
Volume 15, No. 4 (2006), pp. Allerton Press, Inc.

M A T H E M A T I C A L M E T H O D S O F S T A T I S T I C S

LARGE VARIANCE GAUSSIAN PRIORS IN BAYESIAN
NONPARAMETRIC ESTIMATION: A MAXISET APPROACH

F. Autin1, D. Picard2, and V. Rivoirard3

1CNRS-UMR 6632, Univ. Aix-Marseille 1, Centre de Mathématiques et Informatique
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In this paper we compare wavelet Bayesian rules taking into account the sparsity of the signal
with priors which are combinations of a Dirac mass with a standard distribution properly nor-
malized. To perform these comparisons, we take the maxiset point of view: i.e., we consider the
set of functions which are well estimated (at a prescribed rate) by each procedure. We especially
consider the standard cases of Gaussian and heavy-tailed priors. We show that while heavy-tailed
priors have extremely good maxiset behavior compared to traditional Gaussian priors, considering
large variance Gaussian priors (LVGP) leads to equally successful maxiset behavior. Moreover,
these LVGP can be constructed in an adaptive way. We also show, using comparative simulations
results that large variance Gaussian priors have very good numerical performance, confirming the
maxiset prediction, and providing the advantage of high simplicity from the computational point
of view.
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1. Introduction
Bayesian techniques have now become very popular to estimate signals decom-

posed in wavelet bases. Many authors have built Bayes estimates showing, from
the practical point of view, impressive properties especially in estimation of inho-
mogeneous signals. Most of the simulations show that these procedures seriously
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outperform classical procedures and, in particular, thresholding procedures. See,
for instance, Chipman et al. [5], Abramovich et al. [2], Clyde et al. [8], Johnstone
and Silverman [15], Vidakovic [26] or Clyde and George [6], [7] who discussed the
choice of the Bayes model to capture the sparsity of the signal to be estimated and
the choice of the Bayes rule (among others, posterior mean or median). We also
refer the reader to the very complete review paper of Antoniadis et al. [3] providing
descriptions and comparisons of various Bayesian wavelet shrinkage and wavelet
thresholding estimators.

To capture the sparsity of a signal f that is supposed to be decomposed in a
wavelet basis {ψjk, j ≥ −1, k ∈ Z} as f =

∑
j≥−1

∑
k βjkψjk, where βjk is the L2-

scalar product between f and the wavelet function ψjk, the most common models
introduce priors on the wavelet coefficients of the following form:

(1.1) βjk ∼ πj,εγj,ε + (1− πj,ε)δ(0),

where 0 ≤ πj,ε ≤ 1, δ(0) is a point mass at zero and the βjk’s are independent. The
nonzero part of the prior γj,ε is assumed to be the dilation of a fixed symmetric,
positive, unimodal and continuous density γ:

γj,ε(βjk) =
1

τj,ε
γ

(
βjk

τj,ε

)
,

where the dilation parameter τj,ε is positive. The parameter πj,ε can be interpreted
as the proportion of non-negligible coefficients. We also introduce the parameter

wj,ε =
πj,ε

1− πj,ε
.

When the signal is sparse, most of the wj,ε’s are small. These priors or their very
close versions have been extensively used by the authors cited above and especially
by Abramovich et al. [1], Johnstone and Silverman [14], [16]. To complete the
definition of the prior model, we have to fix the hyperparameters τj,ε and wj,ε.
Finally the density γ will play a very important role. The most popular choice for
γ is the normal density. It is also the density giving rise to the easiest procedures
from the computational point of view. However heavy-tailed priors have proved
also to work very well.

From the minimax point of view, recent works have studied these Bayes proce-
dures and it was proved that Bayes rules can achieve optimal rates of convergence.
Abramovich et al. [1] investigated theoretical performance of the procedures intro-
duced by Abramovich et al. [2], considering priors of the form quoted above with
some particular choice of the hyperparameters. For the mean squared error, they
proved that the non-adaptive posterior mean and posterior median achieve opti-
mal rates up to a logarithmic factor on the Besov spaces Bs

p,q when p ≥ 2. When
p < 2, these estimators show less impressive properties since they only behave as
linear estimates. Recently, Abramovich et al. [1], Johnstone and Silverman [14],
[16] investigated minimax properties of Bayes rules, with priors based on heavy-
tailed distributions and they considered an empirical Bayes setting. In this case,
the posterior mean and median turn out to be optimal for the whole scale of Besov
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spaces. Other more sophisticated results concerning minimax properties of Bayes
rules have been established by Zhang [27].

Hence, summarizing the results cited above, the minimax results seem to indicate
that Bayes procedures have comparable performance to thresholding estimates at
least on the range of Besov spaces, but also seem to show a preference to heavy-
tailed priors.

The main goal of this paper is to push a little further this type of comparison
on Bayesian procedures by adopting the maxiset point of view. In particular, since
Gaussian priors have very interesting properties from the computational point of
view, one of our motivations was to answer the following question: Are Gaussian
priors always outperformed by heavy-tailed priors? And quite happily, one of our
results will show that though some Bayesian procedures using Gaussian priors be-
have quite badly (in terms of maxisets as it was the case in terms of minimax rates)
as compared to those with heavy tails, it is nevertheless possible to attain a very
good maxiset behavior among procedures based on Gaussian priors. We prove that
this can only be achieved provided that the hyperparameter τj,ε is “large”. Under
this assumption, the density γj,ε is then more spread around 0, mimicking in some
ways the behavior of a distribution with heavy tails. Moreover, we prove that these
procedures can be built in an adaptive way: their construction does not depend on
the specified regularity or sparsity of the function at hand.

As these Bayesian procedures with large variance Gaussian priors have not been
much studied in the literature yet, we investigate their behavior also from a practical
point of view and show a comparative simulations study with many standard and
Bayesian procedures in the literature. As can be seen in our last section, such
estimators turn out to have excellent numerical performance.

Let us only recall here that the maxiset point of view consists in determining the
set of all functions which can be estimated at a specified rate of convergence for a
specified procedure. Exhibiting maxisets of different estimation rules allows us to
say that a procedure is more powerful than another one if its maxiset is larger.

The results that have been obtained up to now, using the maxiset point of
view, are very promising since they generally show that the maxisets of well-known
procedures are well understandable and easily interpretable sets. They have the
advantage of being generally less pessimistic and seem also to enjoy the impor-
tant advantage of giving theoretical claims which are often closer to the practical
(simulations) situation, than other theoretical results (such as minimax rates).

The second section specifies the model and Bayesian rules we are going to con-
sider. The third section recalls the definition of maxisets and briefly details some
results obtained in the area, to allow a comparison with the results to be obtained for
Bayesian rules. The forth section investigates maxisets of standard Bayesian rules:
first the ‘small variance’ Gaussian priors, then the heavy-tailed priors. The fifth
section is devoted to large variance Gaussian priors, and the last section presents
the simulations results.

2. Model and Bayesian Rules
For the sake of simplicity, we will consider a white noise setting: Xε(·) is a

random measure satisfying on [0, 1] the following equation:

Xε(dt) = f(t)dt + εW (dt),
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where 0 < ε < 1 is the noise level and f is a function defined on [0, 1], W (·) is a
Brownian motion on [0, 1]. As usual, to connect with the standard framework of
sequences of experiments we put ε = n−1/2.

Let {ψjk(·), j ≥ −1, k ∈ Z} be a compactly supported wavelet basis of L2([0, 1])
such that any f ∈ L2([0, 1]) can be represented as:

f =
∑

j≥−1

∑

k

βjkψjk,

where βjk = 〈f, ψjk〉L2 . As usual, the ψ−1k denote the translations of the scal-
ing function, and the ψjk, for j ≥ 0, are the dilations and translations of the
wavelet function. The model is reduced to a sequence space model if we put
yjk = Xε(ψjk) =

∫
fψjk + εZjk, where the Zjk are i.i.d. N (0, 1). Let us note

that at each level j ≥ 0, the number of non-zero wavelet coefficients is less than or
equal to 2j + lψ−1, where lψ is the maximal size of the supports of the scaling func-
tion and the wavelet. So, there exists a constant Sψ such that at each level j ≥ −1,
there are no more than Sψ × 2j coefficients to be estimated. In the sequel, we shall
not distinguish between f and β = (βjk)jk, its sequence of wavelet coefficients.

As explained in the Introduction, we consider the priors, where the βjk’s are
independent random variables with the following distribution:

βjk ∼ πj,εγj,ε + (1− πj,ε)δ(0),(2.1)

γj,ε(βjk) =
1

τj,ε
γ

(
βjk

τj,ε

)
, wj,ε =

πj,ε

1− πj,ε
.(2.2)

Here 0 ≤ πj,ε ≤ 1, δ(0) is the Dirac mass at 0, γ is a fixed symmetric, positive,
unimodal, and continuous density, τj,ε is positive.

2.1. Gaussian priors. Consider the case, where γ is the Gaussian density,
which is the most classical choice. In this case, we easily derive that the Bayes
estimation rules of βjk associated with the l1- and l2-losses, respectively, are the
posterior median and mean:

β̆jk = Med(βjk | yj,k) = sign(yj,k)max(0, ξjk),(2.3)

β̃jk = E(βjk | yj,k) =
bj

1 + ηjk
yj,k,(2.4)

where

ξjk = bj |yj,k| − ε
√

bjΦ−1

(
1 + min(ηjk, 1)

2

)
,

bj =
τ2
j,ε

ε2 + τ2
j,ε

,

ηjk =
1

wj,ε

√
ε2 + τ2

j,ε

ε
exp

(
− τ2

j,εy
2
j,k

2ε2(ε2 + τ2
j,ε)

)
,

and Φ is the normal cumulative distribution function.
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To study the properties of such rules, it is interesting to make use of their shrink-
age properties. Let us recall that β̂ is said to be a shrinkage rule if yj,k −→ β̂jk is
antisymmetric, increasing on (−∞,+∞), and

0 ≤ β̂jk ≤ yj,k, ∀ yj,k ≥ 0.

Both rules quoted above obviously are shrinkage rules. We also note that β̆jk is
zero whenever yj,k falls in an implicitly defined interval [−λj,ε, λj,ε].

We will first consider the following very classical form of the hyperparameters:

(2.5) τ2
j,ε = c12−αj , πj,ε = min(1, c22−bj),

where c1, c2, α, and b are positive constants. This particular form was suggested by
Abramovich et al. [2] and then used by Abramovich et al. [1]. A nice interpretation
was provided by these authors who explained how α, b, c1, and c2 can be derived
in applications.

Our second part will be concerned with large variance rules. In this case, we will
consider hyperparameters of the form

(2.6) τj,ε = τ(ε) and wj,ε = w(ε)

with specified conditions on the functions τ and w.

Remark 1. An alternative for eliciting these hyperparameters consists in us-
ing empirical Bayes methods and EM algorithm (see Clyde and George [6], [7] or
Johnstone and Silverman [15]).

2.2. Heavy-tailed priors. For the sake of comparison, we will also
consider priors, where the density γ is no longer Gaussian. We assume that there
exist two positive constants M and M1 such that

(2.7) sup
β≥M1

∣∣∣∣
d

dβ
log γ(β)

∣∣∣∣ = M < ∞.

The hypothesis (2.7) means that the tails of γ have to be exponential or heavier.
Indeed, under (2.7), we have:

∀u ≥ M1, γ(u) ≥ γ(M1) exp(−M(u−M1)).

In the minimax approach of Johnstone and Silverman [14], [16], the priors also
satisfy (2.7). To complete the prior model, we assume that:

(2.8) τj,ε = ε, wj,ε = w(ε) → 0 as ε → 0,

and w is a positive continuous function. Using these assumptions, the following
proposition describes the properties of the posterior median and mean:

Proposition 1. Under the conditions (2.7) and (2.8) the estimates β̆HT
jk =

Med(βjk | yj,k) and β̃HT
jk = E(βjk | yj,k) are shrinkage rules. Moreover, β̆HT

jk is a
thresholding rule: there exists t̆ε such that

β̆HT
jk = 0 ⇐⇒ |yj,k| ≤ t̆ε,
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where the threshold t̆ε ≥ ε
√

2 log(1/w(ε)) for ε small enough and

lim
ε→0

t̆ε

ε
√

2 log(1/w(ε))
= 1.

Proof. The first assertion has been established by Johnstone and Silverman
[14], [16]. The second assertion is an immediate consequence of Proposition 3 in
Rivoirard [25]. ¤

3. Maxisets and Associated Functional Spaces
Let us first briefly recall the definition of maxisets. We consider a sequence of

models En = {Pn
θ , θ ∈ Θ}, where the Pn

θ ’s are probability distributions on the
measurable spaces Ωn and Θ is the set of parameters. We also consider a sequence
of estimates q̂n of a quantity q(θ) associated with this sequence of models, a loss
function ρ(q̂n, q(θ)), and a rate of convergence αn tending to 0. Then, we define
the maxiset associated with the sequence q̂n, the loss function ρ, the rate αn, and
the constant T as the following set:

MS(q̂n, ρ, αn)(T ) =
{
θ ∈ Θ, sup

n
En

θ ρ(q̂n, q(θ))(αn)−1 ≤ T
}
.

The focus in this domain has mainly been on the nonparametric situation. Let
us briefly mention the differences from the minimax point of view. In this latter,
we fix a set of functions and look at the worst performance of estimators. Here,
instead of fixing a priori a (functional) set such as a Hölder, Sobolev or Besov ball,
we settle the problem in a wider context: the parameter set Θ can be very large,
such as the set of bounded measurable functions. Then, the maxiset is associated
with the procedure in a more genuine way since it only depends on the model and
the estimation rule at hand.

As explained in more detail later in this section, there already exist very in-
terpretable results about maxisets. For instance, it has been established in Kerky-
acharian and Picard [17] that the maxisets of linear kernel methods are in fact Besov
spaces under fairly reasonable conditions on the kernel, whereas the maxisets of
thresholding estimates (see Cohen et al. [9]) are Lorentz spaces reflecting extremely
well the practical observation that wavelet thresholding performs well when the
number of wavelet coefficients is small. It has also been observed (see Kerkyachar-
ian and Picard [19]) that there is a deep connection between oracle inequalities and
maxisets, in the sense that verifying an oracle inequality is equivalent to proving
that the maxiset of the procedure automatically contains a minimal set associated
with the oracle.

Although the two settings seem quite different, still there is a deep parallel
between maxisets and minimax theory. For instance, facing a particular situation,
the standard procedure to prove that a set B is the maxiset usually consists (exactly
as in the minimax theory) of two steps: first showing that B ⊂ MS(q̂n, ρ, αn)(T ),
but this is generally obtained using similar arguments as for proving upper bound
inequalities in minimax setting, since one simply has to prove that θ ∈ B implies
En

θ ρ(q̂n, q(θ)) ≤ Tαn. The advantage of the maxiset setting is probably that the
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second inclusion MS(q̂n, ρ, αn)(T ) ⊂ B is often proved much simpler than proving
the lower bound for minimax rates over complicated spaces.

3.1. Functional spaces. In this paper, for simplicity, we shall restrict
ourselves to the case where ρ is the squared L2 norm, even though a large majority
of the results can be extended to more general losses. For this study, we need
to introduce the following classes of functions which are of typical use in maxiset
theory.

We give definitions of the Besov and weak Besov spaces depending on the wavelet
basis. However, as is established in Meyer [21] and Cohen et al. [9], most of them
have also different definitions proving that this dependence in the basis is not crucial
at all.

Definition 1. Let s > 0 and R > 0. A function f =
∑+∞

j=−1

∑
k βjkψjk ∈

L2([0, 1]) belongs to the Besov ball Bs
p,∞(R) if and only if

[
sup

j≥−1
2j(s+ 1

2− 1
p )p

∑

k

|βjk|p
]1/p

≤ R.

Note that, when p = 2, f belongs to Bs
2,∞ if and only if

(3.1) sup
J≥−1

22Js
∑

j≥J

∑

k

β2
jk < +∞.

This characterization is often used in the sequel. Recall that the class of Besov
spaces Bs

p,∞ provides a useful tool to classify wavelet decomposed signals according
to their regularity and sparsity properties (see Donoho et al. [12], Donoho and
Johnstone [11] or Johnstone [13]). Roughly speaking, regularity increases when s
increases, whereas sparsity increases when p decreases. Especially, the spaces with
indices p < 2 are of particular interest, since they describe very wide classes of
inhomogeneous but sparse functions. To model sparsity, a very convenient and
natural tool consists in introducing the following particular class of Lorentz spaces
that are in addition directly connected to the estimation procedures considered in
this paper.

Definition 2. Let 0 < r < 2 and R > 0. A function f =
∑+∞

j=−1

∑
k βjkψjk ∈

L2([0, 1]) belongs to the weak Besov ball Wr(R) if and only if
[

sup
λ>0

λr−2
∑

j≥−1

∑

k

β2
jk I{|βjk| ≤ λ}

]1/2

≤ R.

It is not difficult to prove (see Cohen et al. [9]) that

f ∈ Wr ⇔ sup
λ>0

λr
∑

j

I{|βjk| > λ} < ∞.

We have, in particular,

(3.2) sup
λ>0

λr
∑

j,k

I{|βjk| > λ} ≤ 22−r

1− 2−r
sup
λ>0

λr−2
∑

j≥−1

∑

k

β2
jk I{|βjk| ≤ λ},
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which shows the natural relationship between sparsity and weak Besov spaces and
the connection with the regular Besov spaces introduced above. If ( denotes the
strict inclusion between two functional spaces, the following embeddings are not
difficult to show (see, for instance, Meyer [21], Kerkyacharian and Picard [19] or
Rivoirard [23]):

Bs
p,∞ ( Bs

2,∞ ( W 2
1+2s

if s > 0, p > 2,(3.3)

Bs
p,∞ ( W 2

1+2s
if s > 0, p < 2.(3.4)

3.2. First connections between the spaces and maxiset results.
In the present setting of white noise model, Rivoirard [23] proved that the maxisets
of linear estimates for polynomial rates of convergence of the form ε4s/(1+2s) are
Besov spaces Bs

2,∞. A similar result in the context of kernel estimates was estab-
lished in Kerkyacharian and Picard [17]. We introduce the classical hard and soft
thresholding rules:

f̂T =
∑

−1≤j<jε

∑

k

yjkI{|yjk| > mtε}ψjk,

f̂S =
∑

−1≤j<jε

∑

k

(
1− mtε

|yjk|
)

I{|yjk| > mtε}yjkψjk,

with m a positive constant, jε ∈ N such that

tε = ε
√

log(1/ε),(3.5)

2−jε ≤ t2ε < 21−jε(3.6)

(which will be denoted in the sequel by 2jε ∼ t−2
ε ).

Under mild conditions, Kerkyacharian and Picard [18] proved:

MS
(
f̂T , ‖ · ‖22, (ε

√
log(1/ε))4s/(1+2s)

)
= Bs/(2s+1)

2,∞ ∩W 2
2s+1

.

A similar result is obtained for the soft thresholding rule f̂S .

Remark 2. The embeddings (3.3) and (3.4) give clear information about the re-
spective performance of linear procedures and thresholding rules, which have been
extensively confirmed by practical results. In particular, one can observe that the
spaces Bs

p,∞ for p < 2 are never contained in the maxisets of the linear proce-
dures (Bs

2,∞), while they are contained in the maxisets of thresholding procedures

(Bs/(2s+1)
2,∞ ∩W 2

2s+1
) under fairly wide conditions.

Notation. If ⊂ denotes the inclusion between two spaces, for a given space A
the notation

MS(f̂ε, ‖ · ‖22, λε) ⊂ A
(resp.) A ⊂ MS(f̂ε, ‖ · ‖22, λε)
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will mean in the sequel

∀ M ∃ M ′, MS(f̂ε, ‖ · ‖22, λε)(M) ⊂ A(M ′)

(resp.) ∀ M ′ ∃ M, A(M ′) ⊂ MS(f̂ε, ‖ · ‖22, λε)(M),

where M and M ′ denote the radii of balls of MS(f̂ε, ‖ · ‖22, λε) and A, respectively.

4. Maxisets Results for ‘Heavy-Tailed’ and ‘Small Variance Gaussian’
Priors
4.1. Maxisets results for small variance Gaussian priors. Let us

consider now the Bayesian rules with Gaussian priors as explained in Section 2.1,
and especially those satisfying conditions (2.5), as introduced in Abramovich et
al. [2] and studied in Abramovich et al. [1].

Theorem 1. With the above choice of the hyperparameters, for s > 0 and
β0 ∈ {β̆, β̃},

• α > 2s + 1 implies Bs
p,∞ 6⊂ MS(β0, ‖ · ‖22, t4s/(1+2s)

ε ) for any 1 ≤ p ≤ ∞,

• α = 2s + 1 implies Bs
p,∞ 6⊂ MS(β0, ‖ · ‖22, t4s/(1+2s)

ε ) if p < 2.

Remark 3. Theorem 1 is established for the rate t
4s/(1+2s)
ε , but it can be

generalized for any rate of convergence of the form ε4s/(1+2s)(log(1/ε))m, with m ≥
0. The results established in Theorem 1 (if we, for example, refer to Remark 2) show
that these rules are obviously outperformed by thresholding rules. It is worthwhile
to notice in addition, that their behavior is (like that of linear procedures) highly
non-robust regarding the tuning constant α. The behavior of these rules turns out
to be very comparable to linear rules as is confirmed in the Appendix, where more
details about the maxisets of these procedure are given.

The proof of Theorem 1 is based on the following result.
Proposition 2. If β ∈ MS(β0, ‖ · ‖22, t4s/(1+2s)

ε ), then there exists a constant C
such that, for ε small enough,

(4.1)
∑

j,k

β2
jkI{τ2

j,ε ≤ ε2}I{|βjk| > tε} ≤ Ct
4s

1+2s
ε .

Proof. Here we shall distinguish the cases of the posterior mean and median.
The posterior median can be written as follows:

β̆jk = sign(yj,k)
(
bj |yj,k| − g(ε, τj,ε, yj,k)

)
,

with 0 ≤ g(ε, τj,ε, yj,k) ≤ bj |yj,k|.
Let us assume that bj |yj,k − βjk| ≤ (1− bj)|βjk|/2 and τ2

j,ε ≤ ε2, so bj ≤ 1/2.
First, suppose that yj,k ≥ 0, so β̆jk ≥ 0. If βjk ≥ 0, then

|β̆jk − βjk| =
∣∣bj(yj,k − βjk)− (1− bj)βjk − g(ε, τj,ε, yj,k)

∣∣

= (1− bj)βjk − bj(yj,k − βjk) + g(ε, τj,ε, yj,k) ≥ 1
2
(1− bj)βjk ≥ 1

4
βjk.
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If βjk ≤ 0, then

|β̆jk − βjk| ≥ 1
4
|βjk|.

The case yj,k ≤ 0 is handled by using similar arguments and the particular form of
the posterior median. So, we obtain:

E(β̆jk − βjk)2I{τ2
j,ε ≤ ε2} ≥ 1

16
β2

jk P
(
bj |yj,k − βjk| ≤ (1− bj)|βjk|/2

)
I{τ2

j,ε ≤ ε2}

≥ 1
16

β2
jk P

(|yj,k − βjk| ≤ |βjk|/2
)
I{τ2

j,ε ≤ ε2}

≥ 1
16

β2
jk

(
1− P(|yj,k − βjk| > |βjk|/2)

)
I{τ2

j,ε ≤ ε2}.

Using the large deviations inequalities for the Gaussian variables, we obtain for ε
small enough:

E(β̆jk − βjk)2I{τ2
j,ε ≤ ε2}I{|βjk| > tε}

≥ 1
16

β2
jk

(
1− P(|yj,k − βjk| > tε/2)

)
I{τ2

j,ε ≤ ε2}I{|βjk| > tε}

≥ 1
32

β2
jkI{τ2

j,ε ≤ ε2}I{|βjk| > tε}.

This implies (4.1).
For the posterior mean, we have:

E(β̃jk − βjk)2 = E
(

bj

1 + ηjk
(yj,k − βjk)−

(
1− bj

1 + ηjk

)
βjk

)2

≥ 1
4
E

((
1− bj

1 + ηjk

)
βjk

)2

I

{
bj

1 + ηjk
|yj,k − βjk| ≤

(
1− bj

1 + ηjk

)
|βjk|/2

}
.

So, we obtain:

E(β̃jk − βjk)2I{τ2
j,ε ≤ ε2} ≥ 1

16
β2

jkP
(|yj,k − βjk| ≤ |βjk|/2

)
I{τ2

j,ε ≤ ε2}

≥ 1
16

β2
jk(1− P(|yj,k − βjk| > |βjk|/2)

)
I{τ2

j,ε ≤ ε2}.

Finally, using similar arguments to those used for the posterior median, we obtain
(4.1). Proposition 2 is proved. ¤

Proof of Theorem 1. Let us first investigate the case α > 2s + 1. Take β such
that all the βjk’s are zero, except 2j coefficients at each level j that are equal to

2−j(s+ 1
2 ). Then, β ∈ Bs

p,∞. Since τ2
j,ε = c12−jα, if we put 2Jα ∼ c

1
α
1 ε−

2
α and

2Js ∼ t
−2

2s+1
ε , we observe that asymptotically Jα < Js. So, for ε small enough

∑

j,k

β2
jkI{τ2

j,ε ≤ ε2}I{|βjk| > tε} =
∑

Jα≤j<Js

2−2js ≥ cε
4s
α ,
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with c a positive constant. Using Proposition 2, we see that β does not belong to
MS(β0, ‖ · ‖22, t4s/(1+2s)

ε ).
Now we investigate the case α = 2s + 1. Take β such that all the βjk’s are

zero, except one coefficient at each level j that is equal to 2−j(s+ 1
2− 1

p ). Then,

β ∈ Bs
p,∞. Similarly, we put 2Jα ∼ c

1
α
1 ε−

2
α and 2J̃s ∼ t

−1/(s+ 1
2− 1

p )
ε , then we observe

that asymptotically Jα < J̃s. So, for ε small enough
∑

j,k

β2
jkI{τ2

j,ε ≤ ε2}I{|βjk| > tε} =
∑

Jα≤j<J̃s

2−2j(s+ 1
2− 1

p ) ≥ c̃ε4(s+ 1
2− 1

p )/α,

with c̃ a positive constant. Using Proposition 2, we see that β does not belong to
MS(β0, ‖ · ‖22, t4s/(1+2s)

ε ), since p < 2. ¤
4.2. Heavy-tailed priors. Consider now the case of priors satisfying

conditions (2.7) and (2.8). If we set

(4.2) f̆HT
ε =

∑

j<jε

∑

k

β̆HT
jk ψjk, β̆HT

jk = Med(βjk | yj,k),

and

(4.3) f̃HT
ε =

∑

j<jε

∑

k

β̃HT
jk ψjk, β̃HT

jk = E(βjk | yj,k),

where jε is such that 2jε ∼ t−2
ε , then using the results of Proposition 1, we expect

these procedures to mimic classical thresholding rules from the maxiset point of
view, at least when the posterior median is considered. Indeed, Theorems 2, 3, 4,
and 5 established by Rivoirard [25] lead to the following result.

Theorem 2. Let s > 0. We suppose that there exist two positive constants ρ1

and ρ2 such that for ε > 0 small enough,

ερ1 ≤ w(ε) ≤ ερ2 .

Then, we have

MS
(
f0

ε , ‖ · ‖22, (ε
√

log(1/ε))4s/(1+2s)
)

= Bs/(2s+1)
2,∞ ∩W 2

2s+1
,

where f0
ε ∈ {f̃HT

ε , f̆HT
ε } as soon as ρ2 ≥ 16 for the posterior median and ρ2 ≥ 64

for the posterior mean.

So, the performance of adaptive Bayesian procedures based on heavy-tailed prior
densities is similar to that of classical nonlinear procedures in the maxiset frame-
work. In particular, they obviously outperform the above small-variance Bayesian
procedures from the maxiset point of view.

5. Gaussian Priors with Large Variance
The previous section has shown the power of the Bayes procedures built from

heavy-tailed prior models in the maxiset setting. The goal of this section is to
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answer the following questions. Are heavy-tailed priors unavoidable? Is it possible
to build Gaussian priors leading to procedures with maxiset properties comparable
to the heavy-tailed methods discussed above? Moreover, can we construct these
procedures in such a way that they automatically adapt to the regularity of the
function (adaptivity property). In other words, if γ is the Gaussian density, does
there exist an adaptive choice of the hyperparameters πj,ε and wj,ε such that

MS
(
f0

ε , ‖ · ‖22, (ε
√

log(1/ε))4s/(1+2s)
)

= Bs/(2s+1)
2,∞ ∩W 2

2s+1
?

This is a very important issue, since calculations using Gaussian priors are mostly
direct and much easier than for heavy-tailed priors. The answers are provided by
the following Theorem 3.

Consider the following estimates:

(5.1) f̆LV
ε =

∑

j<jε

∑

k

β̆jkψjk, β̆jk = Med(βjk | yj,k),

and

(5.2) f̃LV
ε =

∑

j<jε

∑

k

β̃jkψjk, β̃jk = E(βjk | yj,k)

(recall that the posterior mean and median are given in (2.4) and (2.3)), with the
following choice of hyperparameters:

(5.3) τj,ε = τ(ε) and wj,ε = w(ε).

Theorem 3. We consider the prior model (1.1), where γ is the Gaussian den-
sity. We assume that τj,ε = τ(ε) and wj,ε = w(ε) are independent of j with w a
continuous positive function. We consider f̆ε and f̃ε introduced in (5.1) and (5.2).
If

1 + ε−2τ(ε)2 = t−1
ε

and there exist q1 and q2 such that

εq1 ≤ w(ε) ≤ εq2

for ε small enough, then we have:

MS
(
f0

ε , ‖ · ‖22, (ε
√

log(1/ε))4s/(1+2s)
)

= Bs/(2s+1)
2,∞ ∩W 2

2s+1
,

where f0
ε ∈ {f̃ε, f̆ε} as soon as q2 > 63/2 for the posterior median and q2 ≥ 65/2

for the posterior mean.

Unlike the previous choice ( τ2
j,ε = ε2 or τ2

j,ε = 2−jα), here we impose a “larger”
variance. It is the key point of the proof of Theorem 3. In a sense, we reconstruct
heavy tails by increasing the variance. The proof of Theorem 3 essentially relies on
the following proposition.
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Proposition 3. Let s > 0 and let $jk(ε) be a sequence of random weights lying
in [0, 1]. We assume that there exist positive constants c, m, and K($) such that
for any ε > 0,

β̂(ε) = ($jk(ε)yj,k)jk

is a shrinkage rule satisfying for any ε,

$jk(ε) = 0, a.e. ∀ j ≥ jε with 2jε ∼ t−2
ε , ∀ k,(5.4)

|yjk| ≤ mtε ⇒ $jk(ε) ≤ ctε, a.e. ∀ j < jε, ∀ k,(5.5)

(1−$jk(ε)) ≤ K($)
( tε
|yj,k| + tε

)
, a.e. ∀ j < jε, ∀ k,(5.6)

and let
f̂ε =

∑

j<jε

∑

k

$jk(ε)yj,kψjk.

Let f ∈ B
s

1+2s

2,∞ ∩W 2
1+2s

and note that

‖f‖2
B

s
1+2s
2,∞

= sup
J≥−1

22Js
∑

j≥J

∑

k

β2
jk < ∞

and
‖f‖2W 2

1+2s

= sup
λ>0

λr−2
∑

j≥−1

∑

k

β2
jkI{|βjk| ≤ λ} < ∞.

Then, as soon as m ≥ 8, we have the following inequality :

E‖f̂ε − f‖22 ≤
[
4c2Sψ + 4(1 + K($)2)‖f‖22 + 4

√
3Sψ

+ 2(2
4s

1+2s + 2
−4s
1+2s )m

4s
1+2s ‖f‖2W 2

1+2s

+
8m−2/1+2s

(1− 2−2/1+2s)
(1 + 8K($)2)‖f‖2W 2

1+2s

+ ‖f‖2
B

s
1+2s
2,∞

]
t

4s
1+2s
ε ,

and
B

s
1+2s

2,∞ ∩W 2
1+2s

⊂ MS(f̂ε, ‖ · ‖22, t4s/(1+2s)
ε ).

Proof. Using (5.4), we have

E‖f̂ε − f‖22 = E‖
∑

j<jε,k

(
$jk(ε)yj,k − βjk

)
ψj,k‖22 +

∑

j≥jε,k

β2
jk.

The second term is a bias term bounded by t
4s

1+2s
ε ‖f‖2

B
s

1+2s
2,∞

.

We split E
∑

j<jε,k($jk(ε)yj,k − βjk)2 into 2(A + B) with

A = E
∑

j<jε,k

[
$jk(ε)2(yj,k − βjk)2 + (1−$jk(ε))2β2

jk

]
I{|yj,k| ≤ mtε},

B = E
∑

j<jε,k

[
$jk(ε)2(yj,k − βjk)2 + (1−$jk(ε))2β2

jk

]
I{|yj,k| > mtε}.
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Again, we split A into A1 + A2, and using (5.5)

A1 = E
∑

j<jε,k

$jk(ε)2(yj,k − βjk)2 I{|yj,k| ≤ mtε}

≤ c2Sψ2jεt2εε
2 ≤ 2c2Sψt2ε,

A2 = E
∑

j<jε,k

(1−$jk(ε))2β2
jk I{|yj,k| ≤ mtε}

≤ E
∑

j<jε,k

β2
jk I{|yj,k| ≤ mtε}

[
I{|βjk| ≤ 2mtε}+ I{|βjk| > 2mtε}

]

≤ (2mtε)4s/1+2s‖f‖2W 2
1+2s

+
∑

j<jε,k

β2
jkP(|βjk − yj,k| ≥ mtε)

≤ (2mtε)4s/1+2s‖f‖2W 2
1+2s

+ ‖f‖2
2
εm2/2

≤ (2mtε)4s/1+2s‖f‖2W 2
1+2s

+ ‖f‖2
2
t2ε.

We have used here the concentration property of the Gaussian distribution and the
fact that m2 ≥ 4.

Next,

B := B1 + B2 = E
∑

j<jε,k

[
$jk(ε)2(yj,k − βjk)2 + (1−$jk(ε))2β2

jk

]
I{|yj,k| > mtε}

× [
I{|βjk| ≤ mtε/2}+ I{|βjk| > mtε/2}].

For B1 we use the Schwarz inequality:

E(yj,k − βjk)2I{|yj,k − βjk| > mtε/2}
≤ (
P(|yj,k − βjk| > mtε/2)

)1/2(E(yj,k − βjk)4)1/2.

Now, observing that E(yj,k − βjk)4 = 3ε4 and that P(|yj,k − βjk| > mtε/2) ≤ ε
m2
8 ,

we have for m2 ≥ 32:

B1 ≤
√

3
∑

j<jε,k

ε2I{|βjk| ≤ mtε/2}εm2
16 +

∑

j<jε,k

β2
jkI{|βjk| ≤ mtε/2}

≤ 2
√

3Sψt2ε +
(m

2
tε

)4s/1+2s

‖f‖2W s
1+2s

.

For B2, we use (3.2) to obtain

B2 = E
∑

j<jε,k

[
$jk(ε)2(yj,k − βjk)2 + (1−$jk(ε))2β2

jk

]

× I{|yj,k| > mtε}I{|βjk| > mtε/2}

≤
∑

j<jε,k

ε2I{|βjk| > mtε/2}+ B3 ≤ 4m−2/1+2s

(1− 2−2/1+2s)
‖f‖2W 2

1+2s

t4s/1+2s
ε + B3,
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where

B3 :=
∑

j<jε,k

E(1−$jk(ε))2β2
jk I{|yj,k| > mtε}I{|βjk| > mtε/2}

× [
I{|yj,k| ≥ |βjk|/2}+ I{|yj,k| < |βjk|/2}] := B′

3 + B′′
3 ,

B′′
3 ≤

∑

j<jε,k

β2
jkP

(|yj,k − βjk| ≥ mtε/4
) ≤ ‖f‖2

2
t2ε,

since m2 ≥ 64. We have used in the line above the concentration property of the
Gaussian distribution. Now using (5.6) and (3.2), we get,

B′
3 ≤

∑

j<jε,k

Eβ2
jk(1−$jk(ε))2I{|yj,k| ≥ |βjk|/2}I{|βjk| > mtε/2}I{|yj,k| ≥ mtε}

≤
∑

j<jε,k

Eβ2
jkK($)2

(
tε
|yj,k| + tε

)2

I{|yj,k| ≥ |βjk|/2}I{|βjk| > mtε/2}

≤ K($)2
32m−2/1+2s

1− 2−2/1+2s
‖f‖2

W 2
1+2s

t4s/1+2s
ε + 2K($)2‖f‖22t2ε. ¤

Proof of Theorem 3. We shall prove that under our assumption the LVGP rules
satisfy Assumptions (5.4), (5.5), and (5.6). Assumption (5.4) is checked obviously.
Note that we already remarked in Sec. 2.1 that they are shrinkage rules. Now, fix
m ≥ 8 and assume that |yj,k| ≤ mtε. Then,

ηjk =
1

w(ε)

√
ε2 + τ(ε)2

ε
exp

(
− τ(ε)2y2

j,k

2ε2(ε2 + τ(ε)2)

)

≥ 1
w(ε)

t−1/2
ε exp

(
− m2t2ε

2ε2

)
≥ ε

m2
2 − 1

2
1

w(ε)
(log(1/ε))−1/4.

• If q2 > m2−1
2 , for ε small enough, ηjk ≥ 1 and β̆jk = 0.

• If q2 ≥ m2+1
2 , for ε small enough, ηjk ≥ t−1

ε and bj

1+ηjk
≤ tε.

So, Assumption (5.5) is checked for both rules. Now, let us prove Assumption (5.6).
Fix a constant M ≥ √

6 + 4q1. We assume |yj,k| > Mtε. Then, for ε small enough,

ηjk =
1

w(ε)

√
ε2 + τ(ε)2

ε
exp

(
− τ(ε)2y2

j,k

2ε2(ε2 + τ(ε)2)

)

≤ 1
w(ε)

√
ε2 + τ(ε)2

ε
ε

M2
4 ≤ 1

w(ε)
t−1/2
ε ε

M2
4 ≤ tε.

Consider first the posterior median. Using the above inequality, we have for ε small
enough, and for any j < jε and any k,

ε
√

bjΦ−1

(
1 + min(ηjk, 1)

2

)
≤ tε.
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So,

|yj,k − β̆jk| = |yj,k − β̆jk|I{|yj,k| > Mtε}+ |yj,k − β̆jk|I{|yj,k| ≤ Mtε}
≤ (

(1− bj)|yj,k|+ tε
)
I{|yj,k| > Mtε}+ 2|yj,k|I{|yj,k| ≤ Mtε}

≤ tε|yj,k|+ (1 + 2M)tε,

which implies (5.6) for the posterior median. Now, let us deal with the posterior
mean. For ε small enough, and for any j < jε and any k,

|yj,k − β̃jk| = |yj,k − β̃jk|I{|yj,k| > Mtε}+ |yj,k − β̃jk|I{|yj,k| ≤ Mtε}

≤
(

1− bj

1 + ηjk

)
|yj,k|I{|yj,k| > Mtε}+ 2|yj,k|I{|yj,k| ≤ Mtε}

≤ (1− bj + ηjk)|yj,k|I{|yj,k| > Mtε}+ 2|yj,k|I{|yj,k| ≤ Mtε}
≤ 2tε|yj,k|+ 2Mtε,

which implies (5.6) for the posterior mean.
Assumptions (5.4), (5.5), and (5.6) are checked for both rules, which finally

proves that their maxiset contains B
s

1+2s

2,∞ ∩W 2
1+2s

for the rate

t4s/(1+2s)
ε = (ε

√
log(1/ε))4s/(1+2s).

We prove now the reverse inclusion:

MS
(
f0

ε , ‖ · ‖22, (ε
√

log(1/ε))4s/(1+2s)
) ⊂ Bs/(2s+1)

2,∞ ∩W 2
2s+1

.

Observe that β0
jk = 0 when j ≥ jε, which implies

∑

j>jε,k

β2
jk ≤ E‖f0

ε − f‖22 ≤ ct
4s

1+2s
ε ≤ c2−jε

2s
1+2s .

Letting ε vary, we obtain the characterization (3.1), which proves that

MS
(
f0

ε , ‖ · ‖22, (ε
√

log(1/ε))4s/(1+2s)
) ⊂ Bs/(2s+1)

2,∞ .

If we remember that |yjk| ≤ mtε implies 0 ≤ β0
jk/yjk ≤ ctε (Assumption (5.5)), we

have for f ∈ MS(f0
ε , ‖ · ‖22, (ε

√
log(1/ε))4s/(1+2s))(M):

(1− ctε)2
∑

j,k

β2
jkI{|βjk| ≤ mtε}

= 2(1− ctε)2
∑

j,k

β2
jk

[
P(yjk − βjk < 0)I{βjk ≥ 0}+ P(yjk − βjk > 0)I{βjk < 0}

]

× I{|βjk| ≤ mtε}
≤ 2E

∑

j,k

[
(βjk − β0

jk)2I{βjk ≥ 0}+ (βjk − β0
jk)2I{βjk < 0}

]
I{|βjk| ≤ mtε}

≤ 2E
∑

j,k

(βjk − β0
jk)2 ≤ 2M (ε

√
log(1/ε))4s/(1+2s).

Hence supλ>0 λ−
4s

2s+1
∑

j≥−1

∑
k β2

jkI{|βjk| ≤ λ} < ∞ and f belongs to W 2
2s+1

. ¤



Maxiset Approach for Bayesian Nonparametric Estimation 17

6. Simulations
Dealing with the prior model (1.1), we compare in this section the performance

of both LVGP rules described in the previous section, in (5.1) and (5.2), with many
other procedures: the thresholding rules of Donoho and Johnstone [11] called Vi-
suShrink and of Nason [22] called GlobalSure, the ParetoThresh (with p = 1.3)
proposed by Rivoirard [24] built using Pareto priors and hyperparameters as well
as the Bayesian procedures of Abramovich et al. [2] denoted as BayesThresh and
those proposed by Johnstone et Silverman [14] and implemented by Antoniadis et
al. [4] built with the heavy-tailed Laplace prior with scale factor α = 0.5 (Laplace-
BayesMedian, LaplaceBayesMean) and with the heavy-tailed quasi-Cauchy prior
(CauchyBayesMedian, CauchyBayesMean). For this purpose, we use the mean-
squared error in the following regression model.

6.1. Model and discrete wavelet transform. Consider the standard
regression problem:

(6.1) gi = f
( i

n

)
+ σεi, εi

iid∼ N (0, 1), 1 ≤ i ≤ n,

where n = 1024. We introduce the discrete wavelet transform d := Wf0 (denoted
DWT) of the vector f0 = (f( i

n ), 1 ≤ i ≤ n)T . The DWT matrix W is orthogonal.
Therefore, we can reconstruct f0 by the relation f0 = WT d. These transformations
performed by Mallat’s fast algorithm require only O(n) operations, see Mallat [20].
The DWT provides n discrete wavelet coefficients djk, −1 ≤ j ≤ N − 1, k ∈ Ij .
They are related to the wavelet coefficients βjk of f by the simple relation

djk ≈ βjk

√
n.

Using the DWT, the regression model (6.1) is reduced to the following one:

yjk = djk + σzjk, −1 ≤ j ≤ N − 1, k ∈ Ij ,

where y := (yjk)j,k = Wg, z := (zjk)j,k = Wε. Since W is orthogonal, z is a vector
of independent N (0, 1) variables. Now, instead of estimating f , we estimate the
djk’s.

In the sequel, we suppose that σ is known. Nevertheless, it could be robustly
estimated by the median absolute deviation of the (dN−1,k)k∈IN−1 divided by 0.6745
(see Donoho and Johnstone [11]).

To implement the LVGP rules, we reconstruct the djk’s, as posterior median and
the posterior mean of a prior having the following form:

djk ∼ ωn

1 + ωn
γj,n +

1
1 + ωn

δ(0),

where ωn = ω∗ = 10( σ√
n
)q (q > 0), δ(0) is a point mass at zero, γ is the Gaussian

density, and

γj,n(djk) =
1
τn

γ

(
djk

τn

)
,

with τn such that nτ2
n

σ2+nτ2
n

= 0.999.

Dealing with this prior model, we denote GaussMedian and GaussMean the
LVGP rules described in (5.1) and (5.2), respectively.

The Symmlet 8 wavelet basis (as described on p. 198 of Daubechies [10]) is used
for all the methods of reconstruction.
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6.2. Simulations and discussion. In Table 6.1 we measure the perfor-
mance of both estimators by using the four test functions: “Blocks”, “Bumps”,
“Heavisine” and “Doppler” by using the mean-squared error defined by:

MSE(f̂) =
1
n

n∑

i=1

(
f̂

(
i

n

)
− f

(
i

n

))2

.

Remark. Recall that the test functions have been chosen by Donoho et al. [12]
to represent a large variety of inhomogeneous signals.

Table 6.1 shows the average mean-squared error (denoted AMSE) using 100
replications for VisuShrink, GlobalSure, ParetoThresh, BayesThresh, GaussMe-
dian, GaussMean (for q = 1), LaplaceBayesMedian, LaplaceBayesMean, Cauchy-
BayesMedian and CauchyBayesMean, with different values for the root signal to
noise ratio (RSNR).

The results provided below can be summarized as follows:
• According to Table 6.1, we remark that “purely Bayesian” procedures

(BayesThresh, GaussMedian, GaussMean, CauchyBayesMedian, Cauchy-
BayesMean, LaplaceBayesMedian and LaplaceBayesMean) are preferable to
“purely deterministic” ones (VisuShrink and GlobalSure) under the AMSE
approach for inhomogeneous signals.

• We observe that Bayesian rules using the posterior mean (GaussMean,
LaplaceBayesMean and CauchyBayesMean) have better performance than
those using the posterior median (GaussMedian, LaplaceBayesMedian and
CauchyBayesMedian).

• CauchyBayesMean provides the best behavior here since its AMSEs are
globally the smallest (11 times out of 12).

• GaussMean shows the performance which is rather close to CauchyBayes-
Mean. It outperforms BayesThresh 11 times out of 12. This confirms our
maxiset previous results, and shows that GaussMean is an excellent choice
if we take into account the performance as well as the computation time.

In the sequel, we present some simulations of the Bayesian rules using Gauss-
ian priors (Figs. 6.1 and 6.2) and heavy-tailed priors (Figs. 6.3 and 6.4) when
RSNR = 5.

In Figure 6.1, we note that in both Bayesian procedures some high-frequency
artefacts appear. However, these artefacts disappear if we take large values of q.
Figure 6.2 shows an example of reconstructions using GaussMedian and GaussMean
when the RSNR is equal to 5 (σ = 7/5) for different values of q.

As we can see in Figure 6.2, the artefacts are less numerous when q increases.
But this improvement has a cost: in general the AMSE increases when q is close
to 0 or strictly greater than 1. Consequently, the value q = 1 appears to be a good
compromise to obtain good reconstruction and good AMSE with the GaussMedian
and GaussMean procedures.

7. More on Maxisets of ‘Small Variance Gaussian Priors’
In a minimax setting, Abramovich et al. [1] obtained the following result.
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Table 6.1. AMSEs for VisuShrink, GlobalSure, ParetoThresh,
BayesThresh, GaussMedian, GaussMean, LaplaceBayesMedian,

LaplaceBayesMean, CauchyBayesMedian and CauchyBayesMean,
with various test functions and various values of the RSNR

RSNR=5 Blocks Bumps Heavisine Doppler

VisuShrink 2.08 2.99 0.17 0.77
GlobalSure 0.82 0.92 0.18 0.59
ParetoThresh 0.73 0.85 0.15 0.36
BayesThresh 0.67 0.74 0.15 0.30
GaussMedian 0.72 0.76 0.20 0.30
GaussMean 0.62 0.68 0.19 0.29
LaplaceBayesMedian 0.59 0.69 0.14 0.30
LaplaceBayesMean 0.56 0.65 0.13 0.28
CauchyBayesMedian 0.60 0.67 0.14 0.29
CauchyBayesMean 0.55 0.63 0.13 0.27

RSNR=7 Blocks Bumps Heavisine Doppler

VisuShrink 1.29 1.77 0.12 0.47
GlobalSure 0.42 0.48 0.12 0.21
ParetoThresh 0.40 0.46 0.09 0.21
BayesThresh 0.38 0.45 0.10 0.16
GaussMedian 0.41 0.42 0.12 0.15
GaussMean 0.35 0.38 0.11 0.15
LaplaceBayesMedian 0.33 0.37 0.09 0.17
LaplaceBayesMean 0.31 0.36 0.08 0.16
CauchyBayesMedian 0.32 0.36 0.09 0.17
CauchyBayesMean 0.29 0.34 0.08 0.15

RSNR=10 Blocks Bumps Heavisine Doppler

VisuShrink 0.77 1.04 0.08 0.27
GlobalSure 0.25 0.29 0.08 0.11
ParetoThresh 0.21 0.25 0.06 0.12
BayesThresh 0.22 0.25 0.06 0.09
GaussMedian 0.21 0.23 0.06 0.08
GaussMean 0.18 0.20 0.06 0.07
LaplaceBayesMedian 0.17 0.20 0.05 0.09
LaplaceBayesMean 0.17 0.19 0.05 0.09
CauchyBayesMedian 0.17 0.19 0.05 0.09
CauchyBayesMean 0.16 0.18 0.05 0.09
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Figure 6.1. Original test functions and reconstructions using Gauss-
Median and GaussMean with q = 1 (RSNR=5)

Theorem 4. Let β0 be β̆ or β̃. With α = 2s + 1 and any 0 ≤ b < 1, there exist
two positive constants C1 and C2 such that ∀ ε > 0,

C1(ε
√

log(1/ε))4s/(2s+1) ≤ sup
β∈Bs

2,∞(M)

E‖β0 − β‖22 ≤ C2 log(1/ε)ε4s/(2s+1).
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Figure 6.2. Reconstructions with GaussMedian (schemes a, b, c) and
GaussMean (schemes d, e, f) for various values of q when RSNR=5;
a: AMSE=0.37; b: AMSE=0.30; c: AMSE=0.33; d: AMSE=0.39;
e: AMSE=0.29; f: AMSE=0.30

So, the posterior mean and median achieve the optimal rate up to an unavoidable
logarithmic term. Now, let us consider the maxiset setting.

Theorem 5. For s > 0, α = 2s + 1, any 0 ≤ b < 1, and if β0 is β̆ or β̃,
1. for the rate ε4s/(1+2s),

MS
(
β0, ‖ · ‖22, ε4s/(1+2s)

)
( Bs

2,∞.

2. For the rate
(
ε
√

log(1/ε)
)4s/(1+2s),

MS
(
β0, ‖ · ‖22, (ε

√
log(1/ε))4s/(1+2s)

) ⊂ B∗s2,∞,

with

B∗s2,∞ =
{

f ∈ L2 : sup
J>0

22JsJ−2s/(1+2s)
∑

j≥J

∑

k

β2
jk < ∞

}
.

3. For the rate ε4s/(1+2s) log(1/ε),

Bs
2,∞ ⊂ MS

(
β0, ‖ · ‖22, ε4s/(1+2s) log(1/ε)

)
.
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Figure 6.3. Original test functions and reconstructions using Laplace-
BayesMedian and LaplaceBayesMean (RSNR=5)
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Figure 6.4. Original test functions and reconstructions using Cauchy-
BayesMedian and CauchyBayesMean (RSNR=5)
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Proof. Let us first prove the inclusion

MS
(
β0, ‖ · ‖22, ε4s/(1+2s)

) ⊂ Bs
2,∞.

For this, note that λε = (c−1
1 ε2)1/α. We observe that if 2−j ≤ λε, then bj ≤ 1/2

and
|β0

jk| ≤
1
2
|yjk|.

Since yjkβ0
jk ≥ 0, if 2−j ≤ λε,

Eβ2
jkI{βjk ≥ 0}I{yjk < βjk} ≤ 4E(β0

jk − βjk)2I{βjk ≥ 0}I{yjk < βjk},

and

Eβ2
jkI{βjk < 0}I{yjk > βjk} ≤ 4E(β0

jk − βjk)2I{βjk < 0}I{yjk > βjk}.

Therefore, since P(yj,k − βjk < 0) = P(yj,k − βjk > 0) = 1/2, whenever f ∈
MS(β0, ‖ · ‖22, ε4s/(1+2s))(M), we have:

∑

j,k

β2
jkI{2−j ≤ λε}

= 2
∑

j,k

β2
jk

[
P(yj,k − βjk < 0)I{βjk ≥ 0}+ P(yj,k − βjk > 0)I{βjk < 0}

]

× I{2−j ≤ λε}
≤ 8E

∑

j,k

[
(β0

jk − βjk)2I{βjk ≥ 0}+ (β0
jk − βjk)2I{βjk < 0}

]
I{2−j ≤ λε}

≤ 8E
∑

j,k

(β0
jk − βjk)2 ≤ 8M ε4s/(1+2s).

Since α = 2s + 1, we deduce

sup
J≥−1

22Js
∑

j≥J

∑

k

β2
jk ≤ 8Mc

2s/(1+2s)
1 ,

and f belongs to Bs
2,∞. To prove that the inclusion is strict, we just use Theorem 4.

The second inclusion is easily obtained by using similar arguments. Finally, the
proof of the last one is provided by Theorem 4. ¤

As recalled in Sec. 3.2, for the rates ε4s/(1+2s), the maxisets of linear estimates are
exactly Besov spaces Bs

2,∞. So Theorem 5 shows that the Bayesian procedures built
by Abramovich et al. [1] are outperformed by linear estimates for polynomial rates of
convergence. Furthermore, these procedures cannot achieve the same performance
as classical nonlinear procedures, since we have the following result.

Proposition 4. For any s > 0,

Bs/(2s+1)
2,∞ ∩W 2

2s+1
6⊂ B∗s2,∞.
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Proof. To prove this result, we build a sparse function belonging to Bs/(2s+1)
2,∞ ∩

W 2
2s+1

but not to B∗s2,∞. Let us consider f =
∑

j,k βjkψjk, where at each level j,
2jn wavelet coefficients take the value 2−jβ , whereas the other ones are equal to 0,
with 0 ≤ n ≤ 1 and β > n/2 (so f ∈ L2). For any J ≥ 1,

22JsJ−2s/(1+2s)
∑

j≥J

∑

k

β2
jk = 22JsJ−2s/(1+2s)

∑

j≥J

2nj2−2jβ

≥ 2J(2s+n−2β)J−2s/(1+2s).

So,

(7.1) n− 2β + 2s > 0 ⇒ f 6∈ B∗s2,∞.

Similarly,

(7.2) n− 2β + 2s/(1 + 2s) ≤ 0 ⇒ f ∈ Bs/(2s+1)
2,∞ .

And

λ−4s/(1+2s)
∑

j,k

β2
jkI{|βjk| ≤ λ} = λ−4s/(1+2s)

∑

j

2jn2−2jβI{2−jβ ≤ λ}

≤ λ−4s/(1+2s)−n/β+2.

So,

(7.3) n− 2β + 2ns ≤ 0 ⇒ f ∈ W 2
2s+1

.

As soon as n < 1 (which yields that the signal is sparse), it is then possible to choose
β > n/2 such that (7.1), (7.2), and (7.3) hold. So, f belongs to Bs/(2s+1)

2,∞ ∩W 2
2s+1

but not to B∗s2,∞. ¤
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