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In this paper, we address the situation where we cannot differentiate wavelet-based threshold procedures
because their sets of well-estimated functions (maxisets) are not nested. As a generic solution, we propose
to proceed via a combination of these procedures in order to achieve new procedures which perform better
in the sense that the involved maxisets contain the union of the previous ones. Throughout the paper
we propose illuminating interpretations of the maxiset results and provide conditions to ensure that this
combination generates larger maxisets. As an example, we propose to combine vertical- and horizontal-
block thresholding procedures that are already known to perform well. We discuss the limitation of our
method, and we check our theoretical results through numerical experiments.
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1. Introduction

The literature about wavelet-based nonparametric function estimation is very large. Many thresh-
olding procedures have been proposed and compared from both a practical and a theoretical
point of view, particularly thanks to the minimax approach. In the last decade, a new theoretical
way, dual to the minimax approach, has been proposed to assess and compare their performances.
This approach consists of determining the maxiset of a thresholding procedure that is the maximal
functional space for which the quadratic risk of the procedure reaches a given rate of convergence.
As previously discussed in Cohen, De Vore, Kerkyacharian, and Picard (2001b), Kerkyacharian
and Picard (2000, 2002), Autin (2004, 2008a,b), Autin, Le Pennec, Loubes, and Rivoirard (2010),
Autin, Freyermuth, and von Sachs (2011a) and Autin, Freyermuth, and von Sachs (2011b), this
approach can be successful at differentiating between minimax-equivalent procedures when-
ever their maxisets are nested. Without such embeddings, the comparison would be impossible.
Hence, the best procedure within a family of thresholding rules – that is, the one with the largest
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Figure 1. Quadratic risk of estimators Blockshrink, Hard Tree and their combination Block Tree.

maxiset – does not always exist. Even if it has often been viewed as a problem, this just reveals
the fact that the procedures are well suited to estimate different classes of functions.

In this paper, we address that situation by taking a different road. Our message is: ‘if you cannot
differentiate between thresholding rules then combine them’. This is similar to approaches such as
aggregation, and model or basis averaging (see Kohn, Marron, and Yau 2000; Barber and Nason
2004; Fryzlewicz 2007). However, in our framework, considering maxisets of thresholding rules,
it takes a particular flavour which results in a very specific way of combining these methods
(see Proposition 5.1). The resulting new thresholding rule is proved to borrow strength from other
well-chosen ones (those with non-nested maxisets) to yield better maxiset. Numerical experiments
allow to check that the maxiset approach successfully explains what can be observed in a practical
setting.

Taken from the results of our numerical simulations given in detail in Section 6, Figure 1 shows
an example of our method that combines two block thresholding rules: horizontal- and vertical-
block thresholding procedures which, to the best of our knowledge, are among thresholding
rules those with the largest but not nested maxisets encountered in the literature. We recall that
estimators induced by these rules are, respectively, the Blockshrink estimator studied by Cai
(1997) and Autin et al. (2011b) and the Hard Tree estimator studied by Autin (2004, 2008a) and
Autin et al. (2011a). Our numerical results clearly illustrate the need to use the combination of
the previous estimators, called the Block Tree estimator, rather than the Blockshrink estimator or
the Hard Tree estimator, since this Block Tree estimator behaves well over all the 12 functions
considered here. More information about these numerical experiments can be found in Section 6.

The rest of the paper is organised as follows: Sections 2 and 3 describe our theoretical model and
the maxiset approach. In Section 4, we define and give the maxiset properties of the thresholding
rules. In Section 5, we describe our method to combine thresholding rules and its limitation.
Finally, the detailed proofs of our theoretical results are given in the appendix.

2. Background of study

Let us consider a compactly supported wavelet basis of L2([0, 1]) with V vanishing moments
(V ∈ N

∗) which has been previously periodised {φ, ψjk , j ∈ N, k ∈ {0, . . . , 2j − 1}}. Examples
of such bases are given in Daubechies (1992). Any function f ∈ L2([0, 1]) can be written as

D
ow

nl
oa

de
d 

by
 [

Fl
or

en
t A

ut
in

] 
at

 0
5:

12
 2

5 
A

ug
us

t 2
01

2 



Journal of Nonparametric Statistics 3

follows:

f (·) = αφ(·) +
∞∑

j=0

2j−1∑
k=0

θjkψjk(·). (1)

The coefficient α and the components of θ = (θjk)j,k are the scaling and wavelet coefficients of
f , respectively. They correspond to the L2-scalar products between f and the scaling and wavelet
functions φ and ψjk , respectively.

In the prominent denoising context of nonparametric regression, which we also adopt in this
work, one considers disposing of N noisy observations Yi with variance σ 2, which are modelled as

Yi = f

(
i

N

)
+ σζi, 1 ≤ i ≤ N , ζi are i.i.d. N (0, 1). (2)

Motivated from Equations (1) and (2), in order to focus on the essentials of developing our results
in a general abstract framework, in the sequel, we concentrate on the sequential version of the
Gaussian white noise model in the coefficient domain. That is, we assume to dispose of noisy
observations θ̂jk of the wavelet coefficients θjk of the target function f and hence picture those as
realisations of independent random variables:

α̂ = α + εξ and θ̂ = (θ̂jk)j,k = (θjk + εξjk)j,k , (3)

where again ξ and ξjk are i.i.d. N (0, 1), and 0 < ε < exp(−1) is now the abstract noise level.
It is well known that this sequence model (3) and the nonparametric regression model (2) are
equivalent with the calibration ε = σ/

√
N . Hence, considerations which let the noise level ε tend

to zero amount to letting the sample size N tend to infinity.
We focus on the performances of keep-or-kill estimators (KK-estimators) which are wavelet

estimators that can be written as follows:

f̂ (·) = α̂φ(·) +
∑

( j,k)∈Kε

θ̂jkψjk(·), (4)

where Kε is a finite set of indices that may be random or deterministic.

3. Maxiset approach

In order to assess the theoretical efficiency of estimators, Cohen et al. (2001b) suggested the
maxiset point of view. This new setting offers a complementary approach to the minimax one
and was successfully applied in order to differentiate between minimax-optimal estimators (see
among others (Kerkyacharian and Picard 2002; Autin 2004, 2008b).

In the following, we consider KK-estimators f̂μ,m associated with a given thresholding rule
μ (for a more general definition, see Definition 4.1). Roughly speaking, these are estimators
which set to zero all the empirical wavelet coefficients which are associated with a score that is
below a threshold of size mt (with t depending on the noise level ε), keeping the remaining ones
unchanged. Here, the choice of how to construct the threshold rule will be important, for example,
taking the maximum or a certain 
p-norm of the empirical wavelet coefficients.

Generally speaking, providing the maxiset performance of an estimator f̂μ,m means determining
the largest functional space (maxiset) Fμ,m over which the L2-risk of this estimator converges at
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4 F. Autin et al.

a prespecified rate v = vε , that is,

sup
0<ε<exp(−1)

v−1
ε E‖ f̂μ,m − f ‖2

2 < ∞ ⇐⇒ f ∈ Fμ,m.

Naturally, the rate vε tending to zero as ε → 0 translates into a rate of convergence of the
KK-estimator for N → ∞, as indicated above. We also refer the reader to the formulation of
Theorem 4.6 for an example of a rate vε which is classically used in the maxiset framework.

There exists some cases where the spaces Fμ,m generated by a thresholding estimator f̂μ,m are
different for different values of m (this aspect will be exemplified in Section 4.3). Hence, it is worth
paying attention to the role of the parameter m that is frequently passed out for asymptotic theory
but is crucial for practical purposes. To reduce this gap between the theoretical and the practical
setting, we choose to present our maxiset results for thresholding rules instead of thresholding
estimators, thereby we shall focus on the largest functional space over which the quadratic risk of
a wide range of estimators based on the same thresholding rule converges at a prespecified rate.
More specifically, for a positive real number M to be specified hereafter, we shall say that the
functional space Gμ,M is the maxiset of the thresholding rule μ for the rate of convergence v and
the L2-risk if and only if

sup
m≥2M

sup
0<ε<exp(−1)

v−1
ε E‖ f̂μ,m − f ‖2

2 < ∞ ⇐⇒ f ∈ Gμ,M .

In other words, the space Gμ,M can be viewed as the intersection of the functional spaces Fμ,m

over all m ≥ 2M.
Otherwise, from the maxiset point of view, the larger the maxiset the better the rule. Obviously,

the size of the maxiset depends on the chosen rate; the slower the rate the larger the maxiset. When
comparing distinct rules of reconstruction, we say that one is better than the other if the maxiset
of the one contains the maxiset of the other, for the same given rate.

The first maxiset results were provided by Cohen et al. (2001b) and Kerkyacharian and Picard
(2000, 2002) who determined the maximal functional spaces for estimators based on Hard and Soft
thresholding rules, respectively. They also proved that estimators built from the local bandwidth
selection rule of Lepski (1991) were at least as efficient as the latter ones.

As discussed in Autin (2004), thresholding rules with larger maxisets can be constructed from
rules that are not elitist – that is, rules that do not systematically kill all the ‘small’ empirical
wavelet coefficients. As examples, we cite estimators that rely on vertical-block thresholding
rules (see Cohen et al. 2001b; Autin 2008a,b; Autin et al. 2011a) or horizontal-block thresholding
rules (see, among others, Cai 1997, 1999, 2008; Hall, Kerkycharian, and Picard 1998a,b; Cai and
Silverman 2001; Cai and Zhou 2009; Autin et al. 2011b). When looking at these procedures, their
maxisets contain those of procedures based on elitist rules, including Hard and Soft thresholding
estimators, and also many Bayes procedures (see Autin, Picard, and Rivoirard 2006).

Nevertheless the following open question arises from these previous works: in order to estimate
a signal what is the best choice among vertical- and horizontal-block thresholding rules?

As emphasised in Section 1, the maxisets of vertical- and horizontal-block thresholding esti-
mators are not embedded and thus these estimators cannot be differentiated from one another.
Even in the practical setting, as shown by the quadratic risks of the estimators in the Figure 1 for
several test functions, it seems to be difficult to identify a winning method. Hence, from both a
theoretical and a practical point of view, the answer to the question is not clear.

As a way out, in this paper, we propose to combine existing thresholding rules so as to get a
new well-performing rule which reconstructs at least as many functions as the ones generated by
the vertical- and horizontal-block thresholding rules. To reach this goal, we first introduce a large
family of wavelet estimators built from thresholding rules.
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4. Maxiset properties of thresholding rules

From now on, we adopt the following choices:

• tε = ε
√

ln(ε−1),
• for any given λ > 0, jλ is the integer such that 2−jλ ≤ λ2 < 21−jλ .

Note that the first of the two above choices determines notably the order of the threshold value
as a function of the noise level (see Definition 4.1). The reader can immediately remark that,
in terms of the parameters of the nonparametric regression model (2), it is about the order of
the classical universal threshold as detailed in Section 6.2. The second choice will be used, with
λ = mtε , in Definition 4.1 to specify the index set Kε (as introduced by Equation (4)) of the
specific KK-estimator f̂μ,m of our interest.

4.1. Estimators built from thresholding rules

Let us now introduce a family of wavelet estimators built from thresholding rules. The following
definition is a slight generalisation of the one given byAutin (2008b) in that condition (2.3) therein
is not required here.

Definition 4.1 Let m > 0 and consider the sequential model (3). An estimator f̂μ,m is called
(μ, m) thresholding estimator if there exists a thresholding rule μ that is a sequence of non-
negative functions (μjk(m, tε , ·))j,k that are monotonically nonincreasing with respect to m, and
such that,

f̂μ,m(·) = α̂φ(·) +
∑

j∈N, j<jmtε

2j−1∑
k=0

θ̂jk1{μjk(m, tε , θ̂ ) > mtε}ψjk(·)

:= α̂φ(·) +
∑

( j,k)∈Kε,m,μ

θ̂jkψjk(·).

In the previous expression, Kε,m,μ also denotes the set of couple of indices kept by the (μ, m)

thresholding estimator. We remark that a (μ, m) thresholding estimator f̂μ,m does not use empirical
wavelet coefficients θ̂jk with j ≥ jmtε .

For a given sequence of empirical wavelet coefficients θ̂ = (θ̂j,k)j,k , some examples of thresh-
olding rules μ and of the (μ, m) thresholding estimator (m > 0) associated with are the
following:

• The Hard thresholding rule μH : μH
jk(m, tε , θ̂ ) := |θ̂jk|.

The (μH, m) thresholding estimator relies on a basic elitist rule which keeps in the signal recon-
struction only the empirical wavelet coefficients strictly greater than the threshold value mtε in
absolute value. The other ones are killed.

• The Hard Tree thresholding rule μT : μT
jk(m, tε , θ̂ ) := max( j′,k′)∈Tj,k(mtε ) |θ̂j′k′ |.

The (μT, m) thresholding estimator was already studied by Autin (2008a) and Autin et al. (2011a).
It relies on a rule which keeps empirical wavelet coefficients with level strictly less than jmtε that
are larger in absolute value than the threshold mtε and keeps their ancestors in the dyadic tree
rooted a ( j0, k0) := (0, 0) too. Here, for any j < jmtε , Tj,k(mtε) corresponds to the dyadic tree
rooted at ( j, k) and being reduced to indices with level strictly less than jmtε . For j ≥ jmtε , it is
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6 F. Autin et al.

the singleton {( j, k)}. This estimator is tree structured (i.e. the empirical wavelet coefficients that
have been kept for the signal reconstruction satisfy the hereditary constraint of Engel 1994). They
can be viewed as both a hybrid wavelet version of Lepski’s kernel method (see Autin 2008a) and
a vertical-block thresholding method (see Autin et al. 2011a).

• The BlockShrink rule μB : μB
jk(m, tε , θ̂ ) := (

∑
k′∈Pj,k(ε)

θ̂2
jk′)1/2.

The (μB, m) thresholding estimator was studied by Cai (1997) and Autin et al. (2011b). It relies
on a rule which keeps empirical wavelet coefficients if the l2-norm of the empirical wavelet
coefficients from their block is larger than the threshold value mtε . Here, Pj,k(ε) denotes the block
that contains ( j, k). Blocks are non-overlapping with common size ln(ε−1)� = − ln(F−1(tε))�,
where F−1 is the inverse function of F : ε −→ F(ε) := tε and x� denotes the smallest integer
bigger than or equal to x. A precise description is given in Cai (1997) and Autin et al. (2011b) in
particular for handling boundaries.

More generally, for wise choices of μ, the resulting estimators show good theoretical and
practical performance. In particular, we recall in the next section that the sets of functions they
are able to well estimate are quite large for near minimax rates (see Cohen, Dahmen, Daubechies,
and DeVore 2001a; Autin 2004, 2008b).

4.2. Maxiset results

In this section, our aim is twofold. We provide the maxisets of thresholding rules in Theorem 4.6,
and we recall sufficient conditions to guarantee large maxisets such as the cautiousness of a
thresholding rule (see Definition 4.7 and Corollary 4.9). To begin, let us define the functional
spaces that shall appear in our future maxiset results.

Definition 4.2 Let 0 < u < V , where V is the number of vanishing moments of the chosen
wavelet basis. A function f ∈ L2([0, 1]) belongs to the Besov space Bu

2,∞ if and only if:

sup
J≥0

22Ju
∑
j≥J

2j−1∑
k=0

θ2
jk < ∞.

FollowingAutin (2004), for any chosen rate v, Besov spaces Bu
2,∞ usually appear when studying

the maxisets of wavelet estimators that kill any empirical wavelet coefficient with a level greater
than or equal to a maximum resolution level jε = O(ln(v−1

ε )) (0 < ε < exp(−1)).

Definition 4.3 Let m′ ≥ 1, 0 < r < 2 and a thresholding rule μ be given. A function
f ∈ L2([0, 1]) belongs to the space Wμ,m′(r) if and only if

sup
m≥m′

sup
0<λ<exp(−1)

(mλ)r−2
∑
j∈N

2j−1∑
k=0

θ2
jk1{μjk(m, λ, θ) ≤ mλ} < ∞.

The spaces Wμ,m′(r) contain functions for which there is a control of the energy of their wavelet
coefficients that do not survive the thresholding rule μ.

We now give sufficient conditions in order to prepare our future maxiset results. As usual in
the maxiset setting, we shall suppose that a large-deviation property (LD-property) will hold
to derive our results. This kind of property ensures that large-deviation quantities that naturally
appear when bounding the decomposition of the risk of a (μ, m) thresholding estimator are small
enough.
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Journal of Nonparametric Statistics 7

Definition 4.4 We say that a thresholding rule μ satisfies the LD-property if and only if for any
given ν > 0 there exists mμ,ν ≥ 1 such that for any m ≥ mμ,ν , any ( j, k) and any sequence of real
numbers θ and Gaussian random variables θ̂ connected to θ via model (3),

sup
0<ε<exp(−1)

ε−ν
P(|μjk(m, tε , θ̂ ) − μjk(m, tε , θ)| > mμ,ν tε) ≤ 1

2
.

Remark 1 Note that for the examples of thresholding rules we gave, the LD-property is satisfied
for

• μH, when choosing mμH,ν = √
2ν + 4 ln(2) (due to the concentration inequality for standard

Gaussian variables: P(|Z| > t) ≤ 2 exp(−t2/2), t > 0, Z ∼ N (0, 1) see Gordon 1941),
• μT, when choosing mμT,ν = √

2(ν + 2 + 2 ln(2)) (due to the concentration inequality for
standard Gaussian variables),

• μB, when choosing mμB,ν such that m2
μB,ν − 2 ln(mμB,ν) = 2ν + 1 (obtained from inequality

(9.9) given in Cai 1999).

Another definition given hereafter states that for any sequence θ = (θjk)j,k , the number of coeffi-
cients kept by the method must not be too large to hope for large maxisets (seeAutin 2004, 2008b).
That is the reason why we shall focus on the rules that satisfy the sparsity property (S-property).

Definition 4.5 We say that a thresholding rule μ satisfies the S-property if and only if there
exists Cμ > 0 such that for any 0 < ε < exp(−1), any m > 0 and any sequence of real numbers
θ = (θjk)j,k :

∑
j<jmtε

2j−1∑
k=0

1
{
μjk(m, tε , θ) >

mtε
2

}

≤ Cμ ln(ε−1)
∑
n∈N

(m2ntε)
−2

∑
j∈N

2j−1∑
k=0

θ2
jk1{μjk(m, tε , θ) ≤ m2ntε}.

Note that rules μH, μT and μB satisfy the S-property (see alsoAutin 2008b orAutin et al. 2011a,b).

Theorem 4.6 Let s > 0. Consider a thresholding rule μ such that the LD-property and the
S-property hold. Then, for any m′ ≥ mμ,4, we have the following equivalence:

sup
m≥2m′

sup
0<ε<exp(−1)

(mtε)
−4s/(1+2s)

E‖ f̂μ,m − f ‖2
2 < ∞ ⇐⇒ f ∈ Gμ,m′ ,

with

Gμ,m′ := Bs/(1+2s)
2,∞ ∩ Wμ,m′(2/(1 + 2s)). (5)

Remark 2 There is a natural and interesting interpretation of Theorem 4.6. The S-property
ensures that the functions to be estimated have a sufficient degree of sparsity to be able to control
the variance of our thresholding rules at the level required by the prespecified rate. Here, we are
naturally interested in thresholding rules that outperform, in the maxiset sense, at least the Hard
thresholding one. In order to construct such rules, we got inspired from the definition of the spaces
Wμ,m′(r). We find as natural candidates those rules for which the set Kε,m,μ contains Kε,m,μH , for
any 0 < ε < exp(−1) and any m > 0.
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8 F. Autin et al.

Definition 4.7 We say that a thresholding rule μ is cautious if and only if the following property
holds for any m > 0, any ( j, k) and any 0 < ε < exp(−1) :

μjk(m, tε , θ̂ ) ≥ |θ̂jk| ∀ θ̂ .

Note that a cautious rule μ does not kill any of the coefficients that are kept by the Hard thresholding
rule. In particular,

Kε,m,μ ⊃ Kε,m,μH for any 0 < ε < exp(−1) and any m > 0.

The thresholding rules μH, μT and μB are clearly cautious. According to Definition 4.3 and
following Remark 2 of Section 4, one gets the following result.

Proposition 4.8 Let μ be a cautious rule. Then, for any m′ ≥ 1 and any 0 < r < 2,

Wμ,m′(r) ⊃ WμH,m′(r).

As a direct consequence of Theorem 4.6 and Proposition 4.8, we get the following corollary.

Corollary 4.9 Let μ be a cautious rule such that the LD-property and the S-property hold.
Consider, as in Theorem 4.6, m′ ≥ mμ,4. Then, the set of functions well estimated by the
thresholding rule μ is quite large. Indeed, for any s > 0,

f ∈ GμH ,m′ =⇒ sup
m≥2m′

sup
0<ε<exp(−1)

(mtε)
−4s/(1+2s)

E‖ f̂μ,m − f ‖2
2 < ∞,

with GμH,m′ := Bs/(1+2s)
2,∞ ∩ WμH,m′(2/(1 + 2s)).

Remark 3 We recall that the functional set GμH,m′ can be considered as a large functional space
since it contains the space Bs

2,∞ (see among others Autin 2004).

4.3. A note for some particular thresholding rules

Before going further, we pay attention to particular thresholding rules for which the associated
spaces Wμ,m′(r) (0 < r < 2) are identical for any value of m′ ≥ 1.

Definition 4.10 A thresholding rule μ is said to satisfy the connection property (C-property) if
and only if, for any ( j, k), any (m, ε) and any sequence of real numbers θ ,

μjk(m, tε , θ) only depends on parameters mtε and θ .

In the sequel, we use μ̃jk(mtε , θ) := μjk(m, tε , θ) to denote a thresholding rule μ satisfying the
C-property.

Proposition 4.11 Consider a thresholding rule μ satisfying the C-property. Then, for any 0 <

r < 2 and any m′ ≥ 1

Wμ,m′(r) = Wμ̃(r),

where Wμ̃(r) is the set of functions f ∈ L2([0, 1]) such that

sup
λ>0

λr−2
∑
j∈N

2j−1∑
k=0

θ2
jk1{μ̃jk(λ, θ) ≤ λ} < ∞.
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Remark 4

(a) The proof of the previous proposition is obvious by considering the required change of
variables.

(b) Note that both μH and μT satisfy the C-property, whereas μB does not. For the latter case,
various values of m′ generate distinct functional spaces WμB,m′(r). In particular, note that
WμB,m′(r) can be rewritten as the space of functions f such that

sup
m≥m′

sup
0<λ<m exp(−1)

λr−2
∑
j∈N

2j−1∑
k=0

θ2
jk1

⎧⎨
⎩

⎛
⎝ ∑

k′∈Pj,k(F−1(λ/m))

θ2
jk′

⎞
⎠

1/2

≤ λ

⎫⎬
⎭ < ∞.

5. Combining thresholding rules to get larger maxisets

We present a method to get more powerful thresholding rules in the maxiset sense and to address
the problem of not nested maxisets. Following Remark 2, we are naturally interested in combining
many thresholding rules that have non-nested maxisets. Nevertheless, we must keep in mind that
too greedy thresholding rules, in the sense of rules being associated with a set Kε,m,μ with too
large cardinality, could induce poor maxisets too. A way to ensure large maxisets is to preserve the
S-property (see Definition 4.5) when combining the thresholding rules. This leads to a limitation
of our method that will be detailed in Section 5.2.

5.1. Asking for the maximum of thresholding rules

The next proposition gives the way to combine thresholding rules in an appropriate manner. It can
be viewed as a special case of model averaging in the coefficient domain over thresholding rules.
As our objective is to enlarge the space Wμ,m′ , we have to increase the score of the combination.
Therefore, we consider the maximum of the scores over the thresholding rules as described
hereafter.

Proposition 5.1 Let μ(1) and μ(2) be two thresholding rules which satisfy the LD-property.
Consider, for any m > 0,

f̂μ(3),m(·) = α̂φ(·) +
∑

j<jmtε

2j−1∑
k=0

θ̂jk1{μ(3)

jk (m, tε , θ̂ ) > mtε}ψjk(·)

= α̂φ(·) +
∑

j<jmtε

2j−1∑
k=0

θ̂jk1{max(μ
(1)

jk (m, tε , θ̂ ), μ(2)

jk (m, tε , θ̂ )) > mtε}ψjk(·).

Then,μ(3) is a thresholding rule satisfying the LD-property, with mμ(3),ν = max(mμ(1),ν+1, mμ(2),ν+1),
for any ν > 0.

Proposition 5.1 reflects the key point of our method to get thresholding rules with larger maxisets.
Indeed, the following corollary of Theorem 4.6 and Proposition 5.1 holds.

Corollary 5.2 Let s > 0 and μ(1) and μ(2) be two thresholding rules which satisfy the LD-
property and the S-property. Consider estimators f̂μ(3),m (m > 0) defined as in the previous lemma.
If μ(3) satisfies the S-property too, then for any m′ ≥ mμ(3),4,
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10 F. Autin et al.

(a) supm≥2m′ sup0<ε<exp(−1)(mtε)−4s/(1+2s)
E‖ f̂μ(3),m − f ‖2

2 < ∞ ⇐⇒ f ∈ Gμ(3),m′ .
(b) Gμ(3),m′ ⊃ Gμ(1),m′ ∪ Gμ(2),m′ .

Definitions of the spaces Gμ(i),m′ (i ∈ {1, 2, 3}) are done in Equation (5).

In Corollary 5.2, the equivalence given in (a) means that considering the maximum of two
thresholding rules generates a new thresholding rule for which maxiset have been determined,
provided that the LD-property and the S-property are satisfied. The embedding property (b) is
quite interesting since it proves that from two chosen thresholding rules μ(1) and μ(2) with possibly
not nested maxisets and satisfying the LD-property and the S-property, we are able to construct a
new rule μ(3) which is at least as efficient as the two previous ones in the maxiset sense, provided
that μ(3) satisfies the S-property.

Remark 1 The corollary 5.2 shows that this way to combine thresholding rules yields larger
maxisets. We would like to remark that this methodology holds for shrinkage rules, too.

5.2. Limitation of the method

In this paragraph, we point out a limitation of our method to achieve enlargements of maxisets.
In fact, we will see that we cannot treat the case of a function for which any cautious rule would
fail to estimate with the prespecified rate. We deduce this limitation from the facts that, first, we
naturally want that maxiset to contain one of the Hard thresholding; second, if at least one of the
thresholding rules is cautious, then, its combination with other rules is cautious too. We give this
result in Theorem 5.4 but we need first to define a new important functional space.

Definition 5.3 Let m′ ≥ 1, 0 < r < 2 and F−1 be the function defined in Section 4.1. A function
f belongs to the space W�,m′(r) if and only if

sup
0<λ<4m′ exp(−1)

λr−2

(
F−1

(
λ

4m′

))2 ∑
j≤jλ+1

2j−1∑
k=0

1{|θjk| > λ} < ∞.

The spaces W�,m′(r) play a crucial role in the limitation in our method as we shall see Theorem 5.4.
These spaces characterise functional spaces that are upper bounds for the maxisets of cautious
rules. From their definition, we deduce that functions that are not sparse enough – that is, possess
too many large wavelet coefficients – will not be estimated at the prespecified rate by using a
cautious rule.

Theorem 5.4 (Limitation of the method for enlarging maxisets) Let s > 0 and μ be a cautious
rule satisfying the LD-property. Then, for any m′ ≥ mμ,4,

sup
m≥2m′

sup
0<ε<exp(−1)

(mtε)
−4s/(1+2s)

E‖ f̂μ,m − f ‖2
2 < ∞ =⇒ f ∈ G�,m′ ,

with G�,m′ := Bs/(1+2s)
2,∞ ∩ W�,m′(2/(1 + 2s)).

As a conclusion, we proved first that larger maxisets can be obtained by combining existing
thresholding rules that satisfy both the LD- and the S-properties. Second, there exists a well-
defined limitation to this method, meaning that thresholding rules emerging from our procedure
fail whenever we are dealing with functions that cannot be estimated with the prespecified rate
by any cautious rule.
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6. Example: Combining block thresholding rules

6.1. Maxiset for the Block Tree rule

In this section, we provide an example of our method by combining the Blockshrink and the Hard
Tree rules, as we suggested in Section 1. To the best of our knowledge, the largest maxisets of
thresholding rules which have been provided up to now are those of the thresholding rules μT and
μB and they are known not to be embedded.

As previously precised, these two thresholding rules satisfy the LD-property and the S-property.
When combining these two rules, we get the following rule, called Block Tree rule,

μBT
jk (m, tε , θ̂ ) := max

⎛
⎝ max

( j′,k′)∈Tj,k(mtε )
|θ̂j′k′ |,

⎛
⎝ ∑

k′∈Pj,k(ε)

θ̂2
jk′

⎞
⎠

1/2⎞
⎠

that clearly satisfies the S-property. From Corollary 5.2, we get the following.

Corollary 6.1 Let s > 0 and m′ ≥ max(mμT,5, mμB,5). Then,

sup
m≥2m′

sup
0<ε<exp(−1)

(mtε)
−4s/(1+2s)

E‖ f̂μBT,m − f ‖2
2 < ∞ ⇐⇒ f ∈ GμBT,m′ ,

with GμBT,m′ := Bs/(1+2s)
2,∞ ∩ WμBT,m′(2/(1 + 2s)).

6.2. Numerical experiments

We propose to illustrate our theoretical results with the following numerical experiments. Let us
recall, from Equation (2), the notations of the nonparametric model we are dealing with:

Yi = f

(
i

N

)
+ σζi, 1 ≤ i ≤ N , ζi are i.i.d. N (0, 1),

as well as the classical calibration ε = σ/
√

N .
Using this model, we generate the data sets from a large panel of functions often used in wavelet

estimation studies (see Antoniadis, Bigot, and Sapatinas 2001), the number of observations is
N = 2048 and the signal-to-noise ratio, defined as the logarithmic decibel scale of the ratio of
the standard deviation of the function values to the standard deviation of the noise, is set to
10. We use the Daubechies least asymmetric wavelets with eight vanishing moments. We use
the universal threshold value σ̂

√
2 ln(N) for the Hard Tree estimator f̂HT and σ̂

√
5 ln(N) for the

Blockshrink estimator f̂B as suggested in Cai (1997). We adopt the standard approach to estimate
σ by computing the median absolute deviation over the thresholded wavelet coefficients at the
finest wavelet scale (see e.g. Vidakovic 1999).

The integrated squared error of the estimator f̂ at the uth Monte Carlo replication (1 ≤ u ≤ U)
(ISE(u)(f̂ )) is computed as follows:

ISE(u)(f̂ ) = 1

N

N∑
i=1

(
f̂ (u)

(
i

N

)
− f

(
i

N

))2

.

The mean ISE (MISE) is computed over U = 200 Monte Carlo replications:

MISE(f̂ ) = 1

U

U∑
u=1

ISE(u)(f̂ ).
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12 F. Autin et al.

Table 1. MISE (10−4), number of false positives/negatives and average size of the number of non-zero empirical
wavelet coefficients in the estimator.

f̂B f̂HT f̂BT f̂O f̂B f̂HT f̂BT f̂O

Function: Step Function: Doppler
MISE 7.70 7.19 6.26 2.57 2.13 2.30 1.84 1.06
False positives 25.9 0.9 26.5 0.0 24.5 7.9 24.9 0.0
False negatives 15.7 22.3 12.1 0.0 11.3 20.7 10.1 0.0
Size 60.2 28.6 64.4 50.0 75.2 49.2 76.8 62.0

Function: Wave Function: Angles
MISE 1.01 2.62 1.03 0.77 1.31 1.83 1.33 0.77
False positives 5.3 4.5 9.8 0.0 4.8 1.2 5.9 0.0
False negatives 6.2 20.4 2.2 0.0 6.7 13.8 6.2 0.0
Size 53.1 38.0 61.6 53.0 33.0 22.4 34.7 35.0

Function: Blip Function: Parabolas
MISE 1.91 1.89 1.47 0.76 1.20 1.77 1.28 0.82
False positives 16.9 1.0 17.9 0.0 8.0 1.0 8.9 0.0
False negatives 6.6 13.0 5.1 0.0 2.0 7.2 1.7 0.0
Size 47.3 25.0 49.8 37.00 30.0 17.8 31.2 24.0

Function: Blocks Function: time.shift.sine
MISE 4.53 3.94 3.10 1.40 0.85 1.30 0.92 0.56
False positives 47.3 0.6 47.7 0.0 11.8 1.1 12.8 0.0
False negatives 59.3 80.5 49.4 0.0 0.2 5.4 0.2 0.0
Size 139.9 72.0 150.3 152.0 36.6 20.7 37.6 25.0

Function: Bumps Function: Spikes
MISE 1.36 1.44 1.14 0.56 0.54 0.84 0.54 0.34
False positives 104.4 2.2 104.6 0.0 17.6 1.6 18.1 0.0
False negatives 32.4 72.8 28.2 0.0 9.2 21.6 8.8 0.0
Size 241.0 98.4 245.4 169.0 75.5 47.0 76.3 66.0

Function: Heavisine Function: Corner
MISE 2.01 1.51 1.49 0.76 0.43 0.67 0.45 0.25
False positives 7.8 0.8 8.4 0.0 5.3 1.1 6.3 0.0
False negatives 13.0 15.6 10.6 0.0 3.9 7.4 3.7 0.0
Size 23.7 14.2 26.8 28.0 23.4 15.7 24.6 22.0

Note: f̂B, f̂HT, f̂BT and f̂O are, respectively, the Blockshrink, Hard Tree, Block Tree and Oracle estimators.

We use the connections between keep-or-kill estimation and hypothesis testing (see Abramovich,
Benjamini, Donoho, and Johnstone 2006) in order to report in Table 1 the number of false
positives/negatives (i.e. type I/II errors). This is obtained by comparing the set of indices of
wavelet coefficients kept by each estimator with the set of indices kept by the keep-or-kill Oracle
estimator

f̂O(·) = α̂φ(·) +
∑

( j,k)∈SO

θ̂jkψjk(·),

where SO = {( j, k); j ∈ N, j < jλσ/
√

N ,p; 0 ≤ k < 2j; |θjk| > σ/
√

N}.
When comparing the MISE results of the Blockshrink and of the Hard Tree estimators in

Table 1, we understand that in practical situations we would not be able to decide which one to
use. Indeed, according to the test function, it could be either the Blockshrink or the Hard Tree that
performs the best. When not optimal, their MISE can be larger up to 33% (resp. 160%) compared
with the other method. That is a potential huge loss for a practitioner who does not choose the
method adapted to the target function we want to reconstruct. This observation is exactly what
the maxiset approach suggests when the maxiset of these two methods are not nested. When
looking at the results of the Block Tree estimator f̂BT, it often provides the lowest MISE. If this
is not the case, the deviation w.r.t. the MISE of the Blockshrink or of the Hard Tree does not
pass over a reasonable 8%. There is no doubt that the Block Tree estimator is to be preferred
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Journal of Nonparametric Statistics 13

over the other two. Table 1 shows the impressive synergy when combining methods to increase
the true discoveries at a comparatively low price in terms of false positives yielding these good
performances of the Block Tree estimator.

Remark 1 When comparing the behaviour of Blockshrink and Hard Tree estimators, they are
quite sensitive to the choice of the wavelet family and regularity. Nevertheless, whatever the
setting is, the Block Tree estimator remains the estimator to be preferred.
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A. Appendix

This section aims at proving the results provided in our study. In the sequel, C denotes a generic constant which does not
depend on ε and that may be different from one line to another.

A.1. A technical lemma and its proof

We begin by introducing a technical lemma that will be useful later.

Lemma A.1 Let s > 0 and m′ ≥ 1. Consider a thresholding rule μ that satisfies the S-property. Then,

f ∈ Wμ,m′ (2/(1 + 2s))

⇓

sup
m≥m′

sup
0<ε<exp(−1)

(mtε)
2/(1+2s)(ln(ε−1))−1

∑
j<jmtε

2j−1∑
k=0

1
{
μjk(m, tε , θ) >

mtε
2

}
< ∞,

where θ = (θjk)j,k is connected to f , thanks to Equation (1).

Proof Fix s > 0, m ≥ m′ ≥ 1 and 0 < ε < exp(−1). Let μ be a thresholding rule that satisfies the S-property and
consider f ∈ Wμ,m′ (2/(1 + 2s)).

Because of the S-property and the monotonicity of the functions μjk ,

∑
j<jmtε

2j−1∑
k=0

1
{
μjk(m, tε , θ) >

mtε
2

}

≤ Cμ ln(ε−1)
∑
n∈N

(m2ntε)
−2

∑
j∈N

2j−1∑
k=0

θ2
jk1{μjk(m, tε , θ) ≤ m2ntε}

≤ Cμ ln(ε−1)
∑
n∈N

(m2ntε)
−2

∑
j∈N

2j−1∑
k=0

θ2
jk1{μjk(m2n, tε , θ) ≤ m2ntε}

≤ C ln(ε−1)
∑
n∈N

(m2ntε)
−2(m2ntε)

2−2/(1+2s)

≤ C ln(ε−1)(mtε)
−2/(1+2s).

Therefore,

sup
m≥m′

sup
0<ε<exp(−1)

(mtε)
2/(1+2s)(ln(ε−1))−1

∑
j<jmtε

2j−1∑
k=0

1
{
μjk(m, tε , θ) >

m

2
tε

}
< ∞.

�

A.2. Proof of Theorem 4.6

Proof (=⇒) Let a thresholding rule μ satisfy the LD- and the S-properties and m′ ≥ mμ,4. Suppose that there exists
C > 0 such that E‖f̂μ,m − f ‖2

2 ≤ C (mtε)4s/(1+2s), for any m ≥ 2m′ and any 0 < ε < exp(−1).
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Fix m ≥ 2m′.

∑
j≥jmtε

2j−1∑
k=0

θ2
jk ≤ E‖f̂μ,m − f ‖2

2

≤ C(mtε)
4s/(1+2s)

≤ C2−2s/(1+2s)jmtε .

Using the continuity of F in ε, we deduce that f ∈ Bs/1+2s
2,∞ . Moreover,

(
mtε
2

)−4s/(1+2s) ∑
j∈N

2j−1∑
k=0

θ2
jk1

{
μjk

( m

2
, tε , θ

)
≤ m

2
tε

}
= A1 + A2 + A3,

with

A1 =
(

mtε
2

)−4s/(1+2s)

E

⎡
⎣ ∑

j<jmtε

2j−1∑
k=0

θ2
jk1

{
μjk

( m

2
, tε , θ

)
≤ m

2
tε

}
1{μjk(m, tε , θ̂ ) ≤ mtε}

⎤
⎦

≤
(

mtε
2

)−4s/(1+2s)

E

⎡
⎣ ∑

j<jmtε

2j−1∑
k=0

θ2
jk1{μjk(m, tε , θ̂ ) ≤ mtε}

⎤
⎦

≤
(

mtε
2

)−4s/(1+2s)

E‖f̂μ,m − f ‖2
2

≤ C,

A2 =
(

mtε
2

)−4s/(1+2s)

E

⎡
⎣ ∑

j<jmtε

2j−1∑
k=0

θ2
jk1

{
μjk

( m

2
, tε , θ

)
≤ m

2
tε

}
1{μjk(m, tε , θ̂ ) > mtε}

⎤
⎦

≤
(

mtε
2

)−4s/(1+2s)

E

⎡
⎣ ∑

j<jmtε

2j−1∑
k=0

θ2
jk1

{
|μjk(m, tε , θ̂ ) − μjk(m, tε , θ)| >

m

2
tε

}⎤
⎦

=
(

mtε
2

)−4s/(1+2s) ∑
j<jmtε

2j−1∑
k=0

θ2
jkP

(
|μjk(m, tε , θ̂ ) − μjk(m, tε , θ)| >

m

2
tε

)

≤ C(mtε)
−4s/(1+2s)ε4

≤ C.

The last inequalities use the monotonicity of the functions μjk with respect to the first variable, the LD-property and the
fact that m ≥ 2mμ,4.

Now

A3 =
(

mtε
2

)−4s/(1+2s) ∑
j≥jmtε

2j−1∑
k=0

θ2
jk1

{
μjk

( m

2
, tε , θ

)
≤ m

2
tε

}

≤
(

mtε
2

)−4s/(1+2s) ∑
j≥jmtε

2j−1∑
k=0

θ2
jk

≤ C (mtε)
−4s/(1+2s) 2−2s/(1+2s)jmtε

≤ C.

The last inequality holds since we have already proved that f ∈ Bs/(1+2s)
2,∞ . When combining the bounds of A1, A2 and

A3 and when using the continuity of F in ε, one deduces that f ∈ Wμ,m′ (2/(1 + 2s)). Finally, one gets f ∈ Gμ,m′ .
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16 F. Autin et al.

(⇐=) Suppose that f ∈ Bs/(1+2s)
2,∞ ∩ Wμ,m′ (2/(1 + 2s)) with m′ ≥ mμ,4. For any m ≥ 2m′ and any 0 < ε < exp(−1),

the L2-risk of the estimator f̂μ,m can be decomposed as follows:

E‖ f̂μ,m − f ‖2
2 = E

⎡
⎣ ∑

j<jmtε

2j−1∑
k=0

θ2
jk1{μjk(m, tε , θ̂ ) ≤ mtε}

⎤
⎦

+ E

⎡
⎣ ∑

j<jmtε

2j−1∑
k=0

(θ̂jk − θjk)
21{μjk(m, tε , θ̂ ) > mtε}

⎤
⎦

+
∑

j≥jmtε

2j−1∑
k=0

θ2
jk + ε2

= A4 + A5 + A6.

Since f ∈ Bs/(1+2s)
2,∞ ∩ Wμ,m′ (2/(1 + 2s)) and due to the LD-property

A4 = E

⎡
⎣ ∑

j<jmtε

2j−1∑
k=0

θ2
jk1{μjk(m, tε , θ̂ ) ≤ mtε}

⎤
⎦

≤
∑

j<jmtε

2j−1∑
k=0

θ2
jk1{μjk(2m, tε , θ) ≤ 2mtε}

+
∑

j<jmtε

2j−1∑
k=0

θ2
jkP(|μjk(m, tε , θ̂ ) − μjk(m, tε , θ)| > mtε)

≤ C[(mtε)
4s/(1+2s) + ε4]

≤ C(mtε)
4s/(1+2s).

Using the Cauchy–Schwarz inequality, the LD-property and Lemma A.1,

A5 =
∑

j<jmtε

2j−1∑
k=0

E[(θ̂jk − θjk)
21{μjk(m, tε , θ̂ ) > mtε}]

≤
∑

j<jmtε

2j−1∑
k=0

E

[
(θ̂jk − θjk)

21
{
μjk(m, tε , θ) >

m

2
tε

}]

+ Cε2
∑

j<jmtε

2j−1∑
k=0

P
1/2

(
|μjk(m, tε , θ̂ ) − μjk(m, tε , θ)| >

m

2
tε

)

≤ C((mtε)
4s/(1+2s) + ε2)

≤ C(mtε)
4s/(1+2s).

Since f ∈ Bs/(1+2s)
2,∞

A6 = ε2 +
∑

j≥jmtε

2j−1∑
k=0

θ2
jk

≤ ε2 + C2−2s/(1+2s)jmtε

≤ C(mtε)
4s/(1+2s).

When combining the bounds of A4, A5 and A6 and using the continuity of F in ε, one deduces that

sup
m≥2m′

sup
0<ε<exp(−1)

(mtε)
−4s/(1+2s)

E‖f̂μ,m − f ‖2
2 < ∞.

This ends the proof. �
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A.3. Proof of Proposition 5.1

Proof It is obvious that μ(3) is a thresholding rule that generates (μ(3), m) thresholding estimators. Suppose that μ(1)

and μ(2) satisfy the LD-property and consider for any ν > 0, mμ(3) ,ν = max(mμ(1) ,ν+1, mμ(2) ,ν+1). Then, for any 0 < ε <

exp(−1) and any m ≥ mμ(3) ,ν ,

P(|μ(3)
jk (m, tε , θ̂ ) − μ

(3)
jk (m, tε , θ)| > mμ(3) ,ν tε)

≤
2∑

i=1

P(|μ(i)
jk (m, tε , θ̂ ) − μ

(i)
jk (m, tε , θ)| > mμ(3) ,ν tε)

≤
2∑

i=1

P(|μ(i)
jk (m, tε , θ̂ ) − μ

(i)
jk (m, tε , θ)| > mμ(i) ,ν+1tε)

≤ εν+1

≤ εν

2
.

Hence, μ(3) satisfies the LD-property too. �

A.4. Proof of Corollary 5.2

Proof

(a) It is a direct consequence of Proposition 5.1 and Theorem 4.6.
(b) This point becomes obvious when looking at the definition of spaces Wμi ,m′ (2/(1 + 2s)) (with i ∈ {1, 2, 3}). Indeed,

for any m ≥ m′, any 0 < ε < exp(−1) and any sequence of real numbers θ ,

μ
(3)
j,k (m, tε , θ) = max(μ

(1)
j,k (m, tε , θ), μ(2)

j,k (m, tε , θ)) ≥ μ
(i)
j,k(m, tε , θ), for i ∈ {1, 2}.

�

A.5. Proof of Theorem 5.4

Proof Consider a cautious rule μ that satisfies the LD-property and m′ ≥ mμ,4. Assume that there exists C > 0 such
that, for any 0 < ε < exp(−1) and any m ≥ 2m′,

E‖ f̂μ,m − f ‖2
2 ≤ C(mtε)

4s/(1+2s).

Then,

∑
j≥j2m′ tε

2j−1∑
k=0

θ2
jk ≤ E‖ f̂μ,2m′ − f ‖2

2

≤ C(2m′tε)4s/(1+2s)

≤ C2−2s/(1+2s)j2m′ tε .

Using the continuity of F in ε, one gets f ∈ Bs/(1+2s)
2,∞ .

Let us now prove that f necessarily belongs to W�,m′ (2/(1 + 2s)), that is,

sup
0<λ<4m′ exp(−1)

λ−4s/(1+2s)
(

F−1
(

λ

4m′

))2 ∑
j≤jλ+1

2j−1∑
k=0

1{|θjk | > λ} < ∞.

When considering the change of variables tε = λ(4m′)−1 for 0 < λ < 4m′ exp(−1), one aims at proving that

sup
0<ε<exp(−1)

ε2(m′tε)−4s/(1+2s)
∑

j<j2m′ tε

2j−1∑
k=0

1{|θjk | > 4m′tε} < ∞.
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Since μ is a cautious rule, for any 0 < ε < exp(−1),

ε2
∑

j<j2m′ tε

2j−1∑
k=0

1{|θjk | > 4m′tε} ≤ ε2
∑

j<j2m′ tε

2j−1∑
k=0

1{μjk(2m′, tε , θ) > 4m′tε}

= E

⎡
⎣ ∑

j<j2m′ tε

2j−1∑
k=0

(θ̂jk − θjk)
21{μjk(2m′, tε , θ) > 4m′tε}

⎤
⎦

= B1 + B2,

with

B1 = E

⎡
⎣ ∑

j<j2m′ tε

2j−1∑
k=0

(θ̂jk − θjk)
21{μjk(2m′, tε , θ) > 4m′tε}1{μjk(2m′, tε , θ̂ ) > 2m′tε}

⎤
⎦

≤ E

⎡
⎣ ∑

j<j2m′ tε

2j−1∑
k=0

(θ̂jk − θjk)
21{μjk(2m′, tε , θ̂ ) > 2m′tε}

⎤
⎦

≤ E‖ f̂μ,2m′ − f ‖2
2

≤ C(m′tε)4s/(1+2s),

and because of the LD-property and the Cauchy–Schwarz inequality

B2 = E

⎡
⎣ ∑

j<j2m′ tε

2j−1∑
k=0

(θ̂jk − θjk)
21{μjk(2m′, tε , θ) > 4m′tε}1{μjk(2m′, tε , θ̂ ) ≤ 2m′tε}

⎤
⎦

≤ Cε2
∑

j<j2m′ tε

2j−1∑
k=0

P
1/2(|μjk(2m′, tε , θ̂ ) − μjk(2m′, tε , θ)| > 2m′tε})

≤ Cε2

≤ C(m′tε)4s/(1+2s).

The last inequality is obtained because of m′ ≥ mμ,4.
Combining B1 and B2 and still using the continuity of F in ε, one gets f ∈ W�,m′ (2/(1 + 2s)). Hence, f ∈ G�,m′ . This

ends the proof. �
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