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Abstract

In this paper, we use a deterministic non-Markovian epidemic model to estimate
the state of the Covid-19 epidemic in France. This model allows us to consider real-
istic distributions for the exposed and infectious periods in a SEIR model, contrary
to standard ODE models which only consider exponentially distributed exposed and
infectious periods. We present theoretical results linking the (unobserved) parameters
of the model to various quantities which are more easily measured during the early
stages of an epidemic. We also stress the main quantitative differences between the
non-Markovian and the Markovian (ODE) model. We then apply these results to esti-
mate the state of the Covid-19 epidemic in France by analyzing three regions: the Paris
region, the northeast regions and the rest of the country, based on current knowledge
on the infection fatality ratio and the exposed and infectious periods distributions for
Covid-19. Our analysis is based on the hospital data published daily by Santé Publique
France (daily hospital admissions, intensive care unit admissions and hospital deaths).

Introduction

At the beginning of an epidemic outbreak, some quantities are easier to observe and report
than others. For example the number of hospital deaths related to Covid-19 has been
precisely and regularly reported in several countries. Another well documented quantity is
the doubling time of the number of cases (which coincides with that of the number of deaths,
as we shall explain). On the other hand, some quantities of interest are very hard to directly
measure or to estimate: the actual number of infected individuals, the true death rate of the
disease, and most notably the now famous reproduction number R0, corresponding to the
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average number of individuals infected by a single infectious individual in a fully susceptible
population.

This paper presents a theoretical study of how the “observable” quantities relate to the
“unobserved” ones, under a very general epidemic model recently developed in [PP20], and
an application of these results to attempt to predict the state of the Covid-19 epidemic in
France throughout its different stages.

The first basic idea is to estimate an exponential growth rate from the available data (the
number of hospital admissions or the number of deaths occurring in hospitals), and then to
relate it to the parameters of a model of the evolution of the Covid–19 epidemic. Our
approach is modeled upon the approach of Tom Britton in two recent preprints [Bri20b],
[Bri20a]. Note that the exponential growth rate can be negative, which was the case in
particular in France during the lockdown period.

The exponential growth rate is the most natural parameter which can be extracted from
the data. It equals log(2) divided by the doubling time, i.e. the number of days necessary
for the number of cases (or deaths) to double, a notion that everyone listening to the news
at the time of the rise of the epidemic has heard of, and can easily understand. The other
important parameters of the model, including the famous basic reproduction number R0 (the
mean number of individuals whom an infectious individual infects before recovering, at the
start of the epidemic – that is while essentially everyone that around him/her is susceptible),
can be computed from the exponential growth rate, and some other parameters of the model.

Our approach has two specific features. First, we shall carefully make explicit which
parameters are needed to compute the quantities of interest, and we shall describe as precisely
as possible how the the uncertainty about their value influences our results. The second
aspect is that we shall use nonconventional models. The classical SIR and SEIR ODE
models are law of large numbers limits of stochastic Markov SIR or SEIR models [BP19].
For those models to be Markovian, it is necessary that the infectious periods in the case of
the SIR model of the various individuals in the population be i.i.d. copies of an exponential
random variable (resp. the pair exposed period, infectious period in the SEIR model be
i.i.d. copies of a pair of independent exponential random variables). However, in the case
of Covid–19, like in most infectious diseases, the assumption that those durations follow an
exponential distribution is completely unrealistic.

Recently, the last two authors of this paper have described the law of large numbers
limit model of non–Markovian stochastic epidemic models with arbitrary distribution for
the infectious period (resp. for the pair exposed and infectious period), see [PP20]. This
type of deterministic models is an integral equation of Volterra type, of the same dimension
as the classical ODE model. In particular, it is not much more complicated to simulate and
compute. As we shall see in this paper, our model fits the data better than Markovian models,
especially around a major change in the contact pattern in the population (introduction of
nationwide lockdown measures). The differences between our model and the usual “Markov”
model are not so much in the large time behavior, but rather in the transient short term
evolution, as was recently observed in [SRE+20], who study a related model. We note that
since the start of the epidemic, knowledge about the Covid–19 disease has substantially
increased. Our original approach allows us to choose distributions which reflect closely the
current knowledge about the disease.

Note that at least one other work has used a similar extended model to analyze the
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Covid–19 epidemic. In [ZFK20], the authors use ODEs with delays, which correspond to
our model with deterministic exposed and infectious periods. On the other hand [GAA+20],
following the approach initiated by Kermack and McKendrick to analyze the plague epidemic
in Mumbai in 1905–6 [KM27], uses a transport PDE SEIR model, where the rate of infection
by an infectious individual depends upon the time since infection, and the rate at which
exposed (resp. infectious) individuals become infectious (resp. removed) also depends on the
time since infection. The results of the present paper are comparable to those in [GAA+20],
where the analysis and the treated data concern the various départements of Île de France,
while we compare Île de France, the North–East of France, and the rest of the country.

After this paper had been written, we discovered that the non Markovian SEIR epidemic
model which we are using is described in Section 4.5 of the book [BCCF], and our formula
for R0 is a particular case of a formula which appears on page 141 of that book.

The paper is organized as follows. In a first section called “Methods”, we describe our
model and the methodology to extract the parameters of our model from the available data.
In a second section called “Results”, we describe the results we obtained by applying our
method to the Covid-19 epidemic in France. The last section is a discussion of the conclusions
of our work. Finally, an appendix contains the mathematical proof of one crucial result, which
relates the exponential growth rate to the various quantities in our model.

1 Methods

1.1 Our Covid–19 non–Markovian SEIR epidemic model

Assume that each newly infected individual in the population becomes infectious after a
random time E during which he/she is “exposed” and stops being infectious after a random
time I, after which he or she does not infect anyone any more, and also cannot be infected
(either as a result of acquired immunity, isolation or death). We assume that infectious
individuals attempt to infect other individuals (chosen uniformly from the population) at
rate λ(t), where t is the current time (the dependence on t of the contact rate λ is used to
reflect the effect of containment measures such as lockdown). As a result, the process of
newly infected individuals up to time t can be represented as

P

(
N

∫ t

0

λ(s)S
N

(s)I
N

(s)ds

)
,

where P (t) is a standard Poisson process, N is the size of the population which is assumed

to be fixed, S
N

(t) (resp. I
N

(t)) is the proportion of susceptible (resp. infectious) individuals
in the population at time t.

Assume that the initial proportions of susceptible, exposed, infectious and removed in-
dividuals in the population are given by (S(0), E(0), I(0), R(0)). We also assume that the
individuals who are initially exposed or infectious have a different distribution of sojourn
times in the intermediary states (reflecting the fact that they have been infected at some
time in the past, before the initial time t = 0). Thus let (E0, I0) denote a random variable
distributed as the time an individual who is initially exposed stays exposed (E0) and then
infectious (I0), and let I1 be distributed as the time an individual who is initially infectious
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stays infectious. Note that usually I0 and I have the same distribution for those who are
initially exposed, while the remaining infectious period I1 may have a different distribution.
Similarly, the remaining exposed period E0 may have a different distribution from that of E .

Define

Gc(t) = P(t < E), Ψ(t) = P(E ≤ t < E + I), Φ(t) = P(E + I ≤ t),

as well as

Gc
0(t) = P(t < E0), Ψ0(t) = P(E0 ≤ t < E0 + I0), Φ0(t) = P(E0 + I0 ≤ t),

and

F1(t) = P(I1 ≤ t), F c
1 (t) = 1− F1(t) = P(t < I1).

Let (S
N

(t), E
N

(t), I
N

(t), R
N

(t)) denote the proportion of susceptible, exposed, infectious
and removed individuals at time t in the population, where N is the total size of the popula-
tion, which is assumed to be fixed throughout the epidemic (the deaths due to the epidemic
are counted among the “removed”). We assume that the durations (Ei, Ii) of all the infected
individuals infected during the epidemic are i.i.d. (for each i, Ei and Ii may be correlated).

Definition 1. The non-Markovian SEIR deterministic model is the solution of the set of
integral equations:

S(t) = S(0)−
∫ t

0

λ(s)S(s)I(s)ds,

E(t) = E(0)Gc
0(t) +

∫ t

0

λ(s)Gc(t− s)S(s)I(s)ds,

I(t) = I(0)F c
1 (t) + E(0)Ψ0(t) +

∫ t

0

λ(s)Ψ(t− s)S(s)I(s)ds,

R(t) = I(0)F1(t) + E(0)Φ0(t) +

∫ t

0

λ(s)Φ(t− s)S(s)I(s)ds.

Theorem 3.1 from [PP20] states that, under a very weak assumption on the joint distri-
bution of (E , I), the unique solution of the above non-Markovian SEIR integral equations is
the law of large numbers limit of the above described model. More precisely, as N → ∞,

(S
N

(t), E
N

(t), I
N

(t), R
N

(t)) → (S(t), E(t), I(t), R(t)) in probability, locally uniformly in t.

We call this model non–Markovian since the stochastic process (S
N

(t), E
N

(t), I
N

(t), R
N

(t))
is not a Markov process in general, because its future evolution depends not only upon its
present value, but also upon how long the exposed and infectious individuals have already
been in the corresponding compartment. For the model to be Markovian, it is necessary
that the random variables E and I be independent and have exponential distributions. In
that case, the integral equation SEIR model reduces to the following ODE model

dS(t)

dt
= −λ(t)S(t)I(t),

dE(t)

dt
= λ(t)S(t)I(t)− νE(t),

dI(t)

dt
= νE(t)− γI(t),

dR(t)

dt
= γI(t),
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where ν (resp. γ) is the parameter of the exponential law of E (resp. I), i.e., E(E) = ν−1,

E(I) = γ−1. Note that in the Markovian case, the convergence (S
N

(t), E
N

(t), I
N

(t), R
N

(t))→
(S(t), E(t), I(t), R(t)) as N →∞ is a classical result, see, e.g., [BP19] for a recent account.
The above ODE model is the one which is used by almost all papers dealing with epidemic
models, in particular the Covid–19 models, with the exception, to our knowledge, of [ZFK20],
where the case of fixed E and I is considered and [GAA+20, SRE+20]. It is fair to say that
the exponential distributions are very poor models for the laws of E and I, and it may seem
strange that the above ODE model is so widely used, while it is based on unrealistic assump-
tions. While the large time behavior of the model (e.g., the endemic equilibrium in the case
of a SIS or a SIRS model, see Remarks 2.8 and 3.5 in [PP20]) depend only on the expectation
of the random vector (E , I), and are the same in a Markov and a non-Markov model with
identical expected infectious periods, as we shall see below, the transient behavior of the
model depends much more on the details of the law of (E , I).

Let us now explain the specific model (with two variants) which we will use for the
Covid–19 epidemic. In our model, the two random variables E and I will be independent.
The random variable E will be either fixed (3 days), or else will have a distribution with a
density whose support is the interval [2, 4]. Concerning the random variable I, we assume a
bimodal law with support in [3, 5] ∪ [8, 12] (details in Subsection 1.3).

The idea behind that type of law is as follows. Our model is close to the SEIRU model
of [LMSW20], which thanks to the flexibility of our class of models we are able to simplify.
Indeed, in that paper the individuals are first exposed (state E), then infectious (state I)
but without symptoms, and at the end of the I period, a fraction of the individuals are
isolated quickly after the onset of symptoms (state R as “reported”), either because they
are admitted to hospital or because they self-isolate at home, while the other individuals are
not isolated (state U as “unreported”), either because they are unable to do so or because
they have light or no symptoms. While in the R class, the individuals are isolated and they
do not infect susceptibles any more. For that reason, we identify the “reported” class with
part of the “recovered” class, thus reconciling the two meanings of R. Finally, some of the
individuals are infectious while they are in the I class only, while others are infectious in
both I and U classes. In our model, being in the U class is considered as staying longer in
the I class (see Figure 1). This is the motivation for the bimodal distribution of the law of
I.

Remark 2. Our model lacks one important feature which is widely believed to affect the dy-
namics of the Covid-19 epidemic, namely age structure. Our main motivation for neglecting
age structure is to keep the model mathematically tractable and to reduce the number of pa-
rameters. Needless to say, more realistic predictions could be obtained by using a structured
version of this model, provided all the parameters can be correctly estimated.

1.2 The non–Markovian model during the early phase of the epi-
demic

During the early phase of the epidemic, the cumulative number of infected individuals re-
mains small compared to the total size of the population. As a result, S(t) ≈ 1 during
this phase. Letting (E(t), I(t), R(t)) denote the absolute numbers of exposed, infectious and
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S E

U

R

RemI

S E RI

Susceptible

Exposed

No longer infectious

Infectious

Figure 1: Flow chart of the SEIRU model of [LMSW20] and the equivalent SEIR non-
Markovian model. In the latter, the two infectious compartments (I and U) are merged
into one compartment, but the sojourn time I of the infectious compartment has a bimodal
distribution corresponding to the two subpopulations of reported and unreported individuals.
Note that R (reported) and Rem (removed) have been merged into a unique compartment.

removed individuals during this phase, i.e.,

(E(t), I(t), R(t)) = (NE(t), NI(t), NR(t)),

and assuming that λ is constant during this phase, the non-Markovian SEIR model reduces
to

E(t) = E(0)Gc
0(t) + λ

∫ t

0

Gc(t− s)I(s)ds,

I(t) = I(0)F c
1 (t) + E(0)Ψ0(t) + λ

∫ t

0

Ψ(t− s)I(s)ds,

R(t) = R(0) + I(0)F1(t) + E(0)Φ0(t) + λ

∫ t

0

Φ(t− s)I(s)ds.

(1)
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The initial state of an epidemic is seldom known, and the Covid-19 epidemic is no exception.
However, it is always the case that, once sufficiently many individuals have been infected,
the cumulative number of infected individuals grows exponentially with some rate ρ > 0.
We thus look for solutions to

E(t) = λ

∫ t

−∞
Gc(t− s)I(s)ds,

I(t) = λ

∫ t

−∞
Ψ(t− s)I(s)ds,

R(t) = λ

∫ t

−∞
Φ(t− s)I(s)ds,

(2)

for t ∈ R which are of the form

E(t) = e eρt, I(t) = i eρt, R(t) = r eρt, (3)

with e + i + r = 1. These equations started from −∞ can be seen as modeling an epi-
demic which has been growing for a very long time from an infinitesimal proportion of
non-susceptible individuals.

Proposition 3. (i) If ρ > 0, the system (2) admits solutions of the form (3) for all t ∈ R
if

λ =
ρ

E [e−ρE(1− e−ρI)]
(4)

and with

e = E
[
1− e−ρE

]
, i = E

[
e−ρE(1− e−ρI)

]
, r = E

[
e−ρ(E+I)

]
. (5)

Moreover, if Θ is an independent exponential variable with parameter ρ, then (3) also
solves (1) for all t ≥ 0 with

Gc
0(t) = P(E > t+ Θ |Θ < E), Ψ0(t) = P(E ≤ t+ Θ < E + I |Θ < E),

Φ0(t) = P(t+ Θ ≥ E + I |Θ < E), F1(t) = P(t+ Θ ≥ E + I | E ≤ Θ < E + I).
(6)

(ii) If ρ < 0, then (E(t), I(t)) = (eeρt, ieρt) solves the first two lines of (2) for all t ∈ R if
λ and ρ satisfy (4) and if

e = E
[
e−ρE − 1

]
, i = E

[
e−ρE(e−ρI − 1)

]
.

The fact that a solution of the form R(t) = r eρt only exists for positive ρ should not
come as a surprise, since t 7→ R(t) is non-decreasing. Also note that we can rewrite (5) with
the help of the variable Θ as follows,

e = P(Θ < E), i = P(E ≤ Θ < E + I), r = P(Θ ≥ E + I). (7)

The proof of Proposition 3 is postponed to Appendix A.
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Corollary 4. The basic reproduction number R0, defined as the mean number of secondary
infections caused by a single infectious individual in a fully susceptible population, is linked
to the initial growth rate of the cumulative number of infected individuals ρ by the relation

R0 = λE[I] =
ρE[I]

E [e−ρE(1− e−ρI)]
.

This formula is valid in both cases ρ > 0 and ρ < 0.

Remark 5. Note that if (E , I) are two independent exponential random variables with pa-
rameters ν > 0 and γ > 0, the equations of Definition 1 coincide with the law of large
numbers limit of the Markovian SEIR epidemic model [BP19]. In this case, Proposition 3
agrees with what is already known about Markovian epidemic models. In particular, in the
case ρ > 0,

λ = (ρ+ γ)
(

1 +
ρ

ν

)
, e =

ρ

ν + ρ
, i =

ρν

(ρ+ γ) (ν + ρ)
, r =

νγ

(ρ+ ν)(ρ+ γ)
.

The equivalent formulas for the SIR model (i.e., with E = 0) can be obtained by letting
ν →∞, in which case we see that ρ = γ(R0 − 1), as in formula (1) in [Bri20b].

If, however, we assume that the variables E and I are constant and equal to (te, ti), the
equations of Definition 1 can be seen as delay equations. In this case, Proposition 3 still
applies, and the expectations in (4) and (5) can be omitted, leading to the relation

R0 =
ρ ti

e−ρte(1− e−ρti)
.

As a result, we see that, for the same growth rate ρ, the contact rate and the relative
proportions of exposed, infectious and removed individuals vary depending on the distribution
of the sojourn times (E , I). In particular, the growth rate ρ cannot be used to accurately
determine the value of R0 = λE[I] if one lacks information about the distribution of (E , I)
(see Figure 2).

1.3 Distribution of the sojourn times for Covid-19

The evolution of infectiousness for Covid-19 from the time of infection remains uncertain,
but some early studies already provide constraints on the distribution of the sojourn times
(E , I) for this disease. In particular, [HLW+20] estimate that infectiousness starts as early
as 2.3 days before the onset of symptoms and declines within 7-8 days of symptom onset.
Assuming that symptoms start on average 5.2 days after infection (as reported in [HLW+20]),
we conclude that E is between 2 and 4 days, and that I is at least 3 days (if the infected
individual is isolated shortly after the onset of symptoms) and no more than 10 to 12 days.

For the exposed time E , we shall take either a fixed value of 3 days or a linear combination
of the form 2 + 2X1, where X1 is a symmetric Beta random variable with support in [0, 1].

In this study, we assume that infected individuals are divided in two groups. Individuals
in the first group, called the reported individuals, are isolated shortly after the onset of
symptoms, either because they self-isolate at home or because they are admitted to a hospital,
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Figure 2: Value of R0 as a function of the growth rate ρ for different distributions of the
exposed and infectious periods (E , I). Four types of distributions are displayed: exponential
(corresponding to the Markovian SEIR model), fixed, bimodal distribution mimicking Covid-
19 (see Subsection 1.3) and Gamma distribution. All distributions have a mean exposed time
of 3 days and a mean infectious time of 4.8 days, corresponding to a proportion of reported
individuals of 0.8. The two dashed vertical lines show the growth rates of the Covid-19
epidemic in mainland France before and during lockdown.

where we assume that they do not infect anyone else. For these individuals, we assume that
I = 3 +X2, where X2 is a symmetric Beta random variable with support in [0, 1].

By contrast, individuals in the second group remain infectious for much longer, either
because they show very mild symptoms or no symptoms at all or because they fail to be
isolated. For these unreported individuals, we assume that I = 8 + 4X3, where X3 is a
symmetric Beta random variable with support in [0, 1].

Let pR be the proportion of reported individuals and let Y be a Bernoulli random variable
with parameter pR, independent of X2 and X3. Then we can write

I = Y (3 +X2) + (1− Y )(8 + 4X3).

We thus see that the distribution of I is bimodal, with a first peak at around 3.5 days and
a second one around 10 days.

It seems that asymptomatic individuals are less infectious than symptomatic ones (see
[CSC+20]). We could have included in the model different values of infectiosity depending
upon the duration of the infectious period of each individual, using the theory developed
in [FPP20], but we lack quantitative information about the various levels of infectiosity
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to make serious predictions, while the available data does not allow us to estimate many
parameters. Note also that, as shown in [FPP20], during the early phase of the epidemic,
the product of the number of asymptomatic patients and their infectiosity determines the
evolution of the epidemic. Overestimating the infectiosity leads to an underestimation of the
number of cases, which has no significant impact on the dynamic of the epidemic during the
early phase, but may lead to underestimation of the proportion of the population which has
acquired immunity at the end of this early phase.

1.4 Estimating the state of the epidemic prior to lockdown mea-
sures

In France, as of June 2020, the Covid-19 epidemic underwent three main stages. First, a
rapid exponential growth (of the number of cases, number of hospitalized patients, number
of deaths), followed by a slowing down of the epidemic due to the lockdown measures put
into place around 16 March, settling after a few weeks to an exponential decrease of the
number of newly hospitalized patients and new deaths. The third phase started on 11 May,
with the progressive lifting of lockdown restrictions.

Since testing has been limited to a subset of symptomatic individuals and tests were
performed at various intervals following symptom onset, the number of reported positive
cases might not be exactly proportional to the true number of infected individuals throughout
the different stages of the epidemic (and more importantly the ratio of infected individuals
to tested individuals may vary significantly between the different phases). Hospital deaths,
however, have been reported daily from 15 February. Moreover, from 18 March onwards,
Santé Publique France has published daily reports of newly hospitalised patients, newly
admissions in intensive care units (ICU) and new deaths in each administrative département,
[San20].

Assuming that the distributions of the intervals between infection and hospital admission,
admission in ICU and death do not vary over time, the growth rate of these quantities is
necessarily identical to that of the cumulative number of infected individuals. As a result,
if the distribution of the exposed and infectious periods (E , I) is known, we can infer the
contact rate λ corresponding to a given growth rate ρ using (4).

Note that, since Santé Publique France only started publishing regional data on 18 March,
the growth rate is inferred from the slope of the cumulative deaths during the first week of
lockdown. Since the delay between infection and death in hospital is believed to be at least
10 days (e.g. [SKL+20]), it is safe to assume that all the individuals who died during this
period were infected before lockdown measures took effect (however, see Subsection 2.1 below
for the particular case of the Grand Est and Hauts-de-France regions).

If moreover one knows the distribution of the interval D between infection and death, for
example, as well as the infection fatality ratio f (the probability that an individual eventually
dies, given that he or she has been infected), it is possible to infer the state of the epidemic.
Indeed, the cumulative number of deaths at time t ≥ 0, denoted by ΛD(t), is then given by

ΛD(t) = fN E
[
1− S(t−D)

]
,

where N is the total population size (the expectation is taken with respect to the random
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variable D). During the early phase of the epidemic,

(1− S(t)) ≈ 1

N
(E(t) + I(t) +R(t)) =

1

N
eρt,

where t is the time elapsed since the (unknown) time of the start of the epidemic (i.e., the
theoretical time at which only one individual was infected in the population), and E(t), I(t)
and R(t) solve the linearized system (1). Thus, during this phase,

ΛD(t) = f E
[
1{D≤t} e

−ρD] eρt. (8)

Hence, if one knows the infection fatality ratio and the distribution of D, one can infer both
ρ and t from the observed cumulative number of deaths prior to lockdown measures. Using
(4), one can deduce the value of the contact rate before lockdown measures, λ0, (given that
the distribution of (E , I) is known) and thus simulate the epidemic up to this time.

Note that if pH is the probability that a given infected individual is admitted to a hospital
at some point, and if DH is the interval between the time of infection and hospital admission,
then, the cumulative number of hospitalized patients at time t ≥ 0, denoted by ΛH(t), is
given by

ΛH(t) = pHNE
[
1− S(t−DH)

]
.

Hence, during the early phase of the epidemic,

ΛH(t) = pHE
[
1{DH≤t}e

−ρDH
]
eρt.

As a result, one can obtain the probability of being admitted to hospital if one knows f and
the distributions of D and DH through the relation,

pH = f
ΛH(t)E

[
e−ρD

]
ΛD(t)E [e−ρDH ]

, (9)

for any time t ∈ [0, tL] for which D < t and DH < t almost surely, where tL is the time at
which lockdown measures are put into place.

In this paper, we shall assume that DH and D are of the form

DH = mH(xH + (1− xH)2XH), D = DH +mD(xD + (1− xD)2XD), (10)

where XH and XD are two independent Beta random variables with support in [0, 1]. (The
parameters mH and mD then correspond to the mean infection to hospital admission and
admission to death intervals.) The parameters mH , xH , mD and xD are then numerically
fitted to the data, using an MCMC algorithm.

1.5 Estimating the contact rate during lockdown measures

At the start of lockdown measures, the contact rate in the population dropped sharply over
the course of a few days. As a result, the daily number of deaths in hospitals started to slow
down, before decreasing at a steady rate after approximately three weeks. In addition, the
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number of new hospital admissions and ICU admissions also decreased at a steady rate after
a (shorter) transition period. Assuming that, at this point, the proportion of susceptible
individuals in the overall population remains close to 1, this corresponds to the situation
where

E(t) ≈ E(s)eρL(t−s), I(t) ≈ I(s)eρL(t−s),

for t ≥ s and with ρL < 0 (ρL is the growth rate of the epidemic during lockdown). Thus,
according to Proposition 3, we can use (4) to estimate the contact rate during lockdown λL
from the rate of decrease of the daily number of hospital deaths (or hospital admissions).

In what follows, we shall assume that the distribution of the sojourn times (E , I) is unaf-
fected by the various containment measures put into place during the course of the epidemic.
This may not be true, especially if contact tracing and massive testing are implemented at a
sufficient scale in the population, but the extent of such measures in France, at least during
the early stages of the Covid-19 epidemic, remained very limited.

1.6 Estimating the contact rate after the easing of lockdown mea-
sures

The easing of lockdown restrictions was organized in different phases. On 11 May, people were
allowed to leave their homes, shops started to reopen and schools progressively welcomed
pupils again. On 2 June, bars and restaurants reopened in most of the country, and on
22 June, all schools reopened, along with cinemas, and most activities resumed, although
sanitary measures continued to be enforced (e.g. wearing a mask remains mandatory in
mainy public places including trains and public transports).

After the easing of lockdown restrictions, on May 11, we can assume that the contact rate
in the population gradually shifted to a new value, λE, corresponding to another growth rate
ρE. As we shall see below, at the end of the lockdown period, the proportion of susceptible
individuals in the population had already dropped by 5 to 10%, at least in Île de France and
the Grand Est and Hauts-de-France regions. As a result, the approximation S(t) ≈ 1 may
not be valid at this point, preventing us from directly applying (4). Since the epidemic keeps
decreasing, however, the value of S(t) does not vary much during the period over which we
estimate the new growth rate ρE. It follows that we can replace λ by S(tE)λ in (4), where
S(tE) is the proportion of susceptible individuals at the end of the lockdown period, and
hence deduce the corrected value of the contact rate.

The same correction should also be applied in the future when estimating the contact
rate in later stages of the epidemic.

1.7 Estimating the state of the epidemic

Once we have estimated the contact rates prior to lockdown (λ0), during lockdown (λL) and
after lockdown (λE), as well as the interval between the (theoretical) index case and the
start of lockdown tL, we are in a position to compute the state of the epidemic. To do this
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we numerically solve the equations of Definition 1 with

λ(s) =


λ0 if s < tL,

λL if tL ≤ s < tE,

λE if s ≥ tE,

where tL is time at which lockdown measures are implemented and tE is the time at which
these measures are eased. For the initial condition, using Proposition 3, we choose

S(0) = 1− 1

N
, E(0) =

e

N
, I(0) =

i

N
, R(0) =

r

N
,

with e, i, r as in (1) and Gc
0, Ψ0, Φ0, F1 as in (6), choosing ρ equal to the growth rate prior

to lockdown in (1) and as the parameter of the exponential random variable Θ in (6). In
this way, by Proposition 3, 1− S(t) = 1

N
eρt for all t ≤ tL, as expected.

It might seem counter-intuitive to start the epidemic with some fraction of removed
individuals (R(0) > 0), even more so as we assume that only one individual is not susceptible
at this time. This, however, is only an artefact of our model. We are not trying to estimate
the true initial state of the epidemic; we merely find a suitable initial condition so that the
observed exponential growth prior to lockdown measures fits the observed data.

2 Results

For our estimation of the state of the Covid-19 epidemic in France, we split the country in
three regions, or patches: the Grand Est and Hauts-de-France regions (the northeastern part
of the country where the epidemic took off earliest), Île de France (i.e. the densely populated
Paris region) and the rest of the country, excluding Corsica and the overseas territories.

The exclusion of Corsica was motivated by its singular behaviour. Indeed, in this island,
the epidemic took off very quickly in March, followed by a very sharp plateau, much more
marked than in the rest of the country. In any case, including Corsica in our analysis should
not significantly affect our results.

2.1 Growth rates of the epidemic

We measured the growth rate of the cumulative number of infected individuals during the
early phase of the epidemic by fitting an exponential curve to the cumulative number of
deaths in each patch, between 19 March and 26 March (earlier data was only available at the
national level). Despite the fact that very strict lockdown measures were already effective at
the time, hospital deaths continued to increase exponentially until at least 26 March, mainly
due to the fact that infected individuals who died of Covid-19 during this period had been
infected before national lockdown, hence during the exponential growth phase. The growth
rates varied between 0.20 in the Grand Est and Hauts-de-France regions and 0.26, 0.28 in the
rest of the country and in Île de France, corresponding to a doubling time of the cumulative
number of infected individuals of around 2.5 days (see Table 1).
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Region Île de France Grand Est
and Hauts-
de-France

Rest of
France (ex-
cluding
Corsica and
overseas)

Mainland
France

Growth rate during the
early phase (from hospital
deaths)

0.28 0.20 0.26 0.27

Growth rate under lock-
down

-0.060 -0.053 -0.051 -0.055

Growth rate after 11 May -0.046 -0.056 -0.054 -0.052
Growth rate after 2 June -0.0076 -0.033 -0.047 -0.019

Table 1: Growth rates measured prior to lockdown measures, in the steady phase of the
lockdown period and after the easing of lockdown restrictions in each of the three patches
used for the estimation (̂Ile de France, Grand Est and Hauts-de-France, and the rest of
mainland France, excluding Corsica). Growth rates prior to lockdown are measured using
hospital deaths between 19 March and 26 March (except for the whole country for which we
used data from 1st March).

The relatively slow growth rate in the Grand-Est and Hauts-de-France regions might seem
surprising, given that this is where the epidemic first took off at a very quick pace. We inter-
pret this as the result of emergency measures which were put into place from 7 March in the
most affected areas: school closures, banning of public events and gatherings, etc.[AFP20].
Indeed, if the epidemic had been growing at this rate of 0.20 from the beginning, our model
shows that it should have started much earlier than it actually did, and the number of hos-
pital deaths in the whole country would have grown more slowly (but for a longer time) at
this time, as shown on Figure S1. If instead we assume that the growth rate in this region
was 0.27 (i.e. the growth rate at the national level) up until 7 March, then 0.20 between
7 March and 16 March, the SEIR model predicts a cumulative number of hospital deaths
much closer to what was actually observed at the national level (see Figure S1).

After a few weeks of lockdown, daily hospital admissions and deaths started to decline,
again exponentially, at a steady rate in each patch, as shown on Figure 3. We observed a
drop in the number of daily admissions and deaths every week-end, which was systematically
compensated at the start of the following week, indicating reporting delays. We thus fitted
simultaneously three exponential curves to the cumulative number of hospital admissions,
hospital deaths and ICU admissions between 3 April and 11 May (starting only on 13 April
for ICU admissions and deaths). The obtained values are displayed in the second line of
Table 1. Overall, the growth rate of the epidemic in each patch stood between -0.051 and
-0.06, corresponding to a halving time of the number of infected individuals of around 12
days.

Using the same method, we can estimate the new growth rate of the cumulative number
of infected individuals after the easing of lockdown measures, on 11 May. Overall, the
epidemic appears to be decreasing but the decrease appears to slow down after the easing of
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Figure 3: Growth rates of the cumulative number of infected individuals during (ρL) and
after (ρE) lockdown in France, deduced from the number of hospital admissions, ICU ad-
missions and hospital deaths in each patch. In each instance, an exponential curve was
fitted simulateneously to each cumulative number of hospital admissions, ICU admissions
and deaths. The last value in each patch is deduced from the cumulative number of hospital
admissions, ICU admissions and hospital deaths during the last two weeks of June.

lockdown restrictions in Île de France (−0.046 instead of −0.06 during lockdown), reflecting
the increased contact rate in this region. This seems to be confirmed by the most recent
data, which suggests an increased propagation of the virus in Île de France and in the Grand
Est and Hauts-de-France regions (third set of solid lines on Figure 3). This raises fears that
further lifting of restrictions might cause this growth rate to increase even further, eventually
triggering a second epidemic wave. Indeed, not enough time has elapsed since the last easing
of restrictions (on 2 June and even later on 22 June) in order to accurately estimate the new
contact rate in the population.

Note that the SEIR model predicts a small but non-negligible (of the order of 5 to 10%)
level of acquired immunity, at least in Île de France and the Grand Est and Hauts-de-France
regions (see Subsection 2.3). We would thus expect to observe a progressive acceleration of
the exponential decrease in the number of new hospital admissions and deaths. The fact
that this does not take place suggests that the easing of lockdown restrictions somewhat
compensates the effect of this acquired immunity.

So far, hospital admissions, ICU admissions and hospital deaths seem to continue to
decrease, suggesting that the new contact rate remains small enough to avoid a second

15



epidemic wave. Note however that, because of the delay between infection and hospital
admission, our estimate of the contact rate is always at least two to three weeks behind the
current one. As a result, the new contact rate after the latest easing of restrictions might
already be too high, and we would only notice three weeks later.

2.2 Reproduction numbers and the effect of lockdown measures

Using the relation (4) and our assumptions on the distribution of (E , I) from Subsection 1.3,
we can estimate the values of the reproduction number R0 in each patch during each phase
of the epidemic. Since the growth rates prior to lockdown and during lockdown are relatively
uniform across the different patches (respectively, around 0.27 and -0.049, taking into account
our interpretation of the lower growth rate in the Grand Est and Hauts-de-France regions),
we use the same value for all patches.

The proportion of reported individuals affects both the expectation of the infectious
period E[I] and the whole distribution of (E , I). Considering Corollary 4, we thus observe
that the estimated value of the reproduction number depends on the proportion of reported
individuals, and more generally on the whole distribution of (E , I).

If we assume that all infected individuals are reported (pR = 1), the reproduction number
in France is 3.4 prior to lockdown measures and 0.79 during lockdown. If, however, we
assume that all individuals are unreported (pR = 0), the reproduction number in France is
6.3 prior to lockdown and 0.66 during lockdown. The estimate of the reproduction number
then varies continuously between these values for intermediate values of the proportion of
reported individuals. For instance, if the proportion of reported individuals is close to 0.8,
the reproduction number is estimated to be 4.2 during the early phase of the epidemic and
0.73 during lockdown, whereas if this proportion is 0.2, R0 = 6 before lockdown and 0.67
during lockdown. Note that our estimate of R0 fits well the results in [SLX+20].

Country R0 prior to lock-
down

R0 during lock-
down

Accounting for
exposed period

Reference

France 2.9 - 3.35 0.55 - 0.72 implicit [SRE+20]
France 3.1 - 3.3 0.47 no [RKP+20]
France 3.3 0.5 yes [SKL+20]
France 3.4± 0.1 0.65± 0.04 yes [Mam20]
China 4.7 - 6.6 / yes [SLX+20]

Table 2: Estimates of the reproduction number in the literature

The relatively large values (around 6) obtained for small proportions of reported individ-
uals suggest that this proportion is closer to 0.8 than to 0.2. Moreover, the values we obtain,
even for large proportions of reported individuals, are sometimes larger than other estimates
in the literature (Table 2). We can attribute this to two things. First, as shown in Figure 2,
the Markovian SEIR model tends to slightly underestimate R0 in the two regimes we are
interested in (growth in the early phase and decrease under lockdown). Second, some studies
do not take into account the exposed period E in their model. However, Corollary 4 shows
that neglecting the exposed period leads to underestimating of the reproduction number
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R0, here by a factor of 0.76 for each day of exposed period (e−ρ = 0.76 with ρ = 0.27). Fi-
nally, uncertainty about the infectious period I also affects the estimates of the reproduction
number.

2.3 State of the epidemic and acquired immunity at the popula-
tion level

Using (8) and Subsection 1.7, we can estimate the state of the epidemic in each patch, given
the infection fatality ratio f and the distribution of the delay D. Unfortunately, these two
quantities are notoriously hard to measure during the early stage of the epidemic.

The infection fatality ratio for the Covid-19 epidemic in France has been estimated in
at least two studies [RKP+20, SKL+20]. Both studies found a fatality ratio of 0.5%, with
significant variation across age classes in [SKL+20]. These studies only account for hospital
deaths, as do we, even though a significant number of deaths take place outside hospitals,
mainly in nursing homes. Hence this ratio has to be corrected (roughly by a factor 1.6
[RKP+20]) to obtain the true infection fatality ratio of Covid-19 (and to obtain correct
predictions for the expected number of deaths). Nevertheless, since we use hospital deaths
to calibrate our SEIR model, we shall use the infection fatality ratio estimated by [SKL+20,
RKP+20] when using (8).

We can at least bound this ratio from below using the observed excess mortality in
some regions. For example, in Lombardy (Italy), 13,575 people died of Covid-19, for a
total population of 10 million, showing that this ratio is at least 0.14% (or 0.088% for
hospital deaths). Another estimate of this ratio was obtained in Germany, were around
1,000 individuals were tested, out of which 15.5% tested positive and 7 people died, yielding
an infection fatality ratio of 0.37% [SSK+20] (corresponding to 0.23% for hospital deaths).

On the other hand, the infection fatality ratio can be bounded from above by the apparent
death rate, that is to say, the ratio of Covid-19 related deaths and declared positive cases,
at least while the epidemic seems to be receding, as is the case in France in June 2020, with
less than 50 deaths per day. Taking only hospital deaths into account, this suggests that f
is no more than 12%. Other countries have much lower apparent death rates, e.g. South
Korea (2.3%), Germany (4.6%) and even Italy (14%). These discrepancies can mostly be
attributed to differences in testing capacities and to a lesser extent to differences in hospital
capacities.

The numerical fit to the hospital admissions and deaths data using (10) then yields the
following:

mH = 14.8 (C.I. [11.5, 18]), xH = 0.18 (C.I. [0.04, 0.43]),

mD = 4.7 (C.I. [3.85, 7.17]), xD = 0.96 (C.I. [0.11, 0.99]),
(11)

corresponding to a mean infection to hospital admission interval of 14.8 days and a mean
infection to death interval of 19.5 days. The confidence intervals are computed from the
trajectory of the MCMC run. One notes that the data contain more information on the
mean intervals than on the ratios xH ans xD.

We also tried to estimate the proportion of reported individuals pR at the same time as
the delay parameters (mH , xH ,mD, xD), but the fit was on average equally good for very
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different values of this proportion (confidence interval: [0.06, 1]). As a result we are not able
to give a meaningful estimate of this proportion using the available data.

We estimated the probabilities of being admitted to hospital given infection. These
obviously depend on the infection fatality ratio, but, on the other hand, the admission
to death ratio (i.e. the probability of dying given that one is admitted to a hospital) is
constant. We estimated that the admission to death ratio was 0.13 in Île de France, 0.24 in
the Grand Est and Hauts-de-France regions and 0.14 elsewhere. Note that we consider that
these do not evolve over time, which may not be accurate, especially in the Grand Est and
Hauts-de-France regions. Indeed, the relatively high death rate in hospitals in the Grand
Est and Hauts-de-France regions during the early phase of the epidemic reflects the fact that
hospitals in this part of the country were saturated at the time (army medics were eventually
dispatched to help the local health system).
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Figure 4: Predicted level of immunity in each patch as a function of the infection fatality
ratio f . All the simulations use pR = 0.6 and assume that death occurs on average 19.5 days
after being infected. The rightmost point of each curve corresponds to the value on 15 June

Figure 4 shows the predicted levels of immunity (i.e., the proportion of infected indi-
viduals) up to 15 June in each patch for three values of the infection fatality ratio f , using
the delay distributions in (10) with the estimated parameters (11). Unsurprisingly, higher
values of this ratio lead to lower predicted levels of immunity. Note that underestimating D
has the same effect as overestimating the infection fatality ratio, as can be noted from (8).
As a result it is equally important to estimate f and the distribution of D, a fact which is
too easily overlooked.

For the fatality ratio estimated by [RKP+20, SKL+20] (f = 0.5%), we estimate that
between 8 and 10% of the population has been infected by mid June in the most affected re-
gions (̂Ile de France, Grand Est and Hauts-de-France), and around 2 to 3% of the population
in the rest of mainland France. As shown by Figure 4, these estimates vary significantly as a
function of f and the distribution of the delay between infection and death (D), highlighting
the need for more accurate measures of these quantities.
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3 Discussion

Our claim in this article is that using non-Markovian epidemic models to assess the state
of an ongoing epidemic leads to more accurate estimates of the main quantities of interest
and more pertinent predictions concerning the future of the epidemic. This has already been
advocated in [ZFK20] and [SRE+20], and our goal was to lay out the main arguments using
both theoretical tools and simulations. We also wished to stress which quantities need to be
more precisely evaluated in order to better predict the state and the future evolution of the
epidemic.

As exposed in Remark 5, knowing the distribution of the sojourn times in each compart-
ment (E , I) is crucial to estimate the value of R0 from the initial growth rate of the epidemic.
Without knowledge on these sojourn times, the reproduction number can only be estimated
using contact tracing, which is both difficult and costly. As shown in Figure 2, Markovian
epidemic models (but not only) can in some regime underestimate the value of R0 for a given
initial growth rate of the epidemic. If this is the case, then they will underestimate the final
proportion of infected individuals in the population in the absence of containment measures,
and thus the predicted death toll of the epidemic.

Aside from this, the Markovian and non-Markovian models differ in their transitory
behavior, even if the initial growth rate of the epidemic is kept fixed. This can most easily
be noted just after strict lockdown measures were quickly put into place across the whole
country around 16 March. Indeed, Figure 5 shows that the non-Markovian model has a
greater inertia than the Markovian model. That is to say that, after lockdown measures
are implemented, however strict, the cumulative number of infected individuals continues
to grow, much more than predicted by the Markovian model. This is apparent in the slow
decrease in hospital admissions and deaths even after 3 weeks of strict lockdown, something
which the Markovian model would not have predicted (one way to force the Markovian
model to display this kind of behavior would be to make the change in the contact rate more
gradual, but we do not believe that this would reflect what took place in France).

A direct consequence is that the Markovian model will tend to underestimate the number
of infectious individuals (i.e. who are still contagious) at the time of the easing of lockdown
restrictions, and to underestimate the level of acquired immunity in the population.

We have also shown that accurate estimates of both the infection fatality ratio and the
distribution of the delay between infection and death (or hospital admission) are needed in
order to reliably infer the state of the epidemic during its early stage. This can either be
achieved through sophisticated statistical procedures, such as in [RKP+20, SKL+20], or by
performing serological tests on large samples of a population which has been infected.

Note that an analysis similar to the one conducted in this paper can be done for a model
where the infectiosity of each individual is a random function of the time since infection,
those random functions for the various individuals being i.i.d., see [FPP20]. This would
yield a model which could account for the variability, both in time and between individuals,
of the infectiosity of each infected individual, something which is apparent for Covid-19 for
example in [HLW+20].

Conflicts of interest The authors declare no conflict of interest.
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Figure 5: Predictions of the non-Markovian SEIR and Markovian SEIR models. The left
column shows the cumulative number of infected individuals, the middle column shows
daily hospital admissions (the dashed blue line corresponds to the data gathered from Santé
Publique France) and the last column shows the daily hospital deaths (the dashed orange
line shows the data from Santé Publique France). The non-Markovian model assumed a
proportion of reported individuals of 0.6, and the Markovian model had the same expected
exposed and infectious periods.
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Code availability The code used to simulate the SEIR model and to analyse the data
is made available at https://github.com/rforien/Fit_Covid19_nonMarkovian.git
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A Proof of Proposition 3

We start with the case ρ > 0. Replacing (E(t), I(t), R(t)) in (2) by their expressions in (3)
yields the following equations

eeρt = λi

∫ t

−∞
Gc(t− s)eρsds

ieρt = λi

∫ t

−∞
Ψ(t− s)eρsds

reρt = λi

∫ t

−∞
Φ(t− s)eρsds.

The second equation translates into

λ−1 =

∫ ∞
0

P(E ≤ s < E + I)e−ρsds

= E
[∫ E+I
E

e−ρsds

]
=

E
[
e−ρE(1− e−ρI)

]
ρ

. (12)

yielding (4). The remaining two equations give the relations between e, r and i. The first
one yields

e = λi

∫ ∞
0

P(E > s)e−ρsds

=
λi

ρ

(
1− E

[
e−ρE

])
, (13)

and the third one gives, for ρ > 0,

r = λi

∫ ∞
0

P(E + I ≤ s)e−ρsds

=
λi

ρ
E
[
e−ρ(E+I)

]
.

Combining these with the constraint e + i + r = 1 yields (5). Note that λi = ρ.
To prove the second part of the statement, we only need to check that the quantities

defined in (6) satisfy

eGc
0(t) = λi

∫ 0

−∞
Gc(t− s)eρsds

iF c
1 (t) + eΨ0(t) = λi

∫ 0

−∞
Ψ(t− s)eρsds

r + iF1(t) + eΦ0(t) = λi

∫ 0

−∞
Φ(t− s)eρsds .
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Indeed, combining these with (2) and the first part of the proposition, we obtain the fact
that (3) solves (1). To check the first identity, write∫ 0

−∞
Gc(t− s)eρsds =

∫ +∞

t

P(E > s)eρ(t−s)ds

= E
[
1{E>t}

∫ E
t

eρ(t−s)ds

]
=

1

ρ
E
[
1{E>t}(1− e−ρ(E−t))

]
.

Multiplying by λi/e, we obtain

Gc
0(t) =

λi

e

∫ 0

−∞
Gc(t− s)eρsds =

E
[
1{E>t}(1− e−ρ(E−t))

]
E [1− e−ρE ]

.

We conclude by noting that the term on right-hand-side equals P(E −Θ > t |Θ < E), where
Θ is an independent exponential random variable with parameter ρ.

Plugging (6) and (7) in the second equation, we obtain

iF c
1 (t) + eΨ0(t) = P(E ≤ Θ < E + I)P(t+ Θ < E + I | E ≤ Θ < E + I)

+ P(θ < E)P(E ≤ t+ Θ < E + I |Θ < E).

Since, for t ≥ 0,

{t+ Θ < E + I} ∩ {E ≤ Θ < E + I} = {E ≤ t+ Θ < E + I} ∩ {E ≤ Θ < E + I},

and

{E ≤ t+ Θ < E + I} ∩ {E + I ≤ Θ} = ∅,

by the law of total probability,

iF c
1 (t) + eΨ0(t) = P(E ≤ t+ Θ < E + I).

On the other hand, since λi = ρ,

λi

∫ 0

−∞
Ψ(t− s)eρsds =

∫ +∞

0

P(E ≤ t+ s < E + I)ρe−ρsds

= P(E ≤ t+ Θ < E + I).

For the third equation, we proceed in the same way, plugging (6) and (7), we obtain

r + iF1(t) +eΦ0(t) = P(E +I ≤ Θ) +P(E ≤ Θ < E +I)P(E +I ≤ t+ Θ | E ≤ Θ < E +I)

+ P(Θ < E)P(E + I ≤ t+ Θ |Θ < E).

Now, we note that, for t ≥ 0,

{E + I ≤ t+ Θ} ∩ {E + I ≤ Θ} = {E + I ≤ Θ}.
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As a result, applying the law of total probability, we obtain

r + iF1(t) + eΦ0(t) = P(E + I ≤ t+ Θ).

On the other hand, since λi = ρ,

λi

∫ 0

−∞
Φ(t− s)eρsds =

∫ +∞

0

P(E + I ≤ t+ s)ρeρsds

= P(E + I ≤ t+ Θ).

This concludes the proof of the first part of Proposition 3.
In the case ρ < 0, note that the computations in (12) and (13) remain valid, yielding the

second part of the statement.
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Figure S1: Predicted deaths during the early phase of the epidemic with and without two
step measures in the Grand Est and Hauts-de-France regions. On the left, the growth rate
inferred from the cumulative number of deaths in this patch is taken to be the growth rate
of the epidemic in this region since the beginning, leading to a slow growth of the epidemic
during the early phase, which does not fit the observations. On the right, the growth rate of
the epidemic is 0.27 at first, and then 0.20 from 7 March, before changing again at the time
of lockdown. The agreement with the observations is considerably improved.
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[GAA+20] Stéphane Gaubert, Marianne Akian, Xavier Allamigeon, Marin Boyet, Baptiste
Colin, et al. Understanding and monitoring the evolution of the Covid-19 epi-
demic from medical emergency calls: the example of the Paris area. medRxiv
preprint, March 2020.

[HLW+20] Xi He, Eric HY Lau, Peng Wu, Xilong Deng, Jian Wang, Xinxin Hao, Yiu Chung
Lau, Jessica Y Wong, Yujuan Guan, Xinghua Tan, et al. Temporal dynamics in
viral shedding and transmissibility of COVID-19. Nature medicine, 26(5):672–
675, 2020.

[KM27] William Ogilvy Kermack and Anderson G McKendrick. A contribution to the
mathematical theory of epidemics. Proceedings of the Royal Society of Lon-
don. Series A, Containing papers of a mathematical and physical character,
115(772):700–721, 1927.

[LMSW20] Zhihua Liu, Pierre Magal, Ousmane Seydi, and Glenn Webb. A COVID-19
epidemic model with latency period. Infectious Disease Modelling, April 2020.

[Mam20] Gary A Mamon. Fit of french covid-19 hospital data with different evolutionary
models: regional measures of r0 before and during lockdown. arXiv preprint
arXiv:2005.06552, 2020.

[PP20] Guodong Pang and Etienne Pardoux. Functional Limit Theorems for Non-
Markovian Epidemic Models. arXiv:2003.03249 [math], March 2020.

25



[RKP+20] Lionel Roques, Etienne K Klein, Julien Papaix, Antoine Sar, and Samuel
Soubeyrand. Using early data to estimate the actual infection fatality ratio from
COVID-19 in France. Biology, 9(5):97, 2020.
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