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1 Introduction

Mixture distributions have been successful in modeling heterogeneity of

data in many different domains such as medicine, physics, chemistry, social

sciences, marketing and texture modeling (see McLachlan and Peel [10] for

instance).
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A mixture-model involves two sets of parameters: the mixing-weights and

the mixing-components. Definitions of these parameters are recalled in Def-

inition 2.1. In our study we assume that the mixing-weights are entirely

known and we are interested in the mixing-components. Our goal is to

provide an homogeneity test procedure for the two-samples set-up, i.e. a

test procedure designed to detect whether two independent samples of n

independent random variables are based on different mixtures of M com-

ponents or not.

For the case M = 1, the classical answer to this testing problem is the

Kolmogorov-Smirnov test procedure and can be found in standard text-

books. Butucea and Tribouley [3] have studied this problem from the

minimax point of view (see Ingster and Suslina [9] or Spokoiny [13] for

a complete review of the minimax approach in the testing problem). In

particular, by considering the L2-loss function, they prove that the mini-

max rate of testing is in order of n−
2s

4s+1 when dealing with densities that

belong to the Besov space Bs2,∞ where s > 1
4 (see Härdle et al. [8] for the

precise definition of Besov spaces and their well-known properties of embed-

dings). Moreover, Butucea and Tribouley [3] also provided a test procedure

that automatically adapts to the smoothness s of the underlying densities

and that attains the rate (n(ln(ln(n)))−
1

2 )−
2s

4s+1 , which also corresponds to

the minimax rate up to a loss of order ln := (ln(ln(n)))−
1

2 . These authors

believe that this loss is the least possible but let the readers wonder about it.

Here we go further. First we extend the study of Butucea and Tribouley

[3] to a general mixture-model (M > 1) with varying mixing-weights (see

Definition 2.2). Our homogeneity test procedure on the mixing-components

of the two samples is shown to be adaptive, contrary to the one provided

by Autin and Pouet [1]. We refer to Section 2 and to Autin and Pouet [1]

and [2] for the interest to consider testing problem for such kind of models.

Second, we prove that our test procedure is optimal in the minimax sense

since it attains the adaptive minimax rate that is proven to be (nln)−
2s

4s+1 .

Hence, we prove that the loss of order ln is unavoidable for adaptation.

The paper is organized as follows: the set-up of the study and the descrip-

tion of the testing problem are presented in Section 2. Section 3 deals with

the description of our test procedure. In Section 4 we prove its adaptive

minimax optimality and we provide the adaptive minimax rate (see Theo-
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rem 1 and Theorem 2). Technical lemmas and their proofs are postponed

in Section 5.

2 Set-up and testing problem under interest

Let us now describe the set-up of our study and then the testing problem

we are interested in.

The mixture-model under consideration takes into account two samples

of size n (n > 2): Y = (Y1, . . . , Yn) is a sample of independent random

variables with unknown marginal densities

fi :=

M∑
l=1

ωl(i)pl, 1 ≤ i ≤ n

and Z = (Z1, . . . , Zn) is another sample of independent random variables

for which the unknown marginal densities are

gi :=

M∑
l=1

ωl(i)ql, 1 ≤ i ≤ n.

In addition to this, we assume that the two samples are independent from

each other and that:

ωl(i) ≥ 0 ∀(l, i) ∈ {1, . . . ,M} × {1, . . . , n},
M∑
l=1

ωl(i) = 1, ∀i ∈ {1, . . . , n}.

Definition 2.1. Dealing with the mixture-model,

1. the vectors ωl (1 ≤ l ≤M) are called the mixing-weights,

2. the densities pl (1 ≤ l ≤M) are called the mixing-components of Y ,

3. the densities ql (1 ≤ l ≤M) are called the mixing-components of Z.

Before going further, we give an example taken from medicine where such

kind of mixture-models with M = 2 and same varying mixing-weights be-

tween the two samples is useful.
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Motivated by the article of Catalona et al [4], suppose that we are inter-

ested in a screening test for prostate cancer called Prostate Specific Antigen

(PSA) and imagine that we want to evaluate the effect of a new treatment

on prostate cancer. Each patient of the survey is diagnosed by PSA. As

this screening test is not accurate, we do not rely on the issue of the test

itself but on the positive predictive value equal to 0.4 and the negative

predicted value equal to 0.89 (see Catalona et al [4], Table 4). The sample

is divided into a study-group containing patients who take the treatment

and a comparison-group containing patients who do not take the treatment

(those patients take a placebo or the usual treatment instead). These two

groups are chosen such that

• the number of positive PSA screening test in the study-group is the

same as the one in the comparison-group,

• the number of negative PSA screening test in the study-group is the

same as the one in the comparison-group.

The distribution of the biological feature under study can be modeled as

a mixture distribution. In each group, the mixing-weights are varying and

they are the same between the two groups. Indeed for the study-group the

distribution is

• fi = 0.4 p1 + 0.6 p2 if the screening test for patient i is true,

• fi = 0.11 p1 + 0.89 p2 if the screening test for patient i is false.

Similarly for the comparison group the distribution under interest is

• gj = 0.4 q1 + 0.6 q2 if the screening test for patient j is true,

• gj = 0.11 q1 + 0.89 q2 if the screening test for patient j is false.

Such a mixture-model can be interesting to study a possible difference

between the distributions of the biological feature in the two subpopulations

of patients.

Now let us go back to our theoretical study. In the sequel,

• −→p := (p1, . . . , pM ) and −→q := (q1, . . . , qM ) will characterize the mixing-

components of the two samples Y and Z,

• P−→p ,−→q will denote the distribution of (Y, Z),
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• E−→p ,−→q (·) and Var−→p ,−→q (·) will respectively denote the expected value

and the variance under this distribution.

Definition 2.2. Let Γ(n) be the (M ×M)-matrix with general term

Γ
(n)
jj′ =

1

n

n∑
i=1

ωj(i)ωj′(i).

We say that the mixture-model is associated with varying mixing-weights as

soon as the rank of Γ(n) is invertible.

For any R > 0, let D(R) be the set of all probability densities such that both

their L2-norm and their L∞-norm are bounded by R. Let Bs2,∞(R) be the

ball of the Besov space Bs2,∞ as defined in (3.1). We consider two subspaces

containing vectors of (D(R))2M , namely Θ0 (R) and Θ1 (R,C, vn, s) , that

are respectively defined by:

Θ0 (R) := {(−→p ,−→q ) : ∀l ∈ {1, . . . ,M}, pl = ql} ,

Θ1 (R,C, vn, s):=
{

(−→p ,−→q ): ∀l ∈ {1, . . . ,M}, ∇l := pl − ql ∈ Bs2,∞(R),

∃u ∈ {1, . . . ,M}, (pu, qu) ∈ Λ(C, vn, s)
}
,

where Λ(C, vn, s) :=

{
(p, q), ‖p− q‖2 ≥ Cv

− 2s

4s+1
n

}
, C is a positive constant

and vn is a sequence of positive numbers tending to infinity when n goes

to infinity.

For two given real numbers s? and s?, such that 1
4 < s? < s?, we consider

the testing problem Pn(H0,H1) defined just below.

Definition 2.3. Let Pn(H0,H1) be the testing problem such that

• the null hypothesis is

H0 : (−→p ,−→q ) ∈ Θ0 (R) ,

• the alternative hypothesis is

H1 : (−→p ,−→q ) ∈ Θ?
1 (R,C, nln) :=

⋃
s∈[s?, s?]

Θ1 (R,C, nln, s)

where the sequence ln (resp. nln) goes to zero (resp. infinity) when n

goes to infinity.
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More details on the values of the sequence ln will be given in Section 3.

Autin and Pouet [1] have considered the same testing problem but in the

particular case where s? = s? and vn = n instead of vn = nln. This case is

called the non adaptive case and involves a priori knowledge of the regular-

ity on the functions ∇l (1 ≤ l ≤ M). These authors provided an optimal

test procedure and proved that the minimax rate of testing was of order

n−
2s?

4s?+1 , when the smallest eigenvalue of Γ(n) is greater than a constant

K ∈ (0, 1) that does not depend on n.

In this previous work, a strong link between the mixing-weights of the model

and the performances of the optimal test procedure has been underlined

and extensively discussed. In particular, it has been shown that the smaller

K, the worse the performance of the test procedure.

In this study we consider that s? < s?. This case is called the adaptive

case and does not involve a priori knowledge of the regularity on functions

∇l (1 ≤ l ≤ M). We recall that our goal is twofold: we aim at providing

a test procedure which is optimal in the adaptive minimax sense and at

exhibiting the optimal loss of rate of testing in comparison to the minimax

setting.

3 Adaptive test procedure ∆?
t

From now on, we consider the wavelet setting and thus an orthonormal

wavelet basis of the functional space L2, {φjk, ψj′k; j′ ≥ j, k ∈ Z}. We

assume that the supports of the scaling function φ and the mother wavelet

ψ are both included in [−L,L) for some L > 0. We refer the reader to

Daubechies [5] for some examples of such bases.

To derive optimal results, we suppose that any function pu−qu (1 ≤ u ≤M)

is regular enough that is to say the energy of its wavelet coefficients with

large level is decreasing fast enough. More precisely, any function pu − qu
is supposed to belong to the Besov ball Bs2,∞(R) defined as follows

Bs2,∞(R) :=

h ∈ L2; sup
j∈N

22js
∑
j′≥j

∑
k∈Z

β2
j′k ≤ R2

 . (3.1)
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Definition 3.1. [Inverse mixing-weights]. Let us consider the mixture-

model presented in Section 2. The vectors al := (al(1), . . . , al(n)) (1 ≤ l ≤
M) are called the inverse mixing-weights of the mixture-model and are such

that

al(i) :=
1

det(Γ(n))

M∑
u=1

(−1)l+uγ
lu
ωu(i) (1 ≤ i ≤ n), (3.2)

where γ
lu

is the minor (l, u) of the matrix Γ(n).

Remark 3.1. Following Maiboroda [11] and Pokhyl’ko [12] and by denoting

δ·· the Kronecker delta, the inverse mixing-weights are such that, for any

(k, l) ∈ {1, . . . ,M}2, 1
n

n∑
i=1

ωk(i)al(i) = δkl.

As discussed in Section 3.1 of Autin and Pouet [1] for the case s? = s?, a

natural way to test whether the two independent samples come from the

same mixing-components or not is to consider the test statistic

Tj :=
2

n2

n∑
i1=2

i1−1∑
i2=1

M∑
l=1

∑
k∈Z

al(i1)al(i2)(φjk(Yi1)−φjk(Zi1))(φjk(Yi2)−φjk(Zi2))

for a judicious choice of level j and to use the test ∆j(tn) := 1{Tj>tn},

where 1{.} denotes the indicator function and tn is a threshold value that

is of order n−
4s?

4s?+1 .

As proved by these authors, the level j that must be considered - and also

the test ∆j(tn) - depends on the regularity s? = s? that contributes in

the definition of the alternative hypothesis (see Theorem 3.6 in Autin and

Pouet [1]). We stress that the context is different here: the alternative

hypothesis H1 we consider is weaker since we suppose that s? < s?.

For any integer n > 2, let us introduce the quantity ln :=
(√

ln(ln(n))
)−1

and the integers j? and j? such that

2−j? ≤ (nln)−
2

4s?+1 < 21−j? and 2−j
? ≤ (nln)−

2

4s?+1 < 21−j? . (3.3)

We define the set Jn of all the levels with value in [j?, j?], i.e.

Jn = {j ∈ N : j? ≤ j ≤ j?} . (3.4)
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Remark 3.2. According to Lemma 1, we notice that the cardinality of Jn
does not exceed ln(nln) up to a constant that only depends on s? and s?.

Analogously to Pokhyl’ko [12] and Autin and Pouet [1], the following as-

sumption is made on the mixture-model:

Assumption 1. [Behavior of the smallest eigenvalue] For any n > 2, the

smallest eigenvalue of the (M ×M)-matrix Γ(n) is greater than or equal to

K, with 0 < K < 1.

Note that in that case, according to (3.2),

sup
1≤i≤n

|al(i)| ≤
(M − 1)!

KM . (3.5)

We now present our test procedure.

Definition 3.2. [Adaptive test ∆?
t ]. Let n > 2. For any j ∈ Jn, we denote

by sj the real number such that 2−j = (nln)
− 2

4sj+1 and for t > 0, we define

a threshold tn(j) as follows

tn(j) := t (nln)
− 4sj

4sj+1 .

To solve the testing problem Pn(H0,H1) we consider the following test

∆?
t := max {∆j(tn(j)), j ∈ Jn} , (3.6)

where, for any j ∈ Jn, ∆j(tn(j)) := 1{Tj>tn(j)}.

We note two main differences when the test ∆?
t is compared to the test

proposed in the non adaptive case in paragraph 3.1 of Autin and Pouet [1].

Indeed,

1. the decision rule depends on the results of many test statistics Tj ,

2. the threshold values tn(j) depend on j and take into account ln in

their definition.
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4 Adaptive minimax optimality of ∆?
t

We describe the behavior of the test procedure ∆?
t . According to the mini-

max setting, it is consistent for a loss of order ln as we shall prove it thanks

to Theorems 1 and 2.

Theorem 1 (Upper bound). Let R > 0. There exists a non negative con-

stant C
T

= C
T
(L,R, ‖φ‖∞) such that for any C >

(
2M

(
R2 +

√
2C

T

K

)) 1

2

and any MK−1(2C
T
)

1

2 < t <
(
C2

2 −MR2
)

, the test ∆?
t defined in (3.6)

satisfies

lim
n→+∞

(
sup

(−→p ,−→q )∈Θ0(R)

P−→p ,−→q (∆?
t = 1) + sup

(−→p ,−→q )∈Θ?
1(R,C,nln)

P−→p ,−→q (∆?
t = 0)

)
= 0.

Proof. The proof of Theorem 1 is a direct consequence of two propositions:

Proposition 4.1 deals with the control of the first-type error and Proposi-

tion 4.2 deals with the control of the second-type error.

Proposition 4.1. Let R > 0. There exists a non negative constant C
T

=

C
T
(L,R, ‖φ‖∞) such that, for any t > MK−1(2C

T
)

1

2 , the test ∆?
t satisfies

lim
n→+∞

sup
(−→p ,−→q )∈Θ0(R)

P−→p ,−→q (∆?
t = 1) = 0.

Proof. From the definition of ∆?
t one gets for any (−→p ,−→q ) ∈ Θ0(R),

P−→p ,−→q (∆?
t = 1) ≤

∑
j∈Jn

P−→p ,−→p (∆j(tn(j)) = 1)

=
∑
j∈Jn

P−→p ,−→p (Tj > tn(j)).

According to Remark 3.2, if, for any j ∈ Jn, P−→p ,−→p (Tj > tn(j)) converges

to zero faster than (ln(nln))−1 as n tends to infinity, then the proof of

Proposition 4.1 will be ended. Let us now prove that result of convergence.

Let j ∈ Jn. Under the null hypothesis H0, the test statistic Tj is clearly

centered. Let σ2
n(j) denote the variance of Tj when (−→p ,−→q ) ∈ Θ0(R) and
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let T̃j = σ−1
n (j)Tj be the normalized test statistic which can be rewritten

as follows

T̃j =

n∑
i1=2

i1−1∑
i2=1

hj(i1, i2),

where, for any (i1, i2),

hj(i1, i2):=
2

n2σn(j)

M∑
l=1

∑
k∈Z

al(i1)al(i2) (φjk(Yi1)−φjk(Zi1))(φjk(Yi2)−φjk(Zi2)).(4.1)

Notice that the normalized test statistic T̃j is a zero-mean martingale under

the null hypothesis H0 and that for any chosen q > 0, Jn can be split into

two subsets:

J0,n =
{
j ∈ Jn : σ2

n(j) ≤ t2n(j)(ln(n))−(1+q)
}
,

J1,n =
{
j ∈ Jn : σ2

n(j) > t2n(j)(ln(n))−(1+q)
}
.

For the case of small variance (j ∈ J0,n), we use Bienayme-Chebyshev’s

inequality (see Devroye and Lugosi [6] - chapter 2) to get the following

bounds

P−→p ,−→p (Tj > tn(j)) ≤ σ2
n(j)

t2n(j)
≤ 1

(ln(n))1+q
.

According to the right-hand side of the last inequality, we deduce that

P−→p ,−→p (Tj > tn(j)) converges to zero faster than (ln(nln))−1 as n tends to

infinity. Therefore it remains to handle the case of large variance (j ∈ J1,n).

Here we apply Theorem 3.9 from Hall and Heyde [7] and the concentration

properties of the Gaussian distribution to get the following bound

P−→p ,−→p (Tj > tn(j)) ≤M1,n,j + C1 (M2,n,j +M3,n,j)
1

5 (4.2)

with

M1,n,j := exp

(
− t2n(j)

2σ2
n(j)

)
,



Adaptive test on components of densities mixture 11

M2,n,j := E−→p ,−→p

 n∑
i1=2

(
i1−1∑
i2=1

hj(i1, i2)

)4
 ,

M3,n,j := E−→p ,−→p

 n∑
i1=2

(
i1−1∑
i2=1

hj(i1, i2)

)2

− 1

2 ,

and where C1 is an absolute constant.

Following Proposition 3.4 from Autin and Pouet [1], there exists a non

negative constant C
T

depending on L,R and ‖φ‖∞ such that, for any

(−→p ,−→q ) ∈ (D(R))2M and any level j,

Var−→p ,−→q (Tj) ≤
C

T
M2

K2

(
2j

n2
+

1

n

M∑
l=1

‖pl − ql‖22+
√

2j

n3

M∑
l=1

‖pl − ql‖2

)
. (4.3)

Therefore, under H0, the variance of the test statistics Tj , namely σ2
n(j), is

smaller than or equal to C
T
M2K−2n−22j .

So,

M1,n,j = exp

(
− t2n(j)

2σ2
n(j)

)

≤ exp

− t2K2n2 (nln)
− 8sj

4sj+1

C
T

2j+1M2


= exp

(
− t2K2

2C
T
M2l2n

)
= exp

(
− t2K2

2C
T
M2

ln ln(n)

)
=

(
ln(n)

)− t2K2

2C
T

M2 .

Hence M1,n,j goes to zero faster than (ln(nln))−1 when n tends to infinity,

provided t2 > 2C
T
M2K−2.

From Lemma 4 and the definition of the constant F within, the following
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bounds can be obtained for any j ∈ J1,n:

M2,n,j ≤ F
22j(1 + 6n)

n4σ2
n(j)

≤ F (nln)
4

4sj+1 (1 + 6n)(ln(n))1+q

n4t2n(j)

=
F (nln)

8sj+4

4sj+1 (1 + 6n)(ln(n))1+q

n4t2

≤ 7F

t2
(ln(n))1+q

n
4s?−1

4s?+1

.

Since s? >
1
4 , M2,n,j goes to zero faster than any power of (ln(nln))−1 as n

tends to infinity.

From Lemma 5 and the definition of the constant G within, the following

bounds can be obtained for any j ∈ J1,n:

M3,n,j ≤ M2,n,j +G
2j

n3σ2
n(j)

(
2j +

1

nσ2
n(j)

)
≤ 7F

t2
(ln(n))1+q

n
4s?−1

4s?+1

+
G(nln)

2

4sj+1 (ln(n))1+q

n3t2n(j)

(
(nln)

2

4sj+1 +
(ln(n))1+q

nt2n(j)

)

=
7F

t2
(ln(n))1+q

n
4s?−1

4s?+1

+
G(ln(n))1+q

n3t2

(nln)
8sj+4

4sj+1 +
(ln(n))1+q(nln)

16sj+2

4sj+1

nt2


≤ 7F

t2
(ln(n))1+q

n
4s?−1

4s?+1

+
G(ln(n))1+q

t2

(
1

n
4s?−1

4s?+1

+
(ln(n))1+q

n
2

4s?+1 t2

)
.

Since s? >
1
4 , M3,n,j goes to zero faster than any power of (ln(nln))−1 as n

tends to infinity.

Finally, looking at (4.2) and the bounds of M1,n,j , M2,n,j and M3,n,j , we

conclude that, even for j ∈ J1,n, P−→p ,−→p (Tj ≥ tn(j)) converges to zero faster

than (ln(nln))−1 as n tends to infinity. Proposition 4.1 is also proved.

Proposition 4.2. Let R > 0 and C
T

be the constant appearing in Proposi-

tion 4.1. For any C >

(
2M

(
R2 +

√
2C

T

K

)) 1

2

and any t <
(
c2

2 −MR2
)

,
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the test ∆?
t satisfies

lim
n→+∞

sup
(−→p ,−→q )∈Θ?

1(R,C,nln)

P−→p ,−→q (∆?
t = 0) = 0.

Proof. Let (−→p ,−→q ) ∈ Θ?
1 (R,C, nln), let us bound the second-type error

P−→p ,−→q (∆?
t = 0). From the definition of ∆?

t , we remark that it suffices to

prove that lim
n→+∞

P−→p ,−→q (∆j(tn(j)) = 0) = 0 for one j ∈ Jn.

Let s ∈ [s?, s
?] be such that (−→p ,−→q ) ∈ Θ1 (R,C, nln, s) and js be the

integer such that 2−js ≤ (nln)
−2

4s+1 < 21−js . We use the expectation of the

test statistic with some approximation argument.

P−→p ,−→q (∆js(tn(js)) = 0) = P−→p ,−→q (Tjs ≤ tn(js))

= P−→p ,−→q

(
E−→p ,−→q (Tjs)− Tjs ≥ E−→p ,−→q (Tjs)− tn(js)

)
.

Following Corollary 3.3 of Autin and Pouet [1], the wavelet expansion in

the Besov ball Bs2,∞(R) leads, for any n large enough, to

E−→p ,−→q (Tjs)− tn(js) =

M∑
l=1

‖pl − ql‖22 −
M∑
l=1

∞∑
j=js

∑
k∈Z

(∫
R
(pl − ql)ψjk

)2

− 1

n2

M∑
l=1

∑
k∈Z

n∑
i=1

(∫
R

(al(i)fi − al(i)gi)φjsk
)2

− tn(js)

≥
M∑
l=1

‖pl − ql‖22 −M R2 2−2sjs − 8LMR2

Kn
− tn(js)

≥ 1

2

M∑
l=1

‖pl − ql‖22 −M R2 2−2sjs − tn(js).

Since t <
(
C2

2 −MR2
)

the right-hand side of the inequality is necessarily

positive. According to (4.3) and applying Bienayme-Chebychev’s inequality

we get:

P−→p ,−→q

(
E−→p ,−→q (Tjs)− Tjs ≥ E−→p ,−→q (Tjs)− tn(js)

)

≤

C
T
M2

(
2js + n

M∑
l=1

‖pl − ql‖22 +
√

2jsn

M∑
l=1

‖pl − ql‖2

)

n2 K2

(
1

2

M∑
l=1

‖pl − ql‖22 −M R2 2−2sjs − tn(js)

)2 .
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Still according to the definition of js one gets for any n large enough:

P−→p ,−→q (∆js(tn(js)) = 0)

≤

C
T
M2

(
2js + n

M∑
l=1

‖pl − ql‖22 +
√

2jsn

M∑
l=1

‖pl − ql‖2

)

n2 K2
(

1
2 −

MR2

C2 − t
C2

)2( M∑
l=1

‖pl − ql‖22

)2

≤ C
T(

C2

2M −R2 − t
M

)2
K2

(
2l2n +

C2 (nln)
4s

4s+1

n
+ C

√
2M

n3
(nln)

6s+1

4s+1

)
.

The right-hand side of the last inequality does not depend on −→p and −→q and

goes to zero when n tends to infinity. Proposition 4.2 is also proved.

The adaptive minimax optimality of ∆?
t is given by the statement of a lower

bound. The next theorem proves that the price to pay for adaptation is

the one expected and conjectured by Butucea and Tribouley [3], that is to

say ln =
(√

ln(ln(n))
)−1

.

Theorem 2 (Lower bound). There exists c0 := c0(L,M,R, s?) such that

for any C < c0,

lim
n→+∞

inf
∆

(
sup

(−→p ,−→q )∈Θ0(R)

P−→p ,−→q (∆ = 1) + sup
(−→p ,−→q )∈Θ?

1(R,C,nln)

P−→p ,−→q (∆ = 0)

)
= 1.

Remark 4.1. Although we are not interested in the exact separation con-

stant, a careful study of the proof of Theorem 2 shows that the expression of

the constant c0 can be improved with an extra assumption on the behavior

of the smallest eigenvalues of matrices Γ(n), n > 2. Indeed an upper bound

involving the constant K that appears in Assumption 1 leads to an expres-

sion of c0 depending also on K. In this case the smallest K, the largest the

constant c0.

Proof. Here we decide to consider the Haar wavelet basis in order to avoid

technicalities. For this wavelet basis the constant c0 will be such that

c0 :=
2−s

?

√
M

min
(
R, 2−

1

4

)
.
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As we are not interested in the exact separation constant, this result can

easily be extended to the case of compactly supported wavelets. A param-

eter L connected to the supports of the scaling function and the mother

wavelet must be introduced in this case.

Let Sn denote a net on the smoothness space with cardinality N of order

ln(n)(ln(ln(n)))−1 and such that

∀s, t ∈ Sn : s? ≤ s, t ≤ s?, |s− t| ≥
ln(ln(n))

ln(n)
.

Let Hn denote the associated net on the level space and, for any s ∈ Sn,

let js be the level of Hn such that 2−js ≤ (nln)−
2

4s+1 < 21−js .

We consider −→p ∈ D(R) such that

inf
1≤l≤M

inf
z∈[0,1[

pl(z) >
1

2
. (4.4)

For any given s ∈ Sn and any l ∈ {1, . . . ,M}, we introduce −→q ∈ D(R) as

follows:

ql = pl + θlrn,js
∑
k∈Tjs

ζjskψjsk,

where Tjs =
{

0, . . . , 2js − 1
}

, θ = (θ1, . . . , θM ) is an eigenvector associated

to the smallest eigenvalue λn (0 < λn < 1) of the matrix Γ(n) with l2-norm

equal to 1 and

rn,js = C
√
M 2s 2−jss−

js
2 . (4.5)

The prior probability is defined as follows: the random variables ζjsk (k ∈
Tjs) are independent Rademacher random variables. Let πjs denote the

prior probability concentrated on level js. The level is chosen uniformly on

Hn.

Therefore, for any 1 ≤ i ≤ n, the densities of the random variable Yi and

Zi are respectively

fi :=

M∑
l=1

ωl(i)pl and gi := fi +

M∑
l=1

ωl (i) (ql − pl) .
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Direct calculations left to the reader entail that (−→p ,−→q ) belongs to the set

Θ1 (R,C, nln, s) provided C ≤ 2−sRM−
1

2 .

Unless explicitly specified, the expectation E (·) is taken regarding the ran-

dom variables Y1, . . . , Yn, Z1, . . . , Zn and ζjsk, k ∈ Tjs , js ∈ Hn.

The general calculation follows the usual path (see Ingster and Suslina [9]).

The sum of the errors is bounded below as follows:

inf
∆

(
P−→p ,−→p (∆ = 1) +P−→p ,−→q (∆ = 0)

)
≥ 1− 1

2

∥∥∥∥∥ 1

N

∑
s∈Sn

Pπjs
− P−→p ,−→p

∥∥∥∥∥
1

.

In order to show indistinguishability, we prove that the L1-distance distance

goes to zero. An upper bound of the L1-distance is given by

∥∥∥∥∥ 1

N

∑
s∈Sn

Pπjs
− P−→p ,−→p

∥∥∥∥∥
1

≤

√√√√√E−→p ,−→p

( 1

N

∑
s∈Sn

dPπjs

dP−→p ,−→p
− 1

)2


≤

√√√√ 1

N2

∑
s∈Sn

E−→p ,−→p

((
dPπjs

dP−→p ,−→p
− 1

)2
)

+
1

N2

∑
s 6=s′∈Sn

[
E−→p ,−→p

(
dPπjs

dP−→p ,−→p

dPπj
s′

dP−→p ,−→p

)
− 1

]
.

Remark 4.2. Within the square root, the left term (we call it the square

term) is handled as in the non-adaptive case while the right term (we call

it the cross term) only appears in the adaptive case and leads to technical

calculations.

Lemma 6 shows that there exists an universal upper bound for each sum-

mand in the cross term and it goes to zero when n tends to infinity.

Let us now pay attention to the square term. It is handled as in the non-

adaptive case. Analogously to Autin and Pouet [1], because of (4.4) we get

the following inequalities:

E−→p ,−→p

((
dPπjs

dP−→p ,−→p
− 1

)2
)
≤ exp

(
24s+1C4M2 |Tjs | (nλn)2 2−4jss−2js

)
− 1

≤ exp
(
24s?+1C4M2l−2

n

)
− 1.
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Because of N = O
(

ln(n)
ln(ln(n))

)
, the following limit holds

lim
n→+∞

N−1 (ln(n))24s?+1M2C4

= 0,

provided C is such that C < 2−s
?− 1

4M−
1

2 . This result entails that the

square term goes to zero when n tends to infinity.

Gathering the results for the square and the cross terms, we conclude that,

if C < c0 = 2−s
?

M−
1

2 min
(
R, 2−

1

4

)
the lower bound goes to one as n tends

to infinity and that the loss ln is unavoidable.

5 Appendix

In this last section, we present the technical lemmas used to prove Theorem

1 and Theorem 2.

Lemma 1. Let n > 2. Consider the set Jn defined in (3.4). Then its

cardinality can be bounded as follows:

Card(Jn) ≤
(

2

4s? + 1
− 2

4s? + 1
+ 1

)
ln(nln)

ln(2)
.

Proof. From (3.3) and according to the definition of Jn we deduce that for

any j ∈ Jn,

j ≥ 2 ln(nln)

(4s? + 1) ln(2)
and j <

2 ln(nln)

(4s? + 1) ln(2)
+ 1.

Hence,

Card(Jn) ≤
(

2 ln(nln)

(4s? + 1) ln(2)
− 2 ln(nln)

(4s? + 1) ln(2)
+ 1

)
≤

(
2

4s? + 1
− 2

4s? + 1
+ 1

)
ln(nln)

ln(2)
.

Lemma 2. Let (−→p ,−→q ) ∈ Θ0(R). For any level j, any i ∈ {1, . . . , n} and

any (k1, k2) ∈ Z2,

E−→p ,−→q

∣∣ (φjk1(Yi)− φjk1(Zi)) (φjk2(Yi)− φjk2(Zi))
∣∣ ≤ 2R.



18 F. Autin and C. Pouet

Proof. Let us consider (−→p ,−→q ) ∈ Θ0(R) and a level j. For any i ∈ {1, . . . , n}
and any (k1, k2) ∈ Z2,

E−→p ,−→q

∣∣ (φjk1(Yi)− φjk1(Zi)) (φjk2(Yi)− φjk2(Zi))
∣∣

≤ 1

2

[
E−→p ,−→p

(
(φjk1(Yi)− φjk1(Zi))

2
)

+ E−→p ,−→p

(
(φjk2(Yi)− φjk2(Zi))

2
)]

≤ 1

2

(
‖fi‖∞

(∫
R
φ2
jk1 +

∫
R
φ2
jk2

)
+ ‖gi‖∞

(∫
R
φ2
jk1 +

∫
R
φ2
jk2

))
= ‖fi‖∞ + ‖gi‖∞
≤ 2R.

Lemma 3. Let (i1, i2, i3, i4) ∈ {1, . . . , n}4 such that ik 6= il for any k 6= l.

There exists D = D(K,L,M,R, ‖φ‖∞) such that, for any (−→p ,−→q ) ∈ Θ0(R)

and any level j,

E−→p ,−→q

(
hj(i1, i2)hj(i1, i4)hj(i3, i2)hj(i3, i4)

)
≤ D 2j

n8σ4
n(j)

,

with hj(.) as defined in (4.1) and σ2
n(j) as defined in Section 4.

Proof. Consider (−→p ,−→q ) ∈ Θ0(R) and a level j. From Lemma 2 and (3.5)

E−→p ,−→q

(
hj(i1, i2)hj(i1, i4)hj(i3, i2)hj(i3, i4)

)
≤ 16

n8 σ4
n(j)

(2R)3M4(K−M (M − 1)!)8(4L)2

×
∑
k1∈Z

∑
k2∈Z

E−→p ,−→p

∣∣ (φjk1(Yi1)− φjk1(Zi1)) (φjk2(Yi1)− φjk2(Zi1))
∣∣

≤ 16

n8 σ4
n(j)

(2R)3M4(K−M (M − 1)!)8(4L)3
∑
k∈Z

E−→p ,−→p (φjk(Yi1)− φjk(Zi1))
2

≤ 32

n8 σ4
n(j)

(2R)3M4(K−M (M − 1)!)8L(4L)3(2
j

2
+1‖φ‖∞)2

= 216 K−8ML4M4((M − 1)!)8R3‖φ‖2∞ 2j
1

n8 σ4
n(j)

:= D
2j

n8 σ4
n(j)

.
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Lemma 4. There exists a positive constant F = F (K,L,M, ‖φ‖∞) such

that, for any (−→p ,−→q ) ∈ Θ0(R) and any level j:

M2,n,j ≤ F
22j(1 + 6n)

n4σ2
n(j)

.

Proof. Let us consider (−→p ,−→q ) ∈ Θ0(R) and a level j. The quantity M2,n,j

can be decomposed as follows:

M2,n,j = E−→p ,−→q

 n∑
i1=2

(
i1−1∑
i2=1

hj(i1, i2)

)4


=

n∑
i1=2

i1−1∑
i2=1

E−→p ,−→q

(
h4
j (i1, i2)

)
+ 6

n∑
i1=3

i1−1∑
i2=2

i2−1∑
i3=1

E−→p ,−→q

(
h2
j (i1, i2)h2

j (i1, i3)
)

:= A2,n,j + 6B2,n,j .

Clearly, using (3.5) we have:

A2,n,j =

n∑
i1=2

i1−1∑
i2=1

E−→p ,−→q

(
h4
j (i1, i2)

)
≤ 4M2(K−M (M − 1)!)4

n4σ2
n(j)

(4L)2
(

2
j

2
+1‖φ‖∞

)4
n∑

i1=2

i1−1∑
i2=1

E−→p ,−→p

(
h2
j (i1, i2)

)
= 210M2L2(K−M (M − 1)!)4‖φ‖4∞

22j

n4 σ2
n(j)

Var−→p ,−→p (T̃j)

= 210K−4ML2M2((M − 1)!)4‖φ‖4∞
22j

n4 σ2
n(j)

:= F
22j

n4 σ2
n(j)

.
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In the same way,

B2,n,j =

n∑
i1=3

i1−1∑
i2=2

i2−1∑
i3=1

E−→p ,−→q

(
h2
j (i1, i2)h2

j (i1, i3)
)

≤ 4M2(K−M (M − 1)!)4

n3σ2
n(j)

(4L)2
(

2
j

2
+1‖φ‖∞

)4
n∑

i1=2

i1−1∑
i2=1

E−→p ,−→p

(
h2
j (i1, i2)

)
= 210M2L2(K−M (M − 1)!)4‖φ‖4∞

22j

n3 σ2
n(j)

Var−→p ,−→p (T̃j)

= 210L2M2(K−M (M − 1)!)4‖φ‖4∞
22j

n3 σ2
n(j)

= F
22j

n3 σ2
n(j)

.

Looking at the bounds of A2,n,j and B2,n,j , we conclude that

M2,n,j ≤ F
22j(1 + 6n)

n4σ2
n(j)

.

Lemma 5. There exists a constant G = G(K,M,R,L, ‖φ‖∞) such that,

for any (−→p ,−→q ) ∈ Θ0(R) and any level j:

M3,n,j ≤M2,n,j +G
2j

n3σ2
n(j)

(
2j +

1

nσ2
n(j)

)
.

Proof. Let us consider (−→p ,−→q ) ∈ Θ0(R) and a level j.

M3,n,j = E−→p ,−→q

 n∑
i1=2

(
i1−1∑
i2=1

hj(i1, i2)

)2

− 1

2
= E−→p ,−→p

 n∑
i1=2

(
i1−1∑
i2=1

hj(i1, i2)

)2
2− 2Var−→p ,−→p (T̃j) + 1

= E−→p ,−→p

 n∑
i1=2

(
i1−1∑
i2=1

hj(i1, i2)

)2
2− 1

:= M2,n,j + 2A3,n,j − 1,
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with A3,n,j =

n∑
i1=3

i1−1∑
i3=2

E−→p ,−→p

(i1−1∑
i2=1

hj(i1, i2)

)2(i3−1∑
i2=1

hj(i2, i3)

)2
 .

We focus on the term A3,n,j .

A3,n,j =

n∑
i1=3

i1−1∑
i3=2

E−→p ,−→p

(i1−1∑
i2=1

hj(i1, i2)

)2(i3−1∑
i2=1

hj(i2, i3)

)2


=

n∑
i1=3

i1−1∑
i3=2

E−→p ,−→p

((
i1−1∑
i2=1

h2
j (i1, i2)

)(
i3−1∑
i2=1

h2
j (i2, i3)

))

+ 2

n∑
i1=3

i1−1∑
i2=2

i2−1∑
i3=1

E−→p ,−→p

(
hj(i1, i2)hj(i1, i3)h2

j (i2, i3)
)

+ 4

n∑
i1=4

i1−1∑
i3=3

E−→p ,−→p

((
i1−1∑
i2=2

i2−1∑
i4=1

hj(i1, i2)hj(i1, i4)

)(
i3−1∑
i2=2

i2−1∑
i4=1

hj(i3, i2)hj(i3, i4)

))
.

The first term of the right-hand side can be bounded as follows:

n∑
i1=3

i1−1∑
i3=2

E−→p ,−→p

((
i1−1∑
i2=1

h2
j (i1, i2)

)(
i3−1∑
i2=1

h2
j (i2, i3)

))

≤ 1

2

(
E−→p ,−→p

(
n∑

i1=2

i1−1∑
i2=1

h2
j (i1, i2)

))2

+

n∑
i1=3

i1−1∑
i2=1

i1−1∑
i3=1

E−→p ,−→p

(
h2
j (i1, i2)h2

j (i2, i3)
)

=
1

2
Var−→p ,−→p (T̃j) +

n∑
i1=3

i1−1∑
i2=1

i1−1∑
i3=1

E−→p ,−→p

(
h2
j (i1, i2)h2

j (i2, i3)
)

=
1

2
+

n∑
i1=3

i1−1∑
i2=1

i1−1∑
i3=1

E−→p ,−→p

(
h2
j (i1, i2)h2

j (i2, i3)
)
.
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Since
n∑

i1=3

i1−1∑
i2=1

i1−1∑
i3=1

E−→p ,−→p

(
h2
j (i1, i2)h2

j (i2, i3)
)

≤ 210M2(K−M (M − 1)!)4

n3σ2
n(j)

L222j‖φ‖4∞
n∑

i1=3

i1−1∑
i2=1

E−→p ,−→p

(
h2
j (i1, i2)

)
≤ 210K−4ML2M2((M − 1)!)4‖φ‖4∞

22j

n3 σ2
n(j)

Var−→p ,−→p (T̃j)

= F
22j

n3 σ2
n(j)

,

we deduce that a bound for the first term is
n∑

i1=3

i1−1∑
i3=2

E−→p ,−→p

((
i1−1∑
i2=1

h2
j (i1, i2)

)(
i3−1∑
i2=1

h2
j (i2, i3)

))
≤ 1

2
+ F

22j

n3 σ2
n(j)

.

Let us now focus on the second term. From similar calculus as before,

2

n∑
i1=3

i1−1∑
i2=2

i2−1∑
i3=1

E−→p ,−→p

(
hj(i1, i2)hj(i1, i3)h2

j (i2, i3)
)

≤ 8M2(K−M (M − 1)!)4

n3σ2
n(j)

(4L)2
(

2
j

2
+1‖φ‖∞

)4
n∑

i1=2

i1−1∑
i2=1

E−→p ,−→p

(
h2
j (i1, i2)

)
≤ 211K−4MM2L2((M − 1)!)4‖φ‖4∞

22j

n3 σ2
n(j)

Var−→p ,−→p (T̃j)

= 2F
22j

n3 σ2
n(j)

.

We deal with the third term and we use Lemma 3. We have:

4

n∑
i1=4

i1−1∑
i3=3

E−→p ,−→p

((
i1−1∑
i2=2

i2−1∑
i4=1

hj(i1, i2)hj(i1, i4)

)(
i3−1∑
i2=2

i2−1∑
i4=1

hj(i3, i2)hj(i3, i4)

))

= 4

n∑
i1=4

i1−1∑
i3=3

i3−1∑
i2=2

i2−1∑
i4=1

E−→p ,−→p

(
hj(i1, i2)hj(i1, i4)hj(i3, i2)hj(i3, i4)

)
≤ 4D

2j

n4σ4
n(j)

.
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Finally, gathering all the bounds obtained, we conclude that

M3,n,j ≤M2,n,j +G
2j

n3σ2
n(j)

(
2j +

1

nv2
n(j)

)
,

with G := max(6F, 8D).

Lemma 6. For s′ < s in Sn, i.e. js′ > js, the following bound holds

uniformly

E
(
dPπjs

dP−→p ,−→p

dPπj
s′

dP−→p ,−→p

)
− 1 ≤ 2

(
C221+3s?M

)2
l−2
n exp

(
−4 ln(nln) ln(ln(n))

(4s? + 1)2 ln(n)

)
.

Before proving this lemma, let us remark that this upper bound goes to

zero when n goes to infinity.

Proof. For convenience, for j ∈ {js, js′} we consider rn,j as defined in (4.5)

and we denote

r̃n,j (u) = rn,jfu (Zu)−1 , θ (ω;u) =

M∑
l=1

ωl (u) θl,

dPπj

dP−→p ,−→p
=

n∏
u=1

[
1 + θ(ω;u)r̃n,j(u)

∑
k∈Tj

ζjkψjk (Zu)
]
.

To avoid cumbersome notations, we denote j := js and j′ := js′ in the

sequel. We evaluate the quantity

E
(

dPπj

dP−→p ,−→p

dPπj′

dP−→p ,−→p
− 1

)
.

The products can be expanded and the compactness of Haar wavelets leads

to

E
(

dPπj

dP−→p ,−→p

dPπj′

dP−→p ,−→p
− 1

)
=

n∑
a=1

∑
1≤u1<...<ua≤n

θ(ω;u1)2 . . . θ(ω;ua)2

×
∑

k1,...,ka∈Tj′

E

(
a∏
b=1

r̃n,j′(ub)ζj′kbψj′kb (Zub
) r̃n,j(ub)ζjb2j−j′kbcψjb2j−j′kbc (Zub

)

)
.
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A careful study of all the summands shows that many of them are equal to

zero.

First, the number a has to be even. If it is odd, the expectation term with

respect to the random variables ζjk, ζj′k will be zero. Moreover in order

to get a non-zero summand we need a condition on k1, . . . , ka. They have

to be paired. Here we mean that the number of kb being equal is also an

even number. The expectation term with respect to the random variables

ζjk, ζj′k′ (k ∈ Tj , k′ ∈ Tj′) is zero if this condition is not fulfilled, otherwise

the product
∏a
b=1 ζjb2j−j′kbcζj′kb is equal to one.

These two remarks imply that the sum over index a starts at a = 2 and

the number of products r̃n,j′(·)r̃n,j(·) is at least equal to two. We have∣∣∣∣E(ψjb2j−j′kc (Zu)ψj′k (Zu)

f2
u (Zu)

)∣∣∣∣ =

∣∣∣∣∫
R

ψjb2j−j′kc ψj′k

fu

∣∣∣∣
≤ 2

j−j′

2
+1.

We go back to the sum over index a. First note that the number of terms

in the sum over u1, . . . , ua is at most na/a! and the one involved in the

sum over k1, . . . , ka is at most |Tj′ |
a

2 a!/
(
(a/2)! 2

a

2

)
. Thus, gathering all

the results, we obtain for any n large enough:∣∣∣ n∑
a=1

∑
1≤u1<u2<...<ua≤n

[
θ(ω;u1)2 . . . θ(ω;ua)2

×
∑

k1,...,ka∈Tj′

E

(
a∏
b=1

r̃n,j′(ub)ζj′kbψj′kb (Zub
) r̃n,j(ub)ζj(2i−jkb)ψjb2j−j′kbc (Zub

)

)]∣∣∣
≤

n∑
a=2

(
C22s2s

′
M
)a na |Tj′ | a2(

a
2

)
!2

a
2

(
2−js−

j
2

)a (
2−j

′s′− j′
2

)a (
21+ j−j′

2

)a
≤

n∑
a=2

(
C221+2s?M

)a
na
(

2j
′s′−js2−j

′(2s′+ 1
2 )
)a

≤
n∑
a=2

(
C221+3s?M

)a
l−an (nln)

a
(

2s′
4s′+1

− 2s
4s+1

)

≤ 2
(
C221+3s?M

)2

l−2
n (nln)

2
(

2s′
4s′+1

− 2s
4s+1

)

≤ 2
(
C221+3s?M

)2

l−2
n exp

(
− 4 ln(nln)

(4s? + 1)2 ln(n)
ln(ln(n))

)
.
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The last inequality comes from the fact that the minimal distance between

s′ and s in Sn is such that: s′−s < − ln(ln(n))/ ln(n). Since the right-hand

side of the last inequality goes to zero when n tends to infinity, the lemma

is now proved.
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