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Summary. We study the stochastic integral defined by Skorohod in [24] of a 
possibly anticipating integrand, as a function of its upper limit, and establish an 
extended It6 formula. We also introduce an extension of Stratonovich's 
integral, and establish the associated chain rule. In all the results, the 
adaptedness of the integrand is replaced by a certain smoothness requirement. 

1. Introduction 

In the standard theory of integration, the measurability requirement on the 
integrand is essentially less restrictive than the integrability condition, which 
imposes a certain bound on its absolute value. One might say that with the It6 
stochastic integral, the situation is reversed. Clearly the measurability condition 
which prescribes that the integrand should be independent of future increments of 
the Brownian integrator, is a very restrictive one. Whereas it is a natural condition in 
many situations, where the filtration represents the evolution of the available 
information, it is in many cases a limitation which has been felt quite restrictive, 
both for developing the theory, as well as in applications of stochastic calculus. 

There have been many attempts, in particular during the last twelve years, to 
weaken the adaptedness requirement for the integrand of It6's stochastic integral, 
such as in the theory of "enlargment of a filtration", which allows some 
anticipativity of the integrand. A completely different approach has been initiated 
by Skorohod in 1975 [24]. The two main aspects of Skorohod's integral are its total 
symmetry with respect to time reversal - it generalizes both the It6 forward and the 
It6 backward integrals - and the fact that no restriction whatsoever is put on the 
possible dependence of the integrand upon the future increments of the Brownian 
integrator. The price that has to be paid for that generality is some smoothness 
requirement upon the integrand, in a sense which will be made precise below. Also, 
we are restricted to define the integral in Wiener space, or at least on a space where 
the derivation can be defined as in Sect. 2 below. The ideas of Skorohod have been 
subsequently developed by Gaveau and Trauber [4] and Nualart  and Zakai [16]. 
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Our aim in this paper is threefold. First, we give intuitive approximations of 
Skorohod's integral, for several classes of integrands. Second, we study some 
properties of  the process obtained by integrating from 0 to t, and establish a 
generalized It6 formula. Third, we define a "Stratonovich version" of  Skorohod's 
integral, and establish a chain rule of Stratonovich type. 

After most of this work was completed, we learned the existence of the work of 
Sevljakov [22] and Sekiguchi and Shiota [21], as well as that of Ustunel [25]. The 
intersection of these papers with our is the generalized It6 formula. While our It6 
formula is slightly more general than the others, we feel that our proof  is more direct 
than that of the first two other papers. On the other hand, our proof, which is very 
much like the proof  of the usual It6 formula, is very different from that of Ustunel 
[25], which has more a functional analysis flavour. 

Let us finally mention that our Stratonovich-Skorohod integral has strong 
similarities with some of the other existing generalized stochastic integrals, which 
include those of Berger and Mizel [1], Kuo and Russek [10], Ogawa [18] and 
Rosinski [20]. 

Finally, we want to point out that this work owes very much to the previous 
works of both authors on the same subject. Therefore, we want to thank Moshe 
Zakai and Philip Protter, with whom many ideas which where at the origin of this 
paper have been discussed by one of us, and appear in [16, 19]. 

The paper is organized as follows. In Sect. 2 we define the gradient operator on 
Wiener space, and in section three we define Skorohod's integral. In Sect. 4, we 
study some approximations of Skorohod's integral, and prove additional proper- 
ties. In Sect. 5, we study some properties of Skorohod's integral as a process. In 
Sect. 6, we prove the generalized It6 rule. In Sect. 7, we define a "Stratonovich- 
Skorohod" integral, and establish a chain rule of Stratonovich type. Section 8 is 
concerned with the particular case of what we call the "two-sided integral", which is 
a direct generalization of the work of Pardoux and Protter [:[9]. Most of the results 
have been announced in [15]. 

2. Definition and Some Properties of the Derivation on Wiener Space 

In this section, we define the derivative of functions defined on Wiener space, and 
introduce the associated Sobolev spaces. This is part of the machinery which is used 
in particular in the Malliavin calculus, see Malliavin [13], Ikeda and Watanabe 
[5, 6], Shigekawa [23], Zakai [28]. We refer to Watanabe [26], Kree [11] and Kree 
and Kree [12] for other expositions. 

Let { W(t), t ~ [0,1 ]} be a d-dimensional standard Wiener process defined on the 
canonical probability space (f2, J~, P). That means ~2 = C([0,1], Na), p is the Wiener 
measure, o ~ is the completion of the Borel a-algebra of ~2 with respect to P, and 
Wt(o))=co(t). The Borel a-algebra and the Lebesgue measure on [0,1] will be 
denoted, respectively, by ~ and 2. 

For  each t ~ [0,1 ] we denote by ~ t  and ~-t, respectively, the a-algebras generated 
by the families of random vectors {W(s), O<s<t} and { W ( 1 ) -  W(s), t<s<= 1}, 
completed with respect to P. 
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Let C~(]R k) be the set of C ~ functions f :  ]Rk~]R which are bounded and 
have bounded derivatives of all orders. A smooth functional will be a random 
variable F:E2~]R of the form F = f ( W ( t t ) , . . . ,  W(t,)), where the function 
f ( x n ,  . . . ,  x dl ; . . .  ; xl", . . . ,  x d") belongs to C~(]R d") and q ,  . . . ,  t, ~ [0,1]. The class of 
smooth functionals will be denoted by 5 e. 

The derivative of a smooth functional F can be defined as the d-dimensional 
stochastic process given by 

(DF)]= ~ ~f  (W(q)"  " W(t,))l toml(t  ) 
i=1 OxJ i  ~ " "  ~ ' 

for t~[0,1] and j = l ,  . . . ,d.  
The derivative D F  can be regarded as a random variable taking values in the 

Hilbert space H = L 2 ([0,1]; ]Re). More generally, the N-th derivative of F, D NF will 
be the H| random variable 

( r ~ N F V  .. . . . .  JN = 0u f  
= - "  . . . . . . . .  " ~xJ' ~c - ~xJ" ~" ( W ( t l )  ; . . .  ; W(tn))  

il  . . . .  , i N = l  . . .  

�9 1 L 0 , , d ( s l ) . . .  1 E0,,~A(sN), 

where sl . . . . .  sN e [0,1 ] and Jl . . . . .  JN = 1 . . . . .  d. 
We write also DJF for (DF)[. Notice that with this notation, 

])  N F~J  1 . . . . .  jN  

coincides with the iterated derivative 

D J l  I )J2 JN ~, ~s~...  D~N F. 

For any integer N >  1 and any real number p > 1 we introduce the seminorm 
on 5 a 

HFI]p,N = HF[[v + I1 ]IDNFI]"S[I; 

where ]1" ][Hs denotes the Hilbert-Schmidt norm in H | that means, 

d 

[(D F) ........ N] ds, dSN 
J* . . . . .  j~v=l  [0,1] N 

In case N =  1, we will denote by II-H the norm in H. 
Then Dp, N will denote the Banach space which is the completion of 6 e with 

respect to the norm IIFIIp,N. 
Consider the orthogonal Wiener-Chaos decomposition (see It6 [7]) L 2 (12, ~-, P)  

= O H. ,  and denote by J.  the orthogonal projection on H. .  
n = 0  

Any random variable of H.  can be expressed as a multiple It6 integral I. (f.) of 
some symmetric kernel f .  e L e ([0,1 ]"; ]Ra.) = H| i.e., f . ( q  . . . . .  t.) J~ ..... J" is sym- 
metric in the n variables ( q , j 0  . . . .  , (t . ,L). 

Then it holds that 

D / ( I , ( f , ) ) = n I , _ ,  ( f , ( .  , t)-J) , (2.1) 

(note that Io(fl (t) j) = f l  (t) J) 
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and the space 1D2,1 coincides with the set of square integrabte random variables F 
such that 

E(IIDFIIf~s)= ~ nE(IJ.FI2) < oo. 
t~=l  

The derivation operator D (also called the gradient operator) is a closed linear 
operator defined in D2,1 and taking values on L2([0,1] x f2; IRe). 

Notice that our d-dimensional Wiener process can be regarded as a parti- 
cular example of a Gaussian orthogonal measure on the measure space 
T =  [0,1] x {1 . . . . .  d}. In this sense we can use the results of Nualart-Zakai [16]. 

Following [16], for any square integrable random variable F =  ~ I,,(f,,) and 
any h ~ H  we define ,=0 

DhF= ~ I nI , - l ( f , ( . ,  t)"J)h~(t)dt, (2.2) 
n = l  j = l  0 

provided that the series converges in L 2 (f2). 
We denote by D2,~ the domain of Dh. Equipped with the norm (]IFI] 2 

+ ]]DhFI]2) 1/2, Dz,h is a Hilbert space, and clearly, D2,1 C Dz,h. Conversely, if 
F~ID2, h for all h e H  and the linear map h~DhF defines a square integrable 
H-valued random variable, then Fbelongs to ID2,1 and DhF= (DF, h)n. From now 
on we use the notation u. v to denote the scalar product of  u, v ~ IR a. 

Lemma 2.1. Dh is a closed operator and for any F6IDz,h we have 

E(DhF)=E(F i h(t) .dWt).  (2.3) 

Proof. Suppose that F =  ~, I . ( f . )  belongs to D2,h and put G=I.(9). Then 
n = 0  

E((DhF) G) = E  (n + 1) (I.(f. + 1(-, t)"JI.(g))h~(t)dt 
0 

=(n + 1)! ( f .+l ,  g | q"+~;~"+~'~ 
= E(FI, +1 (9 | h)), (2.4) 

where 

(g |  (q . . . . .  tn+l) ) ...... i . . . .  9(h ... . .  t,) ~ ..... J"hJ"+~(t,+l) " 

As a consequence, if F,--* 0 in L 2 (f2), F, E ]I)2, h, and Dh F, ~ G1 in L 2 (O), we deduce 
that GI = 0, and Dh is closed. Finally, taking n = 0 and G = 1 in (2.4) we obtain the 
equality (2.3). [] 

We recall the following fact (see [16], Proposition 2.2) which allows to interpret 
the operator Dh as a directional derivative. 
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Proposition 2.2. Let F be a square integrable random variable. Suppose that the limit 

lim l (F(c~ + ~ ~ h(s)ds)-F(e)) -~ o 

exists in L2(t?). Then F belongs to ID2, h and this limit coincides with DhF. [] 

The next result is the chain rule for the derivation. 

Proposition 2.3. Let q~ : IRm-*IR be a continously differentiable function with bounded 
partial derivatives. Suppose that F=(F1,.. . ,  F") is a random vector whose com- 
ponents belong to 1I)2,1. Then (p(F)fflD2,1 and 

D 0 ( F ) =  ~ r (F)DU. [] 
/=1 OXi 

A similar differentiation formula is true for the directional derivative O h . 

Let A be a Borel subset of [0,1] and denote by ~-a the a-algebra generated by the 
random vectors 

1 

W(G)=~ IGdW, G=A,  6 e ~ .  
o 

Then we have the following basic result. 

Lemma 2.4. Let F be a square integrabIe random variable. 
(i) I f  F is ~a-measurable and h ~ L 2 ([0,1 ]; IR d) vanishes on A, then F belongs to 

~D2, h and DhF=O. 
(ii) I f  Fe  1D2,1, then E(F/o~A) ~ ID2,1 and Dt(E(F/WA)) = E(DtF/Wa) 1A(t), a.e. 

in [0,1] x (Z 

Proof It suffices to assume d =  1 and F=I,(f , ) ,  and in this case, the lemma follows 
easily from (2.1), (2.2) and the equality 

E[I,(f,)/~A] = I,(g,)  

where g,(q . . . .  , t , )= f , ( t l  . . . . .  6)la(tl). . .  1A(t,). [] 

In particular, for any F~ ID2,1 and r < s, we have 

Dt(E(F/.~ v ~ ) )  =E(D,F/ ~ ,  v ~-~) lt,.,]o(t), 

a.e. in [0,1] x O. 

Lemma 2.5. For any p>=2, there exists a constant cp such that VFelD2,1, 

E([FIP)<cp(IE(F)[P + E i lD,Fl'dt). 

Proof It follows from Ocone's version of a well known representation t h eo rem -  see 
Ocone [17], or Corollary A.2 in the Appendix A - that: 

1 

F= E(F) + ~ E(DtF/~t). dW~. 
0 

The result then follows from Burkholder and Jensen's inequalities. [] 



540 D. Nualart and E. Pardoux 

Suppose that C is the operator corresponding to the product by the factor - ~ / n  
on any Wiener-Chaos. From (2.t) it follows easily that the domain of Cis D~,I and 
E([CFI2)=E(IIDFll2ns) for any F in lD2,1. 

The following inequalities due to Meyer (see [14], Theorem 2) provide the 
equivalence of norms between the powers of the operators D and C: 

For any realp > 1 and any integer N >  1 there exist positive constants av, N and 
Ap, N such that 

ap, NE(HDNFIIfls)NE(ICNF?)<=A,,N[E(IIDNFIIhs)+E(IF[O], (2.5) 

for any smooth functional F. 
We now state a result, whose proof will be given at the end of the next section, 

which says that the derivation is a local operator. 

Lemma 2.6. Let  F ~  D2,1. Then l{v =o~D,F= 0 dt x dP a.e. on [0,1 ] x ~2. 

It will be clear from the proof below that the same result is true for Dh, h EH. 
Let us now state: 

Def'mifion 2.7. A random variable Fwill be said to belong to the class 11)2,1 ,loc if there 
exists a sequence of measurable subsets of  (2:~2kTf2 a.s. and a sequence 
{&, k ~ N} ~ 102,1 such that: 

In that case, we will say that F is localized by the sequence {(Ok, Fk), k ~ N}. 

Clearly, Dv,s,~o~ can be defined analogously, for any p > 1, Ne  N. 
Thanks to Lemma 2.6, the following definition is consistent: 

[] 

Definition 2.8. Let F be an element of D2,1,1o c which is localized by a sequence 
{((2~, Fk) , k ~ N}. We then define D F  to be the unique equivalence c/ass of dt x dP 
a.e. equal d-dimensional processes which satisfies: 

DFJak= DFklo ~ �9 [] 

We can now generalize Proposition 2.3. 

Proposition 2.9. Let cp : I R ~ I R  be o f  class C ~. Suppose that F = ( F  1, .., ,F")  & a 
random vector whose components belong to D2,1,1or Then q~(F)~ ID2,1,1or and." 

Dq~(F)= ~, ~q9 =~ ~xi (F) D F  i . 

P r o o f  The result follows easily from Definitions 2,7, 2.8 and Proposition 2,3. [] 

An immediate corollary of the above is that whenever F, G~D2,1 (or on ly  
]D2,1Aoc), then FGelD2,1,1o c and: 

D (FG) = F D G  + GDF. 
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3. Definition of the Skorohod Integral 

Let u ~ L 2 ([0,1 ] • O ; i r a )  be a square integrable d-dimensional process. By means of 
the Wiener-Chaos decomposition, we can decompose u into an orthogonal series 

ut= ~ & ( ~ ( . ,  t)), (3.1) 
m=O 

where fm (sl, . . . ,  sin, t)J* ..... a"' j ~ L 2 ([0,1 ]m+ 1 ; IR a(rn + 1)) is a symmetric function of 
the m couples (sl ,Jl) . . . .  , (sin,j,,) for each fixed (t,j). Denote by f,, the symmetri- 
zation of J;, in the m + l  couples (sl,ji), 1 <_i<m, (t,j), that means, 

1 
L ( ~ , , . . . , ~ , t ) ~  . . . . . .  jm,~_ 

r n + l  
- - -  [ ( f , . ( s ,  . . . . .  s,., d '  ..... J~'~ 

-~ i=l ~ fro(S1 . . . . .  Si-  l ~ t~Si + l . . . .  ~Sm' Si)Jl ..... Ji- l,J,i . . . . . . .  jm,j*)l" 

Then, the Skorohod integral of u (see Skorohod [24]) is defined by 

15(b/) = s I m + l ( J ~ m ) ,  (3.2) 
m=O 

d 

= ~ ~, 5 L ( s l , ' " , s m ' t )  j ...... J~'JdW]~,'"dW~2 dWtj, 
m=O Jl .....  Jm,J=l [0,1] m+l 

provided that this series converges in L 2 (f2). We will also represent the Skorohod 
integral of u by 

1 

ut .dWt ,  
0 

and the set of Skorohod integrable processes will be denoted Dom & 
Note that we are integrating a d-dimensional process with respect to a d- 

dimensional Wiener process. The result is a real valued random variable, and 

is a short notation for 

1 

5 u,.dW,, 
0 

d 1 

E uldW/. 
i=1 0 

As before, if we consider W as a Gaussian orthogonal measure on 
T = [ 0 , 1 ] x { 1 , . . . , d } ,  this definition can be viewed as a particular case of the 
situation considered in Nualart  and Zakai [16]. In [4] Gaveau and Trauber have 
proved that the Skorohod integral coincides with the dual operator of the derivation 
D. More precisely we can state the next result. 
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Proposition 3.1. Let u ~ L 2 ([0,1 ] • f2; 1Rd). Then u is Skorohod in tegrable if and only if 
there exists a constant c such that 

for any FsD2,~ and, in this case, we have 

E ( i  ur. DtFdt)=E(F6(u)). [] (3.3) 

Formula (3.3) is the general version of the integration by parts formula of 
Bismut [2]. Notice that 3 is a closed operator because 6 is the adjoint of D and Dz,1 is 
dense in L2(Q). 

Let j =  1 . . . . .  d be a fixed index. We will say that a one-dimensional process 
u E L 2 ([0,1 ] • Q) is Skorohod integrable with respect to W j if uej ~ Dom 6, where 
ej = (0 . . . . .  1 . . . .  ,0) (1 being the j t h  component of this vector). The class of these 

processes will be denoted by Dom 6j, and we will write S utdW/or 3j(u) for 6(uej). 
o 

The random variable cSj(u) is determined by the duality formula 

E(F3j(u)) = E ( i  u,D~Fdt), 

for all FelDe,I.  
If a d-dimensional process u is such that uJEDomaj for all j =  1, ... ,d, then 

u e Dom 6 and 

d 
a (u) = y, 6i(u').  

j = l  

Let us first establish a basic and essential property of  the Skorohod integral. 

Theorem 3.2. Let u ~ Dom 3 and F~ ~)2,*. Then 
1 1 1 

I Fur. dW~ =F I u,. dWt - S  u,. DtFdt (3.4) 
0 0 0 

in the sense that Fu6 Dora 3 if and only if the right hand side of (3.4) is in L2(O). 

Proof. To simplify, suppose d =  1. For  any smooth functional G=9(W(tx) . . . . .  
W(t,)) in the space 5 ~, we have 

1 1 

t E(FutD, a)dt=~ U[ut(Dt(Fa ) -aDtF) ld t  
0 0 

=&u, i l 
and the result follows from Proposition 3.1. [] 

The set Dom 3 is not easy to handle and it is more convenient to deal with 
processes belonging to some subset of Dom a. 
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Definition 3.3. Let s denote the class of scalar processes u E L 2 ([0,1] x f2) such 
that u t ~ D2,1 for a.a.t and there exists a measurable version of D~u~ verifying 

1 1 

f ~ ~ IDsu,12dsdt< oo. 
O 0  

In terms of the Wiener-Chaos expansion this is equivalent to saying that 

ram! [Ifm1[~2({0,11.+1;~=+1)< oo 
m=t 

if u is given by (3.1). 
Let s denote the set of processes u ~ L 2 ([0,1 ] • ,2) such that u, e D2,2 for a. a. t 

and there exists a measurable version of D,D~ut verifying 

1 1 1  

E 5 5 5 IDrD~ut[ 2drdsdt< oo. 
ooo 

This is equivalent to saying that 

m ( m - l ) m !  I I / . , l lb(io,,~-+,;~. . . . .  )<oo, 
m=2 

if u is given by (3.1). 
Finally, IL 2'1 (resp. s is defined as the set of d-dimensional processes whose 

components are in s (resp. in s [] 

Then, s c Dora •j for all j = 1 . . . . .  d and s c Dom a. s and IL~'I are 
Banach spaces (in fact Hilbert spaces) with the norm 

llull=(E i lutl2 dt)~12+(E i i 'lD,u, il2 dsdt y/2,  

where IID=u, ll denotes a norm of the matrix (D~iu,'). 
For a process u e s we have the following isometric property (cf. Nualart and 

Zakai [16], Proposition 3.1) 

E ut.dWt = E  lutl2dt+~ DsutD tu*dsdt . (3.5) 
0 0 i , j = l  

Note that Skorohod [24] has defined his integral only for integrands in s 
The next result together with (3.3) and (3.4) will constitute a practical tool in 

what follows. 

Proposition 3.4. Let u ~ IL 2'* such that for all i = 1 . . . . .  d and for all t a. e. the process 
{ D [ us, 0 <= s <= 1 } belongs to Dora c$ and there is a version of  

D~u,.dW,, 0_<t_<l 

in Lz([0,1] xf2). Then a(u)eD2.~, and 

D[ u~. dW~ = Dt~u~. dW~ + u~. (3,6) 
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Proof. Suppose d =  1. Consider a process v e]L 2'I. Using the isometric property (3.5) 
and the integration by parts formula (3.3) we obtain 

E(~(u)c~(v))=E urvtdt+ S DtusDsvtdsdt 
0 

conclude by a duality argument because IL 2'1 is dense in Finally we may 
L2([0,1] x f2). [] 

Note that the Proposition applies in particular when u elk] '2. For  a proof  
of (3.6) using the Wiener-Chaos expansion we refer to Proposition 3.4 of Nualart  
and Zakai [16]. Another proof  will be given in the next section. 

The following L p inequalities will be useful in proving the path continuity of the 
indefinite Skorohod integral. 

Proposition 3.5. Let u e]L 2'1 . Then, for any p >_2 there exists a positive constant cp 
such that 

This result is a consequence of Meyer's inequalities. We refer to Watanabe [26], 
for a general proof  of the continuity properties of the operator & For  a sake of 
completeness we have included a proof  of (3.7) in the Appendix B. 

Let us point out that the operator fi can be extended to the whole space L 2 ([0,1 ] 
x ~2; 1Re). But ~ (u), for u r Dom ~5 is no longer a square integrable random variable, 
and is rather an element o fa  Sobolev space with negative index, i.e. a "distribution" 
over Wiener space, see Watanabe [26]. 

We now turn to the: 

Proof of  Lemma 2.6. In order to simplify the notations, let us assume that d =  1. For  
any a>0,  we define the mappings c&, 0~ :IR~IR by: 

~ l + x / e  if - E < x < 0  

 o (x)=Jl-x/e if 0 -<x <e  

l 0 otherwise 

- o o  

It follows from Proposition 2.3 that 0,(F)~IDz, 1 and DrOp(F)= ~o~(F)DtF. If now 
u e L 2'1 we have: 
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On the other hand, from Lebesgue dominated convergence, as e~0 ,  

E(qo~(F) i D~Fu~dr)--+E(l{~=o} i D, Fu~dr ) . 
Then 

E(l{v=oi i D,Fu, dr)=O, V u E l t  2'1. 

[] Since ]L 2'1 is dense in L2([0,1] x f2), the result follows. 

We finally state the following definition: 

Def'mition 3.6. We will say that a measurable process u e (Dora 6)1oc whenever there 
exists a sequence {~2k,ksN} ~ Y  and a sequence {Uk, k e N } c D o m 6  s.t.: 

(i) ~2k]'f2 a.s. 
(ii) u = u k on ~k a.s. 

(iii) 6(Uk)=6(Ul) on O k a.s., whenever k<l. In that case, we will say that u is 
localized by {(f2k, Uk)}. [] 

We suspect that 6 is a local operator, and that (iii) follows from (i) and (ii). 
In fact, we will show that property of 6, when restricted to some subclasses of 
Dora 6 _s being one of them - i n  the next section. 

Definition 3.7. Let u ~ (Dora 6)loe be localized by {(f2k, Uk)}. We then define 6(u) as 
the unique equivalence class of a.s. equal random variables s.t. : 

6(u)la~=6(u0l~k a.s. [] 

Note that 6(u) in Definition 3.6 may depend on the localizing sequence 

4. Approximation of the Skorohod Integral by Riemann Sums, 
and Additional Properties 

We will show that for several subsets of Dom 6 one can approximate the Skorohod 
integral by Riemann sums. 

Let h ~ L 2 (0,1). From (2.3) and Proposition 3.1, it follows that h E Dom 6j and 
1 

6j(h) = f h (t)dW/', 1 ___<j_-< d. Again for h e L 2 (0,1) we denote by h i the element of H 
0 

given by: hi(t)= (0 .... , O, h(t), 0, . . . ,  0)' where h(t) is the i-th component of the 
above vector. 

Our fundamental tool in the sequel will be the next lemma which, for 
convenience of the reader, we first state in dimension one. 

Lemma 4.1. (d=l) .  Let h, keL2(0,1) ,  and FEID2,h, GEID2, k. Then hF and 
kG e Dom 3, 

6 (hF) = F6 (h) - DhF 
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and similarly for kG. I f  F, G ~ lD2,h~]D2,k, then ." 

E[J(hF) 6(kG)] = (h, k > E(FG) + E[DkFDhG] . 

Lemma 4.1. (d> 1). Let h~LZ(0,1) and FEL2(f2; IRd), s.t. Fi~]D2,hjVl <i , j<d.  
Then hF~ Dora 6 and." 

d 

6(hF)= ~ (Fi6,(h)--Ohi Fi) 

d 

E[6(hF) 2] = ]hlZE(lr[ z) + ~ E(Dh~FiDh, FJ) �9 
i , j = l  

I f  moreover k~Le(0,1) and G~L2(f2;IRd), s.t. Gi~lD2,kj, 
G~EID2,hyl _~i,j<~d. Then." 

d 

E[(~(hF)O(kG)]=(h,k>E[F.G]+ ~ E(Dkf iDh,  GJ). 
i , j =  l 

Proof Suppose first that F i ~ 5  ~, 1 <i<_d. For any J ~ ) 2 , 1 ,  

Fi Dh, J = Dh, (Fi J) - JDh~F i �9 
From (2,3), 

E [Dh, (Fij)] = E [Fiy(~i (h) ]. 
Therefore 

IE[F. DhJ][ <-c IlJII2 

(4.1) 

(4.2) 

Fi ~ ]D2,kj, 

(4.3) 

(4.4) 

and from Proposition 3.1, hFe Dom 6 and (4.1) follows from (3.3), (4.4) and (2.3). 
By a similar argument, hFie Dora 6i, Vi. Using again (2.3), we obtain: 

E[6i(hF')~i(hFJ)] = E[(Fi fi(h) -Dh ,F  i) (FJ 6j(h) -DhjFJ)] 

= I h 12 g)ijE [(Fi) 2 ] + E [Dh, Dhj (FiF 3) 

- Dh, (FgDhjF j) - Dhj (FJVh, F i) + Dh, FiDh~F j ] 

= [h [ 2 61jE [(Fi) 2 ] -4- E(Ohi FJOhjFi). 

(4.2) now follows by summing up with respect to i and j. 
Given now 

Fi~ (~ ]D2,hj , l < i < d ,  
J 

there exists a sequence {F , / ,n~N}~5  e such that F ~ F  ~ in D2,hj, V1 <j<d,  It 
follows easily from (4.2) and the fact that 6 is closed that hF~ Dora 6, and (4.1), (4.2) 
hold. The proof of (4.3) is similar to that of (4.2). [] 

For four subsets of L2([0,1] x s IRa), we are going to construct a sequence 
u"~ Dom 6, for which the expression for J (u") follows from Lemma 4.1, and such 
that u" ~ u  in L 2 ([0, 1 ] • O;  IRa). We will then show that {6 (u")} is a Cauchy sequence 
in L2(s This will be done in the three first cases by showing that 

lim E(6 (u") 6 (u")) 
n, m--~ oo 



Stochastic Calculus with Anticipating Integrands 547 

exists; let us call that limit )~. Clearly the above implies: 

E(16 (u") - 6 (um)[ 2)-~z - 2  z + z = 0 

which gives the Cauchy property. It will then follow from the fact that ~ is closed 
that u e Dom 6 and 6 (u)= lira 6 (u"). Moreover, in addition to the obvious relation 
E 6 (u) = 0 (choose F = 1 in (3.3)), we will obtain E [a (u) 2 ] = )~. 

In order to construct the approximations, we will use a sequence {/7", n e N} of 
partitions of [0,1 ], of  the form: 

0 = t o , . < t a , . <  �9 � 9  <tn,n=] 
such that 

I/7"1= sup ( tk+l , , - - tk , , )~O as n ~ o o .  
O<_k<_n-1 

Notice that the convergence (in probability or in L p, p > 1) of the approximating 
sums to a fixed limit for any sequence of partitions of the above type is equivalent to 
the convergence along the set of all partitions when the norm IH] tends to zero. 
Given u c L 2 ([0, ] ] x ~ ;  ]Rd), we define: 

t k+  l , n  

~k,, = ~ usds for 0 < k < n - 1  
t k  + l , n  - -  t k , n  t~,,~ 

and ~_, , ,  =zi,,, = 0. 

4.1. The Forward It6 Integral 

Suppose u~L2([0,1] x f2; IRe), and moreover u~ is ~,~ measurable t a.e. We then 
define: 

n - - 1  

k = O  

where we suppose here that tk , ,=k/n.  
Clearly, u'"-~u in L2([0,1] x f2;IRa). Indeed, u ' "=P ,u ,  where P, is a linear 

operator in L a (0,1 ; L 2 (f2; lRd)) with norm bounded by one, and P,u--,u whenever 
u ~ C([0,1], L 2 (f2; lRn)). The above convergence then follows. On the other hand, 
Uk-1 is g t k , ,  measurable, and from Lemma 2.4 (i), we can apply Lemma 4.1, so that 
u ' " ~ D o m 5  and: 

n - - 1  

6(u")  = ~ ak - , , , .  (Wt . . . . .  -- W~k.,). (4.5) 
k = 0  

Using the adaptedness of u, we obtain: 

n - 1  m - 1  

E[a(u'n) (5(u'm)]--- 2 2 E(tTtk-l,ntTtt-l,m)(tk+t,n A tl+l,m --tk,n V tl,,n) + . 
k = 0  1 = 0  

Finally, it is not hard to show that 

1 

EE~5(u'")fi(u' ')]+E S l u f  dt .  
0 

In this case, 5(u) is the usual forward It6 integral. 
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Moreover, if u is a d-dimensional measurable process such that ut is 
measurable t a.e. and ueL2(0,1 ; IR d) a.s., then uE(Dom6)~o~. This follows from 
usual arguments concerning It6's integral. 6(u) does not depend on the localizing 
sequence {(f2k, Uk)}, provided uk is o~ adapted Vk, since 6(u) is the limit in 
probability of the sequence {6(u'")}, where u'" is again defined as above. 

4.2. The Backward It6 Integral 

Suppose now that u~L2([0,1] x Q; IRd), and ut is ~ t  measurable a.e. We then 
define: 

n--1 

bi;'"-- F, a~+~,.l~,~,~247176 
k = 0  

where we suppose again that tk.,=k/n. 
For reasons which are very similar to the above ones, u " "eDom 6 and: 

n--1 

a(u"") = ~ a~+~,.. (w,~+ 1 , . -  ~,.) 
k = 0  

n - 1  m - 1  

E[~(u"")~(bi"~)]-- ~ y~ E[a~+. . .  a,+i,~] (t~+~,. ^ t,+~,m-tk., v t,,~) + 
k = 0  l = 0  

and again we obtain: 
1 

E[,~(bi'") ~(u"~)]-*E ~ fbi, l~ dt . 
0 

In this case, 6(u) is the backward It6 integral, i.e. the forward It6 integral ofu~ - t  

with respect to W~ -t - W~ ; see Kunita [9], Pardoux and Protter [19]. 
Finally, ifu is a d-dimensional measurable process such that u, is ~-t adapted a.e. 

and u e L a (0,1 ; IRa), a.s., then u e (Dom 6)1oc, and 6 (u"") ~ fi (u) in probability, where 
3(u) is defined by any localizing sequence {(f2 k, Uk)} s.t. Uk is ~ t  adapted Vk. 

4.3. The Skorohod Integral o f  an Element of  ]L 2'1 

Let now uelL2'l,  according to the definition given in Sect. 3. Let us define two 
approximating sequences: 

n - 1  

bln = 2 ~k,nl[tk,n,tk+l,n[ 
k=O 

n - 1  

if"= ~ Uk.,l[tk,,,t~+l,,[ 
k = 0  

where 

We have: 

Lemma 4.2. un--+u and ~ u  in lL2a "1 . 

Proof. The first convergence is immediate. In order to prove the second one, let us 
define for each n ~ N the a-algebra ~qn of subsets of [0,1] x ~ generated by the sets 
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[ tk,n, tk + l,n [ • Fk, n where O <_k < n - 1  and 

tT" is the condit ional  expectat ion o f  u given ~", which respect to the measure 2 x P 
on [0,1] x ~2. Therefore,  in order to establish the convergence in L z ([0,1] x f2; IR~), 
it suffices to show that  any square-integrable process v e L 2 ([0,1 ] x ~0) or thogonal  to 
all the (~" must  be zero. Such a process verifies 

1F J *VtdtdP =O 

and I e  H m, rn > n  with I c  [tk,,, tk+z,,]. Consequent ly  E[vt/~,~,, v o ~ t  . . . . .  ] = 0 a.s., 
t a.e. in [tk,,,, t~+~,,]. Since ~ 17" contains a countable  number  of  intervals, the 

tl 

above holds true for  any k, n s.t. t~ [tk,,,, tk+l,,]. This clearly implies that  v = 0  2 x P 
a.e. The convergence o f  the derivative follows f rom the same argument ,  once we 
have used Lemma 2.4. (ii) to compute  Dt~ ~. [] 

The fact that  ~" e D o m  ~ follows f rom the same argument  as those used above, 
and:  

n--1 

(a") = y ,  ~k,, .  ( w ~ +  ~,o - w , ~ , ~  
k = 0  

The fact that  u"~ Dora  c~ follows from L e m m a  4.1, using the fact that  u e IL 2'1 , 
and moreover :  

n - 1  n - 1  1 t k + l , n  t k + l , n  

a(u-)= E .-~,. (w,~+,,o- w,~,.)- E I f D, u.dsat 
k = 0  k = 0  g k + l , n - - t k , n  tk, n tk, n 

where D t . U s stands for 
d 

E D:4. 
i = 1  

Proposition 4.3. Both sequences E(a(u ' )a(um)) and E(a(tT')a(ff~)) converge, as 
n~ m - - ~  o�9 t o  

1 d 1 1 

E t  I ul2dt+ E E f  f D~u~DJu~ dsdt �9 
0 i , j = l  0 0 

Proof For  the sake o f  nota t ional  simplicity, let us replace k, n by k and l, m by L 
Define 

~k, = (tk+~ A t ,+ l  - t ~  v t,) + = ~([ tk ,  t~+ l ]c~p , ,  t , + d )  . 

It follows f rom (4.3): 

n--1 m--1 d l~k+l tl+ 1 
j - i  i ~j  E[a(u")a(u')]= ~, Z {~k'E(UkU,) + ~, E 5 5 D~u~D,u, drds . J 

k=O / = 0  i , j = l  tk t, 

The convergence is immediate f rom Lemma 4.2. The other sequence is t r e a t e d  
analogously.  [] 
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Remark  4.4. (i) We have established again the isometric identity (3.5). Note  that  the 
fact that  6 is a linear map  f rom ILJ '1 into L2((2) such that  E ( f ( u ) ) = 0  and (3.5) are 
satisfied does completely characterize the r andom variable 6 (u) for  u �9 1LJ,1. Indeed, 
it follows f rom (3.5) that  Vu, v � 9  2"a, 

I I i 

D s u t D t v~dsdt . (4.6) ' J 

0 i , j O 0  

For  any h �9 H, define for  t �9 [0,1 ] 

Then:  

Xt(h) = e x p  h(s).  d W ~ - ~  o 

1 

X l ( h )  = 1 + 
0 

The last integral is a Skorohod  integral, since it is an It6 integral (see Sect. 4.1), and 
moreover  X .  (h)h (.) �9 ]L 2,a . Therefore  f rom (4.6), Vu �9 1L~ '1, 

i 1 t 

E[6(u)Xl(h)]  = E  ~ ut. h ( t ) X t ( h ) d t +  ~ ~ I D[u~sff(t)hJ(s)Xt(h) dsdt �9 
0 i, j O 0  

Then the scalar product  in L 2 (f2) of  6 (u) with each )(1 (h) is uniquely determined. 
Since {)(1 (h), h e H} is total in L2(~), this determines 6(u). 

(ii) If  u �9 L 2 ([0,1 ] x f2; IR d) is either ~ adapted or ~ t adapted,  then 6 (if") --* 6 (u) 
in L 2 ((2) as well, by the same argument  as those used above. It is interesting to note 
that  the same approximat ing sequence 6 (Y') converges to 6 (u), in the three cases 
u ~,~ adapted,  u ~ t  adapted,  and u � 9  2'1 . Moreover ,  for  any u � 9  ([0,1] x f2; lRd), 
if 6(h ~) converge in L 2 (~), then u �9 Dora  6 and 6(u)= lira 6(fi"), since 6 is a closed 
operator .  [] 

We now establish the localproperty of  the Skorohod  integral, when restricted 
to ll? '1 . 

Proposition 4.5. Let  u �9 IL~,I and A �9 ~-f such that ut (co) = O, dt x dP a.e. on [0,1 ] x A. 
Then 

1 

S u t ' d W t = O  a.s. on A . 
0 

Proof. It suffices to show that  6 (u" )=0  a.s. on A, V n � 9  which follows easily 
f rom Lem ma  2.6. [] 

Definition 4.6. Let  2,1 ]Ld, lo~ denote  the class of  d-dimensional measurable processes u 
which have the proper ty  that  there exists a sequence f2kTf2 a.s. and a sequence 
{Uk, k �9 N} = IL~ '1 , such that :  

Ubk=Ukbk a.s., Y k .  

We will then say that  u is localized by the sequence {(~2k, Ue), k �9 N}. [] 
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It follows from Proposition 4.5 that IL2;~oe~(Domc~)loc, and that for 
uElL~;locb(u) does not depend on the localizing sequence {(Ok,Uk)}, provided 
Uk ~ ]L~'l , V k. 

We finally study some stability properties of lL2;~oc and ]L 2'1 under composition 
with functions. 

We will say that a measurable function q~ : [0,1 ] x IR dm ~ IR e belongs to class A if 
z--*@(t,z) is of class C1t a.e., and moreover dP(t,z) and @~(t,z) are bounded on 
bounded subsets of [0,1] x IRdm. 

2,1 Proposition 4.7. Let {ul}, 1 <=iN m be continuous processes belonging to ]Ld,lo~, and 
2,1 ~ A. Then vt = q~ (t, ut) belongs to lLd, loc. 

Proof. For k => 1, define 

For each i, u i is localized by {(~2~,u~)}. Define Ok----AkC~2~C~... C~Y2[~ n. Clearly, 
f2k]'f2 a.s. Let f =  IRem-, [0,1] be a smooth function with compact support, such 
that f ( x )  = 1 whenever Ixl =< 1, and fi,(x) = f ( x / k ) .  We define: 

~(t)  = a,(t, u~(t))f~(udt)) . 

Clearly vk = v on Ok, and since ~(t, Z)fk(Z ) is bounded with bounded derivative with 
respect to z, it will follow from the next proposition that Vk~]L] '~ . [] 

Proposition 4.8. Let u i ~ IL~ '1 , 1 < i < m, and q~ ~ A. Each o f  the following conditions 
implies that vt= q~(t, ut) is an element o f  L~'I : 

(i) q~ and ~ are bounded 
(ii) 3 a > l , p > l  a n d K > O  s.t.: 

(iil) 1~ (t, z)l + I ~  (t, z)[ < K(1 + Izl ~) 
1 

(ii2) E ~ luf"Pdt < 0o 
0 

(iia) E i ( i  ID'u~t:ds)qdt < co, where l / p +  1/q= 1. 

Proof. The fact that v e L 2 ([0,1] x O; IRe) follows from either (i) or (ii~)+ (ii2). The 
fact that t a.e. vtelD2, ~ and 

1 1 

E [. [. [ID~v, ll2dsdt < oo 
O 0  

follows easily under condition (i). Under condition (ii), using Proposition 2.9, we 
obtain, restricting ourself for simplicity to the case d =  1, 

E ID~v,12dsdt=E [. ~ ~,( t ,  
0 0 0 0 i = l  

i = 1  0 0 
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The fact that the last quantity is finite follows readily from H61der's inequality, 
(ii2) + (ii3). [] 

4.4. Another Class o f  Skorohod Integrable Processes 

In order to simplify the notations, we will restrict ourselves in this subsection to 
the case d =  1. Let us now indicate our motivation for what follows. Suppose we 
have a process u, (x), parametrized by x ~ IR p, which belongs to L 2 ([0, l] x t2) and is 
~ -adap ted ,  Vx ~ IR p. We then can define the forward It6 integral 

I 

ut(x)dW~ , V x ~ I R  p . 
0 

Suppose now that the resulting random field is a.s. continuous w.r. to x, and let 0 
be a p-dimensional random vector. We then can "evaluate the stochastic integral 
at x = 0", i.e. consider the random variable: 

1 

ut(x)dI'V~]x=O . 
0 

A natural question, which was raised to us by P. Priouret is then: under which 
conditions is the (non-adapted) process {ut (0)} Skorohod integrable, and does then 
6(u(O)) coincide with the above random variable? 

We will now show that provided u is C a in x, and 0 belongs to a certain Sobolev 
space, we do not need any smoothness of u( .... x) for fixed x, in order for u(O) to 
belong to Dora 6, and we will compare 6(u(O)) with 6(u(x))lx=o. 

We first suppose that u(t, co, x) is a real valued measurable function defined on 
[0, l] x t2 x D, where D is a given open and bounded subset of IR p. We make the 
following hypotheses: 

(H 1) (t, co) ~ u(t, co, x) is ~ progressively measurable, Yx. 
(H2) x ~ u ( t ,  o~, x) is of class C 1, Vt, co. 
As usual, we will from now on omit the variable co, and write u(t, x) for u(t, co, x). 

We will write u'(t, x) for the gradient of u with respect to x. 
1 

(H3) E ~ sup ]u'(t ,x)lgdt< oo 
0 x e D  

1 

(H4) 3 q > p  s.t. q > 2  and E ~ S (lu(t,x)l"+lu'(t,x)p")dtdx< oo 
D O  

(Recall that p is the dimension of x) 
We are finally given a D-valued random vector 0, s.t. 01eDa,1, 1 < i < p .  
We define as before, assuming again that tk,, = k/n: 

t k +  1,n 

~k,.(x)= ~ u~(x)ds 
t k + l , n  - - l k , n  tk, n 

for O < k < n - 1 ,  ~_l . , (x )=0 ,  and: 

n - - 1  

u;(x)= Z 
i=O 

~ k -  1 , . ( x )  I c~ . . . .  ~ . . . . .  [ ( t )  . 
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It follows from (H2) and (H3) that x--,~k,,(x) is of class C 1 ; we will denote 
by ~[~,,(x) its gradient with respect to x. Let us define 

hk = lttk,.,t~+ ~,.[ - 

Lemma 4.9. V k < n - 1 ,  

and moreover 
~7k-1,.(0) e ID:,hk 

Dhk (Ktk- l,.(O)) = ~ _  ~,.(0) . Dh~ 0 , 

where "." means the scalar product between the gradient o f  zi and the vector 
(DhO I, ... ,D~OP) '. 

Proof. For simplicity, we drop the indices k, n, and we assume thatp = 1. Let us first 
suppose that 0 e 50, which implies that: 

On the other hand, since ~(x) is ~ ,  -measurable Vx, 

and using again (H 3), we obtain that 

which implies the lemma in the particular case where 0 e 5C In the general case, let 
{0,,} be a sequence in 5 p which converges to 0 in D4,~. Then 

~ ( 0 , , ) ~ ( 0 )  in L2(O) 

U(Om)DhOm---*ff(O)DhO in L2(O) .  

The result follows from the fact that D h is a closed operator. [] 

It follows from Lemma 4.1 and Lemma 4.9 that u' (0) e Dom 6 and, dropping the 
index n on the right side, with the convention t_x = 0: 

n - - 1  n - 1  t k + l  tk  

5(u'((O))= ~, ~k_a(O)(Wt~+ -VVt~)-  ~, (tk--tk_l) -1 ~ ~ u'(s,O).n~Odsdr . 

k = 0  k = 0  tk  t n -  I 

Let us first prove: 

Lemma 4.10. The random fields f(u"(x)) and 5(u(x)) have a.s. continuous modifi- 
cations which satisfy: 

sup]6(u(x))- f i (u"(x)) l~O in L2(s 
x ~ D  

Proof. We use the technique and results in Kunita ([8], Sect. 6). Let q be the index 
appearing in (H4). We denote by Wq'I(D) the usual Sobolev space of real-valued 
functions defined on D which, together with their first-order distributional 
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derivatives, belong to Lq(D). Since q > p ,  it follows that Wq'*(D)c  C(D), and 
moreover 3c s.t. VfE Wq'I(D), 

where 

sup Ilfll.,, 
x ~ D  

p 

i = 1  

(H4) means that ueLq([o, 1] x D; Wq'I(D)), and clearly the same is true for u", and 
u"---,u in Lq([0,1] x D; W q'* (D)). Then Lemma 6.4 in Kunita [8] implies that 3(u(x)) 
and 6(u"(x)) have modifications which belong to Lq(O; Wq'*(D)), and 

The result follows f rom Sobolev's embedding theorem. [] 

We can now prove: 

Proposition 4.11.6(u"(O)) converges in L2((2) tO 

1 1 

u(t, x)dWt[~ =o - ~  u'(t, 0). D, Odt. 
0 0 

Proof. The convergence of  the first term follows from Lemma 4.10. We now 
establish the convergence of  the second term. 

E [(u")'(t, O) -u ' ( t ,  0)]. DtOdt 

< E IDtOIZdt I E[lu'(t, O) -(un)'(t ,  O)14]dt . 
0 

Clearly, the right side tends to zero as n ~ o o .  [] 

Let us now localize the result which we have just proved. 

Proposition 4.12. Suppose u is a real valued measurable function defined on 
[0,1]x D • IR p which satisfies (H 1) fo r  any x E IR p, (H2) and ( H 3 ) - ( H 4 ) f o r  any 
bounded open subset D in IR p. Let 0 be a d-dimensional random vector s.t. 0 i ~ D4,1,1oc, 
l <_i<-p. 

Then u(O)~(Dom 6)1o~ and 3(u(O)) can be defined as." 

1 1 

6(u(O)) =S u(t, x)dWtlx=o - ~  u'(t, 0).  D, Odt. 
0 0 

Proof. Let us assume p = 1 for notational convenience. In the case where 0 e ]1)4,1 
and takes values is some bounded open set D, the result follows from Proposition 
4.11 and the fact that 5 is closed. Suppose now that {(Dk, Ok)} localizes 0. For  k > 1, 
let ~Pk be a smooth mapping f rom IR into N, such that q)k(X)=X whenever Ixl < k  
and ~0k (X) = 0 whenever [x l > k + 1. Define Dk = Dk C~ {10kl < k}, Ok = 9k (Ok). Then 
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{(~k, 0k)} localizes 0, and moreover Ok takes values in a bounded set. We then know 
that: 

1 

6(u(Ok)) = 6(u(x))l~=y~ --~ u'(t, Ok) DtOkdt . 
0 

It follows from this relation that whenever l<k ,  

The result follows from this, and again our last equality. [] 

5. The Skorohod Integral as a Process 

We will restrict ourselves in this section to integrands belonging to IL 2'~, see 
Definition 3.3. Note that if u ~ ILk'l, resp. lLd,loc,2'l t ~ [0, 1], then ult0,t]~ IL dz,1 , resp. 

2 , 1  ILd,~oc. We then define the process 

{ i  us.dWs, t~ [0,1]} 

by: 

i u~. dW~=~(ulto,tl). 
0 

This process is clearly mean-square continuous and then measurable. It does not 
have any type of martingale property, for lack of adaptedness. Nevertheless, it has 
the following property: 

Proposition 5.1. Let u ~ IL~ "1 and 0 < s < t < 1. Then we have: 

=o 

E(! I I 1 (ii) E u,.dW~ / ~ s v ~  t = E  ~]u fdr+ ' j j i D~u,D~ uJrdc~/~* s v ~ t  . 
-1 I s  i , j = l  s s 

Proof For simplicity, we suppose that d =  1. We first prove (i). For any F~  ID2,1 
which is ~s v ~-t measurable, DrF= 0 for almost all r e [s, t]. For such an F, using 
Proposition 3.1, we obtain: 

We now prove (ii). It suffices to prove (ii) for u e ][2,2 which we now assume. It then 
follows that 

i u~dW~ ~ D2A 
$ 
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and we can use Proposition 3.4 in order to compute its derivative. Let now F b e  an 
f s  v f i t-measurable element of Y. We then have, using repeatedly Proposition 3.1 : 

which proves the result. [] 

We now give a sufficient condition for the existence of an a.s. continuous 
modification: 

Theorem 5.2. Let u e 1L~ '1 . Then each one of the following conditions implies that the 
process 

has an a.s. continuous modification." 

(i) ~p> 1 s.t. sup E IIDsut[] 2ds < oo. 
re[O,1] 

)" 
(ii) 3 p > 2 s . t . E  II sU, ll2ds dt<oo. 

0 

Proof. Clearly, the process 
t 

0 

has a continuous modification. Let us define vt=ut-E(ut). Since obviously 
Dsvt=Dsut, it follows from (3.7) and H61der's inequality that for q > 2 :  

q--' IlO~url]2d~) Jdr ~cq(t--s) 2 i E 
s 

<-cq(t-s)q/2 r~r0,11sup E [ID~u,[]2do~) ].  

Clearly, either (i) or (ii) permits us to use Kolmogorov's  lemma in order to conclude 
that 

possesses a continuous modification. [] 
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Let us now prove the same result under slightly different hypotheses. Recall the 
Definition 3.3 of the space IL 2'2 . 

Theorem 5.3. Let u e]L 2'2 satisfy." 

(i) ~,t~to,1]sup IIIE(Dsut)[[+EillDsDrutllZdrl<OOo 

as well as either 

(ii) 3p > 2 s.t. sup E(lutl v) < oo 
teD,t] 

or 
1 

(ii') ~ p > 4  s.t. E ~ lutLPdt< oo. 
o 

Then the process 

has an a.s. continuous modification. 

Proof. We assume again for simplicity that d =  1. First note that from Lemma 2.5, (i) 
implies that: 

sup E(]Dsutl 2) < o0. 
S~t 

We have the following decomposition: 

t t 

urdWr=~ E(ur/~" s v ~ t ) d W ,  
s s 

t 

+ ~ [u r - E ( u r / ~  ~ v o~t)l dWr = ~ + O. 
s 

being an ordinary It6 integral, we obtain from Bukholder-Gundy, H61der and 
Jensen's inequalities, 

P t 

E([{IP)<cv(t-s) g-* E ~ lu, lVdr. 
s 

It then follows both from (ii) or from (ii') that there exists p > 2 and e > 0 s.t. : 

e(l~ I0 _-< c;(t  - s )  ~ +~ (5.1) 

On the other hand, from Proposition A.1, 

t t 

0 =~ ~ U(D,u,/o~ v ~ ' )dW~dW,  
s 

t t 

E(O ~) =j" J" E[E(D,u/~, ,, ~ ' )q&dr  
8 S 

+ E i i v(r, fl)v(fl, r)dfl dr 
$ $ 
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where 
t 

v(r, fl)= I E(DzD, u , / : ,  v : t ) d W ~  + E(D#u, / :p v : ' ) .  

It then follows from (i) that" 

E(O 2) < e(t - s )  2 (5.2) 

The result follows from (5.1) and (5.2), using the same argument as in Pardoux 
and Protter ([19], Theorem 4.3). [] 

We compute next the quadratic variation of the process 

Let again {H") denote a sequence of partitions of  [0,1 ] such that I//"l--* 0 as--, o% as 
defined at the beginning of Sect. 4. 

2,1 Theorem 5.4. Let uelLlo ~ . Then V1 <=i,j<=d, 

n - 1  tk+l tk+l 1 

k=O tk tk 0 

in probability, as n--, ~ .  

Proof. Let us first consider the case i =j,  and drop the index i. Let u, v e ]L 2'1. Then: 

E k~ \ tu \ t~ 

II u - II L2,, • JI u + I I - , .  

It follows from this estimate that it suffices to prove the result in case 
U ~ L  2'1 c~L4([0,1] x s 

Choosing now v=u" in the last estimate (u" is defined as in Sect. 4.3), we 
conslude that: 

E ~k \ t~ \ tu 

as n ~ .  It then remains to consider: 

\ tk ( t k + l - - t k  tk 

= ~  (a2,, +b2,--2ak,,bk,,) 
k 

1 tk+ 1 t~ + 1 12 

tk + l - -  tk tk t~ 
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where 
W t  k + - -  W t  k tk + t 

ak,, -- t ~ usds 
tk + l -- tk tk 

1 t k + l  t k + l  

bk,,-- ~ ~ D~usdsdr 
tk + l -- tk tk tk 

t k + l  t k + l  

~, b2,n<=vj~ ~ ~ IDrus[ 2 dsdr 
k k tk tk  

and the last term tends to zero in L1((2), as n ~ .  

ak,, = 2 ~ (u~) 2 ds" 
k k = 0  t k + l  - - t k  tk 

Since (u") 2 ~ u  2 in L 2 ([0,1] • (2), it follows from an obvious modification of the 
first part  of Lemma C 1 (see Appendix C) that:  

1 
2 Z ak,,-+5 u2ds in L ' ( (2) .  

k 0 

Finally 

~ak , ,bk , ,  < = ( ~ a Z , , ) l / Z ( ~ b ~ , , )  a/z 

and the latter tends to zero in LI(Y2), as n ~ o e .  
The proof  for i :t=j is similar, the only serious difference being the use of the 

second part  of Lemma C1, instead of its first part. [] 

It follows readily f rom Proposit ion 3.4: 

Proposition 5.5. Let u E IL 2"2. Then for  any 0 <-_ ~ < fl <= 1, 

us.dW, eD~.~, 

and: 

D] ~ u~.dW~=I D[us.dWs+u~l%p~(t),  t a.e. 
ct 

[] 

6. The It6 Formula 

The aim of this section is to prove a chain rule which generalizes the It6 formula. For  
the sake of clarity, we first state and prove a one-dimensional result. Recall the 
Definition 3.3 of  IL 2'a. 

Theorem 6.1. Suppose d= 1. Let  (b = IR2 ~ IR be a continuous function, such that the 
t tt tt derivatives ~b~, (by, ~by x and q~yy exist and are continuous, and moreover let 

ib i i i 
(i) IE(Dsut)[ ~dsdt + E ~ S S IDrD, u,I pdrdsdt< 

0 0 0  
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-{ V~, t ~ [0,1 ]} be a continuous process with a.s. finite variation 
]L 2~1, belonging to s.t. 

(ii) 1 1 
E ! ! (DsV~)4dsdt < co and the mapping t~DsVt  is continuous 

13 U 

[_with values in L4(Q), uniformly with respect to s. 

Then for any t ~ [0, 1 ], with the notation 

=i U, usdW~ 
0 

we have the following : 
! 

�9 (v,, gt) = ~(Vo, o) + ~ ~;(v~, g~)dV, 
0 

t 

' I i q~;'y(V~, V~)u2sds +~ ~,(V~, U,)u~dW~+ - ~  o 
0 

+~ [q~r U~)D~V~+@;'y(V~, Us) DsurdWr]usds. 
0 0 

Corollary 6.2. The conclusion of  Theorem 6.1 remains valid if, the hypotheses 
concerning q) remaining unchanged, and assumin 9 that the proeess { U,, t e [0,1 ]} is a.s. 
continuous, we replace (i) by: 

(i t ) u e ] L 2 ' 2 ~ L ~ ( [ O , l ] •  

and (ii) by either 

(ii') { Vt, t E [0,1]} is a continuous process with a.s. finite variation belonging to 
IL 2A, and s.t. t~D~ V t & continuous with values in Lz(Q), uniformly with 
respect to s 

o r  

(ii') Vt is a.s. absolutely continuous, Vo~ID2.1 and dVt~lL2'l 
dt 

Moreover, we may drop the requirement that { Ut) is a.s. continuous, provided we 
assume that the derivatives of  �9 are bounded. [] 

Remark 6.3. (i) A new term appears in the It6 formula.  Note  that  this term does 
cancel when both  Vand  u are ~ t  adapted.  Indeed, in that  case, D~ur = 0 for s > r, and 
D~ Vs=O, since D~ Vr=0 for  s >  r, and r ~ D s  V, is continuous.  

(ii) The hypotheses under  which the chain rule is proved in Sekiguchi and 
Shiota [21] are those at the end of  our  Corol lary 6.2. [] 

Proof of  Theorem 6.1. From Lemma  2.5, (i) implies that  

1 t 
E ~ ~ [Dsv, lPdsdt< co, 

O 0  

where vt = u t -E(ut ) ,  which implies that  {U t} has an a.s. cont inuous modification,  
which we will choose f rom now on. It is easily seen that  the hypotheses of  the 
theorem imply that  the It6 formula  makes sense; in part icular  the integrands of  the 
Skorohod  integrals belong to lLlzd~. 
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Using the localization argument, it suffices to establish the It6 formula 
! t! for functions ~b such that ~b and the derivatives ~b~, ~by, ~v~, ~b;'y are bounded. 

Let { / / " , h e N }  be a refining sequence of partitions of [0,t] of the form 
F l " = { O = t o , , < t l , , < . . . < t , , , , = t } ,  with ] l I" l=sup(h+ l , , , -h , , )~O , as n ~ m .  As 
usual, we write t~ for t~,,. 

/1--1 

�9 (E, g~)=c,(vo, Uo)+ ~ [~(v, .... u,~ 1)-~(v~,, u,,)] 
i = 0  

n - 1  

=~(vo, go)+ ~ [~(E,+,, u.+0-~v,~, u,,+,)] 
i = O  

/*-1 

2[_ ~ [( / )(Vti  ' U t i + l ) _ ( ~ ( V t i ,  U t i )  ] , 
i = o  

We can write 

n--1 n - 1  

i = O  i = 0  

where ~ is a random intermediate point between V~ and Vt~+ i. 
It follows easily from the continuity of <b~ and that of the processes V t and Ut 

that: 

n - 1  t 

[#(V~ .... Ut,+~)- ~b(Vt,, Ut,+l)l~ qo~(V~, U~)dV~, (6.1) 
i = 0  0 

a . s . ,  a s  t~----~ CX3. 

On the other hand we have 

n - 1  n - 1  

[~(v~,, ut,+l)-~(v,,, v,,)]= ~ a,;(E, u,)(u,,+~-u,) 
i = O  i = 0  

1 n - 1  

+~ Y, ,~;'.(v,~, o , ) ( u , . ~ - v . )  ~ , 
i=O 

where (_7 i is a random intermediate point between Ut~ and Ut, + 1. 
It follows immediately from the continuity of ~;'y and the quadratic variation 

result (Theorem 5.3), using Lemma C2 in Appendix C that: 

n - 1  t 

Z ~b;',(V,, U,)(U, . . . .  Ut,)2~S ,P;'y(Vs, Us)u~ds, (6.2) 
i = 0  0 

in probability, as n-~ o'o. 
Now, from Proposition 3.2 and 5.5 we have 

t i + l  t i + l  

�9 ; (v . .G , )  ; u~dW~= S ~;(V.,G,)u~dW~ 
t i  t i 

t i +  l 

+ ~ D~[<b;(Vt,, U,,)]usds, 
t i  
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and 
t i + i  

I 
ti  

t i + l  

=I 
t i  

Moreover"  

t i+ l  ti+l 

ti ti 

t i + l  

q~;'~(Vt,, U,,)D~Vt,u~ds + f 
ti 

q~;'y(Vt~, Ut~)D, Utiu~ds 

�9 ;~(Vt,, Ut,)(!D~u, dW,)u,ds. 

#"yv','(~/*i, gt~) DsurdVV~ u, ds 
/ = 0  ti 

in probabili ty,  as n--+ oo. Indeed, 

n~l t,i~ [~;'y(gt~, Ut~) i DsurdVVr-q~;',(l/s, Us)iDsu, dW~lufls 
i = 0  t~ 0 0 

<= ,~=o t~ ~ #'y',(V,,, Vt,) t, D,u, dW~ ufls 

";[ (i )l ~=0 t! t! + i q~yy(V~,, Ut,)-,I)yy(V~, Us) D~urdW~ u~ds 
It 

II " ll ~ t! 
<-_ eyy ~ 2 5 D~u,dW,. lu~lds 

i = 0  t i 

The mathematical  expectat ion of  the first term in (6.4) is bounded  by 

IlcP;',lloo E u2sds E 2 i IDsurl 2drds 
0 i = 0  t i t i 

+E ~ t [DoD, u~[ 2drdOds 
i = 0  tl [i ti 

which tends to zero as n ~ o o ,  because uelL 2'2. The second summand  of  (6.4) 
converges a.s. to zero by continuity.  

Using a similar a rgument  we can prove that  

n - - i  t i + l  

f q~;'(Vt,,U,,)D, Vty~ds 
i = 0  t~ 

i " --+ #y,~(V~, U,)D, Vsusds, (6.5) 
0 

in probabil i ty as n ~  or. 
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Indeed, we have 

n-1 t,+l ,, ,, G]usds 
i = 0  t i  

n- - J .  t i + i  

_-<ll~;'~lI~ Y~ X ]D,G,-D,F~] ]u~lds 
i = 0  t i  

+ sup sup q~" ~v U , , ) - r  ( "  
�9 s e [ h , t i + l ]  0 

and we use (ii) to obtain the desired convergence. 
It remains finally to show that 

r l - -1  ~'i+1 t 

Y i G(v,,, U,,)~sd~-q G(v .  U.)usdW~, 
i = 0  t i  0 

in L2(O), as n--,oo. 
In fact we will show that 

n - 1  

u~ y~ ~;(v~,, G,)1~,,,,,+ ~](s)-*us~;(vs, G) 
i = 0  

(6.6) 

as n ~  oo in IL 2'~. Obviously the convergence holds in L 2 ([0,1] X ~Q). Then it suffices 
to show 

n - J -  

(Drus) ~, ~b~(G,, Ut~)1],,m+l](s)~(Drus)q~y(V~, Us) (6.7) 
i = 0  

us E q>;'(Vr,, gt,)D~Vt, 1],,,t,+~](s)--*uscb'y'(V,, Us)D~V~ (6.8) 
i = 0  

if Us @yy(V~,, Ut~ D.uod llti,ti+ tl(S) 
i = 0  

and 

n - 1  

us ~ ~"  (V, 
i = 0  

~ u ,  ~;'r (G,  U~)u, l{,z~ } (6.10) 

in L2([0,1] 2 xO) .  
(6.7) follows easily from the fact that u ~ ]L 2'1. To show (6.8) we first remark that 

u~D, Vs belongs to L z ([0,1 ]z x s So, by Lebesgue dominated convergence theorem 
we have 

n - - 1  

Us ~ ~ , ( G , ,  G,)D, G1],,t,+l](s)-*us~'~(G, G ) D r G ,  
i = 0  
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in Lz([o,I]2 x/2). In addition, 

E ~ 2 ,, u, ~yx( Vt,, Ut,) 2 [D,. V~, - D,. Vs]2 dr ds 
L i = o  t~ o 

o 

which tends to zero as n-+ o% from (ii). 

The proof  of (6.9) is similar. Hypotheses (i) and (ii) imply that u, i DruodWo 
belongs to L2([0,1]2 x s o 

E i i u2 (i D'uodW~ u'ds) i i  E(i D, uodWo)'4dsdrJT*/2 

[ ( i  1 <-c E u~ds 1 i E([Druol4)drdO+~ } } "171[2 

- o o o o  E(l   ru~ 
Here we have applied the L p inequality of Proposition 3.5 for p = 4 .  Then, to 
complete the proof  of  (6.9) we have to verify that the following expectation tends 
to zero : 

E 2 tt u~ cbyy(V~, U~,) z DruodWo drds 
I_ i=0  0 ti 

_-<ll~.rl~ E u~d,) e ,,I o t,i DruodWo) drdsj . 

Using the same L 4 estimate as above, we deduce that the last factor tends to zero, as 
n-+ 0o. (6.10) is immediate and the proof  is complete. [] 

Proof of Coroilary 6.2. The proof  of the chain rule under the first set of hypotheses 
follows exactly the same steps as the proof  of the theorem. The L ~ bound on u 
permits to avoid using any fom~th order moment. 

Once we have the chain rule under this first set of hypotheses, the result will 
follow under the second set of  hypotheses by a limiting argument (which uses the 
fact that the derivatives of 45 are bounded, and we have only dt and dW, integrals) 
once we show that there exists a sequence {u,, n oN} such that each u, satisfies 
condition (i), 

u,--+u in IL 2'2 

and 

/1 

We now construct such a sequence. Let {//"} be a sequence of partitions with 
IH"I-+O as n-+c~. We define: 

t i + I  

~.- I u~d,. 
gi + l - -  ~i ti 
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Clearly, i V n E ]D 2,2 u'l L ~176 (~r a n d  i f  w e  d e f i n e :  

n - 1  
i 

V n :  ~ V n l [ t i , t i + l [  
i = 0  

Vn--+U in ]L 2'2 . 

Now Vi, n, there exists a sequence {Vv~,,peN} in ~ ,  such that: 

sup [IPv',,llL.(C~) < oo 
p 

p, i ~ i in ]D2, 2 Vn Vn 

Finally, there exists a sequence of integers {p(n), n~N} such that '  

n - 1  
Un = ~ p(n),~i "1 

t/tl • + 1[ 
i = 0  

converges to u in L 2'2. [] 

We now state the multidimensional analogues of Theorem 6.1 and Corollary 
6.2. We use below the convention of summation upon repeated indices. 

Theorem 6.4. Let qb = I R  M • IRN--. IR be a continuous function, such that the derivatives 
x~, . . . .  ~byj, cbyjxi, ~byjyk" exist and are continuous for 1 <- i <- M, 1 <=j, k _< N. 

Let {u iJ ; 1 < i < N, 1 _Gj < d} be a set of  processes, each of which satisfies (i) in 
Theorem 6.1, and { Vi ; 1 <-i <- M} be another set of processes, each of which satisfies 
(ii) in Theorem 6.1. 

t 

For t~ [0, I], we denote by Ut=~ usdWs the N-dimensional process defined by 
0 t 

v~ :~ u~dWj. We then have 
0 

t 

~ ( v .  G) = ~(Vo, o) + j G,(vs, G)dV~ 
0 

t t 
, ,, k j  l j  +j Gdv~, G)uydWj+l/2 ~ G~,(v~, f3u~ u~ ds 

0 0 

" . " j lh h kj  + ~y,,x,(Vs, g~)DJV~s+~by,,y,(Vs, Us) Dsur dW; u~ ds. [] 
0 

Corollary 6.5. Suppose that the process {U, t~[0,1]} is a.s. continuous, and we 
replace (i) by (i') and (ii) by (ii') or (ii") in Theorem 6.4. Then its conclusion remains 
true. Moreover, we may drop the requirement that { Ut} be continuous, provided we 
assume that the derivatives of  �9 are bounded. [] 

Remark 6.6. Suppose that the assumptions of Theorem 6.4 or Corollary 6.5 are 
satisfied, and moreover that M =  N. Let us define: 

~ = E + G .  
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It is easily seen tha t  s--,D,X, is mean  square  cont inuous  on [0,1 ] - {t}, and we then 
can define, 

( V ~ X ) t =  l im (D~,X,+~+D]X,_~) 
~-*O,e>O 

(VLX)t= lira (D~tXt+~-D/Xt_O. 
e ~ 0 , g > 0  

Note  that  (VL X ) t = u l  ~. 
With these notat ions,  the I t6  fo rmula  takes the fo rm:  

t d t 

�9 (x,)=~(Xo)+f (O~'(xs),dX~)+~ Z I " ' (~ (L) (v+ x)s, (vL X)s)ds, 
0 i = 1  0 

which is more  concise. [] 

7. A Stratonovieh Type Integral and the Associated Chain Rule 

7.1. Definition of  the Stratonovich Integral 

Let {//", n e N} denote  again  a sequence of  par t i t ions  of  [0,1 ] , / 7"  = {0 = to,, < t l , .  
< . . .  < t , , , = l } ,  with [H"I--,0, as n--,oo. Let  {ut, t~[O,l]} be a d-dimensional  

1 

measurable  process defined on ((2, i f ,  P) ,  s.t. 5 [ut[2dt < oo a.s. We then associated to 

each {/7"} the process:  o 

n--1  

bln~- Z Igk,nJ[tk,n,tk+~,n[ 
k = 0  

where again  
tk+l,n 

(tk,, - ~ u~ds. 
tk+l,n --lk,n tk,n 

Definition 7.1. A d-dimensional  measurable  process {ut, te  [0,1]} defined on a 
probabi l i ty  space (s ~ ,  P )  is said to be Stratonovich integrable if the sequence" 

n - 1  

k = O  

converges  in p robabi l i ty  as n--+ 0% and if moreove r  the limit does not depend on the 
choice of  the sequence of  par t i t ions  {//n}. 

Whenever  {ut} is S t ra tonovich  integrable,  we denote  by 

1 

[. ut o dl/Vt 
0 

the above  limit, which will be called the St ra tonovich  or the S t ra tonov ich-Skorohod  
integral o f  {ut}. [] 
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Note that, in case d =  1, if {X~} is a continuous ~t  semi-martingale, and 
f e  CI(IR) then u t = f ( ~ )  is Stratonovich integrable, and: 

auto dl/Vt- ut. dVVt+~ a f ' (Xt)d(X,  W)t.  (7.1) 
0 0 0 

On the other hand, if ~ is a continuous backward ~ t  semi martingale, and 
f s  C*(IR) then v t = f ( ~ )  is again Stratonovich integrable, but now: 

vl odWt= vt .dVVt-~ f ' (Y0d(Y, W)t. (7.2) 
0 0 0 

Clearly, ut + v, is again Stratonovich integrable, but the correction term between 
its Stratonovich and its It6 integral cannot be expressed in terms of its joint 
quadratic variation with IVt. 

Definition 7.2. A process { u t ,  t s [ O , l ] }  will be said to belong to the class IL~;~ 
whenever u s  IL~ '1 , and moreover there exists a neighbourhood V in [0,1] 2 of the 
diagonal of [0,112 such that: 

(i) {Dsut} has one version for which t-+Dsu t is continuous with values in L 2 (~2) 
uniformly with respect to s, on Vc~{s<t}. 

(ii) {Dsut} has a (possibly different) version for which t--+D,ut is continuous 
with values in L 2 (D) uniformly with respect to s, on Vc~ {s > t}. 

(iii) ess sup E(llD~ut ll 2) < co 

In the ca(sJ)d v 1, we delete the index d, as above. [] 

2 1  If u s lLe;c, then we can define" 

d 

Dt + . U t = lim ~, Dti u~i 
s--+t,s>t i=1  

d 

D;-.ut= lira E D~ui, 
s -+t , s<t  i = 1  

as elements of L2([0,1] x s 

21 Theorem 7.3. Let u ~ ILe;c. Then u is Stratonovich integrable, and 

} ut o dWt =6(u) + ~ i [Dt + . ut + Dt- ut]dt . (7.3) 
0 /-" 0 

Proof. From the analysis in Sect. 4 (see Proposition 4.3 and its consequences) it 
suffices to show that: 

n - - i  1 t k + t ' n  t k + l ' n  

2 ~ ~ Dt.u~dsdt 
k=O g k + l , n - - t k , n  tk,~ tk,~ 

1 
i [Dr + .u~+D;- ut]dt - - + -  

2 0  

in probability, as n--, oQ. This follows easily from (i), (ii) and (iii) in Definition 
7.2. [] 
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Definition 7.4. A process u will be said to belong to class lEd;C, l o e 2  1 whenever u ~ lEahor 1 
and possesses a localizing sequence {(f2k, Uk), k~iN} such that Uk satisfies the 
conditions (i), (ii) and (iii) in Definition 7.2, Vk ~ iN. [] 

It is easily seen that Theorem 7.3 still holds true with 2,1 U f~ lEd, C, loc. 

Proposition 7.5. Suppose that u e ]I,2;1, is mean-square continuous, and satisfies (i), (ii) 
1 

and (iii) in Definition 7.2 with V= [0,1 ]2. Then ~ ut o dWt is the L 2 (s )-limit, as n ~ c~, 
of  the sequence: o 

1 n--1  

k=O 

Proof. 
1 n - 1  

k=O 

= F, (u~+u,~+~)~,~,t~+,t(t) .dw~ 
0 k = 0  

n - -  1 t k +  1 

+~ ~ j (D~.u,k+D *.ut~+,)ds. 
k=O tk 

The hypotheses imply that the sequence 

u ,=~  (u,~+ut~+,)lt,~,,~+,t(t) 
k=O 

converges to u in ]L 2'1, and moreover: 

n - 1  t k+l  1 

E I D~'u '~ds~f  Dt- .u tdt  
k = 0  t~ 0 

n - 1  tk+ 1 1 

~ Ds,ut~+~ds--'~ Dt+.utdt 
k=O tk 0 

in mean square. [] 

In order to compare the correction term between 
Skorohod's integral with the classical one, let us establish: 

Stratonovich's and 

Theorem 7.6. Suppose u satisfies the hypotheses of  Proposition 7.5. Then : 

n--1 

F, (u,~+l,~ u<,) .  (~+~,~  - w< , ) .  
k=O 

1 

~ (D?. u,-D#, u,ldt 
0 

in mean square. 
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Proof. 

n--1 

- u , ) .  - w 0 
k = 0  

= (u,~+,-ut~)ltt~,t~+,t(t) .dWt+ ~ ~ D,.(u,~+,-ut~)ds. 
0 h k = O  k=O tk 

The first term on the right tends to zero, since: 

n - - 1  

Y. 
k=O 

in IL 2'~. The result follows from the last convergences in Proposition 7.5. [] 

We note that the derivative of u is discontinuous across the diagonal of [0,112 if 
and only if the joint quadratic variation of u and W is non zero. This is consistent 
with the hypothesis concerning the bounded variation process { Vt} is Theorem 6.1. 
Moreover, if Vt is both .Tt adapted and of bounded variation, then Dt Vt = O. 

For the comparison of the It6-Stratonovich correction terms, let us consider the 
case d =  1 for simplicity. We note that 

n - - 1  

(u, W)I = lira ~, (ut~ . . . .  -u~, , )  (Wt~ . . . .  - Wt~,,). 
n - ~  k = O  

If u ~ IL 2'1, and u is ~-t adapted, then Dr- ut = 0, and 

1 
( u , W ) l  I i D t  +utdt 

=2 o 

1 
i (Dr + ut+Dt- ut)dt. 

2 o  

If now us lL 2'1 and is ~ t  adapted, then Dt+ut=O, and 

1 t 1 

(u, W) t  = i  ~ D2  utdt 
2 o 

= 1 i (D, + ut + D t  ut) dt. 
2 0  

From these two relations, we see that (7.3) is in agreement both with (7.1) and 
with (7.2). 

7.2. Another Class o f  Stratonovich-lntegrable Processes 

We now consider the Stratonovich integral of processes of the type introduced in 
Sect. 4.4. Again, we restrict ourselves to the case d -  1. 

Let D be a bounded open subset of IR p, and u : [ 0 , 1 ] x ~ 2 x D ~ l R  be a 
measurable function, which satisfies (H1), (H2), (H3) and (H4) in Sect. 4.4, and 
moreover: 
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(H5) t~u( t , x )  and t u ( t , x )  are cont inuous  in Lq((2), un i formly  with re- 
spect to x. 

(H6) There exists a measurable  funct ion a : [0,1] x ~2 x D--*IR such that-  

it-- 1 

F, (u (zk,. + ~ (tk + 1..  - t~,.), x )  - u (t~,. ,  x ) )  (W~ + , , .  - w~ , . )  
k = 0  

1 

~ I a(t, x)dt 
0 

in probabi l i ty ,  un i formly  with respect  to c~e[0,1], x e D ;  for  any  sequence of  
p a r t i t i o n s / / "  = {0 = to,, < t l , ,  < . . .  < t,,n = 1 } with [H"[ ~ 0  as n ~  oe. 

It  is easy to give explicit sufficient condit ions for  (H6), see e.g. Yor  [27]. 

Proposit ion 7.7 Let u satisfy (H 1). . .  (H6) and 0 be a D-valued random vector. Then 
{u(t, 0), t e [0,11} & Stratonovich integrable, as welI as {u(t, x), t e [0,1]}, V x e D and." 

1 1 

I u(t, 0) o d ~ =  I u(t, x) o dW, l~=o. 
0 0 

Proof. Note  that  u(t, x) is clearly St ra tonovich  integrable,  

1 

0 0 0 

1 

and f rom the results in Sect. 4.4 it makes  sense to "evalua te  ~ u(t, x)dWz at x = 0".  
i 0 

It then makes  sense to evaluate  ~ u(t, x)o dWt at x=O. 
N o w :  o 

Y tk+~-t~ I u(s, O)d~ (w,~+,- w,~) 
k = O  tk 

= 2 t~-~ I u(s,O)ds (W,k+,-W,~) 
/ = 0  k - 1  t k - 1  

k = 0  tk 

+ ~ tk--tk-1 [U(tk, O)--U(S, O)lds (Wt~+, - Wt~) 
k = O  t - 1  

= A , + B . + C , .  

F r o m  L e m m a  4.10, 
1 

A , ~  I u(t, x)dWt[~=o 
0 

in L 2 (O), as n ~  oe. F r o m  (H6) integrated over  c~ ~ [0,1], 

1 i a(t, O)dt 

in probabi l i ty ,  as n ~ o o .  It  remains  to show that  C~--~0 in probabil i ty .  
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This will follow from: 

sup S [u(t~, x ) -u(s ,  x)lds (VG,~ - 
xeD k=o k--tk-1 tk-~ 

in L 2 (~2), as n ~ o0 which is a consequence of  the fact that  u e L q ([0,1 ] • f2 ; W q' ~ (D)) 
for a q > p  (see the proof  of  Lemma 4.10) and (H5). [] 

By a localization procedure, we obtain:  

Proposition 7.8. The statement of  Proposition 7.7 is still true if u and 0 satisfy the 
hypotheses of Proposition 4.13, and u satisfies (H5) and (H6) where D is replaeed by 
IR p and the assumed convergences are uniform for x in any compact subset of IRC [] 

7.3. The Chain Rule of Stratonovich Type 

We first state and prove a one dimensional result. 

Theorem 7.9. Suppose d-- 1. Let cb. IRZ. - - - ) . IR  be a continuous function, such that the 
! t! t! derivatives r ~y, qby x and q~yy exist and are continuous, and moreover let" 

-u be an element 2 2 2 1 of IL , c~ lLc' s.t. there exists p > 4 with 

I 1 1 1 1  

S ~ IlE(D~ut)llVdsdt+ E I ~ ~ lIDrDsutl] vdrdsdt< c~, 
O 0  0 0 0  

(i) 
the process {D~ + ut + Dr- ut, t s [0,1]} belongs to IL 2'1 and moreover: 

1 

sup E ~ ]Dt(D+G+D~-u~)I4ds< 
t e [ 0 , 1 ]  0 

F { Vt, t~ [0,1!}1 be a continuous' process with a.s. finite variation belonging to 

(ii) ] IL 2,1, s.t. E ! ! (Ds Vt) 4 dsdt < oo and the mapping t--* Ds Vt is continuous with 

[ values in L4(f2), uniformly with respect to s. 

t 

Then for any te  [0,1], with the notation Ut=~ u~odWs, we have the following." 
0 

t 

�9 (v,, ~t)= ~(Vo, o)+~ e;(vs, ~3dVs 
0 

t 
+~ ' ~ r Us)u~ o dWs. 

0 

Proof. 

grt = G + G, where 

t 

G = f u~dW~ 
0 

I i (Ds+us+D2-u,) ds. v'--2o 
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So that ~(Vt, Ut) = ~,(Vt, ~ ,  Ut), and we can apply Theorem 6.4., which yields: 

�9 (v~, ~) = ~(vo, o) +i ~;(Vs, grs)dV~ 
0 

1 i , +~ q~,(V~, U,)(DJus+Dyu~)ds 
0 

t ~ 1 t[ . 

+S #;(V,, U,)u, dW,+~ . ~yy(V~, U)uZds 
0 0 

+! ~;'(v,, ~s)DsV,+~;',(V,, ~,) D, urdN 

+5 i Ds(D2ur+Di-ur)dr u, ds. 
0 

And it is easily seen that the sum of the four last terms is equal to : 

i ~;(v~, :Ys)~,odW,. 
0 

Note that ~by(Vt; Ut)u~ is in lLc,Z,asoo. [] 

We note that both the usual and the new "additional" terms in the It6 formula 
disappear in the Stratonovich chain rule. 

We finally state the multi-dimensional version of the Stratonovich chain rule, 
using the convention of summation upon repeated indices: 

Theorem 7.10. Let @=IRMxlRN~IR be a continuous function, such that the 
derivatives go', q~;j, ~b~'j~, (a~'jy~ exist and are continuous, for l<i<_M, 
l <=j,k<=N. 

Let {uiJ ; 1 <=i< N, i <j<d} be a set of processes, each of which satisfies (i) in 
Theorem 7.9; and { V i, 1 <_ i <_ M} another set of processes, each of which satisfies (ii) 
in Theorem 7.9. 

t 

For t ~ [0,1 ], we denote by ~/t -- ~ u~ o dW~ the N dimensional process defined by 
0 t 

v; = y u~Jo dWL 
0 

We then have" 
t 

0 

t 

+f ~;k(V~ , U~)u~J~ [] 
0 

8. The Two-Sided Integral 

In this section, we specialize our results to a particular class ofintegrands, and thus 
obtain direct generalizations of  the results in Pardoux and Protter [19]. 



Stochastic CaIculus with Anticipating Integrands 573 

Let  ~b = [0,1 ] x ]R za x IR N ~ IR d be a measurable funct ion s.t. (x, y) ~ cb (t, x, y) is 
of  class Ct t  a.e., and moreover  ~(t ,  x, y), cb~ (t, x, y) and ~br (t, x, y) are bounded  on 
bounded  subsets of  [0,1 ] x 1R M x IR ~. 

Let  {X[, t ~ [0,1], 1 -<iN M} be cont inuous ~ t  adapted processes which belong 
to IL~o~ ; and {Yt j, t~ [0,1], 1 < j < N }  be cont inuous ~ t  adapted processes which 

2,1  belong to ]L~o ~ . 
All the above hypotheses are supposed to hold th roughout  this section. 

2,1  It follows f rom Proposi t ion 4.7 that  ~b(., X. ,  Y.) belongs to ILd,~o~. 

Proposition 8.1. Suppose that { D~X~ ; t ~ [s, 1]} and { D~ Yt, t ~ [0, s]} have modifi- 
cations which are continuous functions o f t  with values in LZ(f2), uniformly with 
respect to s; 1 -<i-<M, 1 <~j< N, 1 <-l-<d. 

Then, for any sequence {/7"} of  partitions of  [0,1], with ]//"l--*0 as n ~ ,  

n - 1  1 

r  - x , ,  r , ) .  dW, 
k=O 0 

in probability, as n - , ~ ,  where 
1 t k+  1 

~k(x,y)  = ~ ~( t , x , y )d t .  
t k+ l  - -  t k  tk  

Proof. By the usual localization argument,  it suffices to consider the case where 
X i, YJ~IL 2'1 and ~b, 4,' ' ~, q0y~ are bounded,  1 <_i-<M, 1 <j<=N, which we suppose 
from now on. We also assume for simplicity that  d =  1. 

Define 
n - - i  

k=O 

Clearly, since 

measurable,  

u,=r x,, y,). 

n - i  

k = 0  

It then suffices to show that  un~u in ]L 2'1. The convergence in L2([0,1] x O) is 
immediate.  It thus remains to show that" 

n - 1  

2 
k = O  

(~bk)'~(X,~, Yt~+l)D, Xt~ lttk,t~+l~(t) cl)~(t, Xt, Yt)DsXt 

n - 1  
___> t ~. (4~k)'y(X~k, Yt~+l)DsYtk+llEtk,~+lc(t) (bv(t ,X,  Yt)DsY~ 

k = O  

in L 2([0,112 x Q). This follows f rom the hypothesis of  the proposit ion.  [] 

We now want  to see the part icular  form which takes the It6 formula  for a 
process of  the type ~(t ,  X,, Yt). Fo r  that  sake, we need to particularize the situation. 
We now suppose that  {X[, 1 -<i<_M} are cont inuous ~ semi-martingales, and 
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{Y/, 1 <=j<=N} 
tations : 

are continuous ~ semi-martingales, with canonical represen- 

(8.1) 

We then have, V0_<s_< t_< 1, 

t 

r ]'O=~(s,X. L)+f ~;(r,X. YOdr 
s 

1 i +~ q)~(r,X~, ~) .dX~+~ Tr[~;'~(r,X~, Y~)~a*]dr 
g S 

S S 

Proof. For simplicity, let us suppose that N =  M = d-- 1. For the proof, we may and 
! t! tr do assume that ~, ~t', ~ ,  ~y, ~ ,  ~yy are bounded, A, or, B, 7 ~ L2'!, these processes 

being bounded as well as their derivatives. 
Let {//~} denote a sequence of subdivisions of Is, t], with I//"1~0 as n~oo.  

n - - 1  

e(t ,x ,  g)-4~(s,X~, Ys)= F, e(t,+~,N ..... ~ .~)-~(t .x , , ,  ~,) 
i = 0  

n - 1  

= ~ [~(ti+~,x~,+~, ~+~)-~(t i ,x,~+~,  ~+~)] 
i = 0  

d t 

X[---xi+A]+ ~ ~ a~kdW~; i = l , . . . , M  
k = l  0 

d 1 

Y / = j + B t i +  ~ ~ 7~kdWsk; j = I , . . . , N .  (8.2) 
k = l  t 

We first suppose that A i and B j have a.s. bounded variations, {At/} and {o-~ k} being 
adapted, {B/} and {7~ k} y t  adapted. We suppose further that A i, o -ik, B j, V jk are 

elements of lL~2o~ which can be localized by processes having the same adaptedness 
property as themselves, and which are bounded together with their derivatives, the 
processes which localize A i and B j being continuous with a.s. bounded variation. 
We note than, from Lemma 2.4 and Proposition 3.4, 

D~X~= DrAt +~r + (Drcrst ik)dW~k l{~<=t} 
k = l  r 

Proposition 8.2. Let r = [0,1 ] x 1R M x IRN~IR be a continuous function, which is once 
continuously differentiable with respect to t, and twice continuously differentiable with 
respect to x and y. Let {Xt} and { ~} be respectively an N M valued continuous ~ semi- 
martingale and an 1R ~ valued continuous o~t semi-martingale of  the forms (8.1) and 
(8.2), A, B, a, 7 satisfyin9 the above hypotheses, and moreover : 

[ {DJA~; t ~ Is, 1]} and {D~B/ ; t ~ [0, s]} have modifications which 
(HI)  are continuous functions of  t which values in L2(~), uniformly with 

respect to s; 1 <_i<_M, 1 <=j~N, 1 <_l<_d. 
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n - 1  

+ ~, [ e ( t , , x ,  . . . .  Y,,+ ,) - ~ ( t .  x, , ,  Y,,§ 
i = 0  

n - - t  

+ ~ [e(t,,x,,, Y,,+,)-,~(t,,x,,, Y,,)] 
i = 0  

t 

~--'5 ~ / ( r , X ,  r~)& a.s., as n - - ,~ .  
S 

n - - 1  

,6. = 2 @;(t,, X,,, Y~,+,) (A,,+, -A,,) 
i = 0  

n - 1  t i+ l  

+ ~ ~;(t,,x,,,Y,,+,) ~ asdW~ 
i z O  t i 

t! --  L 1 - -  t l )  - +~ ~ ,~x~(t. x~, r,+,)(x,,+ x 2 
i = 0  

where )(i is a random intermediate point between Xt, and Xt,+ 1. 

n - 1  

~. r Xt,, Yt,+ ,) (At,+, -At,)--~j " d~;(r, X., Yr)dA~ 
i = 0  s 

a . s .  

and from Lemma C2 in Appendix C, 

n - 1  t 

@~,(ti, Xi, Yt,+ ,) (Xt +, - X t , 1 2 ~ 5  ~;~(r, X,,  Yr)a~dr E tt --  

i = 0  s 

Define 
n - 1  

n 
H r - -  E 

i = 0  
r Xn, Yt,+ ,) 11:,.,,+ ~t(r) �9 

Then from Theorem 3.2: 

a . s .  

n--i t i +  1 t 

/ = 0  t i S 

We then need to check that" u " a - ~ ( X ,  Y ) a  in IL 2'1, as n~oo  which follows 
from the hypotheses, y, is treated analogously. [] 

We note that Proposition 8.2 could be formally deduced from Theorem 6.4, 
1 

choosing Vt = (t, x + At, y + Bi - Bt + ~ ysdW~), ut = (at, 7t), and F(x i ,  X 2 ,  )('3, Yt, Y2) 
0 

= ~(xl ,  x2 + y , ,  x3 -Y2). However, in order to apply Theorem 6.4, we would have 
needed more hypotheses on the processes. Indeed, and this is the interesting aspect 
of the particular case considered in this section, the additional terms in the It6 
formula of Theorem 6.4 cancel here, and we dont't  need to require the 
corresponding regularity. 
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Appendix A 

The aim of this appendix is to establish: 

Proposition A.1. Let G6]D2, ~. Then VO<s<_t<<_ 1, 
t 

= E(C/gs v 4 ' )  + f  e(Dr a / ~  v ~ ' ) .  a ~ .  
8 

Choosing s = 0 and t = 1 in Proposition A.1, we obtain Ocone's representation 
theorem as a particular case" 

Corollary A.2. Let G61D2,1. Then." 

1 

= E(G) + S E ( D , C / ~ ) .  d ~  
0 

Proof of Proposition A.I. For simplicity, we restrict ourselves to the case d =  1. Let us 
write the Wiener chaos decomposition of G" 

G =  ~ L,(g~). 
m = 0  

We then have: 

where 

D~G= ~ mlm-l(g,,(...,r)) 
m = l  

E(DrG/,~v~t)=~mI~_l(g~(...,r)h~,~) 
1 

m - 1  

h,,,~(tl . . . . .  tin-l)= YI ltr,tto(ti)- 
i = l  

Denote by f , ,(q .... , tin) the function obtained by symmetrizing: 

h~,t~(tl . . . . .  tin-x) l[~,tt(tm) �9 
We then have that: 

where 

We then have: 

mfm=lA~ 

A,,= ~ {(t, . . . . .  t~)~[0,1]~; he[s,t[}. 
i = 1  

i E(D~G/~v~t)dW, = ~ I,,,(g,,1a,,,) 
S m = 1  

= Y, I~(g~)- ~ L.(g~l~c)  
m = O  771=0 

= G -  E(a/g~ v Y g .  [] 
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Appendix B 

In this appendix, we prove the estimate (3.7). 
Suppose d =  1 and uEIL 2'1. Let G be a polynomial functional. We have 

1 V 7~/211 

1 1 
where - + -  = 1. 

P q 
Let F be such that CF= G-JOG. Then, using Meyer's inequalities we have 

1 ,~2 31/211 ql/2 

< , <--<,IICFII,=c, IIG-JoOtI,=<,IIGII.. 
For the first factor of (B.i) we can write 

• ]/~+ 1 J, ut= -RCu~ + E(u~), 
n = 0  

where R denotes the multiplication operator by 1 + - .  
/,/ 

Let {e~ (t) ; 0 < t < 1 } be an orthonormal basis in L z ([0,1 ]). Using Khintchin's 
inequality we obtain 

E(i (RCut)Zdt)P/Z=E(i=~ (i RCute~(t)dt)2) p/2 

i- ~ i RCure~(t)7,(O)d t vdO, < CvE 
i = 1  0 

where {72(0) ; 0 < 0 < 1, i > 1 is a sequence of Rademacher functions. 
Now we apply Meyer's inequality in the form 

(B.ii) 

E(ICFI~) NCpE( i 2 5v/2 (DEE) dt) , 

which is true for all p > 2  and FeIDz,1 (this can be deduced from the opposite 
inequality for polynomial functionals, using a duality argument, see Watanabe 
[26]). 
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As a consequence, and applying again Khintchin's inequality, we obtain that 
(B.ii) is bounded by 

<= CpE o i i,~a o } R(D~u,)ej(s)e~(t)ri(O)r3(O')dtds PdOdO' 

l i  \p/2 <CpE i ' 

where/? is the multiplication operator by (n + 2In + 1) 1/2, which is bounded in L p. 
As usual, Cp denotes a constant depending only onp that may be different from 

one formula to another one. [] 

Appendix C 

The aim of this Appendix is to extend slightly a lemma due to F611mer [3]. See also 
Pardoux and Protter [19]. 

The processes below are defined on an arbitrary probability space (E, ~, Q). 

Lemma C.1. Let {Wt, t6[0,1]} and {Vt, t~ [0,1]} denote two mutually independent 
standard Wiener processes. Let { Xt, t ~ [0,1]} denote a measurable proeess and p > 1. 

Suppose that XeLP(O, 1) a.s. 
Then 

tk+~,,--tk,, S Xsds (Wtk.l,,,-Wtk,,)2~S Xfls (C.i) 
k = O  tte, n 0 

; --tk,, I X J s  (Wt~ . . . .  - Wt~ ,) Vt . . . . .  - Vt~,,)--*0 (C.ii) 
k = 0  t k + l ,  tk, n 

in probability, as n ~  ~ ,  where H" = {0 = to,, < tl,, < . . .  < t,,, = 1} satisfies [H"[~0 
a s  n---~ (3o. 

I f  moreover X ~ L p ([0,1 ] x ~), then the above convergences hoM in L 1 (s 

Proof. It clearly suffices to show that (C.i) and (C.ii) hold in L1((2) whenever 
XELP([0,1] x ~2). Let us first prove (C.i). 

Define 
' - ~ (  1 ' ..... ) 

x'= Z I X,d  
i = 0  ti,l 

(. X ds (W,  . . . . .  - 
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and a,(X l) similarly. It follows from H6lder's inequality that if t ip + J/q= 1, 

f /tk+l, n \p'lt/P 

I{ (Xn ( x )  (I Lt( • ) ~- G [I X i( L,([0,1] x •,. (C.iii)  

It then follows: 

E ]c~,,(X)-i X 'd t I<E '~z ' (X -X ' ) '  

E c~,(X') i [ 1 + - X~ds + E  ~ [X~-X~lds 
0 0 

<_E ~.(x')-i X;ds +(G + 2)]lx-x' ]lL,~o,, ~,~,. 

1 
Clearly, XZ--.,Xin LP([O, 1 ] x f2). On the other hand, for fixed l, a,,(X~)--*S Z~ds m 

0 
L 1 (f2) as n--* oo. Indeed, the convergence in probability is immediate, and a slight 
modification in the proof  of (C.iii) yields that Vp'e ] l , p  [, 

[l~,(XZ) [ILp,(Q, < C(p,p ' )  tIx, Ijg,,(to.1, • , 

so that the sequence {c~,(X~), n e N} is uniformly integrable. The result now follows. 
The proof  of (C.ii) is quite similar. [] 

Lemma C.2. Let 

x,=/x:) 
tZ)  

denote a two-dimensional continuous process, such that 

1 
2 (x:~ .... -xi~,o)(x.i~ .... -xi~.~ a~ds (C.iv;~ 

{k;tk + ~,~,_--<t} 0 

in probability, as n--; o% with i,j  = 1, 2; where { a~ j, t e [0,1]; i , j  = 1,2} are measurable 
processes s.t. 

1 
f [a~;[dt<oop.s.; i , j = l , 2 .  
0 

Let {Yt, t6  [0, 11} be a continuous process, and {Yp, tE [0, 1]} be measurable 
processes which converge a.s. to {Y~} as n~oo ,  uniformly with respect to t E [0, 1]. 

Then Vi , j~  {2,2}, 

n-1 1 
Z v,:.o(J::~ .... -x i . . . ) (x i~ ..... - x L . ) - >  f r,a?dt 

k=O 0 

in probability, as n-~oo ; i,j-~ 1, 2. 
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P r o o f  By a classical subsequence argument, it suffices to prove the result under the 
hypothesis that the convergence in (C.iv) holds a.s. For simplicity, we write tk 
instead of tk,,. Let first {Zt, t E [0, 1 ]} be a process which is constant on each element 
of a finite partition of [0, 1 ]. Then from (C.iv): 

n-1 1 

2 ltk(X;k+l--x']ik) (X/k+1--Y:k)----~ lta~Jdt" (C.v)  
k=O 0 

Let now {Zp, t E [0, 1 ]; p e N} be a sequence of processes, each possessing the 
properties of {Zt}, s.t. Z y ~  Yt a.s., uniformly with respect to t e  [0, 1], as p ~ o o  

n --1 n p i i j 
( r~, - Z,k)  (X]k +1 -- X;k) (Xik +i - X]~) 

k=0 

: \ t  ~ [0,1] \k=O \k  =0 1 

Y x tim ( u  
n~c~ k=O 

= \tE[OAI 

The result follows from (C.v) and (C.vi). [] 

(C.vi) 
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