)
−→ ∞.

1 TheModels

Suppose that individuals are living in the bounded domain D := (0, 1)d ⊂ R
d . We

consider an infectious disease which spreads in the population. Consider at each point
of a grid (see Fig. 1 ) on the d-dimensional domain D a deterministic and a stochastic
SIR model, with migration between neighboring sites (two neighboring sites are at
distance ε apart). We assume that the mesh size of the grid ε is such that ε−1 ∈ N,
whereN is the set of positive integers.We assume that the studied epidemic concerns a
population of fixed size. In thismodel, infections are local.We letβ : R

d −→ R+ and
α : R

d −→ R+ be continuous functions and we set β̄ = sup
x∈D

β(x) and ᾱ = sup
x∈D

α(x).

For each site xi

• Susceptible individuals become infectious at rate

β(xi )
Sε(t, xi )

Sε(t, xi ) + I ε(t, xi ) + Rε(t, xi )
I ε(t, xi ). Note that an individual cho-
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sen uniformly at random site xi at time t is susceptible with probability
Sε(t, xi )

Sε(t, xi ) + I ε(t, xi ) + Rε(t, xi )
;

• each infectious recovers at rate α(xi ), so the total recovery rate;
• the migrations of susceptible, infected and removed between location xi and its

neighboring sites occur at rate
μS

ε2
Sε(t, xi ),

μI

ε2
I ε(t, xi ) and

μR

ε2
Rε(t, xi ) respec-

tively.μS ,μI areμR are positive diffusion coefficients for the susceptible, infected
and removed subpopulations, respectively.

Here, we assume that the compartment R contains individuals who are dead or who
have recovered and have permanent immunity. We can assume boundary conditions
of the Neumann or periodic type. In this paper, we focus our attention on Neumann
boundary conditions (representing a closed environment i.e. there is no flux of indi-
viduals through the boundary). The choice D = (0, 1)d as the spatial domain is made
for the sake of simplifying the analysis, but our results can be extended to any bounded
domain D ⊂ R

d , with a reasonably smooth boundary.
Initially Nε−d individuals are distributed on the grid. That is, there is an average

of N individuals on each site. We first introduce the deterministic model and then we
construct the corresponding stochastic model.

In the following we use the generic notation C for a positive constant, the value of
whichmay change from line to line. These constants can depend upon someparameters
of the model, as long as these are independent of ε and N.

1.1 The Deterministic Model

The space is the grid Dε of D. In order to take into account Neumann boundary
conditions, we add some fictitious sites which extend the grid outside the domain, as
shown in Fig. 2 below. We denote by ∂�n.out Dε the set of those fictitious sites. We use

Fig. 2 Modeling the Neumann condition
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the notation yi ∼ xi to mean that the sites yi and xi are neighbors. Each interior point
of Dε has 2d neighbours. Each boundary point has at least one fictitious site among
its neighbors.

By thinking of an infinite size population allowing “proportions” in each compart-
ment to be continuous, we have the following deterministic model for “proportions”
(this point of view will become quite clear in Sect. 2 below):

d Sε

dt
(t, xi ) = − β(xi ) Sε(t, xi )Iε(t, xi )

Sε(t, xi ) + Iε(t, xi ) + Rε(t, xi )
+ μS �εSε(t, xi )

d Iε
dt

(t, xi ) = β(xi ) Sε(t, xi )Iε(t, xi )

Sε(t, xi ) + Iε(t, xi ) + Rε(t, xi )
− α(xi ) Iε(t, xi ) + μI �ε Iε(t, xi )

d Rε

dt
(t, xi ) = α(xi ) Iε(t, xi ) + μR �εRε(t, xi ), (t, xi ) ∈ (0, T ) × Dε (1.1)

Sε(t, xi ) = Sε(t, yi )
Iε(t, xi ) = Iε(t, yi )

Rε(t, xi ) = Rε(t, yi )

⎫
⎬

⎭
for xi ∈ ∂Dε, xi ∼ yi and yi ∈ ∂�n.out Dε

Sε(0, xi ), Iε(0, xi ), Rε(0, xi ) ≥ 0, 0 < Sε(0, xi ) + Iε(0, xi ) + Rε(0, xi ) ≤ M,

for some M < ∞,

where Sε(t, xi ) (resp. Iε(t, xi ), resp. Rε(t, xi )) is the proportion of the total population
which is both susceptible (resp. infectious, resp. removed) and located at site xi at time

t . �ε is the discrete Laplace operator defined as follows: �ε f (xi ) = ε−2
d∑

j=1

[
f (xi +

εe j ) − 2 f (xi ) + f (xi − εe j )
]
.

Note that (1.1) is the discrete space approximation of the following system of PDE

∂ s
∂t

(t, x) = − β(x) s(t, x)i(t, x)
s(t, x) + i(t, x) + r(t, x)

+ μS �s(t, x)

∂ i
∂t

(t, x) = β(x) s(t, x)i(t, x)
s(t, x) + i(t, x) + r(t, x)

− α(x) i(t, x) + μI �i(t, x)

∂ r
∂t

(t, x) = α(x) i(t, x) + μS �r(t, x), (t, x) ∈ (0, T ) × D

∂ s
∂nout

(t, x) = ∂ i
∂nout

(t, x) = ∂ r
∂nout

(t, x) = 0, for x ∈ ∂D

s(0, x), i(0, x), r(0, x) ≥ 0, 0 < s(0, x) + i(0, x) + r(0, x) ≤ M,

(1.2)

where
∂

∂nout
denotes differentiation in the direction of the outward normal to ∂D and

� denotes the d-dimensional Laplace operator.
System (1.2) is a reaction-diffusion epidemic model which has been studied by

several authors. Webb [19] gave a similar reaction-diffusion model for a deterministic
diffusive epidemic model, established the existence of solutions and analyzed their
behavior as t → ∞. His method exploits tools of functional analysis and dynamical
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systems, specifically the theory of semigroups of linear and nonlinear operators in
Banach spaces and Lyapunov stability techniques for dynamical systems in metric
spaces. In the samewayYamazaki andWang [18] gave a reaction-convection-diffusion
epidemic model for cholera dynamics and studied the global well-posedness and the
asymptotic behavior of the solutions. See also Du and Peng [11], Yamazaki [16],
Yamazaki [17]. Let us mention that the SIR model (1.1) describes the spread of an
infectious disease where recovered individuals gain immunity from re-infection. Of
course in some cases recovered individuals have not permanent immunity. Hence
individuals in the compartiment R can experience reinfection. Moreover, susceptible
individuals that become infected can first pass through a latent stage (exposed). Such
models are used to study the transmission dynamics of the Ebola virus disease as
treated in Agusto [1]. Also, in Agusto et al. [2] the authors used such model to explore
the Zika virus transmission dynamics in a human population. Another model which
received attention in the literature is the diffusion epidemic SIS model. In this model,
when an infectious individual cures, he immediately becomes susceptible again. Such
model has been considered in Allen et al. [3–5]. Although we restrict ourselves to the
SIR model, our results can easily be adapted to SIRS, SIS, SEIR, SEIRS models.

Before describing the stochastic model, we introduce some notations and pre-
liminaries, and then discuss the relation between the system of PDEs (1.2) and its
discretisation.

1.1.1 Some Notations and Preliminaries

In this subsection we introduce some notations and also give preliminary lemmas
which will be needed in our subsequent work. For all xi ∈ Dε, let Vi be the cube
centered at the site xi with volume εd . Let H ε ⊂ L2

(
D
)
denote the space of real

valued step functions that are constant on each cell Vi . For f ∈ H ε, let us define

∇ j,+
ε f (xi ) = f (xi + εe j ) − f (xi )

ε
,

∇ j,−
ε f (xi ) = f (xi ) − f (xi − εe j )

ε
.

It is not hard to see that

〈 ∇ j,+
ε f , g 〉 = −〈 f ,∇ j,−

ε g 〉,

�ε f (xi ) =
d∑

j=1

∇ j,−
ε ∇ j,+

ε f (xi ).

We introduce the canonical projection Pε : L2(D) −→ H ε given by

ϕ �−→ Pεϕ(x) = ε−d
∫

Vi
ϕ(y)dy if x ∈ Vi .

Throughout this paper, we assume that the initial condition satisfies
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Assumption 1.1 Sε(0, x) = Pε s(0, x), Iε(0, x) = Pε i(0, x), Rε(0, x) = Pε r(0, x)
and

∫

D

(
s(0, x) + i(0, x) + r(0, x)

)
dx = 1.

Here, we describe some of the spectral properties of the (discrete)-Laplacian which
will play an important role in the sequel. More details can be found in Kotelenez [14].

• For a multiindex m = (m1, . . . ,md), where m j ∈ N ∪ {0}, and x ∈ R, we define

fm j (x) =
{√

2 cos(m jπx), for m j ≥ 1
1 , for m j = 0 .

For ϕ,ψ ∈ L2
(
D
)
, 〈 ϕ, φ 〉 :=

∫

D
ϕ(r)φ(r)dr denotes the scalar product in

L2
(
D
)
.

For each m ∈ Z
d+, x = (x1, · · · , xd) ∈ D, we define fm(x) =

d∏

j=1

fm j (x
j ).

{
fm, m ∈ Z

d+
}
is a complete orthonormal system (CONS) of eigenvectors of �

in L2(D) with eigenvalues −λm = −π2
d∑

j=1

m2
j . Consequently, the semigroup

T(t) := exp
(
� t

)
acting on L2

(
D
)
generated by � can be represented by

T(t)ϕ =
∑

m

exp(−λmt)〈 ϕ, fm 〉fm, ϕ ∈ L2(D
)
.

• For i = (i1, . . . , id) ∈ {
0, 1, . . . , ε−1 − 1

}d
, let Vi =

d∏

j=1

[(
i j − 1

2

)
ε,

(
i j +

1

2

)
ε
)

⊂ [0, 1]d and for m ∈ {
0, 1, . . . , ε−1

}d
, we define fεm(x) =

d∏

j=1

fm j (i jε)

if x ∈ Vi .
{
fεm, m ∈ Z

d+
}
form an orthonormal basis of H ε as a sub-

space of L2
([0, 1]d) and are eigenfunctions of �ε with eigenvalues −λε

m =

−2ε−2
d∑

j=1

(
1 − cos(m jπε)

)
. Note that λε

m −→ λm as ε → 0.

• Basic calculations show that there exists a constant c, such that for each m j ,
ε−2

(
1 − cos(πm jε)

)
> c m2

j .

• �ε generates a contraction semigroup Tε(t) := exp
(
�εt

)
represented on H ε by

Tε(t)ϕ =
∑

m

exp(−λε
mt)〈 ϕ, fεm 〉fεm, (1.3)
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where the summation is taken on the ε−d eigenvectors of �ε. Note that both
�ε and Tε(t) are self-adjoint and that Tε(t)�εϕ = �εTε(t)ϕ. Note also, for any
J ∈ {S, I , R}, the semigroup generated by μJ� is T(μJ t). In the sequel, we will
use the notation TJ (t) := T(μJ t) and similarly, in the discrete case, we will use the
notation Tε,J (t) := Tε(μJ t). Also, for any J ∈ {S, I , R}, we let λm,J := μJλm
and λε

m,J := μJλ
ε
m .

• We use
∥∥ϕ

∥∥∞ := sup
x∈D

∣∣ϕ(x)
∣∣ to denote the supremum norm of ϕ in D, and we

define
∥∥∥
(

ϕ

φ

)∥∥∥∞ := ∥∥ϕ
∥∥∞ + ∥∥φ

∥∥∞.

• If Z is a space-time function, we use the notation Z(t) = Z(t, .).
• For n ≥ 1, Cn(D) denotes the space of real valued continuous functions on D
with continuous partial derivatives of all orders from 1 to n . We use the standard
partial ordering of R

d and the classical notations: u ≤ v if, for all 1 ≤ i ≤ d,
ui ≤ vi .

1.1.2 Existence and Uniqueness

Let us set Xε = (
Sε, Iε, Rε

)T
. We introduce the function G : (x; u, v, w) �−→⎛

⎜⎜⎜
⎝

− β(x) u v

u + v + w
β(x) u v

u + v + w
− α(x) v

α(x) v

⎞

⎟⎟⎟
⎠
.

We use the notation �̃εXε =
(
μS�εSε, μI�ε Iε, μR�εRε

)T
. Then the compact

form of system (1.1) is

dXε

dt
(t, xi ) = �̃εXε(t, xi ) + G

(
xi ; Xε(t, xi )

)
, (t, xi ) ∈ (0, T ) × Dε

Xε(t, xi ) = Xε(t, yi ), for xi ∈ ∂Dε, xi ∼ yi and yi ∈ ∂�n.out Dε (1.4)

X(0, xi ) ≥ 0 and 0 < Sε(0, xi ) + Iε(0, xi ) + Rε(0, xi ) ≤ M, ∀ xi ∈ Dε.

We have

Lemma 1.1 For each ε > 0 fixed, the system (1.4) has a unique non-negative solution

Xε ∈ C1
(
R+; R

3ε−d

+
)
. Moreover sup

0≤t≤T

∥∥∥X(t)
∥∥∥∞ ≤ C(ᾱ, β̄).

Proof Let us define g : R
3 −→ R

(u, v, w) �−→ g(u, v, w) = uv

u + v + w
.
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We have G(x; u, v, w) =
⎛

⎝
−β(x) g(u, v, w)

β(x) g(u, v, w) − α(x) v

α(x) v

⎞

⎠ . We introduce

g+(u, v, w) =
⎧
⎨

⎩

u+v+

u+ + v+ + w+ , if u+ + v+ + w+ > 0;
0, otherwise,

where we used the nota-

tion u+ = sup(u, 0). We set G+(x; u, v, w) =
⎛

⎝
−β(x) g+(u, v, w)

β(x) g+(u, v, w) − α(x) v

α(x) v

⎞

⎠ . Let

us consider the system of ODEs

dXε

dt
(t, xi ) = �̃εXε(t, xi ) + G+(xi ; Xε(t, xi )

)
, (t, xi ) ∈ (0, T ) × Dε

Xε(t, xi ) = Xε(t, yi ), for xi ∈ ∂Dε, xi ∼ yi and yi ∈ ∂�n.out Dε (1.5)

X(0, xi ) ≥ 0 and 0 < Sε(0, xi ) + Iε(0, xi ) + Rε(0, xi ) ≤ M, ∀ xi ∈ Dε.

SinceG+ is globally Lipschitz and �̃ε is linear, then by the Picard-Lindelöf theorem
theCauchy problem (1.5) has a unique solution X̃ε ∈ C1

(
R+; R

3ε−d )
. Now let us show

that Xε(t) ≥ 0 for all t ≥ 0. Let us set t1 = inf{t > 0: there exists an index i such
that Sε(t, xi ) < 0}. If t1 < ∞ then there exists i1 such that Sε(t1, xi1) = 0 and for all

j �= i1 Sε(t1, x j ) ≥ 0. So that
dSε

dt
(t1, xi1) ≥ 0. Thus, either there exists an index j

such x j ∼ xi1 and Sε(t1, x j ) > 0 or else Sε(t1, x j ) = 0 for all x j ∼ xi1 .

(i) In the first case
dSε

dt
(t1, xi1) > 0, which contradicts the definition of t1.

(ii) Let us set I1 = { xi ∈ Dε : Sε(t1, xi ) > 0 }. If I1 = ∅ then Sε(t1, xi ) = 0, for all
xi ∈ Dε. The uniqueness of the solution entails that the null vector is solution for
the equations satisfied by Sε on the time interval [t1,+∞). We now assume that
I1 �= ∅, and define

V1(I1) = { xi ∈ Dε : xi /∈ I1, ∃ x j ∈ I1 such that xi ∼ x j },
V2(I1) = { xi ∈ Dε : xi /∈ V1(I1) ∪ I1, ∃ x j ∈ I1 such that xi ∼ x j },

...

Vk(I1) = { xi ∈ Dε : xi /∈ Vk−1(I1) ∪ · · · ∪ V1(I1) ∪ I1, ∃ x j ∈ Vk−1(I1)

such that xi ∼ x j }, k ≥ 1.

First, note that there exists a positive integer k such thatVk(I1) = ∅, because there is

a finite number of sites. Now, if xi ∈ V1(I1), then Sε(t1, xi ) = 0 and
dSε

dt
(t1, xi ) > 0,

which contradicts the definition of t1. Else, assume that xi ∈ V2(I1). On the one hand,

we have Sε(t1, xi ) = 0,
dSε

dt
(t1, xi ) = 0. On the other hand,
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since
d2 Sε

dt2
(t1, xi ) = −β(xi )

Iε(t1, xi )
dSε

dt (t1, xi ) + Sε(t1, xi )
d Iε
dt (t1, xi )

Sε(t1, xi ) + Iε(t1, xi ) + Rε(t1, xi )

+β(xi )
Sε(t1, xi )Iε(t1, xi )

(
dSε

dt (t1, xi ) + d Iε
dt (t1, xi ) + dRε

dt (t1, xi )
)

(
Sε(t1, xi ) + Iε(t1, xi ) + Rε(t1, xi )

)2

+μS �ε

dSε

dt
(t1, xi ),

then
d2 Sε

dt2
(t1, xi ) = μS �ε

dSε

dt
(t1, xi ) > 0, because xi ∈ V2(I1), and we obtain again

a contradiction. If xi ∈ V j (I1), for j ≥ 2, we iterate the above argument to obtain
a contradiction. Then in all cases we obtain a contradiction. So that t1 = ∞. Thus
Sε(t, xi ) ≥ 0 for all (t, xi ) ∈ [0, T ] ∈ Dε. Similar arguments hold for Iε and Rε. It
follows from the positivity of the solution and the fact that G = G+ on R

3+, that the
system (1.4) has a unique global solution Xε ∈ C1

(
R+; R

3ε−d

+
)
. Furthermore, writing

the solution of (1.4) in its mild semigroup form, and using successively the fact that

T̃ε := (Tε,S, Tε,I , Tε,R)T is a contraction semigroup on
(
H ε,

(
L∞(D)

)3), the fact that
X(0, xi ) ≤ 1 for all xi ∈ Dε and applying Gronwall’s Lemma, we easily obtain that

sup
0≤t≤T

∥∥∥X(t)
∥∥∥∞ ≤ C(ᾱ, β̄). This concludes the proof of the lemma. ��

Let us now define Sε(t, x) =
ε−d∑

i=1

Sε(t, xi )1Vi (x), Iε(t, x) =
ε−d∑

i=1

Iε(t, xi )1Vi (x),

Rε(t, x) =
ε−d∑

i=1

Rε(t, xi )1Vi (x), βε(t, x) =
ε−d∑

i=1

β(t, xi )1Vi (x),

αε(t, x) =
ε−d∑

i=1

α(t, xi )1Vi (x),

and we set Xε = (Sε, Iε,Rε

)T .

Note that the previous lemma is truewithXε in place of Xε. Let us set X = (
s, i, r

)T .
Then the compact form of the model (1.2) is

∂X

∂t
(t, x) = �̃X(t, x) + G

(
x; X(t, x)

)
, (t, x) ∈ [0, T ] × D

∂X

∂nout
(t, x) = 0, for x ∈ ∂D (1.6)

X(0, x) ≥ 0 and 0 < s(0, x) + i(0, x) + r(0, x) ≤ M .
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Writing the solution of (1.6) in itsmild semigroup form,wehave X(t) = T̃(t)X(0)+
∫ t

0
T̃(t−r)G

(
X(r)

)
dr , whereweused the notation T̃(t)X :=

⎛

⎝
TS(t)s
TI (t)i
TR(t)r

⎞

⎠ and similarly

for T̃(t − r)G
(
X(r)

)
.

Lemma 1.2 The initial value problem (1.6) has a unique solution

X ∈ C
(
[0, T ] ; (L∞(D)

)3)
.

Proof For 0 ≤ u(0, .) ≤ 1, we define a mapping F : C
(
[0, T ] ; (L∞(D)

)3) −→
C
(
[0, T ] ; (L∞(D)

)3) by

(Fu)(t) = T̃(t)u(0) +
∫ t

0
T̃(t − r)G

(
u(r)

)
dr . (1.7)

Let u, v ∈ C
(
[0, T ] ; (L∞(D)

)3) such that u(0) = v(0). Using the fact that T̃ is a

contraction semigroup on
(
L∞(D)

)3 and G is globally Lipschitz, it follows that

∥∥∥(Fu)(t) − (Fv)(t)
∥∥∥∞ ≤ C

∫ t

0

∥∥∥u(r) − v(r)
∥∥∥∞dr , for all t ∈ [0, T ],

where C is the Lipschitz constant of G. Then we have

∥∥∥(Fu)(t) − (Fv)(t)
∥∥∥∞ ≤ CT sup

0≤r≤T

∥∥∥u(r) − v(r)
∥∥∥∞. (1.8)

Using (1.7), (1.8) and induction on n, it follows that

sup
0≤t≤T

∥∥∥(Fnu)(t) − (Fnv)(t)
∥∥∥∞ ≤ (CT )n

n! sup
0≤t≤T

∥∥∥u(t) − v(t)
∥∥∥∞. (1.9)

For n large enough Fn is a contraction (since
(CT )n

n! < 1). It follows

from the Banach contraction principle that F has a unique fixed point in X ∈
C
(
[0, T ] ; (L∞(D)

)3)
. This fixed point is the solution of

X(t) = T̃(t)X(0) +
∫ t

0
T̃(t − r)G

(
X(r)

)
dr . (1.10)

The mild solution of (1.10) is in fact a classical solution of (1.6), see Theorem 3.1,
Chapter 7 of Smith [15]. Note that the Corollary 3.1, Chapter 7 of the above reference
ensures that X(t) ≥ 0, ∀ t ≥ 0. ��
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1.1.3 Relation Between the System of PDEs and Its Discretisation

Wewill now prove thatXε converges to X as the mesh size ε of the grid tends to zero.

Theorem 1.1 Let us consider an initial condition X(0) ∈ (
L∞(D)

)3
. For all T > 0,

sup
t∈[0,T ]

∥∥∥Xε(t) − X(t)
∥∥∥∞ −→ 0, as ε → 0.

Proof Using the variation of constants formula, we have

Sε(t) = Tε,S(t)Sε(0) −
∫ t

0
Tε,S(t − r)

[ βε(.)Sε(r)Iε(r)

Sε(r) + Iε(r) + Rε(r)

]
dr ,

s(t) = TS(t)s(0) −
∫ t

0
TS(t − r)

[ β(.)s(r)i(r)
s(r) + i(r) + r(r)

]
dr .

Recall that Sε(0) = Pε s(0), so that

Sε(t) − s(t) = Tε,S(t)Pε s(0) − TS(t)s(0) −
∫ t

0
Tε,S(t − r)

[ βε(.)Sε(r)Iε(r)

Sε(r) + Iε(r) + Rε(r)

]
dr

+
∫ t

0
TS(t − r)

[ β(.)s(r)i(r)
s(r) + i(r) + r(r)

]
dr .

We have
∥∥∥Sε(t) − s(t)

∥∥∥∞ ≤
∥∥∥Tε,S(t)Pε s(0) − TS(t)s(0)

∥∥∥∞

+
∫ t

0

∥∥∥Tε,S(t − r)
[ βε(.)Sε(r)Iε(r)

Sε(r) + Iε(r) + Rε(r)

]

− TS(t − r)
[ β(.)s(r)i(r)
s(r) + i(r) + r(r)

]∥∥∥∞dr

≤
∥∥∥Tε,S(t)Pε s(0) − TS(t)s(0)

∥∥∥∞

+
∫ t

0

∥∥∥Tε,S(t − r)
[ βε(.)Sε(r)Iε(r)

Sε(r) + Iε(r) + Rε(r)

]
(1.11)

− Tε,S(t − r)Pε

[ β(.)s(r)i(r)
s(r) + i(r) + r(r)

]∥∥∥∞dr

+
∫ t

0

∥∥∥Tε,S(t − r)Pε

[ β(.)s(r)i(r)
s(r) + i(r) + r(r)

]

− TS(t − r)
[ β(.)s(r)i(r)
s(r) + i(r) + r(r)

]∥∥∥∞dr .

Let us estimate each term of the right-hand side of this inequality.
Since s(0) ∈ L∞(D), it then follows from Kato [12, pp. 512–513], that

∥∥∥Tε,S(t)Pεs(0) − TS(t)s(0)
∥∥∥∞ −→ 0, uniformly on [0, T ].
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Using the fact that Tε,S is a contraction semigroup on
(
H ε, ‖.‖∞

)
, we obtain

∫ t

0

∥∥∥∥Tε,S(t − r)
[ βε(.)Sε(r)Iε(r)

Sε(r) + Iε(r) + Rε(r)

]
− Tε,S(t − r)Pε

[ β(.)s(r)i(r)
s(r) + i(r) + r(r)

]∥∥∥∥∞
dr

≤ β̄

∫ t

0

∥∥∥∥
Sε(r)Iε(r)

Sε(r) + Iε(r) + Rε(r)
− s(r)i(r)

s(r) + i(r) + r(r)

∥∥∥∥∞
dr

+
∫ t

0

∥∥∥∥Pε

[ β(.)s(r)i(r)
s(r) + i(r) + r(r)

]
− β(.)s(r)i(r)

s(r) + i(r) + r(r)

∥∥∥∥∞
dr

≤ β̄

∫ t

0

(
2

∥∥∥∥Sε(r) − s(r)

∥∥∥∥∞
+ 2

∥∥∥∥Iε(r) − i(r)

∥∥∥∥∞
+

∥∥∥∥Rε(r) − r(r)

∥∥∥∥∞

)
dr

+
∫ t

0

∥∥∥∥Pε

[ β(.)s(r)i(r)
s(r) + i(r) + r(r)

]
− β(.)s(r)i(r)

s(r) + i(r) + r(r)

∥∥∥∥∞
dr .

Since
β(.)s(r)i(r)

s(r) + i(r) + r(r)
∈ L∞(D), then for the last term (1.11), we have

∥∥∥∥Tε,S(t − r)Pε

[ β(.)s(r)i(r)
s(r) + i(r) + r(r)

]

−TS(t − r)
[ β(.)s(r)i(r)
s(r) + i(r) + r(r)

]∥∥∥∥∞
−→ 0, uniformly on [0, T ],

(thanks by Kato [12, Chapter 9, Sect. 3] ). Consequently

∫ t

0

∥∥∥∥Tε,S(t − r)Pε

[ β(.)s(r)i(r)
s(r) + i(r) + r(r)

]
− TS(t − r)

[ β(.)s(r)i(r)
s(r) + i(r) + r(r)

]∥∥∥∥∞
dr −→ 0.

∥∥∥Sε(t) − s(t)
∥∥∥∞ ≤ aε(t)

+ C(β̄)

∫ t

0

(∥∥∥Sε(r) − s(r)
∥∥∥∞ +

∥∥∥Iε(r) − i(r) +
∥∥∥Rε(r) − r(r)

∥∥∥∞

)
dr , where

aε(t) =
∥∥∥Tε,S(t)Pε s(0) − TS(t)s(0)

∥∥∥∞

+
∫ t

0

∥∥∥∥Pε

[ β(.)s(r)i(r)
s(r) + i(r) + r(r)

]
− β(.)s(r)i(r)

s(r) + i(r) + r(r)

∥∥∥∥∞
dr

+
∫ t

0

∥∥∥∥Tε,S(t − r)Pε

[ β(.)s(r)i(r)
s(r) + i(r) + r(r)

]
− TS(t − r)

[ β(.)s(r)i(r)
s(r) + i(r) + r(r)

]∥∥∥∥∞
dr ,

Exactly in the same way we have a similar inequality for
∥∥∥Iε(t) − i(t)

∥∥∥∞ and
∥∥∥Rε(t)−r(t)

∥∥∥∞ with TI , TR in place of TS , and Tε,I , Tε,R in place of Tε,S , respectively.

Combining those estimates we obtain

∥∥∥Xε(t) − X(t)
∥∥∥∞ ≤ ãε(t) + C(ᾱ, β̄)

∫ t

0

∥∥∥Xε(r) − X(r)
∥∥∥∞dr ,
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where sup
0≤t≤T

ãε(t) −→ 0, as ε → 0. Applying Gronwall’s Lemma, it follows that

sup
0≤t≤T

∥∥∥Xε(t) − X(t)
∥∥∥∞ ≤ sup

0≤t≤T
ãε(t)e

C(ᾱ,β̄)T .

Finally, the theorem follows from the fact that the right-hand side tends to zero as
ε → 0. ��

1.2 The Stochastic Model

Deterministic models describe the spread of disease under the assumptions of mass
action, relying on the law of large numbers. The most natural way to describe the
spread of disease is stochastic. The previous models are based on the hypothesis
of a population of large size. When it is not the case, the interactions between the
individuals are not uniform but possess an intrinsic random character. We are going to
expose now a probabilistic version of the previous model. For each given site, Poisson
processes count the number of new infections, removal and migrations between sites
during time. So the propagation of the illness can be modeled by the following system
of stochastic differential equations

Sε(t, xi ) = Sε(0, xi ) − Pin fxi

(∫ t

0

β(xi )Sε(r , xi )I ε(r , xi )

Sε(r , xi ) + I ε(r , xi ) + Rε(r , xi )
dr

)

−
∑

yi∼xi

Pmig
S,xi ,yi

(∫ t

0

μS

ε2
Sε(r , xi )dr

)
+

∑

yi∼xi

Pmig
S,yi ,xi

(∫ t

0

μS

ε2
Sε(r , yi )dr

)

I ε(t, xi ) = I ε(0, xi ) + Pin fxi

(∫ t

0

β(xi )Sε(r , xi )I ε(r , xi )

Sε(r , xi ) + I ε(r , xi ) + Rε(r , xi )
dr

)

−Precxi

(∫ t

0
α(xi )I

ε(r , xi )dr

)

−
∑

yi∼xi

Pmig
I ,xi ,yi

(∫ t

0

μI

ε2
I ε(r , xi )dr

)
+

∑

yi∼xi

Pmig
I ,yi ,xi

(∫ t

0

μI

ε2
I ε(r , yi )dr

)

Rε(t, xi ) = Rε(0, xi ) + Precxi

(∫ t

0
α(xi )I

ε(r , xi )dr

)
(1.12)

−
∑

yi∼xi

Pmig
R,xi ,yi

(∫ t

0

μR

ε2
Rε(r , xi )dr

)

+
∑

yi∼xi

Pmig
R,yi ,xi

(∫ t

0

μR

ε2
Rε(r , yi )dr

)
, (t, xi ) ∈ [0, T ] × Dε,

where all the Pj ’s aremutually independent standard Poisson processes. In this system,
at a given site xi
• infection of a susceptible happens at rate

β(xi )
Sε(t, xi )

Sε(t, xi ) + I ε(t, xi ) + Rε(t, xi )
I ε(t, xi ).
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Then Pin fxi

(∫ t

0

β(xi )Sε(r , xi )I ε(r , xi )

Sε(r , xi ) + I ε(r , xi ) + Rε(r , xi )
dr

)
counts the number of tran-

sitions of type Sε −→ I ε at site xi between time 0 and time t .
• recovery of an infectious happens at rate α(xi )I ε(t, xi ), so

Precxi

(∫ t

0
α(xi )I

ε(r , xi )dr

)
counts the number of transitions of type I ε −→ Rε

at site xi between time 0 and time t .

• The term Pmig
S,xi ,yi

(∫ t

0

μS

ε2
Sε(r , xi )dr

)
counts the number of migrations of sus-

ceptibles from site xi to yi (where xi and yi are neighbors), those events happen

at rate
μS

ε2
Sε(t, xi ) ; and similarly for the compartments I ε and Rε.

We introduce the martingales M j (t) = P j (t) − t and we look instead at the renor-
malized model by dividing the number of individuals in each compartment and at each
site by N. Hence by setting

SN,ε(t, xi ) = Sε(t, xi )

N
, IN,ε(t, xi ) = I ε(t, xi )

N
, and RN,ε(t, xi ) = Rε(t, xi )

N
,

(1.13)

the equations in the various compartments read

SN,ε(t, xi ) = SN,ε(0, xi )

−
∫ t

0

β(xi )SN,ε(r , xi )IN,ε(r , xi )

SN,ε(r , xi ) + IN,ε(r , xi ) + RN,ε(r , xi )
dr

+
∫ t

0
μS�εSN,ε(r , xi )dr

− 1

N
Min f

xi

(
N
∫ t

0

β(xi )SN,ε(r , xi )IN,ε(r , xi )

SN,ε(r , xi ) + IN,ε(r , xi ) + RN,ε(r , xi )
dr

)

−
∑

yi∼xi

1

N
Mmig

S,xi ,yi

(
N
∫ t

0

μS

ε2
SN,ε(r , xi )dr

)

+
∑

yi∼xi

1

N
Mmig

S,yi ,xi

(
N
∫ t

0

μS

ε2
SN,ε(r , yi )dr

)

IN,ε(t, xi ) = IN,ε(0, xi ) +
∫ t

0

β(xi )SN,ε(r , xi )IN,ε(r , xi )

SN,ε(r , xi ) + IN,ε(r , xi ) + RN,ε(r , xi )
dr

−
∫ t

0
α(xi ) IN,ε(r , xi )dr

+μI

∫ t

0
�ε IN,ε(r , xi )dr

+ 1

N
Min f

xi

(
N
∫ t

0

β(xi )SN,ε(r , xi )IN,ε(r , xi )

SN,ε(r , xi ) + IN,ε(r , xi ) + RN,ε(r , xi )
dr

)
(1.14)
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− 1

N
Mrec

xi

(
N
∫ t

0
α(xi )IN,ε(r , xi )dr

)

−
∑

yi∼xi

1

N
Mmig

I ,xi ,yi

(
N
∫ t

0

μI

ε2
IN,ε(r , xi )dr

)

+
∑

yi∼xi

1

N
Mmig

I ,yi ,xi

(
N
∫ t

0

μI

ε2
IN,ε(r , yi )dr

)

RN,ε(t, xi ) = RN,ε(0, xi ) +
∫ t

0
α(xi ) IN,ε(r , xi )dr

+
∫ t

0
μR�εRN,ε(r , xi )dr

+ 1

N
Mrec

xi

(
N
∫ t

0
α(xi )IN,ε(r , xi )dr

)

−
∑

yi∼xi

1

N
Mmig

R,xi ,yi

(
N
∫ t

0

μR

ε2
RN,ε(r , xi )dr

)

+
∑

yi∼xi

1

N
Mmig

R,yi ,xi

(
N
∫ t

0

μR

ε2
RN,ε(r , yi )dr

)
.

Let SN,ε(t) and IN,ε(t) and RN,ε(t) denote respectively the vectors which describe
the “proportions” of susceptibles, infectious and removed in the population at the
various sites at time t:

SN,ε(t) =
⎛

⎜
⎝

SN,ε(t, x1)
...

SN,ε(t, x�)

⎞

⎟
⎠ , IN,ε(t) =

⎛

⎜
⎝

IN,ε(t, x1)
...

IN,ε(t, x�)

⎞

⎟
⎠ and

RN,ε(t) =
⎛

⎜
⎝

RN,ε(t, x1)
...

RN,ε(t, x�)

⎞

⎟
⎠ ,

where � is the total number of locations. Let us set ZN,ε(t) =
⎛

⎝
SN,ε(t)
IN,ε(t)
RN,ε(t)

⎞

⎠; then the

aggregated form of the stochastic model is

ZN,ε(t) = ZN,ε(0) +
∫ t

0
bε

(
r , ZN,ε(r)

)
dr

+
kε∑

j=1

h j

N
Mj

(
N
∫ t

0
β j

(
r , ZN,ε(r)

)
dr

)
, (1.15)
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where ∀ r ≥ 0, bε

(
r , ZN,ε(r)

)
=

kε∑

j=1

h jβ j

(
r , ZN,ε(r)

)
; the coordinates of each

vector h j are either −1, 0 or 1 and

β j

(
r , ZN,ε(r)

)
∈
{

β(.)SN,ε(r , xi )IN,ε(r , .)

SN,ε(r , .) + IN,ε(r , .) + RN,ε(r , .)
,

μS

ε2
SN,ε(r , .),

μI

ε2
IN,ε(r , .),

μR

ε2
RN,ε(r , .), α(.)IN,ε(r , .)

}
,

kε is the total number of Poisson processes in the model. Note that bε

(
r , ZN,ε(r)

) =
�̃εZN,ε(r) + G

(
ZN,ε(r)

)
, where

�̃εZN,ε(r) =
⎛

⎝
μS�εSN,ε(r)
μI�ε IN,ε(r)
μR�εRN,ε(r)

⎞

⎠ and

G
(
ZN,ε(r)

) =

⎛

⎜⎜⎜⎜
⎝

− β(.)SN,ε(r)IN,ε(r)

SN,ε(r) + IN,ε(r , xi ) + IN,ε(r)
β(.)SN,ε(r)IN,ε(r)

SN,ε(r) + IN,ε(r) + IN,ε(r)
− α(.)IN,ε(r)

α(.)IN,ε(r)

⎞

⎟⎟⎟⎟
⎠

.

Existence and Uniqueness

At the beginning of the epidemic, the proportions of the population in various com-

partments take their values in the discrete set
{ n

N
, n = 0, 1, · · · }, and since the

Poisson processes are mutually independent, this implies that the components of
ZN,ε(t) remain non-negative for all t ≥ 0. Indeed, let us consider for example the

component SN,ε. Since all jumps of each SN,ε(t, xi ) are of size ± 1

N
, before becoming

negative, SN,ε(t, xi ) is zero. But as long as SN,ε(t, xi ) = 0, the rate of its negative
jumps is zero, hence SN,ε(t, xi ) cannot become negative.

ε−d∑

i=1

(
SN,ε(t, xi ) + IN,ε(t, xi ) + RN,ε(t, xi )

)
= ε−d , since this quantity does

not depend upon t . It then follows that 0 ≤ ZN,ε(t) ≤ ε−d , for all t ≥ 0.
Then by letting β

N,ε
T = sup

1≤ j≤�
0≤t≤T

β j
(
t, ZN,ε(t)

)
, we have that β

N,ε
T ≤ C , where

C = max
{

β̄, ᾱ,
μS

ε2
,
μI

ε2
,
μR

ε2
, ε−d

}
.

ZN,ε(t) = ZN,ε(0) +
kε∑

j=1

h j

N
Pj

(
N
∫ t

0
β j

(
r , ZN,ε(r)

)
dr

)
. (1.16)

123



1170 Applied Mathematics & Optimization (2021) 83:1153–1189

Let τ
j
1 < τ

j
2 < · · · be the jump times of the Poisson process Pj (t), 1 ≤ j ≤ k .

As long as Nβ j
(
ZN,ε(0)

) × t < τ
j
1 , for all 1 ≤ j ≤ k, the process ZN,ε(t) remains

constant. Let us set

T1 = inf
{
t > 0 : Nβ j

(
ZN,ε(0)

)
× t = τ

j
1 , for some 1 ≤ j ≤ k

}
.

The independence of the Pj ’s ensures that there is almost surely a unique j0 such

that Nβ j0

(
ZN,ε(0)

) × T1 = τ
j0
1 . In this case ZN,ε(T1) = ZN,ε(0) + h j0

N
, and the

process remains constant until the next jump of one of the Pj ’s. We wait for the next
time for which one of the integrands

∫ t

0
Nβ j

(
ZN,ε(r)

)
dr = Nβ j

(
ZN,ε(0)

)
× T1 + Nβ j

(
ZN,ε(0) + h j0

N

)(
t − T1

)

will be equal to the jump time of one of the Pj .Wecontinue this procedure . Since there
are a finite number of Pj and the rates β j are bounded, any time t ∈ [0, T ] is achieved
after a finite number of operations as above. This construction shows existence and
uniqueness of the solution of (1.16).

2 Law of Large Numbers (N → ∞, " Being Fixed)

Recall that, from Assumption 1.1,
∫

D

(
s(0, x)+ i(0, x)+ r(0, x)

)
dx = 1. Recall that

in the stochastic model, we have a total of Nε−d individuals. At time t = 0, each
individual, independently of the others, is susceptible and located at site xi with prob-

ability
∫

Vi
s(0, x)dx , infectious and located at site xi with probability

∫

Vi
i(0, x)dx ,

removed and located at site xi with probability
∫

Vi
r(0, x)dx , 1 ≤ i ≤ ε−d .

It follows from the choice of the initial condition of the stochastic system, the
law of large numbers and the definition (1.13) that for any 1 ≤ i ≤ ε−d , as

N → ∞, SN,ε(0, xi ) −→ ε−d
∫

Vi
s(0, x)dx , IN,ε(0, xi ) −→ ε−d

∫

Vi
i(0, x)dx and

RN,ε(0, xi ) −→ ε−d
∫

Vi
r(0, x)dx , a.s. .

In this section we fix the mesh size ε of the grid and we letN go to infinity. We will
show that the stochastic model converges to the corresponding deterministic model
on the grid. First let us recall the law of large numbers for Poisson processes.

Lemma 2.1 Let { P(t), t ≥ 0 } be a rate λ Poisson process. Then

P(t)

t
−→ λ a.s as t → ∞.
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A proof of this well-known lemma can be found e.g. in Britton and Pardoux (2019).
��

In the sequel, we shall assume that ZN,ε(t) is defined on the probability space(
�,F ,FN,ε

t , P

)
, where FN,ε

t = σ {ZN,ε(r , xi ), 0 ≤ r ≤ t ; xi ∈ Dε}. If we
consider the kε-dimensional process

(
M j

N,ε

)

1≤ j≤kε

whose j-th component is defined

as M j
N,ε(t, xi ) = 1

N
M j

(
N
∫ t

0
β j

(
ZN,ε(r , xi )

)
dr

)
, for a site xi ∈ Dε, then we have

the following Proposition.

Proposition 2.1 For all 1 ≤ j ≤ kε for all T > 0, as N → +∞,

sup
0≤t≤T

∣∣∣M j
N,ε(t, xi )

∣∣∣
a.s.−→ 0.

Proof For all T > 0 we have

sup
0≤t≤T

∣∣∣M j
N,ε(t, xi )

∣∣∣ = sup
0≤t≤T

∣∣∣∣
1

N
Mj

(∫ t

0
Nβ j

(
ZN,ε(r , xi )

)
dr

) ∣∣∣∣

≤ sup
0≤t≤TC

∣∣∣
1

N
Mj (Nt)

∣∣∣
(
because 0 ≤ β j ≤ C

)

= sup
0≤t≤TC

∣∣∣
1

N
Pj (Nt) − t

∣∣∣.

From Lemma 2.1,

Pj (N t)

N
−→ t a.s. , as N → ∞.

We have pointwise convergence of a sequence of increasing functions towards a
continuous function, then from the second Dini Theorem this convergence is uniform
on any compact time interval. This shows that

sup
0≤t≤T C̄

∣∣∣
1

N
Pj (N t) − t

∣∣∣ −→ 0 a.s. , as N → ∞

and the Proposition is established. ��
In what follows, ‖u‖ denotes the norm of an �-dimensional vector u defined as

follow ‖u‖ :=
�∑

j=1

|u j |.
Now we can prove the main result of this section. This law of large numbers is in

fact a particular case of the general result in Britton and Pardoux [9]. But since the
proof is rather short, we preferred to include it for the convenience of the reader.
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Theorem 2.1 (Law of Large Numbers) Let ZN,ε denote the solution of the SDE (1.14)

and Zε the solution of the ODE
dZε(t)

dt
= bε(t, Zε(t)).

Let us fix an arbitrary T > 0 and assume that
∥∥∥ZN,ε(0) − Zε(0)

∥∥∥ −→ 0,as

N → +∞.
Then sup

0≤t≤T

∥∥∥ZN,ε(t) − Zε(t)
∥∥∥ −→ 0 a.s. , as N → +∞.

Proof Let us define MN,ε(t) =
kε∑

j=1

h j M
j
N,ε(t), t ∈ [0, T ]. We first note that

sup
0≤t≤T

∥∥∥MN,ε(t)
∥∥∥ ≤

kε∑

j=1

‖h j‖ sup
0≤t≤T

∣∣∣M j
N,ε(t)

∣∣∣.

Hence fromProposition 2.1, we deduce that sup
0≤t≤T

∥∥∥MN,ε(t)
∥∥∥

a.s−→ 0, asN → +∞.

Next for any r ∈ [0, T ] we have
∥∥∥∥bε

(
r , ZN,ε(r)

) − bε

(
r , Zε(r)

)
∥∥∥∥

= 2
�∑

i=1

β(xi )

∣∣∣∣
SN,ε(r , xi )IN,ε(r , xi )

SN,ε(r , xi ) + IN,ε(r , xi ) + RN,ε(r , xi )

− Sε(r , xi )Iε(r , xi )

Sε(r , xi ) + Iε(r , xi ) + Rε(r , xi )

∣∣∣∣

+ 2
�∑

i=1

α(xi )
∣∣∣IN,ε(r , xi ) − Iε(r , xi )

∣∣∣ + μS

�∑

i=1

∣∣∣�ε

(
SN,ε(r , xi ) − Sε(r , xi )

)∣∣∣

+μI

�∑

i=1

∣∣∣�ε

(
IN,ε(r , xi ) − Iε(r , xi )

)∣∣∣ + μR

�∑

i=1

∣∣∣�ε

(
RN,ε(r , xi ) − Rε(r , xi )

)∣∣∣.

Then, the fact that β and α are bounded leads to

∥∥∥∥bε

(
r , ZN,ε(r)

) − bε

(
r , Zε(r)

)
∥∥∥∥

≤ 2β̄
�∑

i=1

{
2
∣∣∣SN,ε(r , xi ) − Sε(r , xi )

∣∣∣

+ 2
∣∣∣IN,ε(r , xi ) − Iε(r , xi )

∣∣∣ +
∣∣∣RN,ε(r , xi ) − Rε(r , xi )

∣∣∣
}

+ 2ᾱ
�∑

i=1

∣∣∣IN,ε(r , xi ) − Iε(r , xi )
∣∣∣ + 4μS ε−2

�∑

i=1

∣∣∣SN,ε(r , xi ) − Sε(r , xi )
∣∣∣
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+ 4μI ε−2
�∑

i=1

∣∣∣IN,ε(r , xi ) − Iε(r , xi )
∣∣∣ + 4μR ε−2

�∑

i=1

∣∣∣RN,ε(r , xi ) − Rε(r , xi )
∣∣∣

≤ C(ᾱ, β̄, μ̄, ε)

∥∥∥ZN,ε(r) − Zε(r)
∥∥∥, where μ̄ = max{μS, μI , μR}.

Hence we have for all t ∈ [0, T ]
∥∥∥ZN,ε(t) − Zε(t)

∥∥∥ ≤
∥∥∥ZN,ε(0) − Zε(0)

∥∥∥

+
∫ t

0

∥∥∥bε

(
r , ZN,ε(r)

) − bε

(
r , Zε(r)

)∥∥∥dr +
∥∥∥MN,ε(t)

∥∥∥

≤
(∥∥∥ZN,ε(0) − Zε(0)

∥∥∥ +
∥∥∥MN,ε(t)

∥∥∥
)

+ C(ᾱ, β̄, μ̄, ε)

∫ t

0

∥∥∥ZN,ε(r) − Zε(r)
∥∥∥dr ,

and it follows from Gronwall’s Lemma that

sup
0≤t≤T

∥∥∥ZN,ε(t) − Zε(t)
∥∥∥

≤
(∥∥∥ZN,ε(0) − Zε(0)

∥∥∥ + sup
0≤t≤T

∥∥∥MN,ε(t)
∥∥∥

)

exp
(
C(ᾱ, β̄, μ̄, ε)T

)
.

This concludes the proof of the theorem , since

∥∥∥ZN,ε(0) − Zε(0)
∥∥∥ + sup

0≤t≤T

∥∥∥MN,ε(t)
∥∥∥ −→ 0, as N → +∞.

��

We have just shown that the solution of the stochastic model (1.14) converges a.s.
locally uniformly in t to the solution of the deterministic model (1.1), as N → ∞,
ε being fixed. If we then let ε → 0, we know from Theorem 1.1 that the discrete
deterministic system converges in L∞(D) towards the system of PDEs on D

∂ s
∂t

(t, x) = − β(x) s(t, x)i(t, x)
s(t, x) + i(t, x) + r(t, x)

+ μS �s(t, x)

∂ i
∂t

(t, x) = β(x) s(t, x)i(t, x)
s(t, x) + i(t, x) + r(t, x)

− α(x) i(t, x) + μI �i(t, x)

∂ r
∂t

(t, x) = α(x) i(t, x) + μS �r(t, x), (t, x) ∈ (0, T ) × D.
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3 Law of Large Numbers in the SupremumNorm

In this section we let both the population size go to infinity and the mesh size ε of

the grid go to zero. Under the weak condition
N

log(1/ε)
−→ ∞, we obtain that the

stochastic spatial model converges in probability to the corresponding deterministic
one.

Let us define

SN,ε(t, x) =
ε−d∑

i=1

SN,ε(t, xi )1Vi (x), IN,ε(t, x) =
ε−d∑

i=1

IN,ε(t, xi )1Vi (x),

and RN,ε(t, x) =
ε−d∑

i=1

RN,ε(t, xi )1Vi (x), (t, x) ∈ [0, T ] × D.
(
SN,ε, IN,ε,RN,ε

)
is

solution of the SDEs

SN,ε(t, x) = SN,ε(0, x) + μS

∫ t

0
�εSN,ε(r , x)dr

−
∫ t

0

βε(x)SN,ε(r , x)IN,ε(r , x)

SN,ε(r , x) + IN,ε(r , x) + RN,ε(r , x)
dr

+MS
N,ε(t, x)

IN,ε(t, x) = IN,ε(0, x) + μI

∫ t

0
�εIN,ε(r , x)dr

+
∫ t

0

βε(x)SN,ε(r , x)IN,ε(r , x)

SN,ε(r , x) + IN,ε(r , x) + RN,ε(r , x)
dr (3.1)

−
∫ t

0
αε(x)IN,ε(r , x)dr + MI

N,ε(t, x)

RN,ε(t, x) = RN,ε(0, x) + μR

∫ t

0
�εRN,ε(r , x)dr

+
∫ t

0
αε(x)IN,ε(r , x)dr + MR

N,ε(t, x)

(t, x) ∈ [0, T ] × D,

where

MS
N,ε(t, x) = − 1

N

ε−d∑

i=1

Min f
xi

(
N
∫ t

0

β(xi )SN,ε(r , xi )IN,ε(r , xi )

SN,ε(r , xi ) + IN,ε(r , xi ) + RN,ε(r , xi )
dr

)
1Vi (x)

− 1

N

ε−d∑

i=1

∑

yi∼xi

Mmig
S,xi ,yi

(
μSN
ε2

∫ t

0
SN,ε(r , xi )dr

)
1Vi (x)
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+ 1

N

ε−d∑

i=1

∑

yi∼xi

Mmig
S,yi ,xi

(
μSN
ε2

∫ t

0
SN,ε(r , yi )dr

)
1Vi (x),

MI
N,ε(t, x) = 1

N

ε−d∑

i=1

Min f
xi

(
N
∫ t

0

β(xi )SN,ε(r , xi )IN,ε(r , xi )

SN,ε(r , xi ) + IN,ε(r , xi ) + RN,ε(r , xi )
dr

)
1Vi (x)

− 1

N

ε−d∑

i=1

Mrec
xi

(
N
∫ t

0
α(xi )IN,ε(r , xi )dr

)
1Vi (x)

− 1

N

ε−d∑

i=1

∑

yi∼xi

Mmig
I ,xi ,yi

(
μIN
ε2

∫ t

0
IN,ε(r , xi )dr

)
1Vi (x)

+ 1

N

ε−d∑

i=1

∑

yi∼xi

Mmig
I ,yi ,xi

(
μIN
ε2

∫ t

0
SN,ε(r , yi )dr

)
1Vi (x),

MR
N,ε(t, x) = − 1

N

ε−d∑

i=1

Mrec
xi

(
N
∫ t

0
α(xi )IN,ε(r , xi )dr

)
1Vi (x)

− 1

N

ε−d∑

i=1

∑

yi∼xi

Mmig
R,xi ,yi

(
μRN
ε2

∫ t

0
RN,ε(r , xi )dr

)
1Vi (x)

+ 1

N

ε−d∑

i=1

∑

yi∼xi

Mmig
R,yi ,xi

(
μRN
ε2

∫ t

0
RN,ε(r , yi )dr

)
1Vi (x).

Here we set XN,ε =
⎛

⎝
SN,ε

IN,ε

RN,ε

⎞

⎠ andMN,ε =
⎛

⎝
MS

N,ε

MI
N,ε

MR
N,ε

⎞

⎠. Recall that Xε =
⎛

⎝
Sε

Iε

Rε

⎞

⎠

and X =
⎛

⎝
s
i
r

⎞

⎠.

The main goal of this section is to prove the following result.

Theorem 3.1 (Law of Large Numbers in Sup-norm) Let us assume that N → ∞ and
ε → 0, in such way that

(i)
N

log(1/ε)
−→ ∞ as N → ∞ and ε → 0;

(ii)
∥∥∥XN,ε(0) − X(0)

∥∥∥∞ −→ 0 in probability as N → +∞ , ε → 0.

Then for all T > 0, sup
t∈[0,T ]

∥∥∥XN,ε(t) − X(t)
∥∥∥∞ −→ 0 in probability .

We prove the Theorem in the case d = 2, but the result holds true in dimensions
d = 1, 3 as well, as we will explain below.

Since sup
t∈[0,T ]

∥∥∥Xε(t) − X(t)
∥∥∥∞ −→ 0 by Theorem 1.1, clearly our Theorem will

follow from
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Proposition 3.1 For all T > 0, sup
t∈[0,T ]

∥∥∥XN,ε(t) − Xε(t)
∥∥∥∞ −→ 0 in probability, as

N → ∞ and ε → 0, in such a way that
N

log(1/ε)
−→ ∞.

Proof For all t ∈ [0, T ], We have

XN,ε(t) = XN,ε(0) +
∫ t

0
�̃εXN,ε(r)dr +

∫ t

0
G
(
XN,ε(r)

)
dr + MN,ε(t),

Xε(t) = Xε(0) +
∫ t

0
�̃εXε(r)dr +

∫ t

0
G
(
Xε(r)

)
dr ,

XN,ε(t) − Xε(t) = T̃ε(t)
[
XN,ε(0) − Xε(0)

]

+
∫ t

0
T̃ε(t − r)

[
G
(
XN,ε(r)

) − G
(Xε(r)

)]
dr + YN,ε(t),

where again T̃ε(t)XN,ε =
⎛

⎝
Tε,S(t)SN,ε

Tε,I (t)IN,ε

Tε,R(t)RN,ε

⎞

⎠ and similarly for T̃ε(t)Xε, · · · ; YN,ε(t) =
⎛

⎝
Y S
N,ε(t)

Y I
N,ε(t)

Y R
N,ε(t)

⎞

⎠ and Y S
N,ε(t) =

∫ t

0
Tε,S(t − r)dMS

N,ε(r), Y I
N,ε(t) =

∫ t

0
Tε,I (t −

r)dMI
N,ε(r), Y

R
N,ε(t) =

∫ t

0
Tε,R(t − r)dMR

N,ε(r). As in the proof of Theorem 2.1,

one can show that there is a constant C(β̄, ᾱ) such that for all r ∈ [0, T ], we have
∥∥∥G

(
XN,ε(r)

)
− G

(
Xε(r)

)∥∥∥∞ ≤ C(ᾱ, β̄)

∥∥∥XN,ε(r) − Xε(r)
∥∥∥∞, (3.2)

sinceG is globally Lipschitz. Using (3.2) and the fact that T̃ε is a contraction semigroup
in

(
L∞(D)

)3, we have

∥∥∥XN,ε(t) − Xε(t)
∥∥∥∞ ≤

∥∥∥XN,ε(0) − Xε(0)
∥∥∥∞

+ C(ᾱ, β̄)

∫ t

0

∥∥∥XN,ε(r) − Xε(r)
∥∥∥∞dr +

∥∥∥YN,ε(t)
∥∥∥∞.

It then follows from Gronwall’s Lemma that

sup
t∈[0,T ]

∥∥∥XN,ε(t) − Xε(t)
∥∥∥∞

≤
(∥∥∥XN,ε(0) − Xε(0)

∥∥∥∞ + sup
t∈[0,T ]

∥∥∥YN,ε(t)
∥∥∥∞

)
eC(ᾱ,β̄)T . (3.3)

Since
∥∥∥XN,ε(0) − Xε(0)

∥∥∥∞ −→ 0 in probability, the Proposition follows from

(3.3) and Proposition 3.2 below. ��
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Proposition 3.2 For all T > 0

sup
t∈[0,T ]

∥∥∥YN,ε(t)
∥∥∥∞ −→ 0 in probability,

as N → ∞ and ε → 0, provided
N

log(1/ε)
−→ ∞. (3.4)

Before proving this Proposition, we first establish some technical Lemmas.

Lemma 3.1 Let f = ε−21Vi . Then, for any J ∈ {S, I , R}
〈 (∇1,+

ε Tε,J (t) f
)2 + (∇1,−

ε Tε,J (t) f
)2 + (∇2,+

ε Tε,J (t) f
)2

+ (∇2,−
ε Tε,J (t) f

)2 + (
Tε,J (t) f

)2
, 1

〉 ≤ hε(t)

where

∫ t

0
hε(r)dr ≤ C ε−2 + t . (3.5)

Proof For f = ε−21Vi and J ∈ {S, I , R}, we have
〈 (

∇1,+
ε Tε,J (t) f

)2 +
(
∇2,+

ε Tε,J (t) f
)2

, 1

〉
= 〈 ∇1,+

ε Tε,J (t) f , ∇1,+
ε Tε,J (t) f

〉

+ 〈 ∇2,+
ε Tε,J (t) f ,∇2,+

ε Tε,J (t) f
〉

= − 〈 ∇1,−
ε ∇1,+

ε Tε,J (t) f , Tε,J (t) f
〉

− 〈 ∇2,−
ε ∇2,+

ε Tε,J (t) f , Tε,J (t) f
〉

= − 〈
�εTε,J (t) f , Tε,J (t)(t) f

〉
.

Using the facts that �εTε,J (t) f = Tε,J (t)�ε f , Tε,J (t) is self-adjoint and (1.3), we
obtain

〈 (
∇1,+

ε Tε,J (t) f
)2 +

(
∇2,+

ε Tε,J (t) f
)2

, 1

〉
= − 〈

Tε,J (t)�ε f , Tε,J (t) f
〉

= − 〈
�ε f , Tε,J (2t) f

〉

=
∑

m

〈
f , fεm

〉2
e−2λε

m,J tλε
m,J

≤ 4
∑

m

e−2λε
m,J tλε

m,J .

Similarly
〈 (∇1,−

ε Tε,J (t) f
)2 + (∇2,−

ε Tε,J (t) f
)2

, 1
〉 ≤ 4

∑

m

e−2λε
m,J tλε

m,J . More-

over, we have
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〈 (
Tε,J (t) f

)2
, 1

〉 = 〈
Tε,J (2t) f , f

〉

= 1 +
∑

m �=(0,0)

e−2λε
m,J t

〈
f , fεm

〉2

≤ 1 + 4
∑

m �=(0,0)

e−2λε
m,J t .

So, the result holds with hε(t) = 1 + 8
∑

m �=(0,0)

e−2λε
m,J t

(
λε
m,J + 1

)
.

∫ t

0
hε(r)dr ≤ t + 8

∑

m �=(0,0)

∫ +∞

0
e−2λε

m,J r
(
1 + λε

m,J

)
dr

= t + 4
∑

m �=(0,0)

(
1 + 1

λε
m,J

)

≤ t + 4
∑

1≤m1≤ε−1

1≤m2≤ε−1

(
1 + 1

c (m2
1 + m2

2)

)

≤ t + 4ε−2 +
∑

1≤m1≤ε−1

1≤m2≤ε−1

2

c

= t + ε−2
(
4 + 2

c

)
.

��

For any càdlàg process Z , let δZ(t) = Z(t) − Z(t−) denote its jump at time t .
We shall need below the

Lemma 3.2 Let Mt be a bounded martingale of finite variation defined on [t0, t1] with
Mt0 = 0 and satisfying

(i) M is right-continuous with left limits,
(ii) |δMt | ≤ c for t0 ≤ t ≤ t1, where c is a positive constant,

(iii)
∑

t0≤s≤t

(
δMs

)2 −
∫ t

t0
h(s)ds is a supermartingale, where h is a positive determin-

istic function.

Then E

(
exp

(
Mt1

)) ≤ exp
(ec

2

∫ t1

t0
h(s)ds

)
.

Proof Let f (x) = ex . We have 0 ≤ f
′′
(x + y) = f (x) f (y) ≤ ec f (x) for all y ≤ c.
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For t0 ≤ t ≤ t1

f (Mt ) = 1 +
∫ t

t0
f ′(Ms−)dMs +

∑

t0≤s≤t

(
f (Ms) − f (Ms−) − f ′(Ms−)δMs

)

≤ 1 +
∫ t

t0
f ′(Ms−)dMs + ec

2

∑

t0≤s≤t

f (Ms−)(δMs)
2

= 1 +
∫ t

t0
f ′(Ms−)dMs + ec

2

( ∑

t0≤s≤t

f (Ms−)(δMs)
2 −

∫ t

t0
f (Ms)h(s)ds

)

+ec

2

∫ t

t0
f (Ms)h(s)ds

where we used Taylor’s formula and (ii) for the inequality.

From (iii) and the fact that
∫ t

t0
f ′(Ms−)dMs has mean zero, we deduce

E

(
f (Mt )

)
≤ 1 + ec

2

∫ t

t0
E

(
f (Ms)

)
h(s)ds.

The result now follows from Gronwall’s inequality. ��

Lemma 3.3 For any site xi ∈ Dε, the following are FN,ε
t mean zero martingales:

∑

0≤r≤t

(
δSN,ε(r , xi )

)2

− 1

N

∫ t

0

β(xi )SN,ε(r , xi )IN,ε(r , xi )

SN,ε(r , xi ) + IN,ε(r , xi ) + RN,ε(r , xi )
dr

−4μS

Nε2

∫ t

0
SN,ε(r , xi )dr

− μS

Nε2

∫ t

0

( 2∑

j=1

SN,ε(r , xi + εe j ) +
2∑

j=1

SN,ε(r , xi − εe j )

)
dr (3.6)

∑

0≤r≤t

(
δ IN,ε(r , xi )

)2

− 1

N

∫ t

0

β(xi )SN,ε(r , xi )IN,ε(r , xi )

SN,ε(r , xi ) + IN,ε(r , xi ) + RN,ε(r , xi )
dr

− 1

N

∫ t

0
α(xi )IN,ε(r , xi )dr − 4μI

Nε2

∫ t

0
IN,ε(r , xi )dr

− μI

Nε2

∫ t

0

( 2∑

j=1

IN,ε(r , xi + εe j ) +
2∑

j=1

IN,ε(r , xi − εe j )

)
dr (3.7)

∑

0≤r≤t

(
δRN,ε(r , xi )

)2

− 1

N

∫ t

0
α(xi )IN,ε(r , xi )dr − 4μR

Nε2

∫ t

0
RN,ε(r , xi )dr
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− μR

Nε2

∫ t

0

( 2∑

j=1

RN,ε(r , xi + εe j ) +
2∑

j=1

RN,ε(r , xi − εe j )

)
dr (3.8)

∑

0≤r≤t

(
δSN,ε(r , xi )

)(
δSN,ε(r , xi ± εe j )

)

+ μS

Nε2

∫ t

0

(
SN,ε(r , xi ) + SN,ε(r , xi ± εe j )

)
dr (3.9)

∑

0≤r≤t

(
δ IN,ε(r , xi )

)(
δ IN,ε(r , xi ± εe j )

)

+ μI

Nε2

∫ t

0

(
IN,ε(r , xi )dr + IN,ε(r , xi ± εe j )

)
dr (3.10)

∑

0≤r≤t

(
δRN,ε(r , xi )

)(
δRN,ε(r , xi ± εe j )

)

+ μR

Nε2

∫ t

0

(
RN,ε(r , xi )dr + RN,ε(r , xi ± εe j )

)
dr (3.11)

j = 1, 2.

Proof The proof of this Lemma is based on the computation of the jumps. For (3.6),
we have

∑

0≤r≤t

(
δSN,ε(r , xi )

)2

= 1

N2 P
in f
xi

(
N
∫ t

0

β(xi )SN,ε(r , xi )IN,ε(r , xi )

SN,ε(r , xi ) + IN,ε(r , xi ) + RN,ε(r , xi )
dr

)

+
∑

yi∼xi

1

N2 P
mig
S,xi ,yi

(
μSN
ε2

∫ t

0
SN,ε(r , xi )dr

)

+
∑

yi∼xi

1

N2 P
mig
S,yi ,xi

(
μSN
ε2

∫ t

0
SN,ε(r , yi )dr

)
.

By writing each Poisson process as M(t) + t , we then have

∑

0≤r≤t

(
δSN,ε(r , xi )

)2 − 1

N

∫ t

0

β(xi )SN,ε(r , xi )IN,ε(r , xi )

SN,ε(r , xi ) + IN,ε(r , xi ) + RN,ε(r , xi )
dr

−4μS

Nε2

∫ t

0
SN,ε(r , xi )dr

− μS

Nε2

∫ t

0

( 2∑

j=1

SN,ε(r , xi + εe j ) +
2∑

j=1

SN,ε(r , xi − εe j )

)
dr
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= 1

N2M
in f
xi

(
N
∫ t

0

β(xi )SN,ε(r , xi )IN,ε(r , xi )

SN,ε(r , xi ) + IN,ε(r , xi ) + RN,ε(r , xi )
dr

)

+
∑

yi∼xi

1

N2M
mig
S,xi ,yi

(
μSN
ε2

∫ t

0
SN,ε(r , xi )dr

)

+
∑

yi∼xi

1

N2M
mig
S,yi ,xi

(
μSN
ε2

∫ t

0
SN,ε(r , yi )dr

)
,

which is a martingale. The other statements are proved similarly. ��

The following result is a consequence of the previous Lemma.

Lemma 3.4 Let ϕ ∈ H ε. The following are mean zero martingales

∑

0≤r≤t

(
δ〈 MS

N,ε(r) , ϕ 〉
)2

− ε2

N

∫ t

0

〈
βε(.)SN,ε(r)IN,ε(r)

SN,ε(r) + IN,ε(r) + RN,ε(r)
, ϕ2

〉
dr

−μSε
2

N

∫ t

0

〈
SN,ε(r) ,

(∇1,+
ε ϕ

)2 + (∇1,−
ε ϕ

)2 + (∇2,+
ε ϕ

)2 + (∇2,−
ε ϕ

)2 〉
dr

(3.12)
∑

0≤r≤t

(
δ〈 MI

N,ε(r) , ϕ 〉
)2

− ε2

N

∫ t

0

〈
βε(.)SN,ε(r)IN,ε(r)

SN,ε(r) + IN,ε(r) + RN,ε(r)
, ϕ2

〉
dr

−ε2

N

∫ t

0
〈 αε(.) IN,ε(r), ϕ

2 〉dr

−μI ε2

N

∫ t

0

〈
IN,ε(r) ,

(∇1,+
ε ϕ

)2 + (∇1,−
ε ϕ

)2 + (∇2,+
ε ϕ

)2 + (∇2,−
ε ϕ

)2 〉
dr

(3.13)
∑

0≤r≤t

(
δ〈 MR

N,ε(r) , ϕ 〉
)2

− ε2

N

∫ t

0

〈
αε(.) IN,ε(r), ϕ

2
〉
dr

−μR ε2

N

∫ t

0

〈
RN,ε(r) ,

(∇1,+
ε ϕ

)2 + (∇1,−
ε ϕ

)2 + (∇2,+
ε ϕ

)2 + (∇2,−
ε ϕ

)2 〉
dr .

(3.14)

Proof We give the proof for (3.12), those of (3.13) and (3.14) are similar. For all

r ≤ t , we have δ〈MS
N,ε(r), ϕ〉 = ε2

ε−2∑

i=1

δSN,ε(r , xi )ϕ(xi ). Since for yi �= xi ± εe j ,

(
δSN,ε(r , xi )

)(
δSN,ε(r , yi )

)
= 0, so
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(
δ〈MS

N,ε(r), ϕ〉
)2

= ε4
ε−2∑

i=1

(
δSN,ε(r , xi )

)2

ϕ2(xi )

+2ε4
ε−2∑

i=1

(
δSN,ε(r , xi )

)(
δSN,ε(r , xi + εe1)

)
ϕ(xi )ϕ(xi + εe1)

+2ε4
ε−2∑

i=1

(
δSN,ε(r , xi )

)(
δSN,ε(r , xi − εe1)

)
ϕ(xi )ϕ(xi − εe1)

+2ε4
ε−2∑

i=1

(
δSN,ε(r , xi )

)(
δSN,ε(r , xi + εe2)

)
ϕ(xi )ϕ(xi + εe2)

+2ε4
ε−2∑

i=1

(
δSN,ε(r , xi )

)(
δSN,ε(r , xi − εe2)

)
ϕ(xi )ϕ(xi − εe2). (3.15)

Using successively (3.6) and (3.9) from the previous lemma, we obtain

∑

0≤r≤t

(
δSN,ε(r , xi )

)2

ϕ2(xi )

= 1

N

∫ t

0

β(xi )SN,ε(r , xi )IN,ε(r , xi )

SN,ε(r , xi ) + IN,ε(r , xi ) + RN,ε(r , xi )
ϕ2(xi )dr

+4μS

Nε2

∫ t

0
SN,ε(r , xi )ϕ

2(xi )dr

+ μS

Nε2

∫ t

0

[ 2∑

j=1

SN,ε(r , xi + εe j )

+
2∑

j=1

SN,ε(r , xi − εe j )

]
ϕ2(xi )dr + Martingale (3.16)

and

∑

0≤r≤t

(
δSN,ε(r , xi )

)(
δSN,ε(r , xi ± εe j )

)
ϕ(xi )ϕ(xi ± εe j )

= − μS

Nε2

∫ t

0

(
SN,ε(r , xi ) + SN,ε(r , xi ± εe j )

)

ϕ(xi )ϕ(xi ± εe j )dr + Martingale. (3.17)

123



Applied Mathematics & Optimization (2021) 83:1153–1189 1183

Combining (3.15), (3.16) and (3.17), we deduce that

∑

0≤r≤t

(
δ〈 MS

N,ε(r), ϕ 〉
)2 = ε2

N

∫ t

0

〈 βε(.)SN,ε(r)IN,ε(r)

SN,ε(r) + IN,ε(r) + RN,ε(r)
, ϕ2

〉
dr

+μS

N

∫ t

0

〈
4SN,ε(r) +

2∑

j=1

SN,ε(r , . + εe j )

+
2∑

j=1

SN,ε(r , . − εe j ) , ϕ2
〉
dr

−2μS

N

∫ t

0

〈
SN,ε(r) ,

2∑

j=1

ϕ(.)ϕ(. + εe j )

+
2∑

j=1

ϕ(.)ϕ(. − εe j )
〉
dr + Martingale,

which can also be written as

∑

0≤r≤t

(
δ〈 MS

N,ε(r) , ϕ 〉)2 = ε2

N

∫ t

0

〈 βε(.)SN,ε(r)IN,ε(r)

SN,ε(r) + IN,ε(r) + RN,ε(r)
, ϕ2

〉
dr

−μS ε2

N

∫ t

0
〈 SN,ε(r) ,

(∇1,+
ε ϕ

)2 + (∇1,−
ε ϕ

)2

+(∇2,+
ε ϕ

)2 + (∇2,−
ε ϕ

)2 〉 dr + Martingale.

��
The following Lemma generalizes Lemma 3.4 in the case of a non constant ϕ ∈

C
(
R+; H ε

)
.

Lemma 3.5 The assertion of Lemma 3.4 is valid if ϕ ∈ C
(
R+; H ε

)
.

Proof The general result follows by approximation. ϕ being continuous with respect
to t , there exists a sequence (ϕ j )1≤ j≤n of step functions which converges to ϕ locally
uniformly in [0,∞). It then suffices to consider the case where ϕ is a step function
whichweassume fromnowon.There exists a sequence0 = t0 < t1 < t2 < · · · < tn =
t such that ϕ(t, xi ) =

n∑

j=1

ϕ j (xi )1(t j−1,t j ](t), where ϕ j ∈ H ε, for all j = 1, · · · , n.

Applying Lemma 3.4 on each interval (t j−1, t j ] and summing for all j ∈ {1, · · · , n}
yields to the result. ��
Now we are in a position to give the

Proof of Proposition 3.2 Let us fix t̄ ∈ (0, T ] , i ∈ {
1, · · · , ε−2 }

and we use the

notation f = ε−21Vi . We define mS
N,ε(t) := 〈 ∫ t

0
Tε,S(t̄ − r)dMS

N,ε(r) , f
〉
, 0 ≤
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t ≤ t̄ . Note that the process
{
mS

N,ε(t), t ∈ [0, t̄ ]
}
is a mean zero martingale and we

have mS
N,ε(t) = Y S

N,ε

(
t
)
. We have

∑

0≤r≤t

(
δ mS

N,ε(r)
)2 =

∑

0≤r≤t

(〈
δMS

N,ε(r), Tε,S(t̄ − r) f
〉)2

.

From Lemma 3.5, we have that

∑

0≤r≤t

(
δ mS

N,ε(r)
)2 −

∫ t

0
gε(r)dr (3.18)

is a mean zero martingale, where

gε(r) = ε2

N

〈
β(.)SN,ε(r)IN,ε(r)

SN,ε(r) + IN,ε(r) + RN,ε(r)
,
(
Tε,S(t̄ − r) f

)2
〉

+μS ε2

N

〈
SN,ε(r) ,

(∇1,+
ε Tε,S(t̄ − r) f

)2 + (∇1,−
ε Tε,S(t̄ − r) f

)2

+(∇2,+
ε Tε,S(t̄ − r) f

)2 + (∇2,−
ε Tε,S(t̄ − r) f

)2 〉
.

We have

gε(r) ≤ β̄ε2

N

〈
1 ,

(
Tε,S(t̄ − r) f

)2 〉

+CμS ε2

N

〈
1 ,

(∇1,+
ε Tε,S(t̄ − r) f

)2 + (∇1,−
ε Tε,S(t̄ − r) f

)2

+(∇2,+
ε Tε,S(t̄ − r) f

)2 + (∇2,−
ε Tε,S(t̄ − r) f

)2 〉
.

For θ ∈ [0, 1], we define mS
N,ε(t) = θ NmS

N,ε(t). m
S
N,ε is a mean zero martingale.

Furthermore

|δmS
N,ε| ≤ θ N

∥∥∥Tε,S(t̄ − t)δMN,ε(t)
∥∥∥∞

∫

D
f (x)dx

≤ 1.

It follows from Lemmas 3.1 and 3.2 that

E

(
exp(mS

N,ε(t̄))
)

≤ exp
[ e
2
θ2C(β̄, μS)Nε2(t̄ + Cε−2)

]
.

It then follows that for any site xi ∈ Dε, η > 0

P

(
Y S
N,ε

(
t̄, xi

)
> η

)
= P

(
θ N Y S

N,ε

(
t̄, xi

)
> θ N η

)

≤ E

[
exp

(
θ N Y S

N,ε

(
t̄, xi

))]
exp

(−θ N η
)
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≤ exp

[
θN

(
C(T )θ − η

)]
with C(T ) = e

2
C(β̄, μS)(T + C).

The optimal θ is θ = η

2C(T )
, hence

P

(
Y S
N,ε

(
t̄, xi

)
> η

)
≤ exp

( − a η2N
)
,

with a = 1

4C(T )
. We can make a similar computation for

P

(
− Y S

N,ε

(
t̄, xi

)
> η

)

to show that P

(
− Y S

N,ε

(
t, xi

)
> η

)
≤ exp(−a η2N).

Hence for all t ∈ [0, T ] and i ∈ {
1, · · · , ε−2

}
, we have

P

(∣∣Y S
N,ε

(
t, xi

)∣∣ > η
)

≤ 2 exp(−aη2N).

Since
∥∥∥Y S

N,ε(t)
∥∥∥∞ = sup

i

∣∣∣Y S
N,ε

(
t, xi

)∣∣∣,

P

(∥∥∥Y S
N,ε(t)

∥∥∥∞ > η

)
≤

ε−2∑

i=1

P

(∣∣∣Y S
N,ε

(
t, xi

)∣∣∣ > η

)

≤ 2ε−2 exp(−aη2N). (3.19)

We now show that an inequality similar to (3.19) holds with
∥∥∥Y S

N,ε(t)
∥∥∥∞ replaced

by sup
t∈[0,T ]

∥∥∥Y S
N,ε(t)

∥∥∥∞.

To this end,wedivide [0, T ] into ε−2 intervals [nT ε2, (n+1)T ε2], 0 ≤ n ≤ ε−2−1.
For t ∈ [nT ε2, (n + 1)T ε2], we have

Y S
N,ε(t) = Y S

N,ε(nT ε2) +
∫ t

nT ε2
�εY

S
N,ε(r)dr + m̃S

N,ε(t),

where m̃S
N,ε(t) = MS

N,ε(t) − MS
N,ε(nT ε2).

We have

∥∥∥Y S
N,ε(t)

∥∥∥∞ ≤
∥∥∥Y S

N,ε(nT ε2)

∥∥∥∞ + 8 ε−2
∫ t

nT ε2

∥∥∥Y S
N,ε(r)

∥∥∥∞dr +
∥∥∥m̃S

N,ε(t)
∥∥∥∞,

(3.20)
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so Gronwall’s inequality implies that

sup
t∈[nT ε2,(n+1)T ε2]

∥∥∥Y S
N,ε(t)

∥∥∥∞

≤
(∥∥∥Y S

N,ε(nT ε2)

∥∥∥∞ + sup
t∈[nT ε2,(n+1)T ε2]

∥∥∥m̃S
N,ε(t)

∥∥∥∞

)
exp(8T ). (3.21)

We now fix i ∈ {
1, · · · , ε−2

}
, θ ∈ [0, 1] and setmS

N,ε(t) = θ N m̃S
N,ε

(
t
)
. It follows

from Lemma 3.3 that

∑

nT ε2≤r ≤t

(
δmS

N,ε(r)
)2 − μS

ε2
θ2N

∫ t

nT ε2

( ∑

y∼xi

SN,ε(r , y) + 4SN,ε(r , xi )
)
dr

−θ2N
∫ t

nT ε2

β(xi )SN,ε(r , xi )IN,ε(r , xi )

SN,ε(r , xi ) + IN,ε(r , xi ) + RN,ε(r , xi )
dr (3.22)

is a mean zero martingale and
∣∣∣δmS

N,ε(t)
∣∣∣ ≤ 1 . Furthermore, for nT ε2 < t ≤ (n +

1)T ε2

μS

ε2
θ2N

∫ t

nT ε2

( ∑

y∼xi

SN,ε(r , y) + 4SN,ε(r , xi )
)
dr

+ Nθ2
∫ t

nT ε2

β(xi )SN,ε(r , xi )IN,ε(r , xi )

SN,ε(r , xi ) + IN,ε(r) + RN,ε(r , xi )
dr

≤ C(β̄, μS)TNθ2.

Hence by Lemma 3.2, it follows that E

[
exp

(
mS

N,ε

(
(n + 1)T ε2

))] ≤ exp
[
C(β̄, μS)Nθ2T

]
.

It then follows from Doob’s inequality that

P

(
sup

t∈[nT ε2,(n+1)T ε2]
m̃S

N,ε

(
t, xi

) ≥ η

)
≤ E

[
exp

(
mS

N,ε

(
(n + 1)T ε2

))]
exp(−θNη)

≤ exp
[
θN

(
C(T ) θ − η

)]
.

Choosing θ = η

2C(T )
, we deduce that

P

(
sup

t∈[nT ε2,(n+1)T ε2]
m̃S

N,ε

(
t, xi

) ≥ η

)
≤ exp(−aη2N), where a = 1

4C(T )
.

The same hold for −m̃S
N,ε

(
t, xi

)
. Consequently

P

(
sup

t∈[nT ε2,(n+1)T ε2]

∥∥∥m̃S
N,ε

(
t, xi

)∥∥∥∞ ≥ η

)
≤ 2 ε−2 exp(−aη2N). (3.23)
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Combining the inequalities (3.19), (3.21) and (3.23), we obtain

P

(
e−8T sup

t∈[nT ε2,(n+1)T ε2]

∥∥∥Y S
N,ε(t)

∥∥∥∞ ≥ η

)
≤ 4 ε−2 exp

(
−a

η2

4
N
)

, (3.24)

from which we deduce that

P

(
e−8T sup

t∈[0,T ]

∥∥∥Y S
N,ε(t)

∥∥∥∞ ≥ η

)

≤
ε−2−1∑

n=0

P

(
e−8T sup

t∈[nT ε2,(n+1)T ε2]

∥∥∥Y S
N,ε(t)

∥∥∥∞ ≥ η

)

≤ 4 ε−4 exp

(
−a

η2

4
N
)

. (3.25)

Since
N

log(1/ε)
−→ +∞ implies that ε−4 exp(−aη2N) −→ 0, we have

proved that sup
t∈[0,T ]

∥∥∥Y S
N,ε(t)

∥∥∥∞ −→ 0 in probability. The same arguments show that

sup
t∈[0,T ]

∥∥∥Y I
N,ε(t)

∥∥∥∞ + sup
t∈[0,T ]

∥∥∥Y R
N,ε(t)

∥∥∥∞ −→ 0 in probability as N → ∞ and ε → 0,

under our standing assumption. Finally, we have shown that sup
t∈[0,T ]

∥∥∥YN,ε(t)
∥∥∥∞ −→ 0

in probability, which completes the proof of the Proposition. ��
Remark 1 The law of large numbers in sup-norm remains true in dimensions d = 1, 3.

To see that, it suffices to remark that �ε =
d∑

j=1

∇ j,−
ε ∇ j,+

ε has always ε−d bounded

eigenvectors. In this case the Lemma 3.1 become

〈 d∑

j=1

(
∇ j,+

ε Tε,J (t) f
)2 +

d∑

j=1

(
∇ j,−

ε Tε,J (t) f
)2 +

(
Tε,J (t) f

)2
, 1

〉
≤ hε(t)

where
∫ t

0
hε(r)dr ≤ C ε−d + t . Hence (3.25) becomes

P

(
e−8T sup

t∈[0,T ]

∥∥∥Y S
N,ε(t)

∥∥∥∞ ≥ η

)
≤ 4 ε−d−2 exp(−a

η2

4
N)

.
Moreover, the result holds for periodic boundary conditions. Indeed, in this case,

the eigenvectors of the Laplace operator are the product of the one-dimensional eigen-
vectors
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ϕn(x) =
{

1, for n = 0,√
2 cos(nπx), for n > 0 and even,

ψn(x) = √
2sin(nπx), for n > 0 and even.

Remark 2 We conclude that, by two laws of large numbers, the consistency of the
various models has been established.

In a furture work, we will study the fluctuations of the stochastic model around its
deterministic law of large numbers limit.
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