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ABSTRACT. We study the maxiset performance of a large collection of block thresholding
wavelet estimators, namely the horizontal block thresholding family. We provide sufficient condi-
tions on the choices of rates and threshold values to ensure that the involved adaptive estimators
obtain large maxisets. Moreover, we prove that any estimator of such a family reconstructs the
Besov balls with a near-minimax optimal rate that can be faster than the one of any separable
thresholding estimator. Then, we identify, in particular cases, the best estimator of such a family,
that is, the one associated with the largest maxiset. As a particularity of this paper, we propose a
refined approach that models method-dependent threshold values. By a series of simulation studies,
we confirm the good performance of the best estimator by comparing it with the other members of
its family.

Key words: Besov spaces, curve estimation, minimax and maxiset approaches, rate of conver-
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1. Introduction

Non-parametric estimation of functions by non-linear wavelet methods has proven to be a real
success story, in particular for functions showing locally varying regularity. Wavelets provide
sparse representation of functions, that is, they localize the information of a function in a few
large coefficients for a wide range of function classes. This property is the key to understanding
the good performances of hard and soft thresholding estimators, which use only the empirical
wavelet coefficients that are larger than a given threshold value, often chosen to be the univer-
sal threshold (UT) value (see among others Donoho & Johnstone, 1994). In this case, these
estimators are near optimal over Besov balls, that is, they attain, up to a logarithmic factor in
sample size, the optimal rate of convergence for a given risk (often the L2-risk) for a relatively
large class of functions of highly inhomogeneous spatial regularity. More than that, they are
also adaptive for the regularity—or smoothness—parameter of these function classes, meaning
that, even without its knowledge, they can reproduce this near-optimal rate of convergence.

The choice of the UT value has thus become very popular. Its second, more practical, moti-
vation is to deliver asymptotic noise-free reconstructions. Being first of all proportional to the
noise level of the data, it is also determined using the tail behaviour of the distribution of
the maximum of standard Gaussian random variables. It ensures that asymptotically all the
observed wavelet coefficients that are purely noise are removed. The UT value is known to be
a large threshold value being often too conservative in practical applications and causing too
many false negatives (i.e. suppressing too many true signal coefficients).
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Hard and soft thresholding methods, in as much as they are ‘separable’ (or diagonal) rules
that decide to keep a coefficient merely because of its individual magnitude, have been crit-
icized over the last decade: their minimax rate, that is, the fastest rate of convergence of a
given risk taken uniformly over all elements in the considered function class, suffers from
a suboptimal log-term, as shown in Cai (2008). Related to this, Autin (2004) emphasized
that such thresholding methods are too elitist: they have a tendency to suppress small—
but important—empirical wavelet coefficients for reconstructing the function of interest. To
remedy both the theoretical and practical shortcomings of elitist procedures, it has been
shown in recent literature (see, among others, Cai, 1999; Hall et al., 1998, 1999; Autin, 2004,
2008; Autin et al., 2011) that one can use information from neighbouring empirical wavelet
coefficients.

Cai (1997, 2002) proved that wavelet estimators based on thresholding of empirical wavelet
coefficients by blocks (called ‘block thresholding’ or BT methods hereafter) can be minimax
optimal over Besov balls, that is, they attain the L2-minimax rate without the suboptimal
log-term. There are many popular examples such as the so-called BlockShrink estimator of
Cai (1997), the block James-Stein estimator of Cai (1999), or the NeighBlock/NeighCoef of
Cai & Silverman (2001). The BlockShrink estimator, which is of particular interest in this
paper, reconstructs functions using a non-separable thresholding rule. More precisely, it keeps
an empirical wavelet coefficient if the block it belongs to (i.e. a well-defined set of empirical
wavelet coefficients in a neighbourhood of its location on the same scale) has an l2-mean norm
larger than a given threshold value. Here, in contrast to using the UT, the threshold value is
chosen to be purely proportional to the noise level, without the additional protection to values
in the tail of standard Gaussian random variables.

To study the performance of the BlockShrink estimator, Autin (2008) and Chesneau (2008)
adopted a different perspective, namely that of the maxiset approach. This approach aims
at providing the largest set of functions that are ‘well’ estimated by a given estimator.
Here, ‘well’ refers to a given minimal rate of convergence, usually chosen to be equal or
close to the optimal minimax rate of convergence to allow for pertinent comparison of
both the minimax and the maxiset approaches. Autin (2008) proved that the sets of func-
tions well estimated by wavelet estimators using BT methods can be larger than the ones
of (separable) hard and soft thresholding estimators. For instance, the Maximum-Block esti-
mator was proven to perform particularly well (Autin, 2008). This estimator uses blocks
of empirical wavelet coefficients for which the l1-mean norm, that is, the maximum ele-
ment in the block of coefficients, is larger than a threshold value that is of the order of the
UT value.

The BlockShrink and Maximum-Block estimators provide good visual reconstructions of
function as shown in Figures 3 and 4, which started from the observation of the well-known
function Bumps (Figure 1) in a noisy version (Figure 2). This can be explained by the group
structure of the large true wavelet coefficients represented in Figure 1, lower panel (the darker
the grey scale, the larger is the coefficient magnitude). Note in particular the ability of the
BlockShrink estimator to retrieve the local group structure down to the finest scales where
suggested by the presence of sharp local signal structure.

Figures 1–4 show the true function, noisy function and two BT estimates associated with
their 2j wavelet coefficients at level j from 0 to 10. The darker the grey scale, the larger is the
magnitude of the coefficients.

In this paper, we study more specifically a series of BT estimators relying on non-overlapping
blocks, hereafter the horizontal block thresholding family. Instead of considering, as in
Cai (1997) and Autin (2008), respectively, only `2-mean and `1-mean norms as, what in the
sequel we call, block ‘scores’ for the construction of the blocks, here we consider the whole
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Fig. 1. Function Bumps: true version.

Fig. 2. Function Bumps: noisy version.

range of 2 � p � C1 associated with threshold values that are functions not only of the noise
level but possibly also of p. We compare those by studying both their theoretical performance
via the maxiset approach and their numerical performance.

© 2013 Board of the Foundation of the Scandinavian Journal of Statistics.
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Fig. 3. BlockShrink estimator.

Fig. 4. Maximum-Block estimator.

The paper is organized as follows. After recalling in Section 2 the necessary essentials on
abstract wavelet estimation in function spaces, we introduce in Section 3 our general horizontal
block thresholding family. Our definition addresses a latent problem related to handling blocks
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at boundaries. In Section 4, we compute the set of all the functions well estimated by estimators
belonging to that family. Precisely, we identify all the functions for which the quadratic risk of
these estimators does not exceed a given rate of convergence (theorem 1). We provide sufficient
conditions on the choices of the rate of convergence and the threshold values to ensure that
the maxisets of the estimators of the family are not ‘degenerated’, that is, that they contain
sufficiently interesting subsets of functions to guarantee that each estimator of the horizontal
block thresholding family performs well.

Further, we show in Section 4 that, for a wide range of threshold values, the family under
study contains an estimator for which the maxiset at a given rate is the largest one. Hence,
it corresponds to the best-performing estimator within the family according to the maxiset
approach. Moreover, we point out that the best way to give a score to blocks indeed depends
on the threshold value under consideration (corollaries 1 and 2). This result is an impor-
tant contribution of this paper: it shows the ability of the maxiset approach to describe
the behaviour of estimators with regard to the values of two parameters with interdepen-
dent effects (the score and the threshold value). This can be nicely interpreted in terms of
a hypothesis testing language, through the control of the number of false positives (erro-
neously kept coefficients) and the number of false negatives (erroneously deleted coefficients).
Moreover, it allows us to search for the best estimation procedure in the studied family.
Finally, Section 5 proposes to check whether our theoretical results agreed with the practi-
cal behaviour of the studied estimators, and Section 6 gives brief conclusive remarks. All the
proofs are given in the Supporting Information, which can be found in the online version of
this paper.

2. Wavelet setting and model

Let us consider a compactly supported wavelet basis of L2.Œ0; 1�/ with V vanishing moments
(V 2 N

�), which has been previously periodized
®
�; jk ; j 2 N; k 2 ¹0; : : : ; 2j � 1º

¯
. Exam-

ples of such bases are given by Daubechies (1992). Any function f 2 L2.Œ0; 1�/ can be written
as follows:

f D ˛� C

C1X
jD0

2j�1X
kD0

�jk jk : (1)

The coefficient ˛ and the components of � D .�jk/jk are, respectively, the scaling and the
wavelet coefficients of f . They correspond to theL2-scalar products between f and the scaling
function � and between f and the wavelet functions  jk .

In the prominent denoising context of non-parametric regression, which we adopt in this
work, we model our noisy data Yi ; 1 � i � N , to be observations of the equidistantly
sampled true underlying signal f corrupted by the additive zero-mean Gaussian noise of
variance �2,

Yi D f

�
i

N

�
C ��i ; 1 � i � N I �i are independent and identically distributed N .0; 1/:

(2)

To study our estimation procedures of f , motivated from (1) and (2), we adopt the gen-
eral abstract framework of the sequential Gaussian white noise. It is useful for the asymptotic
study of model (2), whereas the level of noise " in equation (3) is appropriately calibrated to be
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" � �=
p
n. Under this model, we observe noisy (empirical) coefficients . Ǫ / and O� D . O�jk/j;k

such that

Ǫ D ˛ C "�;

O�jk D �jk C "�jk ; (3)

where � and �jk are independent and identically distributed N .0; 1/ and " is supposed to
belong to �0; exp.�1/Œ for convenience.

The sequence � D .�jk/j;k is supposed a priori to be sparse, meaning that only a small
number of large coefficients contain nearly all the information about the signal. This motivates
us to use keep-or-kill estimators, for which we recall below the hard thresholding estimator Ofh.
It suppresses all empirical wavelet coefficients below a threshold value �" that is of the order
of the UT value and keeps the surviving ones unchanged. The threshold value �" foremost
depends on the noise level " and also on an additional proportionality parameterm, the role of
which in our theoretical study is discussed in Section 4.1

Ofh D Ǫ� C
X

.j;k/2S";m

O�jk jk ; (4)

where S";m D
°
.j; k/ 2 N

2 W j < j�" I k < 2
j I j O�jk j > �" D m"

p
log "�1

±
. If S";m is non-

empty, it may form an unstructured set of indices associated with large empirical wavelet
coefficients (in the sequel, by ‘large empirical wavelet coefficients’, we understand those that
belong to S";m). Here,

(i) the real number m belongs to �0;C1Œ, and
(ii) the integer j�" is such that 2�j�" � �2" < 21�j�" . If non-negative, j�" � 1 is the finest

scale up to which the method considers the empirical wavelet coefficients to reconstruct
the signal f .

This term-by-term thresholding does not take into account the information that gives us the
clusters of wavelet coefficients of large magnitudes that we observed in Figures 1 and 2. This
information will allow us to be more precise in the choice of coefficients to keep. Indeed, on the
one hand, we should not use in the reconstruction a large isolated wavelet coefficient because
its being isolated would likely make it not part of the signal. As a consequence, we should
reduce the number of false positives (wrongly selected coefficients). On the other hand, a small
coefficient, usually killed by the threshold if considered as is, should rather be not excluded if
it occurs in the neighbourhood of large coefficients (caused by local structure in the function
domain). Here, it is a matter of controlling the number of false negatives (wrongly discarded
coefficients).

Under the aforementioned model, several impressive minimax results were obtained for such
keep-or-kill estimators (e.g. Donoho et al., 1995) by considering the function f associated to
the sequence � D .�jk/j;k to be in a particularly large function space, a Besov space, allowing
for spatially variable regularity of the underlying function (basically by a control in Lq of its
generalized derivatives). For a more general overview of Besov spaces Bs

q;q0
, see Hardle et al.

(1998). In the sequel of our paper, a less general class of Besov spaces, those with q D 2 and
q0 D C1, is needed to characterize the maxiset of our estimators.

Definition 1. Let � D .�jk/j;k be the sequence of coefficients of a function f 2 L2.Œ0; 1�/
projected onto a wavelet basis with V vanishing moments. We say that a function f belongs to
the Besov space Bs

2;1
, with 0 < s < V , if and only if
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sup
J2N

22Js
X
j�J

2j�1X
kD0

�2jk D kf k
2

Bs
2;1

< C1:

Interpreting this definition, we observe that Besov spaces, which naturally appear in estima-
tion problems (see, among others, Cohen et al., 2001; Autin, 2004), characterize functions for
which the energy of wavelet coefficients on scales larger than J (J 2 N) decreases exponentially
in J .

Interestingly enough, the aforementioned results on minimax rates over Besov balls do not
model the information given by the clusters of coefficients because the Besov norm k:kBs

2;1

is invariant under permutations within scale. Using the maxiset approach, for which the basic
concepts are recalled now hereafter, we introduce a way to take into account these clus-
ters of coefficients by introducing new function spaces related to the methods (definition 3).
This allows a more precise characterization of the performances of the BT estimators under
consideration.

Let us consider a keep-or-kill estimator Qf built from the observations Ǫ and O� D . O�jk/j;k .
Studying the maxiset performance of Qf consists in computing the set of all functions for which
the rate of convergence of the L2-risk of the estimator Qf is at least as fast as a given rate of
convergence 	 (with 	 D 	" ! 0 as "! 0). This set of radiusR > 0 is denoted as MS. Qf ; 	/.R/
and is defined by

MS
�
Qf ; 	
�
.R/ D

´
f 2 L2.Œ0; 1�/ W sup

0<"<exp.�1/
	�1" Ef k Qf � f k

2
2 � R

2

μ
: (5)

In this setting, a function space G is said to be the maxiset of the estimator Qf for the rate of
convergence 	" if the equivalence

sup
0<"<exp.�1/

	�1" Ef k Qf � f k
2
2 <1 () f 2 G (6)

holds, meaning that, for any R > 0, there exist some radii R1 > 0 and R2 > 0 of balls of G
such that

G.R1/ �MS
�
Qf ; 	"

�
.R/ � G.R2/:

Obviously, the larger the maxiset, the better is the procedure; and the slower the rate, the
larger is the maxiset (and conversely). It is important to recall that there is a connection between
the minimax and maxiset approaches. Indeed, for any function space F with minimax rate 	",
we necessarily obtain the following embedding property: F � G: As already emphasized by
Kerkycharian & Picard (2002) and Autin (2004), the maxiset approach is also more optimistic
than the minimax one because it characterizes the whole nature of the functions that are well
estimated by a method. Therefore, although being interested in both approaches, we often pay
more attention to the maxiset approach than the minimax approach.

As discussed by Autin (2004), estimators with large maxisets can be constructed from thresh-
olding rules that are not elitist—that is, rules that do not only keep all the large empirical wavelet
coefficients but equally consider some well-chosen small ones. As examples, we cite estimators
that rely on vertical block thresholding rules (Autin, 2008; Autin et al., 2011) or, indeed, on
horizontal block thresholding rules that had been preliminarily studied by Autin (2008) and
Chesneau (2008). When we look at these procedures, their maxisets are larger than those of
procedures based on an elitist rule, including hard and soft thresholding estimators, and also
many Bayes procedures (Autin et al., 2006).

© 2013 Board of the Foundation of the Scandinavian Journal of Statistics.
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Motivated by the discussion started in Section 1, we propose to focus on the performance of a
wide range of wavelet estimators based on a horizontal block thresholding rule (BT estimators).

3. Horizontal block thresholding estimators

We are now in the position to define our BT estimators using the abstract notation of the pre-
vious section. Prior to that, we explain their intuitive construction: we split each large enough
level j of empirical wavelet coefficients into neighbouring disjoint groups (i.e. non-overlapping
blocks) of the same length depending on the noise level " and decide for some chosen levels
to keep or kill each individual coefficient on the basis of the comparison of the value of the
`p-mean norm of all the empirical coefficients in its block with a chosen threshold value. Inter-
estingly, this threshold will now also depend on p, that is, �";p D mt";p (0 < m < C1 and
2 � p � C1).

Let us now fix the (asymptotic) choice of the parameters of our method. For any 0 < m <

C1 and any 2 � p � C1, let

(i) t D .t";p/" and v D .v";p/" be two sequences of positive real numbers continu-
ously tending to 0 as " goes to 0 (we recall that t";p determines the threshold value,
whereas v";p will determine the rate of convergence of the L2-risk of the associated BT
estimator);

(ii) jo;" be the fixed primary resolution scale, chosen to be the smallest integer such that
2jo;" > log "�1;

(iii) jmv";p be the finest considered resolution scale, chosen to be the smallest integer such
that 2jmv";p � .mv";p/�2; and

(iv) l" be the length of the blocks. It has been proven pertinent from both minimax (Cai,
1999, 2002) and maxiset (Autin, 2008) points of view to choose l" to be of the order
of log "�1. This specification remains too vague because the number of blocks at a
scale j may not divide 2j in an integer number. The treatment of this problem has
often been neglected in the theoretical literature, whereas practical procedures employed
some refinements to handle incomplete blocks at the boundaries. Here, we propose as a
solution to calibrate the block length to be of the order log "�1 but using the relation
l" D 2jo;" . This choice avoids all the subjectivity related to boundary handling and can
be viewed as a way to recover the usual dyadic structure of the multiresolution analysis.

In Section 4, we will use the tuning parameterm to link threshold values of the formmt";p and
rates of convergence of the L2-risk of the form

	" D .mv";p/
ˇ : (7)

As usual and following the minimax rates of regular enough functions, we shall consider
ˇ 2 �0; 2Œ. We recall that the minimax rates over the balls of the Besov spaces Bs

2;1
(definition 1)

with s > 1=2 are all of the order of "4s=.1C2s/. Considering such a rate means choosing
v";p D " (example 3 with p D 2).

Let us now define a general BT estimator Qf .t;v/m;p associated with a block-thresholding rule
depending on the noise level ". We first define the involved blocks of translational parameters
by

B
.u/

j
."/ D ¹k 2 N W .u � 1/l" � k < ul"º ; for any u 2

°
1; 2; : : : ; 2j l�1"

±
:

For any sequence of wavelet coefficients � and any sequence of empirical wavelet coeffi-
cients O� associated with � by (3), we denote, for any .j; k/, by � = Bjk."/ the block of wavelet
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coefficients that contain �jk and O� = Bjk."/ the block of empirical wavelet coefficients that
contain O�jk :

� = Bjk."/ D
°
�jk0 W k

0 2 B.u/
j
."/
±

with k 2 B.u/
j
."/;

O� = Bjk."/ D
°
O�jk0 W k

0 2 B.u/
j
."/
±

with k 2 B.u/
j
."/:

Definition 2. Let 0 < " < exp.�1/, 2 � p � C1 and a given m > 0. We define the BT
estimator Qf .t;v/m;p as follows:

Qf .t;v/m;p D Ǫ�C

jo;"�1X
jD0

2j�1X
kD0

O�jk jkC

jmv";p�1X
jDjo;"

2j�1X
kD0

O�jk 1
°
k O� = Bjk."/kp > m t";p

±
 jk ;

(8)

where

k O� = Bjk."/kp D

0
@l�1" X

k02Bjk."/

j O�jk0 j
p

1
A
1=p

if p < C1;

k O� = Bjk."/k1 D max
°
j O�jk0 j W k

0 2 Bjk."/
±
:

According to the definition of the BT estimator Qf .t;v/m;p , the empirical wavelet coefficients
selected by the method are those associated with the coarsest scales (j < jo;") as well as those
on finer scales (jo;" � j < jmv";p / belonging to blocks of empirical wavelet coefficients with a
large p-score, that is, a large `p-mean norm.

Remark 1. The BlockShrink estimator of Cai (1999) is analogous to Qf .t;v/
m;2

with the choice
t";2 D v";2 D ". The Maximum-Block estimator of Autin (2008) is analogous to the estimator
Qf .t;v/m;1 with the choice t";1 D v";1 D "

p
log "�1. For convenience, we shall keep the names

BlockShrink and Maximum-Block to denote the estimators Of .t;v/
m;2

and Of .t;v/m;1, respectively,
whatever the choices of the sequences t and v.

From now on, we will study the performance of these BT estimators to address the following
question: what is the best choice of `p-mean norm to consider (2 � p � C1)? In the next
section, we use the maxiset approach to prove that among the different possibilities of choice of
p, the best one depends on the threshold value used. In the following are listed three examples
of threshold values and rates we are particularly interested in.

Example 1. t .1/";p D v
.1/
";p D "

p
log "�1. With such a choice, the threshold value associated

with t .1/";p is in the order of the UT (Donoho & Johnstone, 1994), and the rate of convergence
	" as in (7), with ˇ D 4s.1 C 2s/�1 and s > 1=2, corresponds to the minimax rate over any
ball of the Besov space Bs

2;1
, up to a term of order .log "�1/1=2.

Example 2. t .2/";p D "
p

log "�1 l�.1=p/" and v.2/";p D "
p

log "�1, with the convention 1=C1 D
0 for p D C1. With such a choice, the order of the threshold value associated with t .2/";p is
lower than the UT for p < C1. The rate of convergence 	" as in (7), with ˇ D 4s.1C 2s/�1

and s > 1=2, corresponds to the minimax rate over any ball of the Besov space Bs
2;1

up to a
term of order .log "�1/1=2.

© 2013 Board of the Foundation of the Scandinavian Journal of Statistics.
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Example 3. t .3/";p D v
.3/
";p D "

p
log "�1 l�1=p" , with the convention 1=C1 D 0 for p D C1.

With such a choice, the order of the threshold value associated with t .3/";p is lower than the UT
for p < C1. The rate of convergence 	" as in (7), with ˇ D 4s.1 C 2s/�1 and s > 1=2,
corresponds to the minimax rate over any ball of the Besov space Bs

2;1
up to a term of order

.log "�1/1=2�1=p that is a constant for the particular case p D 2.

Notice that for a chosen p 2 Œ2;C1Œ, the rate in example 3 is faster than the rate in examples
1 and 2. Actually, it corresponds to the fastest rate of convergence for which our asymptotical
results in Section 4 hold. In spite of the fact that the faster is the rate of convergence, the smaller
is the maxiset, we shall see in Section 4 that for the choice of the sequences t and v proposed in
example 3, the maxiset of the BT estimator Qf .t;v/m;p for the rate of convergence .mv";p/4s=1C2s

is quite large because it contains at least the Besov space Bs
2;1

, provided m is large enough
(theorem 1 and remark 4).

For any chosenm > 0, define the horizontal block thresholding family of wavelet estimators,
namely HBT.m;t;v/, as

HBT.m;t;v/ D
°
Qf .t;v/m;p W 2 � p � C1

±
:

At first glance, as 2 � p � C1 is real valued, the family of estimators HBT.m;t;v/ seems to
be uncountable. But it is not, whatever the choice of the threshold values t";p , if the rates v";p
are all greater than or equal to ", as its elements only differ by the sets of the blocks that are
kept by the related methods and the number of inspected blocks is finite. To prepare for our
future results, we introduce the three following kinds of HBT.m;t;v/ families:

(i) HBT.m;t;v/;1: when choosing t and v such that, as in example 1,

t";p and v";p do not depend on the parameter p: (Hyp-1)

(ii) HBT.m;t;v/;2: when choosing t and v such that, as in example 2,

l
1
p

" t";p and v";p do not depend on the parameter p: (Hyp-2)

(iii) HBT.m;t;v/;3: when choosing t and v such that, as in example 3,

l
1
p

" t";p and l
1
p

" v";p do not depend on the parameter p: (Hyp-3)

We shall see in the next section that focusing on HBT.m;t;v/;1 and HBT.m;t;v/;2 families
where the rate is the same one whatever the choice of p allows maxiset comparisons between
the BT estimators within such a family to be derived (corollaries 1 and 2) whereas focusing
on HBT.m;t;v/;3 families allows nice minimax results for our BT estimators to be derived
(theorem 2).

4. Main results

We first provide the definition of a new function space, which is the key to our results.

Definition 3. Letm0 > 0, 0 < r < 2 and 2 � p � C1. We say that a function f belongs to the
space W.t;v/

r;m0;p
if and only if the sequence of its wavelet coefficients � D .�jk/j;k satisfies

sup
m�m0

sup
0<"<exp.�1/

.mv";p/
r�2

X
j�jo;"

2j�1X
kD0

�2jk1
²
k� = Bjk."/kp�mt";p

³
Dkf k2

W.t;v/

r;m0;p

<C1:
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First, note that the larger the r , the larger is the function space. Second, in contrast to weak
Besov spaces (see for an explicit definition Cohen et al., 2001), which appear in the maxiset
of elitist procedures, the function scores k:kW.t;v/

r;m0;p

of the spaces W.t;v/

r;m0;p
(m0 > 0 and 0 <

r < 2) are not invariant under permutations of wavelet coefficients within each scale. This
is precisely the non-invariance property that allows us to distinguish functions according to
the ‘block-neighbourhood properties’ of their wavelet coefficients. Nevertheless, the following
occur:

(i) a translational-shift invariance of the blocks: if you shift one block B.u/
j
."/ on a level j

by u! uC v.mod l�1" 2j /, then the function score k:kW.t;v/

r;m0;p

is still the same.

(ii) a permutational-shift invariance of the coefficients within the same block: if you move
the positions of the coefficients in a block B.u/

j
."/ on a level j , then the function score

k:kW.t;v/

r;m0;p

is still the same.

The spaces W.t;v/

r;m0;p
(m0 > 0 and 0 < r < 2) characterize sparse functions as highlighted in

the following proposition.

Proposition 1. Let m0 > 0, 0 < r < 2 and 2 � p � C1. Then,

f 2W.t;v/

r;m0;p

+

sup
m�m0

sup
0<"<exp.�1/

mr vr�2";p t2";p

�
log "�1

�
2
p�1

jmv";p�1X
jDjo;"

2j�1X
kD0

1
²
k� =Bjk."/kp>

mt";p

2

³
<C1;

where � D .�jk/j;k is the sequence of the wavelet coefficients of f .

Assuming some conditions on the choice of both the sequence of t and the sequence of v,
these function spaces are enlargements of classical Besov spaces as suggested by proposition 2.

Proposition 2. Let 2 � p � C1. Assume that t D .t";p/" and v D .v";p/" are such that

lim
"!0

v";p

t";p
> 0:

Then, for any m0 > 0 and any 0 < s < V ,

Bs2;1 �W.t;v/
2

1C2s ;m
0;p
: (9)

Propositions 3 and 4 provide embedding properties that may exist between the function
spaces W.t;v/

r;m0;p
, depending on the chosen sequences t and v.

Proposition 3. Consider sequences t and v as in Hyp-1. Then, for any m0 > 0, any 2 � p < q �
C1 and any 0 < r < 2, the following embedding of spaces holds:

W.t;v/

r;m0;p
�W.t;v/

r;m0;q
:

The assertion of this proposition changes, however, if the p-scores over blocks appearing in
definition 3 are compared with a threshold value that depends in a particular way also on p,
namely by rescaling in some sense with the length of the blocks.
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Proposition 4. Consider sequences t and v as in Hyp-2. Then, for any m0 > 0, any 2 � p < q �
C1 and any 0 < r < 2, the following embedding of spaces holds:

W.t;v/

r;m0;q
�W.t;v/

r;m0;p
:

It is essential to note that these results prepare the ground to find the ‘maxiset-optimal’ esti-
mator Qf .t;v/m;p , that is, the best p, according to the more refined specification of both threshold
value (via mt";p) and rate (via v";p). For this, we refer to corollaries 1 and 2.

Remark 2. The proofs of propositions 3 and 4 are omitted because they are a direct
consequence of lemma 1 given in the online Supporting Information.

4.1. Asymptotic results

When considering the maxiset approach for thresholding estimators Qfm with a parameter m,
which calibrates the threshold value, the maxiset is usually sandwiched as

G.R1;m/ �MS
�
Qfm; 	"

�
.R/ � G.R2;m/; (10)

where the involved radii R1;m and R2;m of G depend onm (see for instance Autin et al., 2006).
The role of the parameter of calibration m is often ignored in asymptotic theory (" ! 0).

In both the minimax and maxiset settings, results are commonly established for any value of
m provided it is large enough to guarantee the good performance of the studied thresholding
method. Nevertheless, in our approach hereafter, we make sure to determine the maxisets of
BT estimators Qf .t;v/m;p independently of large enough m. This is like forcing the radii R1;m and
R2;m not to depend on m but in return accepting that R is linked to m. Precisely, we propose
in our study to look for the spaces Gp (2 � p � C1) satisfying the following embeddings for
some m� > 0: for any C > 0, there exist R1 > 0 and R2 > 0 such that

Gp.R1/ �
\

m�2m�

MS
�
Qf .t;v/m;p ; v

4s
1C2s
";p

��
Cm

4s
1C2s

�
� Gp.R2/:

This can be rewritten as the following equivalence:

sup
m�2m�

sup
0<"<exp.�1/

.mv";p/
� 4s
1C2s Ef k Qf

.t;v/
m;p � f k

2
2 < C1 () f 2 Gp :

This allows us to address (at least theoretically) the important problem of the choice of the best
value for m. Indeed, in such a case, m only calibrates the rate of convergence; hence, the best
choice of m will be the one that ensures the fastest reconstruction, that is, the smallest value of
m considered. Finally, we would like to remark that controlling the maxiset results uniformly
in m is also of primary importance when considering general thresholding rules for which the
maxiset may not be embedded for different values of m as explained by Autin et al. (2012).

To present our maxiset results for the BT estimators within the horizontal block thresholding
families, we propose to use a large collection of rates of convergence, which are .mv";p/4s=1C2s

(with s > 0). The exponent terms are chosen to be the ones appearing in the minimax rates of
function spaces with regularity s.

Some assumptions on the choices of both the sequence of threshold values t and the sequence
of rates v are performed to ensure the validity of our forthcoming asymptotic results. Assume
that, for any 2 � p � C1,

lim
"!0

".log "�1/
1
2

v";p
> 0; lim

"!0

v";p

t";p
> 0 and lim

"!0

t";p

".log "�1/
1
2�

1
p

> 0: (11)
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The first limit on the left ensures that we focus on rates of convergence, which are faster than
or of the same order as the best rate of convergence of separable rules to reconstruct Besov balls
(Cai, 2008). The second limit will ensure that the proposed BT estimators have large maxisets,
according to proposition 2. Finally, the third limit is a lower bound for our method-dependent
threshold values. It ensures the existence of a large deviation property that will be useful in the
proofs of our maxiset result.

For any chosen s > 0, the reader can check that assumption (11) is satisfied by the three
examples given in Section 3.

Remark 3. Note that both the smallest threshold value and the fastest rate satisfying (11) are
the ones given in example 3.

We now state the main theorem dealing with the maxiset performance of the estimators
that belong to the horizontal block thresholding family. Firstly, we characterize in theorem 1
the well-reconstructed functions by such estimators for a wide range of parameters of calibra-
tion; secondly, we derive minimax results in theorem 2; thirdly, we exhibit the best estimator of
HBT.m;t;v/;1 and HBT.m;t;v/;2 families thanks to corollaries 1 and 2.

Theorem 1 (Maxiset result). Fix s > 0 and consider 2 � p � C1. Let t D .t";p/" and
v D .v";p/" satisfy (11). Define m� as the real number such that m2� � 2 logm� D 9. Then,

sup
m�2m�

sup
0<"<exp.�1/

.mv";p/
�

4s

1C2s Ef k Qf
.t;v/
m;p �f k

2
2<C1() f 2 B

s

1C2s

2;1
\W.t;v/

2

1C2s
;m�;p

:

Remark 4. The maxisets of the estimators Qf .t;v/m;p are quite large function spaces because

from (9) of proposition 2 and the Besov embedding properties, the function spaces Bs=1C2s
2;1

\

W.t;v/

2=1C2s;m�;p
contain the Besov space Bs

2;1
.

From theorem 1 and remark 4, we immediately derive the following minimax result.

Theorem 2 (Minimax result). Consider 0 < s < V , 2 � p � C1 and R > 0. Let t D .t";p/"

and v D .v";p/" satisfy (11). Then, for any m � 2m�,

sup
0<"<exp.�1/

.mv";p/
� 4s
1C2s sup

f Wkf kBs
2;1

�R

Ef k Qf
t;v/
m;p � f k

2
2 < C1:

Therefore, we have obtained sufficient conditions (assumption (11)) on choices of t and v to
ensure that all the BT estimators in our families are good estimators, in the sense that they are
all adaptive and near minimax optimal over the balls of the Besov spaces Bs

2;1
, with s > 1=2.

Furthermore, theorem 2 highlights the choices of t and v to be made to create BT estimators
that strictly outperform the hard and soft thresholding estimators in the minimax sense. Con-
sequently, these methods are better than any separable thresholding procedure, that is, one that
decides to keep or kill a coefficient solely as a function of the magnitude of this individual coef-
ficient (theorem 2 in Cai, 2008). A possible choice for t and v is given in example 3, whereas the
minimax rates over the Besov balls are achieved by the BlockShrink estimator .p D 2/, up to a
constant.

Let us go back to the maxiset approach to go further in our interpretations. We state
corollaries 1 and 2, which are direct consequences of theorem 1 and propositions 3 and 4.
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Corollary 1. Under assumption (11), Qf .t;v/m;1 is the best estimator in the maxiset sense among any
HBT.m;t;v/;1 family.

Corollary 2. Under assumption (11), Qf .t;v/
m;2

is the best estimator in the maxiset sense among any

HBT.m;t;v/;2 family.

Corollaries 1 and 2 give the best element of any HBT.m;t;v/;1 or HBT.m;t;v/;2 family of BT
estimators. It is basic to remark that Qf .t;v/m;1 is the same procedure in both families. This allows
us to compare them and see that the best way to obtain large maxisets is to choose threshold
values that are of lower order than the UT and to choose small scores too. This very interesting
fact has a powerful interpretation in terms of false discoveries, which we refer to in Section 5.

5. Numerical experiments

This section proposes numerical experiments designed to check whether our theoretical results
can be observed in a practical setting, that is, in the context of non-parametric regression
described in (2). Obviously, our theoretical approach cannot model all the complexity encoun-
tered in practice. Therefore, we choose a classical setting for numerical experiments, using the
Daubechies least asymmetric wavelets with eight vanishing moments.

To illustrate our theoretical results, we consider two HBT.m;t;v/ families associated with
the choices t";p D ".log "�1/1=2 and t";p D ".log "�1/1=2l�1=p" , and for both, we choose
m D 5 to be the parameter of calibration. We shall respectively call these families the
HBT.m;t;v/;1 family and the HBT.m;t;v/;2 family. Following Cai (1997), we set the threshold
O� D O�.5N�1 logN/1=2 for all BT methods associated with the HBT.m;t;v/;1 family, and we
choose O�p D O�.5N�1 logN/1=2�1=p for those associated with HBT.m;t;v/;2. We follow a
standard approach to estimate � by the median absolute deviation, divided by 0:6745, over the
wavelet coefficients at the finest wavelet scale J

N
� 1 such that J

N
D blog2N c (e.g. Vidakovic,

1999). Such a choice of a finest scale means to consider, for any 2 � p � C1, v";p D ", up to
constant, in the sequential Gaussian white noise model. At last, we set the primary resolution
scale to be J0 D dlog2 logN e and the length of the blocks to be 2J0 .

We generate the data sets from a large panel of functions often used in wavelet estimation
studies (see for instance Antoniadis et al., 2001) with various signal-to-noise ratios (SNR) D
¹5; 10; 15; 20º and sample sizes N D ¹512; 1024; 2048º. We define the SNR as the logarith-
mic decibel scale of the ratio of the standard deviation of the function values to the standard
deviation of the noise. We compute, for integers p from 2 to 10 and for p D C1, the inte-
grated squared error (ISE) of the BT estimators Qf .t;v/m;p at the `th Monte Carlo replication

(ISE.l/
�
Qf .t;v/m;p

�
; 1 � l �M ) as follows:

ISE.l/
�
Qf .t;v/m;p

�
D

1

N

NX
iD1

�
Qf .t;v/m;p

�
i

N

�
� f

�
i

N

��2
:

We generateM D 2000Monte Carlo replications and compute the mean ISE (MISE) as follows

MISE
�
Qf .t;v/m;p

�
D

1

M

MX
lD1

ISE.l/
�
Qf .t;v/m;p

�
:

Because of numerous connections between keep-or-kill estimation and hypothesis testing
(e.g. Abramovich et al.), 2006, we find very useful for interpreting our results reported in
Tables 1 and 2 the number of false positives/negatives (i.e. type I/II errors). These are obtained
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Table 1. MISE .10�4/, average number of false positives/negatives and average number of non-zero empirical
wavelet coefficients in the estimator

Threshold

HBT.m;t;v/;1 HBT.m;t;v/;2

Method Qf
.t;v/

m;2
Qf
.t;v/

m;5
Qf
.t;v/

m;10
Qf
.t;v/
m;1

Qf
.t;v/

m;2
Qf
.t;v/

m;5
Qf
.t;v/

m;10
Qf
.t;v/
m;1

Of O

Function: step
MISE 23.13 10.27 9.05 8.33 7.86 8.33 8.33 8.33 2.54
FalseC 4.7 9.6 10.5 11.3 12.1 11.3 11.3 11.3 0.0
False � 25.9 20.4 19.5 18.7 17.7 18.7 18.7 18.7 0.0
Size 28.8 39.2 40.9 42.6 44.4 42.6 42.6 42.6 50.0

Function: wave
MISE 3.33 3.33 3.33 3.32 2.68 3.31 3.32 3.32 0.76
FalseC 0.0 0.0 0.0 0.0 1.6 0.1 0.0 0.0 0.0
False � 30.0 30.0 30.0 29.8 23.0 29.7 29.8 29.8 0.0
Size 24.0 24.0 24.0 24.2 32.6 24.4 24.2 24.2 54.0

Function: blip
MISE 5.99 3.69 3.26 2.80 2.39 2.72 2.78 2.8 0.78
FalseC 2.9 4.2 4.8 5.7 6.6 5.8 5.7 5.7 0.0
False � 16.4 13.0 12.2 11.1 9.8 10.9 11.0 11.1 0.0
Size 23.5 28.2 29.6 31.6 33.9 31.9 31.7 31.6 37.0

Function: blocks
MISE 13.29 8.86 7.29 5.90 4.75 5.52 5.76 5.90 1.41
FalseC 2.1 8.2 10.5 13.8 17.6 14.1 13.9 13.8 0.0
False � 104.2 89.3 82.0 74.5 67.2 72.6 73.9 74.5 0.0
Size 50.0 70.9 80.5 91.3 102.4 93.5 92.0 91.3 152.0

Function: bumps
MISE 6.71 3.49 2.57 1.96 1.55 1.86 1.93 1.96 0.56
FalseC 15.2 29.2 35.8 41.6 46.3 42.3 41.8 41.6 0.0
False � 94.4 70.7 61.2 53.2 46.5 52.1 52.9 53.2 0.0
Size 89.8 127.5 143.6 157.4 168.8 159.2 157.8 157.4 169.0

Function: heavisine
MISE 4.03 3.79 3.28 2.75 2.46 2.74 2.75 2.75 0.77
FalseC 0.0 0.3 0.9 1.9 2.6 1.9 1.9 1.9 0.0
False � 21.0 20.3 18.9 17.2 16.0 17.2 17.2 17.2 0.0
Size 8.0 8.9 11.0 13.7 15.6 13.7 13.7 13.7 29.0

MISE, mean integrated squared error.

by comparing the set of indices of wavelet coefficients kept by each estimators with the set of
indices of the keep-or-kill oracle estimator

Of O D Ǫ� C
X

.j;k/2SO

O�jk jk ; (12)

where SO D
°
.j; k/ 2 N

2 W j < J
N
I k < 2j I j�jk j > �=

p
N
±

.

The results suggest similar behaviour for different values of N and SNR. To keep clear the
presentation of the results, we only report those forN D 2048 and SNR D 10 in Tables 1 and 2.

Figures 5 and 6 summarize the MISE results. We observe the optimality of the estimator
Qf .t;v/m;1 2 HBT.m;t;v/;1 ( Qf .t;v/

m;2
2 HBT.m;t;v/;2) for all the tested functions as suggested by

corollary 1 (corollary 2). In addition, there is a gradual improvement of the MISE performance
when p increases (decreases), reflecting the embeddings of the maxisets of the BT estimators
considered (Section 4).
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Table 2. MISE .10�4/, average number of false positives/negatives and average number of non-zero empirical
wavelet coefficients in the estimator

Threshold

HBT.m;t;v/;1 HBT.m;t;v/;2

Method Qf
.t;v/

m;2
Qf
.t;v/

m;5
Qf
.t;v/

m;10
Qf
.t;v/
m;1

Qf
.t;v/

m;2
Qf
.t;v/

m;5
Qf
.t;v/

m;10
Qf
.t;v/
m;1

Of O

Function: Doppler
MISE 7.14 5.27 4.32 3.33 2.51 3.10 3.25 3.33 1.07
FalseC 2.0 3.1 4.5 6.2 7.7 6.2 6.2 6.2 0.0
False � 29.8 26.3 23.7 20.5 17.1 19.8 20.3 20.5 0.0
Size 34.2 38.8 42.8 47.6 52.6 48.5 47.9 47.6 62.0

Function: angles
MISE 1.57 1.57 1.57 1.57 1.56 1.57 1.57 1.57 0.75
FalseC 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0
False � 11.0 11.0 11.0 11.0 10.8 11.0 11.0 11.0 0.0
Size 24.0 24.0 24.0 24.0 24.4 24.0 24.0 24.0 35.0

Function: parabolas
MISE 4.32 4.06 3.51 2.50 1.63 2.06 2.33 2.50 0.82
FalseC 0.0 0.1 0.5 1.2 1.9 1.5 1.3 1.2 0.0
False � 8.0 7.6 6.9 5.4 4.1 4.8 5.2 5.4 0.0
Size 16.0 16.5 17.6 19.9 21.9 20.7 20.2 19.9 24.0

Function: time shift sine
MISE 1.65 1.65 1.64 1.60 1.46 1.59 1.60 1.60 0.56
FalseC 3.0 3.0 3.0 3.2 3.8 3.2 3.2 3.2 0.0
False � 4.0 4.0 4.0 3.8 3.2 3.8 3.8 3.8 0.0
Size 24.0 24.0 24.0 24.5 25.7 24.5 24.5 24.5 25.0

Function: spikes
MISE 2.36 1.14 0.85 0.71 0.65 0.69 0.70 0.71 0.35
FalseC 5.3 8.2 9.3 10.2 10.8 10.3 10.2 10.2 0.0
False � 23.1 15.9 13.9 12.9 12.1 12.8 12.8 12.9 0.0
Size 49.2 59.2 62.4 64.3 65.7 64.5 64.4 64.3 67.0

Function: corner
MISE 1.91 0.93 0.70 0.53 0.45 0.52 0.53 0.53 0.24
FalseC 0.1 1.1 1.5 1.8 2.0 1.8 1.8 1.8 0.0
False � 9.8 6.7 5.5 4.5 4.0 4.5 4.5 4.5 0.0
Size 12.2 16.5 18.0 19.3 20.0 19.4 19.3 19.3 22.0

MISE, mean integrated squared error.

Looking at the number of false positives/negatives for the BT estimators reported in Tables 1
and 2, we can check that the best estimators in each family tend to reduce the percentage of
false negatives with a comparatively small increase in the number of false positives, yielding
their good performances in terms of MISE. In the family HBT.m;t;v/;1, the conservative UT
strongly controls the false positives but discards many small coefficients that would be useful for
the reconstruction. With such a high threshold value, the numerical experiments show that the
estimator Qf .t;v/m;1 has the lowest MISE. This is indeed the1-score, which is the most powerful
in reducing the false negatives using the structure among the coefficients.

By comparing corollaries 1 and 2, our results point out that the HBT.m;t;v/;1 family, based
on a large threshold, reaches a certain limit of detection of true discoveries that only a smaller-
order threshold would allow to overcome, that is, estimators of the HBT.m;t;v/;2 family. This
is confirmed by our numerical experiments as can be observed in Figure 6; the best results
are obtained for Qf .t;v/

m;2
. The latter have lower MISE than Qf .t;v/m;1 for all the tested functions

with improvements of up to nearly 54% lower MISE. This emphasizes also that the use of
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Fig. 5. Mean integrated squared error (MISE) of the non-overlapping block thresholding estimator in
HBT.m;t;v/;1 for different values of 2 � p � C1 for estimating various functions with a signal-to-noise
ratio equal to 10 andN D 2048.

Fig. 6. Mean integrated squared error (MISE) of the non-overlapping block thresholding estimator in
HBT.m;t;v/;2 for different values of 2 � p � C1 for estimating various functions with a signal-to-noise
ratio equal to 10 andN D 2048.

less conservative thresholds increases the risk of false positives, and it needs to be controlled
by using scores with smaller p (attributing a score with p < C1; coefficients larger than the
threshold can also be discarded).

6. Summary of results and conclusion

In this paper, we introduced the family of non-overlapping horizontal block thresholding esti-
mators. We studied the performance of the estimators of this family under the L2-risk using
the maxiset approach. We remark the good maxiset performance for a wide range of threshold
values and rates, and we identified the best procedure in some cases, that is, the one using the l2-
norm and a threshold value in the order of the noise level ". This paper shows the importance
of adapting the threshold value and the score to enlarge the maxiset.

For a given threshold value (fixed with regard to p), there is the following interpretation of
this family of BT estimators according to p: the score of p D C1 corresponds to a choice
that really focuses on the reduction of false negatives; all the coefficients in a block are kept if
only one coefficient passes over the threshold. This method, however, has to accommodate high
threshold values to control the false positives. Scores with lower p are meant to simultaneously
control false positives and negatives. For these, one has to reduce the value of the threshold if
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one aims to really improve the estimation. Another way to look at these results is to see the
methods under study being parametrized by the score attributed to blocks and the threshold
value. These parameters have some interdependence over which, using the maxiset approach,
we were able to optimize to identify the procedure with the largest maxiset.

Our numerical experiments confirm our theoretical findings, that is, the best procedure in the
HBT.m;t;v/;1 family is obtained for p D C1. On the contrary, for methods with a threshold
value that depends on p, such as the HBT.m;t;v/;2 one, the best procedure is the one associated
with p D 2. Because Qf .t;v/m;1 also belongs to HBT.m;t;v/;2, the best estimator of both families is
Qf .t;v/
m;2

.
It is worthwhile to mention that these BT estimators form spatially homogeneous partitions

within scales. Among the various recent developments, those considering data-driven adaptive
partitions by Evers & Heaton (2009) and Heaton (2009) have been proven extremely powerful
in practice. Their theoretical study using the maxiset approach constitutes a very interesting
challenge for future research.
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