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Summary: This paper deals with statistical tests on the components of mixture densities. We
propose to test whether the densities of two independent samples of independent random variables
Y1, . . . , Yn and Z1, . . . , Zn result from the same mixture of M components or not. We provide
a test procedure which is proved to be asymptotically optimal according to the minimax setting. We
extensively discuss the connection between the mixing weights and the performance of the testing
procedure; this link had never been clearly established up to now.

1 Introduction
Since more than 20 years, the mixture model has gained a lot of attention. This is due
to its ease of interpretation by viewing each component as a distinct group in the data.
This model has been widely applied in several areas such as finance, economy, biology,
astronomy, survey methods, etc.

Most of the theoretical results in the literature deal with the estimation of the compo-
nents or of the mixing weights. There are two types of mixture models: the most popular
one has fixed mixing weights and the other one has varying mixing weights.

On the one hand, many statisticians have been interested in estimating the mixing
weights. For example, Hall [13], Titterington [26] and Hall and Titterington [14] have
considered nonparametric estimation of the mixing weights. Two other examples about
the mixing weights are the estimation of a functional of the weights by van de Geer [27]
and the computation of confidence intervals by Qin [24]. On the other hand, one can think
of the estimation of the mixture components. This can easily be done with varying mixture
weights which were first introduced by Maiboroda [20] as far as we know. Both estimation
and testing problems have been considered in this set-up. Several well-known methods
have been successfully applied such as histograms in Lodakto and Maiboroda [18] and
empirical distribution in Maiboroda [20, 21]. Nevertheless for the minimax approach,
only the estimation problem has been considered by Pokhyl’ko [23]. He proved the
optimality of wavelet thresholding methods for the estimation of components in varying
mixing weights model.

AMS 2010 subject classification: Primary: 62C20, 62G10, 62G20; Secondary: 30H25, 42C40
Key words and phrases: Besov spaces, minimax theory, mixture model, nonparametric tests, wavelet decompo-
sition
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390 Autin -- Pouet

The mixing weights and the mixture components can also be both estimated both at
the same time, this result holds in a particular setting for k-variate data introduced by Hall
and Zhou [15].

More recently, the mixture model has also been studied in the testing problem frame-
work. The usual addressed question is whether the observations come from a non-trivial
mixture model or from a trivial one (i.e. with only one component). This has been done
for example by Garel [10, 11] and Delmas [8] in the case of fixed mixing weights and by
Maiboroda [22] in the case of varying mixing weights. Their homogeneity tests which
rely respectively on the likelihood ratio test and on a Kolmogorov–Smirnov type test are
proved to be consistent. All these authors only considered the mixture problem with one
sample and the behaviour of the test under a sequence of simple alternatives.

Here we propose to study a testing problem with two independent samples in a mixture
model with varying mixing weights in the minimax setting. Let Y1, . . . , Yn be a sample
of independent random variables with unknown marginal densities

fi(.) =
M∑

u=1

ωu(i)pu(.), 1 ≤ i ≤ n, (1.1)

and let Z1, . . . , Zn be another sample of independent random variables with unknown
marginal densities

gi(.) =
M∑

u=1

σu(i)qu(.), 1 ≤ i ≤ n. (1.2)

In the sequel, the mixing weights (ωu(i), 1 ≤ u ≤ M, 1 ≤ i ≤ n) and (σu(i), 1 ≤
u ≤ M, 1 ≤ i ≤ n) are supposed to satisfy

∀(u, i) ∈ {1, . . . , M} × {1, . . . , n}, min(ωu(i), σu(i)) ≥ 0, (1.3)

∀i ∈ {1, . . . , n},
M∑

u=1

ωu(i) =
M∑

u=1

σu(i) = 1, (1.4)

and to be entirely known by the statistician whereas the densities pu and qu (1 ≤ u ≤ M)

are unknown.
We propose to study whether these two samples of random variables come from the

same mixture of M unknown densities or not, that is to say to test the null hypothesis
H0 : pu = qu for any u belonging to {1, . . . , M} against the alternative H1 : pu �= qu

for at least one u belonging to {1, . . . , M}. A more detailed description of this testing
problem is given in Section 2.2.

In Butucea and Tribouley [4] some procedures are proposed to test if two n-samples
of i.i.d. variables have common probability density. Their setting is equivalent to the case
M = 1 in our mixture problem. Here the problem appears more complex since the two
samples are not based on random variables with the same marginal densities. In Section 3,
our results show that there is no loss in the minimax rate compared to the simpler case
studied by Butucea and Tribouley [4]. We also provide an asymptotically minimax test
which is based on wavelet methods and we prove the dependence between the mixing
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weights and the constants appearing in the definition of the minimax rate of testing. Until
now this phenomenon has never been studied and is extensively discussed in this paper.
Sections 4 and 5 are respectively devoted to open questions and to the proofs of our
results. Finally many technical lemmas that are necessary to prove the main results are
postponed in Appendix.

The varying mixing weights model is quite new and really deserves attention as it
can be useful in several fields such as medicine and social science. Let us describe more
precisely what can be done in social science in order to help the reader to recognize this
usefulness.

Social science
Social science is a domain that can potentially take great advantage of the varying mixing
weights model studied here. Let us consider an organization divided into several depart-
ments such as an enterprise. Aggregated information are only known at the department
level, e.g. proportion of men and women, proportion of graduates and undergraduates,
proportion of married and unmarried people, etc. The researcher is interested in a vari-
able for these subgroups such as salary. For each person, the researcher has only recorded
salary and department. The information of interest which allows to divide the sample
into subgroups is unavailable at the individual level. This can happen if the researcher
has forgotten to record this information when collecting the data; this also frequently
happens when a new question arises during the study of the data. Another reason can be
that the law forbids to record such information at the individual level. From our point of
view one of the best example are National Statistics Offices which are usually allowed to
supply statistics only at aggregated level. The unit can be for example an area consisting
of hundreds or thousands households. The usual manner is to collect all the information
needed for the study through a survey. It will lead to a lengthy questionnaire as the re-
searcher does not exactly know in advance what is the relevant information. Therefore
the mixing varying weigths approach can alleviate these drawbacks. This technique will
help to concentrate on the core of the topic. The survey questionnaire will be shorter and
all the questions will be geared toward collecting precise information about the subject
itself. During the study, the researcher will use any available aggregated information. Any
explanatory variable can be chosen at this level (e.g. income, academic level, number of
cars, gender, number of children). Once a variable has been chosen, it has to be divided
into M classes. These are the subpopulations in our problem. For each observation the
researcher knows the statistical unit it belongs to and therefore the theoretical distribution
of the explanatory variable associated with. Each line in the matrix � corresponds to
the distribution of the explanatory variable for one observation in a specified statistical
unit. Here we want to stress that this distribution is exactly known; indeed aggregated
information given by National Statistics Offices are often very reliable as it is usually
mandatory to answer national census. Moreover a wide range of explanatory variables is
available.

Our setting can also be related to the problem of missing data. There is a wealth of
works on partially missing data (see e.g. McKnight et al. [19]) but the case of entirely
missing data has never been really considered. From our point of view, a varying mixing
weights model is a way to cope with this lack of information at the individual level and
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392 Autin -- Pouet

to allow the researcher to reconstruct information for each subgroup. Although we are
aware of methodological problems, we want to emphasize that in this case the varying
mixing weights are exactly known to the researcher; indeed, aggregated information often
exists and is much easier to collect than individual information. A real-life application
and numerous simulations are availaible in an extended version [2].

2 Model and background

2.1 Wavelet framework

Wavelets have often been applied in different mathematical fields such as approximation
theory, signal analysis and statistics. In particular, many recent statistical works on esti-
mation (see e.g. Autin [1], Donoho et al. [9] or Cohen et al. [6]) and on hypothesis testing
(see e.g. Spokoiny [25]) use the wavelet setting to provide efficient estimators and tests.
There are many explanations for the huge interest of the wavelet setting. One of them is
that wavelets bases are localized both in frequency and in time, contrary to the classical
Fourier basis which is only localized in frequency. As a consequence, the wavelet setting
appears to be well adapted to describe local characteristics of a signal to be reconstructed.

Let φ and ψ be two compactly supported functions of L2(R) and denote for all j in
N and all k in Z and all x in R, φ jk(x) = 2

j/2
φ(2

j
x − k) and ψ jk(x) = 2

j/2
ψ(2

j
x − k).

Suppose that for any j in N:

• {φ jk, ψ j ′k; j ′ ≥ j; k ∈ Z} is an orthonormal basis of L2(R),

• support(φ) ∪ support(ψ) ⊆ [−L, L[ for some L > 0.

Popular examples of such bases, called compactly supported orthonormal wavelet
bases, are given in Daubechies [7]. The function φ is called the scaling function and ψ

the associated wavelet.
Any function h in L2(R) can be represented as:

h(t) =
∑

k∈Z
α jkφ jk(t) +

∑

j ′≥ j

∑

k∈Z
β j ′kψ j ′k(t)

where ∀ j ∈ N,∀ j ′ ≥ j,∀k ∈ Z:

• α jk =
∫

I jk

h(t)φ jk(t)dt and β j ′k =
∫

I j ′k
h(t)ψ j ′k(t)dt,

• I jk = {
x ∈ R; −L ≤ 2 j x − k < L

} =
[

k−L
2 j , k+L

2 j

[
.

The wavelet framework is a good candidate as we are interested in Besov spaces. It has
already been successfully applied by Pokhyl’ko [23] for the varying mixing weights
model in the estimation problem.
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Test on components of mixture densities 393

2.2 Mathematical description of the testing problem
We briefly recall the setting introduced in Section 1. Let Y1, . . . , Yn and Z1, . . . , Zn
be two independent samples of independent random variables with unknown marginal
densities respectively given by equations (1.1) and (1.2) and mixing weights (ωu(i), 1 ≤
u ≤ M, 1 ≤ i ≤ n) and (σu(i), 1 ≤ u ≤ M, 1 ≤ i ≤ n) satisfying (1.3) and (1.4). Here
and what follows let −→p = (p1, . . . , pM) and −→q = (q1, . . . , qM).

Let D be the set of all probability densities with respect to the Lebesgue measure on
R. For any real number R > 0, we define

	0 (R) = {(−→p ,
−→q ) : ∀u ∈ {1, . . . , M}, pu = qu ∈ S(R)

}

with S(R) = D ∩ L∞(R) ∩ L2(R). We consider the following null hypothesis

H0 : (−→p ,
−→q ) ∈ 	0 (R) .

For a given C > 0, we define

	1 (R, C, rn , s) =
{ (−→p ,

−→q ) : ∀u ∈ {1, . . . , M}, pu − qu ∈ Bs
2,∞(R),

∃u ∈ {1, . . . , M}, (pu, qu) ∈ 
(R, C, rn)
}
,

where 
(R, C, rn) = {
(p, q) ∈ (D ∩ L∞(R))2, ‖p − q‖2 ≥ Crn

}
, for a sequence rn

tending to 0 when n goes to infinity and Bs
2,∞(R) is the R-ball of a functional space

defined below. We consider the following alternative

H1 : (−→p ,−→q ) ∈ 	1 (R, C, rn , s) .

As usual in the nonparametric setting, we focus on a large class of functions having
some regularity so as to derive optimal properties. For the chosen wavelet basis, the space
Bs

2,∞(R) represents the R-ball of the so-called Besov space which consists of all functions
h ∈ L2(R) whose wavelet coefficients (α jk, β j ′k, j ∈ N, j ′ ≥ j, k ∈ Z) satisfy:

sup
j∈N

22 js
∑

j ′≥ j

∑

k∈Z
β2

j ′k ≤ R.

The minimax setting
In this paragraph we recall the minimax approach which is often used to evaluate the
performances of testing procedures. Given the sum of the probability errors, say γ ∈
[0, 1], we study the optimal separation rate rn between the null hypothesis and the
alternative. This rate rn is the best possible rate separating at least one of the M pairs
of density components pu and qu . It is usually called the minimax rate. Let us recall the
classical definition for this rate.

Definition 2.1 Let 0 < γ < 1. We say that rn is the minimax rate separating H0
and H1 of our testing problem at level γ if the two following statements are satisfied:
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394 Autin -- Pouet

1. there exists a sequence of test procedures �∗
n and a constant Cγ such that for all

C > Cγ :

lim sup
n→∞

⎛

⎜⎝ sup
(−→p ,−→q )
∈	0(R)

P−→p ,
−→q (�∗

n = 1) + sup
(−→p ,−→q )∈

	1(R,C,rn,s)

P−→p ,
−→q (�∗

n = 0)

⎞

⎟⎠ ≤ γ ;

2. there exists a constant cγ such that for all C < cγ :

lim inf
n→∞ inf

�

⎛
⎜⎝ sup

(
−→p ,

−→q )
∈	0(R)

P−→p ,
−→q (� = 1) + sup

(
−→p ,

−→q )∈
	1(R,C,rn,s)

P−→p ,
−→q (� = 0)

⎞
⎟⎠ > γ,

where the infimum is taken over all test procedures �.

Assumption 2.2 Let us denote by � = (�ui) the (M × n)-matrix with coefficients
�ui = ωu(i) and 
 = (
ui) the (M × n)-matrix with coefficients 
ui = σu(i). We
assume that the smallest eigenvalues of the (M × M)-matrices �n = ��∗

n and �′
n = 

∗

n
are both larger than or equal to K, with 0 < K < 1.

We recall the following proposition due to Maiboroda [21].

Proposition 2.3 Suppose that Assumption 2.2 is satisfied by the mixing weights (ωu(i),
1 ≤ u ≤ M, 1 ≤ i ≤ n) and (σu(i), 1 ≤ u ≤ M, 1 ≤ i ≤ n) associated with the model.
Then, there exists a solution of the two problems

[
find al = (al(i))1≤i≤n such that 〈ωk, al〉n := 1

n

n∑

i=1

ωk(i)al(i) = δkl

]
,

[
find bl = (bl(i))1≤i≤n such that 〈σk, bl〉n := 1

n

n∑

i=1

σk(i)bl(i) = δkl

]
,

where δkl is the Kronecker delta. The solutions of interest can be viewed as the components
of (n × M)-matrices A = (al(i))i,l and B = (bl(i))i,l such that:

�A = 
B = n IM,

where IM is the (M × M)-identity matrix.
According to Lemma 6.1 in Autin and Pouet [2], solutions satisfy

Trace (AA∗) :=
M∑

l=1

〈al, al〉n = 1

n

M∑

l=1

n∑

i=1

a2
l (i) ≤ M

K
, (2.1)

Trace (BB∗) :=
M∑

l=1

〈bl, bl〉n = 1

n

M∑

l=1

n∑

i=1

b2
l (i) ≤ M

K
. (2.2)
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Remark 2.4 Note that Assumption 2.2 ensures that matrices �n and �′
n are both invert-

ible. As we shall see in Section 3, after inverting the mixing weights operators � and 
,

that is to say finding the components of matrices A and B, we will be able to provide
a test statistic adapted to our testing problem.

Analogously to Pokhyl’ko [23], the Euclidian norms of matrices AA∗ and BB∗ will
appear in the separation constants Cγ and cγ . Therefore, a control on these quantities is
required. A natural way to proceed is to impose a condition on the mixing weights, that
is to say to control the behaviour of the smallest eigenvalues of matrices �n and �′

n . Such
kind of control is achieved through Assumption 2.2.

As it will be shown in Section 3, the performance of the test statistic will depend on
the values of the smallest eigenvalues of �n and �′

n .

3 Nonparametric test procedure
This paragraph deals with the case where the regularity s of the Besov space that appears
in H1 is known. From now on we denote by al and bl the n-vectors which are the
solutions of the two optimization problems appearing in Proposition 2.3. Let us describe
the asymptotically minimax decision rule.

3.1 Definition of the test procedure
For each level parameter j , we define the test procedure � j comparing the test statistic

Tj = 1

n2

n∑

i1 �=i2=1

∑

k∈Z

M∑

l=1

[
al(i1)φ jk(Yi1 ) − bl(i1)φ jk(Zi1)

]

· [al(i2)φ jk(Yi2 ) − bl(i2)φ jk(Zi2)
]

with a threshold value tn = t r2
n where t is a constant chosen later. We define

� j =
{

1 if Tj > tn,
0 if Tj ≤ tn .

before studying the properties of Tj , we give some arguments to explain this choice of
test statistic.

For fixed l the mixture components pl and ql can be decomposed in the wavelet basis
as follows:

pl(t) =
∑

k∈Z
α

(l,p)
jk φ jk(t) +

∑

j ′≥ j

∑

k∈Z
β

(l,p)

j ′k ψ j ′k(t),

ql(t) =
∑

k∈Z
α

(l,q)
jk φ jk(t) +

∑

j ′≥ j

∑

k∈Z
β

(l,q)

j ′k ψ j ′k(t).

The quantities

α̂
(l,p)
jk = 1

n

n∑

i=1

al(i)φ jk(Yi) and α̂
(l,q)
jk = 1

n

n∑

i=1

bl(i)φ jk(Zi) (3.1)
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396 Autin -- Pouet

are respectively the estimators of α
(l,p)

jk and α
(l,q)

jk obtained via the method of moments.
Pokhyl’ko [23] has already used these estimators to construct thresholding estimators of
the components in the same model.

Instead of looking at ‖pl − ql‖2
2, we look at

∑

k∈Z

(
α

(l,p)
jk − α

(l,q)
jk

)2
from its empirical

value:

∑

k∈Z

(
α̂

(l,p)

jk − α̂
(l,q)

jk

)2 = Tj + n−2
M∑

l=1

∑

k∈Z

n∑

i=1

[
al(i)φ jk(Yi) − bl(i)φ jk(Zi)

]2
.

Keeping in mind this decomposition, the choice of Tj as test statistic appears natural,
as soon as the added term is negligible. Note that our problem can be viewed as an inverse
problem which requires inversion an operator in finite dimensions. Indeed, the empirical
observations of the wavelet coefficients of the mixture components pl and ql are not
directly available. Therefore it is required to invert, in some sense, the mixing weights
operators � and 
 so as to construct the estimators of these wavelet coefficients defined
in (3.1). This inverse problem is potentially ill-conditioned if relevant eigenvalues are
small.

3.2 Properties of the test statistic
In this section, we provide two propositions which will be crucial when evaluating the
performances of our test procedure. They deal with the behaviours of its expectation and
its variance.

Proposition 3.1 Let j be any given level parameter. Then,

E−→p ,
−→q (Tj) =

M∑

l=1

∑

k∈Z

(∫

R

(pl − ql)φ jk

)2

− 1

n2

M∑

l=1

∑

k∈Z

n∑

i=1

(∫

R

(al(i) fi − bl(i)gi) φ jk

)2

.

Remark 3.2 In the particular case where � = 
, the test statistic Tj is centered under
the null hypothesis.

Corollary 3.3 For any j ∈ N,
∣∣∣∣∣E−→p ,−→q (Tj) −

M∑

l=1

∑

k∈Z

(∫

R

(pl − ql)φ jk

)2
∣∣∣∣∣ ≤ 8L MR2

Kn
.

Proposition 3.4 There exists a constant CT = CT (R, L, ‖φ‖∞) > 0 such that

Var
−→p ,−→q

(Tj) ≤ CT M2

K2

⎛

⎝2 j

n2
+ 1

n

M∑

l=1

‖pl − ql‖2
2 +

√
2 j

n3

M∑

l=1

l‖pl − ql‖2

⎞

⎠ .



T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r. 

Test on components of mixture densities 397

Remark 3.5 Under the null hypothesis the variance of the test statistic Tj is less than or
equal to CT M2 K−2 2 j n−2.

3.3 Minimax performance of the test procedure
For any s > 0, let (rn)n∈N be the sequence such that

rn = n− 2s
1+4s ∀n ∈ N∗.

Theorem 3.6 shows that the test procedure defined in Section 3 provides an accurate upper
bound when it is correctly calibrated.

Theorem 3.6 (Upper bound) Fix γ ∈]0, 1[ and consider the test procedure �∗
s = � jn

where jn is the smallest integer such that 2− jn ≤ n− 2
1+4s . Let t and Cγ be two positive

real numbers defined as follows:

t =
(

2

√
CT

γ
+ 8L R2

)
M

K
, C2

γ = 2

(
1

K

√
6 CT

γ
+ R + t

M

)
.

Then for all C > Cγ

lim sup
n→∞

⎛

⎜⎝ sup
(
−→p ,

−→q )
∈	0(R)

P−→p ,
−→q (�∗

s = 1) + sup
(
−→p ,

−→q )∈
	1(R,C,rn,s)

P−→p ,
−→q (�∗

s = 0)

⎞

⎟⎠ ≤ γ.

Although the exact value of the constant CT is very complicated, it can be exactly
calculated by following the proofs.

Now, let us focus on the lower bound associated with our nonparametric testing
problem H0 versus H1. We aim at providing a constant cγ such that we ensure that no
test procedure is able to chooseH0 orH1 with a sum of the probability errors less than γ

(0 < γ < 1). Obviously, the smaller the distance between cγ and Cγ the more accurate
our results. Next theorem proves that our test procedure is asymptotically minimax.

Similarly to the classical methods for providing lower bounds (see e.g. Gayraud and
Pouet [12], Butucea and Tribouley [4]) we shall consider a subspace of 	1 (R, C, rn , s)
defined for any C1 > 0 as follows:

	̃1 (R, C, C1, rn, s) =
{ (−→p ,

−→q ) : ∀u ∈ {1, . . . , M}, pu − qu ∈ Bs
2,∞(R),

∀u ∈ {1, . . . , M}, {x; pu(x) ∧ qu(x) ≥ C1} ⊇ [0, 1]
∃u ∈ {1, . . . , M}, (pu, qu) ∈ 
(R, C, rn )

}
.

Theorem 3.7 (Lower bound) Let 0 < γ < 1, s > 0 and let cγ > 0 satisfy the following
equation

c4
γ =

(
C2

1

L K2 ln[4(1 − γ)2 + 1] ∧ 2R2

)
2−4s

4M2 .
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Then for all C < cγ

lim inf
n→∞ inf

�

⎛

⎜⎝ sup
(−→p ,−→q )
∈	0(R)

P−→p ,
−→q (� = 1) + sup

(−→p ,−→q )∈
	1(R,C,rn ,s)

P−→p ,
−→q (� = 0)

⎞

⎟⎠ > γ

where the infimum is taken over all test procedures �.

From Theorems 3.6 and 3.7 we deduce the minimax rate of testing. It is the same as
the one found by Butucea and Tribouley [4] when there is only one subgroup. Advances
in our results are the extension to the varying mixing weights model which allows non-
identically distributed random variables compared to Butucea and Tribouley [4] and the
role played by the mixing weights which is clearly exposed.

Corollary 3.8 For any s > 0, the test procedure �∗
s is asymptotically minimax and the

minimax rate separatingH0 andH1 is rn = n− 2s
1+4s .

3.4 Discussion about the constants cγ and Cγ

Theorems 3.6 and 3.7 exhibit two constants Cγ and cγ appearing respectively in the upper
bound and the lower bound. We think that the connection between these constants and
the parameters M and K is a novelty and deserves a discussion. Indeed, we keep in mind
that

• Cγ is the minimal value for C such that our test statistic is able to detect if all the
mixture components are identical in the two populations with sum of the probability
errors not exceeding γ ;

• cγ is the maximal value for C such that no test statistic is able to detect if all the
mixture components are identical in the two populations with sum of probability
errors not exceeding γ .

As a consequence we proved that our test statistic is optimal in the minimax sense
since it attains the minimax rate of convergence separatingH0 and H1.

According to the definitions of cγ and Cγ we let the reader be aware that the smaller
the constant K , the larger the family of the mixing weights satisfying Assumption 2.2.
Therefore it is easier to find configurations of mixing weights which increase the difficulty
to detect the departure from the null hypothesis H0. Nearly colinear mixing weights are
an example of such a configuration. Therefore, as expected, the smaller the constant K ,
the larger (and the worse) the constants Cγ and cγ . It means that the null hypothesisH0
and the alternative hypothesis H1 have to be separated by a larger distance. This fact is
important as it helps the statistician to design its experiment. Indeed a researcher looking
for a subtle difference can decide to collect more information if the value of K known
a priori is very small.

Computing the exact separation constant is not established in this study (since cγ <

Cγ ) as it is a very difficult problem (see e.g. Lepski and Tsybakov [17]). Nevertheless
we have clearly established that cγ and Cγ strongly depend on the smallest eigenvalue of
the matrices �n and �′

n . This phenomenon is not a surprise when considering Operator
Theory and Inverse Problems (see e.g. Brezis [3], Cavalier et al. [5]).
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4 Open questions
As a conclusion, we have provided a statistical procedure for a testing problem on the
mixture components of two populations (Y, Z). This one was proved to be optimal in the
minimax sense (Theorems 3.6 and 3.7). In addition, we clearly explained that the weights
of the mixture model influence the performance of the statistical rule.

It seems important to give some hints about possible extensions of this work. From
the theoretical and practical points of view, it would be interesting to study the same
problem without assuming that the mixing weights are exactly known to the statistician.
Several explanations can be given

• the statistician can estimate the mixing weights for an observation by using covari-
ates and an appropriate predictive model such as the logistic one,

• a Bayesian approach is chosen for the mixing weights, us information allows the
statistician to roughly estimate the mixing weights.

In this case several natural questions arise

• What statistical rule should be considered?

• What kind of performance can be expected for such a rule?

• How much do random mixing weights deteriorate the performance?

Such questions are beyond the scope of this article and their answers certainly involve
random matrices theory.

Finally, it would be nice to improve the choice of threshold tn . Theorem 3.7 provides
a complicated value based on asymptotic results.At least heuristics should be proposed
for real data; first results in Autin and Pouet [2] seem promizing but needs improvement.

5 Proofs of main results
This section is devoted to the proofs of our results. The proofs often need technical
lemmas that have been postponed in Appendix. For the sake of simplicity we sometimes
omit −→p and −→q in the indices when there is no ambiguity.

5.1 Proofs of propositions and corollaries

Proof of Proposition 2.3: We refer to Maiboroda [21]. A solution of the two optimization
problems is, for any indices (l, i), given by

al(i) = n

det(�n)

M∑

u=1

(−1)l+uγlu ωu(i), bl(i) = n

det(�′
n)

M∑

u=1

(−1)l+uγ ′
lu
σu(i)

where γlu and γ ′
lu

are respectively the minor (l, u) of the matrix �n and the minor (l, u)

of the matrix �′
n . �
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Proof of Proposition 3.1: Let us evaluate the expectation of Tj .

n2
E−→p ,

−→q (Tj)

= E−→p ,
−→q
( M∑

l=1

∑

k∈Z

n∑

i1 �=i2=1

(al(i1)φ jk(Yi1 )

− bl(i1)φ jk(Zi1))(al(i2)φ jk(Yi2) − bl(i2)φ jk(Zi2))

)

=
M∑

l=1

∑

k∈Z

n∑

i1 �=i2=1

E−→p ,
−→q
[
al(i1)φ jk(Yi1 ) − bl(i1)φ jk(Zi1)

]

· E−→p ,
−→q
[
al(i2)φ jk(Yi2 ) − bl(i2)φ jk(Zi2 )

]

since the random variables (Yi1 , Zi1) and (Yi2 , Zi2 ) are independent.
We have for all 1 ≤ i ≤ n,

E−→p ,−→q
[
al(i)φ jk(Yi) − bl(i)φ jk(Zi)

] =
∫

R

(
M∑

u=1

(al(i)ωu(i)pu − bl(i)σu(i)qu)

)
φ jk.

By introducing the diagonal term i1 = i2 in the sum, we get

E−→p ,
−→q (Tj) = 1

n2

M∑

l=1

∑

k∈Z

(∫

R

φ jk

(
n∑

i=1

M∑

u=1

al(i)ωu(i)pu −
n∑

i=1

M∑

u=1

bl(i)´σu(i)qu

))2

− 1

n2

M∑

l=1

∑

k∈Z

n∑

i=1

(∫

R

(al(i) fi − bl(i)gi) φ jk

)2

=
M∑

l=1

∑

k∈Z

(∫

R

(pl − ql)φ jk

)2

− 1

n2

M∑

l=1

∑

k∈Z

n∑

i=1

(∫

R

(al(i) fi − bl(i)gi) φ jk

)2

,

because of properties
n∑

i=1

al(i)ωu(i) = nδlu and
n∑

i=1

bl(i)σu(i) = nδlu . Thus the result for

the expectation is proved. �

Proof of Corollary 3.3: According to Proposition 3.1 we only have to bound the quantity

D0 := n−2
M∑

l=1

∑

k∈Z

n∑

i=1

(∫

R

(al(i) fi − bl(i)gi) φ jk

)2

.
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Using the Cauchy–Schwarz inequality and Lemma A.2, we have

n2 D0 ≤
M∑

l=1

n∑

i=1

[
∑

k∈Z

∫

I jk

(al(i) fi − bl(i)gi)
2

]

≤ 2
n∑

i=1

M∑

l=1

[
∑

k∈Z

∫

I jk

(al(i) fi)
2 +

∫

I jk

(bl(i)gi)
2

]

≤ 4L

(
n∑

i=1

M∑

l=1

a2
l (i)‖ fi‖2

2 +
n∑

i=1

M∑

l=1

b2
l (i)‖gi‖2

2

)

≤ 8L MR2n

K
,

where last inequality is due to Proposition 2.3 and the fact that for all 1 ≤ i ≤ n the
density functions fi and gi belong to L2(R). �

Proof of Proposition 3.4: Let us consider the variance of Tj . For all (i1, i2), let h j (i1, i2)

denote the quantity

h j (i1, i2) =
∑

k∈Z

M∑

l=1

(
al(i1)φ jk(Yi1) − bl(i1)φ jk(Zi1)

)

· (al(i2)φ jk(Yi2 ) − bl(i2)φ jk(Zi2 )
)
.

The variance of Tj satisfies under (
−→p ,

−→q )

n4
Var(Tj ) = Var

⎛

⎝
n∑

i1 �=i2=1

h j (i1, i2)

⎞

⎠

=
n∑

i1 �=i2,i3 �=i4=1

Cov
(
h j(i1, i2), h j (i3, i4)

)

=
n∑

i1 �=i2=1

Var
(
h j(i1, i2)

) +
n∑

i1 �=i2=1

Cov
(
h j (i1, i2), h j (i2, i1)

)

+
n∑

i1 �=i2 �=i3=1

Cov
(
h j(i1, i2), h j (i1, i3)

) +
n∑

i1 �=i2 �=i3=1

Cov
(
h j(i1, i2), h j (i2, i3)

)

+
n∑

i1 �=i2 �=i3=1

Cov
(
h j(i1, i2), h j (i3, i1)

) +
n∑

i1 �=i2 �=i3=1

Cov
(
h j(i1, i2), h j (i3, i2)

)

+
n∑

i1 �=i2 �=i3 �=i4=1

Cov
(
h j (i1, i2), h j (i3, i4)

)

:=
7∑

u=1

Du .



T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r. 

402 Autin -- Pouet

Independence of the random variables leads to

D7 =
n∑

i1 �=i2 �=i3 �=i4=1

Cov
(
h j(i1, i2), h j (i3, i4)

) = 0.

Bounds for quantities Du (1 ≤ u ≤ 6) are still required. Since the ways to bound
D1 and D2 (resp. D3, D4, D5 and D6) are similar, we will only bound D1 and D3. Such
bounds are given in Lemmas A.6 and A.7. Proof of Proposition 3.4 is a direct consequence
of Lemmas A.6 and A.7 by taking CT = 2C̄T ∨ 4C̃T . �

5.2 Proofs of Theorems

Proof of Theorem 3.6: Let us fix 0 < γ < 1 and s > 0. Under the null hypothesis, we
directly use the well-known Bienayme–Chebyshev inequality.

P−→p ,
−→p
(
�∗

s = 1
) = P−→p ,

−→p
(
Tjn > tn

)

≤ P−→p ,
−→p
(

Tjn − E−→p ,
−→p (Tjn ) > tn − 8L MR2

Kn

)

≤ Var(Tjn)

(
tn − 8L MR2

Kn

)−2

≤ CT M22 jn

(
n2 K2

(
t − 8L MR2

K

)2

r4
n

)−1

.

The last inequality is obtained using Remark 3.5. According to the choices of level jn
and threshold tn , we have

CT M2 2 jn

n2 K2
(

t − 8L MR2

K

)2
r4

n

≤ 2CT M2

K2
(

t − 8L MR2

K

)2 .

Therefore it entails that

P−→p ,−→p
(
�∗

s = 1
) ≤ γ

2
.

Under the alternative, we use the expectation of the test statistic and some approxi-
mation argument. The second type error is

P−→p ,−→q
(
�∗

s = 0
) = P−→p ,−→q

(
−Tjn + E−→p ,−→q (Tjn ) ≥ −tn + E−→p ,−→q (Tjn )

)
.



T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r. 

Test on components of mixture densities 403

The wavelet expansion in the Besov space Bs
2,∞(R) leads to

E−→p ,
−→q (Tjn ) − tn =

M∑

l=1

‖pl − ql‖2
2 −

M∑

l=1

∑

j≥ jn

∑

k∈Z

(∫

R

(pl − ql)ψ jk

)2

− 1

n2

M∑

l=1

∑

k∈Z

n∑

i=1

(∫

R

(al(i) fi − bl(i)gi) φ jnk

)2

− tn

≥
M∑

l=1

‖pl − ql‖2
2 − M R 2−2 jns − 8L MR2

Kn
− tn

≥ 1

2

M∑

l=1

‖pl − ql‖2
2 − M R 2−2 jns − tn,

for any n large enough.
As a consequence, applying the Bienayme–Chebychev inequality leads to

P−→p ,
−→q
(
−Tjn + E−→p ,

−→q (Tjn ) ≥ −tn + E−→p ,
−→q (Tjn )

)

≤
CT M2

(
2 jn + n

M∑

l=1

‖pl − ql‖2
2 +

√
2 jn n

M∑

l=1

‖pl − ql‖2

)

n2 K2

(
1

2

M∑

l=1

‖pl − ql‖2
2 − M R 2−2 jns − tn

)2 .

The choice of jn and the fact that the functions are in the alternative entail the following
upper bound

P−→p ,−→q
(
�∗

s = 0
) ≤

CT M2

(
2 jn + n

M∑

l=1

‖pl − ql‖2
2 +

√
2 jn n

M∑

l=1

‖pl − ql‖2

)

K2n2

(
1

2

M∑

l=1

‖pl − ql‖2
2 − M R 2−2 jns − t r2

n

)2 .

According to the choices of jn and rn , one gets for n large enough:

P−→p ,
−→q
(
�∗

s = 0
) ≤

CT

(
2 jn + n

∑

l

‖pl − ql‖2
2 +

√
2 jn n

∑

l

‖pl − ql‖2

)

n2 K2
(
2−1 − RC−2 − tM−1C−2

)2

(
M∑

l=1

‖pl − ql‖2
2

)2

≤ 3 CT

((
2−1 − RC−2 − tM−1C−2

)2
K2C4

)−1

.
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For all C > Cγ , we finally obtain

P−→p ,
−→q
(
�∗

s = 0
) ≤ γ

2
.

The results on the first-type and second-type errors show that if C > Cγ the sum of
the errors is less than γ . Therefore the upper bound is proved. �

Proof of Theorem 3.7: Let γ ∈ ]0, 1[ , C > 0 and C1 > 0. We define a subset of
	1 (R, C, rn, s) by

	̃1 (R, C, C1, rn, s) =
{ (−→p ,

−→q ) : ∀u ∈ {1, . . . , M}, pu − qu ∈ Bs
2,∞(R),

∀u ∈ {1, . . . , M}, {x; pu(x) ∧ qu(x) ≥ C1} ⊇ [0, 1]
∃u ∈ {1, . . . , M}, (pu, qu) ∈ 
(R, C, rn)

}
.

It is well-known that

inf
�

⎛
⎜⎝ sup

(
−→p ,

−→q )∈	0(R)

P−→p ,
−→q (� = 1) + sup

(
−→p ,

−→q )∈
	1(R,C,rn,s)

P−→p ,
−→q (� = 0)

⎞
⎟⎠

≥ inf
�

⎛

⎜⎜⎝ sup
(−→p ,−→q )
∈	0(R)

P−→p ,
−→q (� = 1) + sup

(−→p ,−→q )∈
	̃1(R,C,C1,rn ,s)

P−→p ,
−→q (� = 0)

⎞

⎟⎟⎠

≥ 1 − 1

2

∥∥∥P−→p ,
−→p − Pπ

∥∥∥ ,

where ‖·‖ is theL1-distance and π is an a priori probability measure on the set 
(R, C, rn).
First we define the probability measure π and its support.

Let θ = (θ1, . . . , θM) denote an eigenvector associated with the smallest eigenvalue
of 

� which is Kn according to Assumption 2.2 and such that ‖θ‖2 = 1.

Recall that here jn is the same as the one defined in Theorem 3.6. Let T be the subset
of Z containing every integer k satisfying the following properties

• k ∈ T �⇒
[

k−L
2 jn , k+L

2 jn

[
⊆ [0, 1[,

• (k, k′) ∈ T × T with k �= k′ �⇒
[

k−L
2 jn , k+L

2 jn

[
∩
[

k′−L
2 jn , k′+L

2 jn

[
= ∅.

The cardinality of T is clearly equal to T = � 2 jn−1

L � and we denote its elements k1, . . . , kT .
Let ζk = +1 or −1. The following parametric family of functions is considered

ql,ζ (z) = pl(z) + 2s+1C
√

ML θl

∑

k∈T
ζk2− jns− jn

2 ψ jnk(z).
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Remark that ζk does not depend on the index l. Therefore the density of Zi is

gi,ζ (z) =
M∑

l=1

σl(i)
√

MLθl 2s+1C
∑

k∈T
ζk2− jns− jn

2 ψ jnk(z) +
M∑

l=1

σl(i)pl(z).

The probability measure π is such that the ζk’s are independent Rademacher random
variables with parameter 1/2.

The function ql,ζ is a density. Indeed, for n large, ql,ζ is non-negative. Moreover, as
ψ jnk is a wavelet, we have

∫
ψ jnk = 0 and therefore

∫
ql,ζ = 1. If C <

√
R/M22s+2,

then ql,ζ − pl belongs to the ball of the Besov space Bs
2,∞(R). There exists l such that

Mθ2
l ≥ 1 and

∥∥pl − ql,ζ
∥∥2

2 = TL MC222+2s−2 jns− jnθ2
l ≥ C2 n− 4s

4s+1 .

Therefore the probability measure π is solely concentrated on the alternative.
It is well-known that the L1 distance can be bounded by the L2 distance. We have

∥∥∥P−→p ,−→p − Pπ

∥∥∥ ≤

√√√√√E−→p ,−→p

⎡

⎣
(
Eπ

(
n∏

i=1

gi,ζ (Zi)

gi(Zi)

))2
⎤

⎦ − 1. (5.1)

Let us introduce the following random variables

Z̃ik = 2s+1C
√

ML 2− jns− jn
2

ψ jnk(Zi)

gi(Zi)

M∑

l=1

θlσl(i).

Therefore it suffices to evaluate the second-order moment of the likelihood ratio:

E−→p ,
−→p

⎡

⎣
(
Eπ

(
n∏

i=1

gi,ζ (Zi)

gi(Zi)

))2
⎤

⎦

= E−→p ,
−→p

⎡

⎣
(
∏

k∈T

∫ n∏

i=1

(
1 + ζk Z̃ ik

)
dπ(ζ1, . . . , ζT )

)2
⎤

⎦ .

We have

E−→p ,
−→p

⎡

⎣
(
∏

k∈T

∫ n∏

i=1

(
1 + ζk Z̃ik

)
dπ(ζ1, . . . , ζT )

)2
⎤

⎦

= E−→p ,
−→p

⎡

⎣
∏

k∈T

1

4

[
n∏

i=1

(
1 + Z̃ ik

)
+

n∏

i=1

(
1 − Z̃ik

)]2
⎤

⎦

= E−→p ,
−→p

[
∏

k∈T

1

2

(
n∏

i=1

(
1 + Z̃

2
ik

)
+

n∏

i=1

(
1 − Z̃

2
ik

))
+
∑

k∈T

n∑

i=1

Z̃ik h̃i(k)

]
,
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where functions h̃i(k) are sums of products of Z̃ jκ where the pairs ( j, κ) are in the set
{1, . . . , n} × T \ {(i, k)}.

As E−→p ,
−→p (Z̃ik) = 0 and Z̃ ik Z̃ ik′ = 0 for k �= k′, the last term vanishes. Thus only the

first term remains. As Z̃ik Z̃ik′ = 0 for k �= k′ and the random variables Z̃ ik and Z̃ i′k for
i �= i ′ are independent, we have

E−→p ,−→p

[
∏

k∈T

1

2

(
n∏

i=1

(
1 + Z̃

2
ik

)
+

n∏

i=1

(
1 − Z̃

2
ik

))]

≤
∏

k∈T

[
1

2

(
n∏

i=1

(
1 + E−→p ,

−→p
[

Z̃
2
ik

])
+

n∏

i=1

(
1 − E−→p ,

−→p
[

Z̃
2
ik

]))]

≤
∏

k∈T
cosh

(
n∑

i=1

E−→p ,
−→p
(

Z̃
2
ik

))

≤ exp

⎛

⎝1

2

∑

k∈T

(
n∑

i=1

E−→p ,
−→p
(

Z̃
2
ik

))2
⎞

⎠ .

Each expectation E−→p ,−→p
(

Z̃
2
ik

)
is bounded as follows

E−→p ,
−→p
(

Z̃
2
ik

)
≤ 22s+2−2 jns− jn C2C−1

1 ML

(
M∑

l=1

θlσl(i)

)2

.

Therefore this bound entails

exp

⎛

⎝1

2

∑

k∈T

(
n∑

i=1

E−→p ,
−→p
(

Z̃
2
ik

))2
⎞

⎠

≤ exp

⎛
⎜⎝

1

2

∑

k∈T
C424s+4−4 jns−2 jn L2 M2C−2

1

⎛

⎝
n∑

i=1

M∑

l,m=1

θlθmσl(i)σm(i)

⎞

⎠
2
⎞
⎟⎠

≤ exp

(
1

2

∑

k∈T
24s+4C42−4 jns−2 jn L2 M2C−2

1

(
θ�n�′

nθ
)2

)

= exp

(
∑

k∈T
24s+3C42−4 jns−2 jn L2 M2C−2

1 (Kn)2

)

≤ exp
(

24s+2M2 K2 LC4C−2
1

)
. (5.2)

Inequalities (5.1) and (5.2) lead to
∥∥∥P−→p ,

−→p − Pπ

∥∥∥ ≤
√

exp
(

24s+2M2 K2 LC4C−2
1

)
− 1. (5.3)

The choice of any constant C such that C < cγ entails that the left-hand side of (5.3) is
strictly smaller than 2(1 − γ). �
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A Appendix
This section contains the technical lemmas used in the proofs of the main results. The
proofs of these lemmas are given in Autin and Pouet [2].

Lemma A.1 For all ( j, k) ∈ Z× Z, let us put

I jk =
[
(k − L)2− j , (k + L)2− j

[
.

Then for any fixed ( j, k), Card{k′ ∈ Z : I jk ∩ I jk′ �= ∅} ≤ 4L.

Lemma A.2 For any function h ∈ L1(R)

∑

k∈Z

∫

I jk

|h(x)|dx ≤ 2L‖h‖1.

Lemma A.3 Let W be either Y or Z. For any 1 ≤ i ≤ n and any ( j, k), we have

∣∣E
(
φ jk(Wi)

)∣∣ ≤
(

2L sup
1≤l≤M

(‖pl‖∞ ∨ ‖ql‖∞)

) 1
2

2− j
2 .

Lemma A.4 Let W be either Y or Z and c be either a or b. For any 1 ≤ i ≤ n and any
( j, k), the following inequalities hold

∑

k′∈Z

∣∣E
(
φ jk(Wi)φ jk′(Wi)

)∣∣ ≤ 4L sup
1≤l≤M

(‖pl‖∞ ∨ ‖ql‖∞),

sup
1≤l≤M

∣∣∣∣∣
∑

k∈Z

∫
φ jk(pl − ql)

∣∣∣∣∣ ≤ 4L ‖φ‖∞ 2
j
2 ,

sup
1≤l≤M

|cl(i)| ≤
√√√√n

M∑

l=1

〈cl, cl〉n .

Lemma A.5 Let pl, ql pl′ and ql′ be four probability densities in L2(R). Then, for any
j ∈ N

∑

k∈Z

(∫
φ jk pl −

∫
φ jkql

)2

≤ 2L‖pl − ql‖2
2;

∑

k∈Z

∑

k′∈Z:
I jk∩I jk′ �=∅

∣∣∣∣
(∫

φ jk pl −
∫

φ jkql

)(∫
φ jk′ pl′ −

∫
φ jk′ql′

)∣∣∣∣

≤ 4L2
(
‖pl − ql‖2

2 + ‖pl′ − ql′ ‖2
2

)
.
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Lemma A.6 There exists a constant C̄T = C̄T (R, L, ‖φ‖∞) > 0 such that

D1 :=
n∑

i1 �=i2=1

Var
−→p ,

−→q
(h j(i1, i2)) ≤ C̄T

M2

K2 2 j n2.

Lemma A.7 There exists a constant C̃T = C̃T (R, L, ‖φ‖∞) > 0 such that for any j ∈ N:

D3 :=
n∑

i1 �=i2 �=i3=1

Cov
(
h j (i1, i2) , h j (i1, i3)

)

≤ C̃T

M2

K2

[
n3

M∑

l=1

‖pl − ql‖2
2 + 2

j
2 n

5
2

M∑

l=1

‖pl − ql‖2

]
.
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