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variations on a theme of Ray and Knight
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Abstract. Based on an intuitive approach to the Ray-Knight representation of Feller’s
branching diffusion in terms of Brownian excursions we survey a few recent developments
around exploration and mass excursions. One of these is Bertoin’s “tree of alleles with rare
mutations” [6], seen as a tree of excursions of Feller’s branching diffusion. Another one
is a model of a population with individual reproduction, pairwise fights and emigration
to ever new colonies, conceived as a tree of excursions of Feller’s branching diffusion
with logistic growth [14]. Finally, we report on a Ray-Knight representation of Feller’s
branching diffusion with logistic growth in terms of a reflected Brownian motion whose
drift depends on the local time accumulated at its current level [19, 27].
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1. Introduction

The two classical theorems of Ray and Knight (see e.g. [24], [32] or [33]) give
beautiful connections between Brownian excursions (described by Itô’s excursion
measure) and excursions of Feller’s branching diffusion.

t

η

ζ

Figure 1. Itô meets Feller. Sketch of a Brownian excursion and the corresponding
excursion of a Feller branching diffusion.
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Here is an informal statement of the second Ray-Knight theorem: The time
which a (suitably stopped) reflected Brownian motion spends near level t (and which
is formally captured by its local time at t), viewed as a process in t, is a Feller
branching diffusion. Let’s go for the trees in the forest: The reflected Brownian
motion is the concatenation of many Brownian excursions, and the random path of
the Feller branching diffusion is a sum of many Feller excursions (we will come back
to this in Section 4). And indeed, as adumbrated in Figure 1, the just described
“Ray-Knight mapping” works also on these building blocks, and maps a Brownian
excursion into a Feller excursion.

A nice way to understand the Ray-Knight mapping is to interpret the Brownian
excursion as the exploration path of a tree, and the Feller excursion as width profile
of the same tree. This interpretation, and the mapping from exploration excursions
to width profiles (or mass excursions, is most easily conceived in a (pre-limit)
situation of binary trees in continuous time. We will review this in Section 2.
There, we will also point to a few historic landmarks and give some more hints to
the literature.

In Section 3 we will state a continuous-time version of the Harris representa-
tion of binary Galton-Watson trees in terms of continuous and piecewise linear
exploration paths whose slopes change at constant rate.

In Section 4 we describe the result of a scaling limit. This takes the exploration
paths to reflected Brownian motion (exploring a forest of continuum trees) and the
rescaled mass processes to a Feller branching diffusion. With the right scaling the
image of Itô’s excursion measure under this mapping is the excursion measure of
Feller’s branching diffusion, which is an excursion measure from an exit boundary
as defined by Pitman and Yor [30]. Poisson processes and subordinators will play a
central role. Section 5 deals with subcritical branching by a Girsanov reweighting
of both the exploration and the mass excursion measures.

In Sections 6–8 we give a brief synopsis of a few recent developments in the
framework of “exploration and mass excursions”. Intended symmetries in the pre-
sentation are captured by the following tableau (where FBD stands for Feller’s
branching diffusion):

Sections 4 and 5:
Ray-Knight representation
of FBD

Section 8:
Ray-Knight representation
of FBD with logistic growth

Section 6:
Trees of excursions
of FBD

Section 7:
Trees of excursions
of FBD with logistic growth

In Section 6 we focus on Bertoin’s trees of alleles in branching processes with
rare neutral mutations, with all mutations leading to ever new types. In the scal-
ing limit studied in [6], the tree of alleles can be viewed as a rooted tree all of
whose nodes have a countable out-degree. The root is labelled by a subcritical
Feller branching diffusion, and all the other nodes are labelled by subcritical Feller
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excursions, where given that the label of the parent is a mass path z = (zt), the
labels of its children are a Poisson population of mass excursions with intensity
measure A(z)Q̄, with A(z) =

∫∞
0 zt dt being the “size” of z and Q̄ being the sub-

critical Feller excursion measure. As we will review in Section 6, the total size of
the generations in the “tree of alleles” is then a (discrete time, continuum mass)
branching process which can be represented as an iteration of independent copies
of inverse Gaussian subordinators.

Without changing the mathematics of this model, one may think of a geo-
graphically instead of a genetically structured population and replace the concept
of “mutation to an ever new type” by that of “migration to an ever new colony”.
Interesting extensions of this model have been considered. In [7], Bertoin allows for
dependencies between the number of emigrant and “homebody” children, other-
wise leaving the independence in the individual reproduction untouched. Another
extension (which includes the model with local competition discussed in Section 7)
is to replace the excursion measure Q̄ of the subcritical Feller branching by the
excursion measure Q of some other diffusion on R+, but with the same emigration
mechanism as in the model described at the beginning of Section 6. This is the
class of Virgin Island models studied by Hutzenthaler [14].

The last two sections feature Feller’s branching diffusion with logistic growth, a
process which has been studied in detail by Lambert [18]. In Section 7 we review
the Virgin Island model in which the measure Q that governs the tree of colony
sizes is the excursion measure of Feller’s branching diffusion with logistic growth.
In an individual-based interpretation, this process incorporates supercritical repro-
duction and pairwise fights between individuals within each colony.

At first sight, the Feller branching diffusion with logistic growth does not lend
itself to a Ray-Knight representation, because the competition between individuals
destroys the “branching property”, i.e. the independence in the reproduction.
(Other than in Section 7, we now focus on the situation within one colony.) In
Section 8, however, we will provide such a representation, by introducing an order
among the individuals and decreeing that the pairwise fights are always won by
the individual “to the left”. As we will see, this results in an exploration process
which is a reflected Brownian motion with constant upward drift plus a downward
drift which is proportional to the local time accumulated at the current level. The
exploration path encodes a forest of countably many continuous trees in the same
way as reflected Brownian motion does in the critical Feller branching case, with
a sampling from the exploration time axis corresponding to a sampling from the
leaves in the forest, see [23]. With the above-mentioned “left-right rule” for the
individual fights, the excursions which come later in the exploration tend to be
smaller – the trees to the right are “under attack from those to the left”.

In this exposé our aim is to explain concepts and ideas on an intuitive rather
than a thoroughly formal level. To this end we sometimes resort to a verbal
description and refrain from giving full and rigorous proofs.
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2. Harris paths and tree profiles

With a binary tree in continuous time one can associate (like in Figure 2) two ex-
cursions from zero. One is the exploration excursion η which arises by traversing
the tree at a constant speed and recording the height as a function of the explo-
ration time s. The other is the mass excursion ζ which gives the profile of the tree,
i.e. the number of extant branches as a function of the real time t.

The idea to establish a correspondence between planar (rooted) trees and paths
by traversing the vertices of the tree and recording the height (i.e. the distance of
the root) as a function of the “exploration time” goes back to Theodore Harris ([13],
cf. [28] ch. 6). Following Pitman and Winkel [29] we name such an exploration
excursion a Harris path. Later we will also consider the concatenation of such
excursions, which describe the exploration of a forest of trees (and is called Harris
path as well). For the moment, let us consider one single tree.

The number ζt of branches extant in the tree at time t equals half the number
of the level t-crossings of the Harris path η, which in turn equals the number of
excursions of η above height t.

s

t
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η

Figure 2. Left: A binary tree and its Harris path (exploration excursion) η. Right: The
tree profile (mass excursion) ζ.

Let us agree (for the moment) on a traversal speed 2. This results in slope ±2
of the Harris path, and consequently half the number of its level t-crossings can be
read off as

ζt = lim
ε→0

1

ε

∫ ∞

0

1{t<ηs<t+ε}ds. (1)

With the chosen slope ±2 of the Harris path, it is clear that the total branch length
of the tree equals the total time that is needed to traverse the tree. In particular,
the integrated mass excursion equals the length of the exploration excursion, i.e.

A(ζ) :=

∫ ∞

0

ζt dt = inf{s > 0 : η(s) = 0} =: R(η). (2)
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If the tree is random, say critical binary Galton-Watson with branching rate σ2,
then the durations of the successive periods of increase and decrease of the explo-
ration turn out to be i.i.d. exponential with parameter σ2/2, see Section 3.

In an (N2, N)-scaling as described in Section 4, the concatenation of i.i.d.
copies of rescaled exploration excursions ηN converges, as N → ∞, to a reflected
Brownian motion, and the sum of i.i.d. copies of rescaled mass excursions ζN

converges to a Feller branching diffusion. Both limiting objects can be represented
in terms of Poisson populations, with the intensity measures being Itô’s excursion
measure on one side and the excursion measure of Feller’s branching diffusion (as
described in [30]) on the other. In this way, “Itô meets Feller”, as the two did in
Princeton in 1954, two years after the appearance of Harris’ paper [13] with its
section on “walks and trees”.

In 1963 Daniel Ray and Frank Knight published their papers [31] and [17] which
contain the essence of what is now known as the two Ray-Knight theorems. The
relation (1), which persists in the scaling limit and allows to read off the mass
excursion as a local time process of the exploration excursion (see Section 4), is at
the heart of this.

Further landmarks in exploring the connection between Feller branching pro-
cesses and Brownian excursions are the work of Kawazu and Watanabe [16] and of
Neveu and Pitman [25]. In Aldous’ 1991-93 trilogy [3], the continuum random tree
shaped up as a central object. It arises as a limit of rescaled Galton-Watson trees
and plays in the realm of random trees a role similar to that of Brownian motion
in the classical invariance principle. New limit objects, called Lévy trees, appear
as soon as heavy-tailed offspring distributions come into play. For the descrip-
tion and the analysis of these trees as well, exploration and “height” processes
are an important tool. Yet another pioneering development has been Le Gall’s
Random snake [21], which, based on the idea of exploration processes, provides
a representation of Dawson and Watanabe’s super-Brownian motion (and other
measure-valued branching processes, [8]) as a continuum-tree-indexed Markov mo-
tion. For this and further extensions, we refer to the monographs of Duquesne
and Le Gall [10], Evans [11] and Pitman [28], and to the survey papers [22, 23] by
Le Gall.

3. A discrete Ray-Knight theorem

In this section we state a version of the Ray-Knight theorem for Harris paths. The
central observation is Lemma 3.1, which (in the critical case) traces back to [20].
Our proof, which can be easily adapted to a non-critical binary branching like that
of Lemma 8.1 below, is similar to that of a more general result by Geiger and
Kersting ([12], Thm. 2.1), who, however, use exploration paths with downward
jumps. See also [29] and [4] for other variants of the proof of Lemma 3.1.

Consider a binary critical Galton-Watson tree in continuous time with branch-
ing rate (or variance parameter) σ2, called T(σ2) for short. Think of each branch
having an Exp(σ2/2)-distributed lifetime and carrying a rate σ2/2-Poisson process
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of birth time points. When the death clock rings, the branch terminates (in a
leaf of the tree), when a birth clock rings, then a new branch, and hence a new
independent subtree, starts, say, to the right of the mother branch.

The tree is traversed with constant speed 2 in the following “depth first search”
manner: Start from the root and follow the leftmost branch up to its leaf, then
turn and go down. Let B1 > B2 > . . . > BK be the time points of births along the
leftmost branch, written in descending order. If K = 0, that is if there are no birth
points along the leftmost branch, then go down to height 0 and stop. Otherwise,
turn at height B1 and enter the branch born there, proceeding in the analogous
way as before, now using the birth time points along that branch. When coming
down to height B1 again, proceed downwards to height B2 if K > 1 (and then turn
and enter the branch born at time B2, and so on), otherwise go down to height 0
and stop there.

Lemma 3.1. The exploration process of the tree T(σ2) constructed in the just
described way is in distribution equal to an excursion E from 0 of a process with
continuous, piecewise linear paths with slopes ±2, starting at height 0 with positive
slope, changing slope at rate σ2, and dying at its first return to 0.

Proof. Whenever the exploration process moves upwards, it traverses, indepen-
dently of its past, an Exp(σ2/2)-distributed height before changing slope. Now
consider a downward piece of the exploration process. The birth points along the
branches of the tree form a Poisson process with intensity σ2/2. The same is true
for the yet unexplored birth points on the path between any point in the tree and
the root, independently of the previous exploration. Hence, if the height of the
current point is t, the distance travelled down from this point is distributed as
min(T, t), where T is an Exp(σ2/2)-random variable.

For an R+-valued path h = (hu, u ≥ 0), we put

Λs(t, h) := lim
ε→0

1

ε

∫ s

0

1{t<hu<t+ε}du (3)

provided the right hand side exists, and define Λ(t, h) := Λ∞(t, h).

In view of (1) and (3) we thus obtain from Lemma 3.1 the following

Corollary 3.2. For a random excursion E as in Lemma 3.1, Λ(., E) has the
same distribution as the profile (or “mass excursion”) of the random tree T(σ2),
and hence is a critical binary Galton-Watson process with branching rate σ2 and
one initial individual.

4. Brownian scaling: Itô meets Feller

Now let us have a look at a scaling by N which, as N → ∞, takes a sequence
of Galton-Watson processes into Feller’s branching diffusion. Time is speeded up
by the factor N , mass is scaled down by the same factor N , and there are ⌊Nx⌋
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initial individuals instead of one, with x being a positive real number. As to the
exploration paths, this results in a concatenation of ⌊Nx⌋ exploration excursions.
In view of (1) and (3), the downscaling of the mass is achieved by speeding up the
exploration by a factor N , which results in slopes ±2N . Measured in real time, the

rate of change of the slope is σ2

2 N , and measured in exploration time, it is σ2N2.

Definition 4.1. For N ∈ N let HN be a continuous, piecewise linear process with
slopes ±2N , starting in 0 with positive slope, changing slope at rate σ2N2 and
reflected at 0. Moreover, for x > 0, let HN,x be the path HN stopped at the
time SN

x when completing ⌊Nx⌋ excursions from 0. In other words, SN
x equals the

smallest s for which Λs(0, H
N) ≥ ⌊Nx⌋/N .

Remark 4.2. Due to Lemma 3.1, HN,x is equal in distribution to the exploration
path of a rescaled Galton-Watson forest consisting of ⌊xN⌋ trees. Hence, analo-
gous to Corollary 3.2, the “level counts” of the rescaled Harris path are equal in
distribution to a rescaled Galton-Watson process, i.e.

(Λ(t,HN,x))t≥0
d
=

(

1

N
Γ
⌊Nx⌋
tN

)

t≥0

, (4)

where (Γk
t )t≥0 is a critical binary Galton-Watson process with branching rate σ2

and k initial individuals.

The sequence of paths HN as described in Definition 4.1 converges, as N → ∞,
in distribution to a reflected Brownian motion with variance parameter 4/σ2. (Note
that the expected time between two consecutive changes of the slope of HN is
∆N := 1/(σ2N2), and the variance of the height difference is (2N)2(1/((σ2N2))2) =
(4/σ2)∆N .) Although local times are not continuous functionals of the paths, it is
possible to take the limitN → ∞ in (4), see e.g. [4]. This is one road to the classical

Ray-Knight Theorem. Let H be reflected Brownian motion with variance pa-
rameter 4/σ2. For x ≥ 0 define

Sx := inf{s > 0 : Λs(0, H) ≥ x} (5)

and put Hx := (Hs)0≤s≤Sx
and Λ(Hx) := (ΛSx

(t,H))t≥0. Then

Λ(Hx)
d
= Zx. (6)

Here, Zx is a critical Feller branching diffusion with variance parameter σ2, i.e. a
weak solution of the SDE

dZt = σ
√

Zt dWt, Z0 = x, (7)

with W a standard Brownian motion.

The quantity Λs(t,H) gives one way to measure the time which the path H spends
at level t up to time s. An alternative way to do this is via the semimartingale
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local time Ls(t,H) (see [32] Ch. VI)). For unit variance (4/σ2 = 1), Ls(t,H) =
Λs(t,H) a.s. ([32] Cor. VI.1.9). L and Λ obey the scalings Ls(t, kH) = kLs(t,H),
Λs(t, kH) = 1

k
Λs(t,H) for k > 0. Consequently, L and Λ are related via

Ls(t,H) = 4
σ2Λs(t,H) a.s., (8)

which corresponds to the occupation times formula, see e.g. [32] Cor. VI.1.6.
Note that H can be represented as H = 2

σ
|β|, with β a standard Brownian

motion. By Tanaka’s formula, one has |βs| = Bs+Ls(0, β) for a standard Brownian
motion B. Since Ls(0, |β|) = 2Ls(0, β) and because of the scaling of Ls(0, H) we
obtain

Hs =
2

σ
Bs +

1

2
Ls(0, H). (9)

Let n be Itô’s excursion measure of Brownian motion, and n+ its restriction to
E+, the set of [0,∞)-valued excursions. The intensity measure for the excursion
representation of (9) on the Λ.(0, H)-axis is given by

ñ := 2
σ
n+(

2
σ
η ∈ .). (10)

In other words: Let (ξi, ηi) be the points of a Poisson process on R+ × E+ with
intensity measure dx⊗ñ and write

p
ξi≤x

ηi for the concatenation of all the excursions

ηi with ξi ≤ x, constructed as in [32] Proposition XII.2.5. Put Hx := (Hs)0≤s≤Sx

with Sx defined in (5). Then

Hx d
=

x

ξi≤x

ηi. (11)

The prefactor 2/σ in (10) comes from the scaling relation Λs(0,
2
σ
|β|) = σ

2Λs(0, |β|).
Indeed, because of the relation Ls(0, |β|) = 2Ls(0, β), the measure n+ is the inten-
sity measure for the excursion representation of reflected Brownian motion |β| on
the L.(0, |β|)(= Λ.(0, |β|))-axis.

Clearly, Λ

(

p
ξi≤x

ηi

)

=
∑

ξi≤x

Λ(ηi). Combining this with (11), we arrive at the

following re-formulation of the Ray-Knight representation (6):

∑

ξi≤x

Λ(ηi)
d
= Zx (12)

Let Q̃ be the image of ñ under the mapping η 7→ ζ := Λ(η), i.e,

Q̃ = ñ(Λ(η) ∈ .). (13)

Then, by the Poisson mapping theorem, (ξi, ζi) := (ξi,Λ(ηi)) is a Poisson point
process with intensity measure dx⊗ Q̃. Thus, (12) translates into

Zx d
=
∑

ξi≤x

ζi, x ≥ 0, (14)
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which is a representation of Feller’s branching diffusion in terms of a path-valued
subordinator that decomposes Zx with respect to the ancestral mass. In partic-
ular, (14) renders the so-called branching property of Feller’s branching diffusion:

Zx+x′ d
= Zx + Zx′

, with Zx and Zx′

independent.
The measure Q̃ can be understood as the Lévy measure of the path-valued sub-

ordinator (14) (or also as the canonical measure of the infinitely divisible random
measure Zx

t dt). We claim that

Q̃(.) = lim
x→0

1

x
P(Zx ∈ (·)), (15)

which identifies Q̃ as the excursion measure of Feller’s branching diffusion (7) in
the sense of Pitman and Yor (see [30] Sec. 4 and [14] Sec. 9).

To see (15) it suffices to look at the random variables 〈f, Zx〉 :=
∫∞
0

f(t)Zx
t dt

for continuous functions f : R+ → R+ with compact support that vanish on [0, ε]
for some ε > 0. Because Q̃(ζε > 0) < ∞, only a finite (Poisson) number of
summands contribute to 〈f, Zx〉. As x → 0, the probability that more than one
summand contributes is o(x), hence P(〈f, Zx〉 ∈ (.)) = xQ̃(〈f, Zx〉 ∈ (.)) + o(x).

The (σ-finite) measure Q̃ is Markovian, having the semigroup of (7). Let us
emphasize, however, that for the dynamics (7), other than in the classical Itô ex-
cursion theory, the point 0 is not regular but absorbing.

As a preparation for the next two sections we compute for the area under Feller’s
branching diffusion the decomposition that corresponds to the representation (14).
In other words, we compute the Poisson representation of the infinitely divisible
random variable

∫∞
0 Zx

t dt, with Zx being the solution of (7). Here, a crucial
observation is the identity

R(η) = A(ζ) (16)

for ζ = Λ(η), with R(η) being the length of the exploration excursion η and A(ζ)
the area under the mass excursion ζ , cf. (2). This identity follows with the choice
f ≡ 1 from the occupation times formula ([32] VI.1.6)

∫ R(η)

0

f(ηs)ds =

∫ ∞

0

f(t)ΛR(η)(t, η)dt.

We recall that the image of n under the mapping η 7→ R(η) is

ρ(da) := n(R(η) ∈ da) =
1√
2πa3

da , (17)

see [32] Prop. XII 2.8. This ρ is the Lévy measure of the inverse Brownian local
time at 0, which is a 1

2 -stable subordinator. Using (14), (2) and (5) we obtain

A(Zx) :=

∫ ∞

0

Zx
t dt

d
=
∑

ξi≤x

A(ζi) =
∑

ξi≤x

R(ηi) = Sx. (18)
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Hence (A(Zx)) as well as (Sx) is a subordinator with Lévy measure

Q̃(A(ζ) ∈ da) = ñ(R(η) ∈ da) = 2
σ
n+(R(η) ∈ da) = 1

σ
ρ(da), (19)

where we used (17) and the fact that n+ ◦R−1 = 1
2n ◦R−1 in the last equality of

(19).

Thus, due to Lévy’s representation of Brownian local time as current maxi-
mum of a Brownian motion ([32] Thm VI 2.3), the distribution of Sx equals that
of the time at which a standard Brownian motion first hits the level x/σ (or equiv-
alently, the time at which a Brownian motion with variance parameter σ2 first hits
the level x.)

5. Subcritical branching: reweighting the excursions

As a preparation for Section 6 we analyze the Ray-Knight representation of a
subcritical Feller branching diffusion Zx that satisfies

dZt = σ
√

Zt dWt − cZt dt, Z0 = x. (20)

for a fixed c > 0.
Let us first discuss the dynamics of the exploration process. The subcriticality

leads to a decrease of the birth rate, and hence to a downward drift in the explo-
ration process. To figure out what this drift is, let us revert to the (continuous
time, discrete mass) picture described at the beginning of Section 4. There, the
rate of birth points along the branches (in real time after speeding up by the factor

N) was σ2

2 N , and now it is σ2

2 N − c. Due to the exploration speed 2N , the rate
(in exploration time) of change from a downwards to an upwards slope is thus
σ2N2 − 2cN . The rate from an upwards to a downwards slope remains unaffected
and is σ2N2. In the limit N → ∞ this leads to the drift − 2c

σ2 ds and the quadratic
variation 4

σ2 ds, and to the exploration process being a reflected Brownian motion
governed by the equation

Hs =
2

σ

(

Bs −
c

σ
s
)

+
1

2
Ls(0, H). (21)

The excursion measure n̄ governing (21) is (10) multiplied by a Girsanov density, up

to time R(η) ∧ s, s > 0, is exp
(

−
∫R(η)∧s

0
c
σ
dηr − 1

2

∫ R(η)∧s

0

(

c
σ

)2
dr
)

. As s → ∞,

this converges to g(R(η)) := exp
(

− 1
2

(

c
σ

)2
R(η)

)

; hence

dn̄

dñ
(η) = g(R(η)). (22)

Because of (13), (16) and (22), the excursion measure Q̄ of the c-subcritical Feller
branching diffusion arises by reweighting that of the critical Feller branching dif-
fusion with the Girsanov density g(A(ζ)):

dQ̄

dQ̃
(ζ) = g(A(ζ)). (23)
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This can also be seen without recurring to the exploration excursions: the Girsanov
density which introduces the c-subcriticality for a Feller branching diffusion is

exp

(

−
∫ ∞

0

cZt

σ
√
Zt

dWt − 1
2

∫ ∞

0

− (cZt)
2

σ2Zt
dt

)

,

which for an excursion Z = ζ equals g(A(ζ)) = exp
(

− 1
2

(

c
σ

)2
A(ζ)

)

.

To obtain the Lévy measure of the subordinator (Sx) given by (5) and (18), but
now in the c-subcritical case, we have to multiply (19) by the Girsanov factor g(a).
This Lévy measure is thus given by

ν(da) := g(a) 1
σ
ρ(da) = exp

(

− 1
2

(

c
σ

)2
a
)

1
σ

1√
2πa3

da. (24)

The distribution of Sx is explicit. Indeed, again due to Lévy’s representation of
local time, the distribution of Sx equals the distribution of the time at which a
Brownian motion with variance parameter σ2 and drift c first hits the level x. This
distribution is known as the inverse Gaussian with parameters x/c and x2/σ2, and
has density

P(Sx ∈ da) =
x√

2πσ2a3
exp

(

− (ca− x)2

2σ2a

)

. (25)

6. Bertoin’s “Trees of alleles with rare mutations”

In the second paper of a recent trilogy [5, 6, 7] on trees of alleles and trees of colonies
in branching processes, Jean Bertoin considers a critical Galton-Watson process in
discrete generations with ⌊Nx⌋ ancestors, offspring variance σ2, and probability
c/N that an individual at its birth acquires a new mutation never seen so far in the
population, which it then inherits to all its descendants (see in particular Section 4
of [6]). The evolution is neutral in the sense that all the individuals, irrespective
of their type, have the same reproduction law.

The situation is thus similar to the so called infinite sites model in population
genetics, with the type or allele of an individual being the set of all mutations it
carries. In this way one obtains a tree of alleles: the root consists of all individuals
that descend from the ancestors without any mutation. Each child of the root
consists of a mutant child χ of one of these non-mutant individuals, plus that
part of χ’s offspring that carries no additional mutation. Bertoin investigates the
process of the total sizes of the alleles and shows that as N → ∞ this process, when
divided by N2, converges to a continuous state branching process with discrete
generations and reproduction measure ν given by (24). We give a brief intuitive
explanation of this along the lines of the previous section.

With the Brownian scaling discussed at the beginning of Section 4, and with
one of the two factors N taken for rescaling the mass and the other one for rescaling
the time, the rescaled mass process of the non-mutant individuals converges to the
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c-subcritical Feller branching diffusion Z(0) := Zx following (20). Write A(0) =:
∫∞
0

Z
(0)
t dt for the total non-mutant (or “wild-type”) mass. The mass cA(0), which

is lost from the non-mutants due to mutation, serves as ancestral mass for another
c-subcritical Feller branching diffusion Z(1). In this way, one obtains inductively
a sequence Z(k), k = 1, 2, . . . of c-subcritical Feller branching diffusions, obeying

(20) with Z(k), W (k) and cA(k−1) := c
∫∞
0

Z
(k−1)
t dt in place of Z, W and x,

and with Z(k) independent of (Z,Z(1), . . . , Z(k−1)), given A(k−1). The process
A = (A(0), A(1), . . .) is an R+-valued Markov chain, with A(k) describing the sum
of the sizes of the (countably many) k-th step mutant alleles.

In view of equation (18), A(0) has the same distribution as Sx, where S =
(Sℓ)ℓ≥0 is a subordinator with Lévy measure ν defined in (24). Consequently the
Markov chain A can be represented as an iteration of independent subordinators.

For this, let S(0), S(1), S(2), . . . be independent copies of S, and put M0 := S
(0)
x ,

M1 := S
(1)
cM0

, . . . ,Mk := S
(k)
cMk−1

, . . . (26)

The process A = (A(0), A(1), . . .) (which describes the total generation sizes in the
tree of alleles) then obeys

(A(0), A(1), . . .)
d
= (M0,M1, . . .). (27)

Thus, A is a continuous state branching process with discrete generations (a so-
called Jǐrina process).

Indeed, for each k, Mk is a sum of jumps of S(k), and for k ≥ 1 each of these
jumps “stems” from a jump of S(k−1). By forgetting the structure of M0 (and
thus decreeing that all the summands of M1 stem from M0), but keeping track
of the genealogy the subordinator jumps in the later generations, one arrives at
a tree whose nodes are labelled with the jump sizes, with M0 at its root. This
is what Bertoin calls the tree indexed continuous state branching process (CSBP)
with reproduction measure ν.

As the main result of [6], Bertoin proves that in the regime described at the
beginning of this section, the rescaled tree of alleles N−2AN converges in the sense
of finite dimensional distributions to the just described tree indexed CSBP.

We also mention recent related work of Abraham and Delmas [1] in the frame-
work of continuous state branching processes. Intuitively, the forest of non-mutant
trees (which makes up the original allele) arises from a forest with a critical off-
spring dynamics by pruning, i.e. “cutting off” the mutant individuals together with
their entire offspring. This procedure is iterated when passing from the k-th step
mutants to the (k + 1)-st step ones. In this sense, the individual genealogy that
underlies this model fits into a general framework of pruned trees, see [2] and ref-
erences therein.

There is also a geographic (instead of a genetic) interpretation of the tree
of mass excursions: instead of types, one may think of colonies (or islands), with
“mutation to an ever new type” becoming “emigration to an ever new island”. It
is this picture which Bertoin adopts in [7]. There, he also considers a situation
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in which a bivariate subordinator (T (ℓ), Y (ℓ))ℓ≥0 (instead of the pair (Sℓ, Scℓ)ℓ≥0)
appears in an analogue of (26). The jumps of Y occur at the same points ℓ as those
of T , the pair of jump sizes being governed by a Lévy measure on R+ ×R+. With
an appropriate scaling, the bivariate subordinator allows to describe dependencies
between the numbers of “homebody” and emigrant children in a large population
limit, see Theorem 2 in [7]. With (T (0), Y (0)), (T (1), Y (1)), . . . being i.i.d. copies of
(T, Y ), the analogue of (26) and (27) becomes

A(0)
x := T (0)(x), A(1)

x := T (1)(Y (0)(x)), A(2)
x := T (2)(Y (1)(Y (0)(x))), . . . (28)

Let us write R(x) := T (0)(x) + T (1)(Y (0)(x)) + T (2)(Y (1)(Y (0)(x))) . . .. Both
T (ℓ)ℓ≥0 and (R(ℓ))ℓ≥0 are subordinators, hence T (ℓ) and R(ℓ) are sums over count-
ably many jumps. We denote the populations of jump sizes in T (x) and in R(x) by
Jx and Cx, noting that both J = (Jℓ)ℓ≥0 and C = (Cℓ)ℓ≥0 are measure-valued sub-
ordinators. A decomposition of Cx with respect to the “first generation colonies”
gives

Cx d
= Jx + C̃Y (x), (29)

with (C̃ℓ) an independent copy of (Cℓ). This is a re-formulation of Bertoin’s stochas-
tic fixed point equation in [7], Theorem 1, which there is expressed as an integral
equation involving the Lévy measures of (T, Y ) and of C.

In the next section we will discuss another extension of the “tree of alleles”
model, again formulated in a geographic framework with emigration to ever new
colonies. In this model, the current population size in a colony will have an impact
on the individual death rate. The population size in one colony, as a function of
the ancestral mass x, is then no subordinator any more. Still, due to the “Vir-
gin Island assumption”, the tree of colonies will be described by an iteration of
subordinators exactly as in (26), with the subordinators S(1), S(2), . . . figuring in
(26) being independent copies of a subordinator. While this subordinator need not
have a representation like (5), its Lévy measure still is the image of an excursion
measure Q under the mapping ζ 7→ A(ζ), see formula (31) below.

7. Feller branching with logistic growth, and Virgin Islands

As an additional ingredient to the stochastic dynamics in (20) we now add a
nonlinear drift. For simplicity we assume it to be logistic, thus considering

dZt = σ
√

Zt dWt + (θZt − γZ2
t ) dt− cZt dt, Z0 = x. (30)

In a population model, the additional drift terms θZt dt and −γZ2
t dt describe a

supercritical reproduction and a killing due to pairwise fights; we will elaborate
more on this in the next section. In a geographic picture, the drift term −cZt dt
results from emigration. The SDE (30) describes the evolution of the population
size in the “mother colony”, and the total mass that emigrates from the mother
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colony is c
∫∞
0

Ztdt =: cA(0). The Virgin Island assumption is that each migration
(of an infinitesimal mass cZt dt) is to a new colony, where cZt dt becomes a potential
ancestral mass.

Thus, cA(0) =: cM0 serves as the (random) time argument in a subordinator S̃
with Lévy measure µ defined by

µ(da) = Q(A(ζ) ∈ da), (31)

where the mass excursion measure Q is again defined by (15), but now with Z
following (30) instead of (20). Proceeding inductively like in (26), we now arrive
at a tree of colonies. This is the Virgin Island model studied by M. Hutzenthaler
in [14], also for more general drift and diffusion coefficients than those in (30).
Figure 3, adapted from [14], symbolizes a “tree of mass excursions” (embedded in
time) which could either be a tree of alleles (as in the previous section) or a tree
of colonies.

z

t

Figure 3. The root and three of its (countably many) children in a tree of excursions.

In [14], the analogy between this time embedding and a (continuous-mass gen-
eralization of a) Crump-Mode-Jagers branching process is elaborated. In the Feller
branching case, a similar construction has been carried out in [9] as a basis for a
superprocess with dependent spatial motion and interactive immigration.

Let us emphasize again that for the logistic Feller branching (30) there is no
subordinator representation as in (14), since the non-linear drift in (30) destroys
the independence in the reproduction (and the infinite divisibility of Zt). However,
due to the Virgin Island assumption, which makes the evolution of the different
colonies independent of each other, the tree of colony sizes still does have a rep-
resentation in terms of an iteration of independent copies of a subordinator S̃,
and hence as a tree-indexed continuous state branching process as described after
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formula (27). In the case discussed there (that is for θ = γ = 0), the Lévy measure
of these subordinators was given by (24). In the present case (with γ > 0) there is
no explicit formula for the Lévy measure of the subordinators except the equality
(31). However, there is still a handy criterion that allows to decide whether the
total mass (summed over all colonies) in the Virgin Island model is finite a.s. This
happens if and only if ES̃ca0

≤ a0 for all a0 ∈ R+, or equivalently iff

c

∫ ∞

0

a µ(da) ≤ 1. (32)

Because of (31), the first moment of µ is

∫ ∞

0

a µ(da) =

∫ ∞

0

aQ(A(ζ) ∈ da) =

∫ ∞

0

dt

∫ ∞

0

y Q(ζt ∈ dy), (33)

with the last equality due to Fubini. Remarkably,

∫ ∞

0

dtQ(ζt ∈ dy) = m(y) dy, (34)

where

m(y) =
1

σ2y/2
exp

(∫ y

0

z(θ − c− γz)

σ2z/2
dz

)

(35)

is the speed density of (30) (in its adequate norming). Indeed, both sides of (34) are
invariant measures for the semigroup of (30), and therefore must be proportional
to each other. That they are in fact equal follows e.g. from Lemma 9.8 in [14];
our (34) is equation (178) in [14]. Putting (33) – (35) together we see that (32) is
equivalent to

c

∫ ∞

0

exp
(

(θ − c)y − γ σ2

4 y2
)

dy ≤ 1, (36)

which thus characterizes the a.s. finiteness of the total mass in the Virgin Island
model obtained from (30).

It turns out that the Virgin Island model is most favorable for survival in the
limit t → ∞ when compared with models with the same local population dynamics
(30) but a possibly different migration mechanism. To be specific, fix for d ∈ N

probability weights mk, k ∈ Zd, and consider the system of interacting diffusions

dZk,t = σ
√

Zk,t dWk,t + (θZk,t − γZ2
k,t) dt+ c





∑

j

mj−kZj,t − Zk,t



 dt,

Zk,0 = xδ0k, k ∈ Z
d,

(37)

where Wk, k ∈ Zd, are independent standard Brownian motions. Using a self-
duality of the solution of (37) and a comparison between (37) (now with a spa-
tially homogeneous initial configuration) and a mean field model, it is shown ([15],
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Thm. 1, Thm. 3 and Cor. 4) that under the assumption (36) the total mass pro-
cess

∑

k∈Zd Zk,t from (37) hits 0 in finite time a.s., irrespective of the choice of
the weights mk. In [14] a direct comparison of (37) with the corresponding Virgin
Island model is announced also for more general diffusion and drift coefficients, in
which case no self-duality would be available.

We conclude this section with a representation of the random variable
∫∞
0

Zx
t dt,

with Zx being the solution of (30). This uses a time change introduced by Lambert
in [18]. Consider the additive functional

At =

∫ t

0

Zx
s ds,

and the associated time change

αt = inf{s > 0, At > s}.

As noted in [18], the process Y x
t := Zx

αt
is an Ornstein–Uhlenbeck process, solving

the SDE
dY x

t = (θ − c− γY x
t )dt+ σdBt, Y x

0 = x,

with this identification is valid only for 0 ≤ t ≤ τx, where τx := inf{t > 0, Y x
t = 0}.

Let Tx be the extinction time of the logistic Feller process Zx
t . We clearly have

ατx = Tx, and consequently

τx =

∫ ∞

0

Zx
t dt.

In the particular case γ = θ = 0, this identity ties in with the remark at the end
of Section 5.

8. A Ray-Knight representation of logistic Feller branching

As mentioned in the previous section, the Feller branching diffusion with logistic
growth, which follows the SDE (30), has no subordinator representation as in (14),
nor has it a Ray-Knight representation in terms of a concatenation of independent
exploration excursions. This is due to the non-linear term on the r.h.s. of (30) that
comes from the pairwise fights in which one of the two fighters is killed. However,
by breaking the symmetry between the individuals we will manage to bring an
exploration process and a Ray-Knight representation back into the picture.

To explain the strategy, we consider a “discrete mass - continuous time” ap-
proximation of (30) and its exploration process. As in Section 4, for N ∈ N, the
approximation will be given by the total mass Z(N) of a population of individuals,

each of which has mass 1/N . The initial mass is Z
(N)
0 = ⌊Nx⌋/N , and Z(N) follows

a Markovian jump dynamics: from its current state k/N ,

Z(N) jumps to

{

(k + 1)/N at rate kNσ2/2 + kθ

(k − 1)/N at rate kNσ2/2 + k(k − 1)γ/N.
(38)
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The quadratic death term k(k− 1)γ/N can be attributed to each of the k(k− 1)/2
pairs fighting at rate 2γ, with each of the fights being lethal for one of the two
individuals. The dynamics of the total mass will not be affected if we view the
individuals alive at time t as being arranged “from left to right”, and decree that
each of the pairwise fights is won by the individual to the left. In this way we arrive
at the “death rate due to fights” 2γLi(t)/N for individual i, where Li(t) denotes
the number of contemporaneous individuals to the left of individual i at time t.
In this way we grow a forest of ⌊Nx⌋ trees, with all the individuals being under
attack from the contemporaneans to their left. This forest is explored with speed
2N in the way as described in Section 3, leading to slopes ±2N of the exploration
path HN . For an individual i living at real time t and being explored in an upward
piece of HN at exploration time s, the exploration process HN experiences a rate
of change from positive to negative slope which is increased by the pairwise fights.
This additional rate of change from positive to negative slope is 2γLi(t)/N in real
time, and 4γLi(t) in exploration time. In terms of the “local time” (3) this can
be expressed as 4γNΛs(H

N
s , HN), since the number of contemporaneans to the

left of the individual i is Li(t) = NΛs(t,H
N ). In the same way as we arrived at

Lemma 3.1 in the case θ = γ = 0, we can now identify the stochastic dynamics of
s 7→ HN

s :

Lemma 8.1. The exploration path s 7→ HN
s obeys the following dynamics:

• At time s = 0, HN starts at height 0 and with slope 2N .

• When HN moves upwards, its slope jumps from 2N to −2N at rate N2σ2 +
4γNΛs(H

N
s , HN).

• When HN moves downwards, its slope jumps from −2N to 2N at rate N2σ2+
2Nθ.

• Whenever HN reaches 0, its slope jumps from −2N to 2N , i.e. HN is re-
flected at 0.

Write
SN
x = inf{s : ΛN

s (0, HN) ≥ ⌊Nx⌋/N}. (39)

for the first time at which HN completes ⌊Nx⌋ excursions. Just as we obtained
from Lemma 3.1 the discrete Ray-Knight representation for a Galton-Watson pro-
cess (Corollary 3.2), we obtain in the following Corollary of Lemma 8.1 a similar
representation for the Galton-Watson process with logistic growth:

Corollary 8.2. Let HN be a stochastic process following the dynamics specified
in Lemma 8.1. Then t 7→ ΛSN

x
(t,HN ) follows the jump dynamics (38).

In [19] we prove that the sequence of processes HN converges, as N → ∞, to
the weak solution of

Hs =
2

σ
Bs +

2θ

σ2
s− γ

∫ s

0

Lr(Hr, H)dr +
1

2
Ls(0, H), s ≥ 0. (40)

with B a standard Brownian motion and Ls(t,H) the semimartingale local time
of H , with L and Λ connected by (8). One ingredient in this proof is the following
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Proposition 8.3 ([19]). For σ > 0, θ, γ ≥ 0, the stochastic integral equation (40)
has a unique weak solution. This solution is obtained by a Girsanov transform
from a reflected Brownian motion with variance parameter σ2/4.

A main result of [19] is a Ray-Knight representation of Feller’s branching dif-
fusion with logistic growth in terms of a reflected Brownian motion H which ex-
periences a constant positive drift plus a negative drift that is proportional to the
local time spent by H so far at its current level:

Theorem 8.4. Let H be the solution of (40), and for x > 0 let Sx be defined by
(5). Then (ΛSx

(t,H))t≥0 is a Feller branching diffusion with logisitic growth, i.e.
a weak solution of (30) (with c = 0).

The strategy in [19] to prove this theorem is to justify the passage to the
limit N → ∞ in Corollary 8.2. As a conclusion from this theorem, we obtain an
analogue of the representation (14) for the logistic Feller process (30), but now as
a path-valued Markovian jump process rather than a path-valued subordinator.
To see this, let (ξi, ηi) be the point process of excursions on R+ × E , where E is
the space of excursions from 0, and such that (Hs)0≤s≤Sx

is the concatenation of
the excursions ηi with ξi ≤ x. For η ∈ E , let ζ(η) := ΛR(η)(., η) be the image of η
under the Ray-Knight mapping. Then another way to state Theorem 8.4 is that

∑

i:ξi≤x

ζ(ηi)
d
= Zx, (41)

where Zx solves (30) (with c = 0).

Again using the device that “those to the left win against those to the right” (which
of course again is no dictum politicum) we can identify the transition probabilities
of the path-valued Markov process (Zx)x≥0. The following is readily checked:

Remark 8.5. For x > 0 let Zx be a solution of (30) with c = 0. For a given path
z = (zt)t≥0 and for ε > 0, let Xε(z) be a solution of

dXt = σ
√

Xt dW
(x,x+ε)
t +

(

(θ − 2ztγ)Xt − γX2
t

)

dt, X0 = ε, (42)

where the standard Wiener process W (x,x+ε) is independent from the Wiener pro-
cess W in (30). Then Zx+ε := Zx +Xε(Zx) is a weak solution of

dZt = σ
√

Zt dW
(0,x+ε)
t + θZt − γZ2

t dt, Z0 = x+ ε.

We conjecture that the Markov process (Zx)x≥0 has a “jump kernel” Qz that
is given by Pitman and Yor’s excursion measure of the diffusion process (42), i.e.

Qz = lim
ε→0

1

ε
P(Xε(z) ∈ .).

With z as on the l.h.s. of (41), Qz would then be the image under the Ray-Knight
mapping η 7→ ζ = Λ(η) of the conditional intensity kernel of the point process
(ξi, ηi), given its restriction to [0, x]× E+.
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