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The problem of density estimation on R is considered. Adopting the maxiset point of view, we
focus on performance of adaptive procedures. Any rule which consists in neglecting the wavelet
empirical coefficients smaller than a sequence of thresholds vn will be called an elitist rule. We
prove that for such a procedure the maximal space for the rate vαp

n , with 0 < α < 1, is always
contained in the intersection of a Besov space and a weak Besov space. With no assumption
on compactness of the support of the density goal f , we show that the hard thresholding rule
is the best procedure among elitist rules when taking the classical choice of thresholds vn =

µ
√

n−1 log(n), with µ > 0. Then, we point out the significance of data-driven thresholds in

density estimation by comparing the maxiset of the hard thresholding rule with the one of Juditsky
and Lambert-Lacroix’s procedure.
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1. Introduction
For recent years, nonparametric estimation methods have given a renewal of in-

terest in minimax theory, particularly, in the problem of density estimation, which
consists in providing methods to estimate a density f from independent realiza-
tions X1, . . . , Xn. This basic problem has been extensively studied in the literature
on nonparametric estimation and various methods and approaches proposed by
Devroye [6] and Silverman [23].

Donoho, Johnstone, Kerkyacharian and Picard [9] and Cohen, De Vore, Kerky-
acharian and Picard [4] studied the performance of the hard thresholding estimator.
Assuming that the density f can be decomposed in a wavelet basis, this procedure
reconstructs the target density f by only keeping the empirical coefficients which
are greater than a specific value (threshold). This procedure has been proved to be
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very significant when dealing with the estimation of compactly supported densities.
In particular, Donoho et al. [9] have shown that this adaptive procedure attains the
minimax rate of convergence over Besov spaces (up to a logarithmic term). What
is relevant in the paper of Cohen et al. [4] is that a new way of measuring the
performance of statistical procedures has been proposed. It consists in investigat-
ing the maximal space (or maxiset), where the procedure attains a given rate of
convergence. This new approach appears more optimistic than the minimax one,
since it provides a functional set which is directly connected with the procedure. By
assuming that the density f is compactly supported, Cohen et al. [4] proved that
the maxiset associated with the hard thresholding procedure was the intersection of
a Besov space and a weak Besov space. In this paper, we prove that the hypothesis
of compactness of the support of f can be discarded.

Recently, Juditsky and Lambert-Lacroix [13] proposed a new adaptive procedure
for density estimation on R when dealing with Hölder spaces. In their procedure,
they propose to use a data-driven threshold to estimate the density function. A
natural question arises here: In the maxiset context, is it relevant to replace the
usual threshold by a data-driven one? In this paper we give an answer to this
question, underlining the limits of usual thresholding rules in the maxiset sense.

Consequently our goal is threefold. We refer to any procedure, where the small
empirical coefficients are neglected, as an elitist rule and prove that the maxiset of
such a procedure is always contained in a Besov space. In other words, we exhibit
conditions on procedures ensuring that their maxiset is contained in the intersec-
tion of a Besov space and a weak Besov space. Secondly, with no assumption about
compactness of the density to be estimated, we prove that the hard thresholding
procedure is the best procedure among elitist ones, since its maxiset is the largest one
among those of elitist rules (ideal maxiset). Thirdly, under the maxiset approach,
we compare this last procedure with the data-driven thresholding procedure pro-
vided by Juditsky and Lambert-Lacroix. Thanks to this, we succeed in pointing
out the significance of the choice of data-driven thresholds in density estimation
by proving that the maxiset of Juditsky and Lambert-Lacroix’s procedure is larger
than any elitist rule’s one.

The paper is organized as follows. Section 2 recalls the problem of density
estimation on R and defines the basic tools we shall need in the study. In Section 3,
we define the maxiset point of view and the functional spaces often arising when
dealing with this approach. In Section 4, we prove that the hard thresholding rule
is the best procedure among elitist rules. Section 5 deals with the data-driven
thresholds. We prove that the maxiset associated with the procedure of Juditsky
and Lambert-Lacroix [13] is larger than any elitist rule’s one. Finally, Section 6
contains the proofs of technical lemmas.

2. Density Estimation Model
We consider the problem of estimating an unknown density function f . Let

X1, . . . , Xn be n independent copies of a random variable X with density f with
respect to the Lebesgue measure on R. Instead of the local estimation setting as in
Farrell [10, 11], Parzen [20], and Wahba [24], we choose to consider here the global
estimation setting as Bretagnolle and Huber [3]. This paper aims at measuring the
performance of estimators in a theoretical way.
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To begin, let (φ, ψ, φ̃, ψ̃) be compactly supported functions of L2(R) and denote
for all k ∈ Z and all x ∈ R, ψ−1k(x) = φ(x − k), (resp. ψ̃−1k(x) = φ̃(x − k)) and
for all j ∈ N, ψjk(x) = 2

j/2
ψ(2

j

x− k) (resp. ψ̃jk(x) = 2j/2ψ̃(2jx− k)).
Suppose that:
• {ψjk; j ≥ −1; k ∈ Z} and {ψ̃jk; j ≥ −1; k ∈ Z} constitute a biorthogonal

pair of wavelet bases of L2(R).

• The reconstruction wavelet ψ̃ is CN+1 for some N ∈ N.
• The wavelet ψ is orthogonal to any polynomial of degree less than N .
• φ(x) = 1{− 1

2 ≤ x < 1
2} and support(ψ) ⊂ [−m

2 , m
2 [ for some m ∈ N∗.

The feature of this particular basis which is intensively used throughout the
paper, is that there exists ν > 0 such that |ψ(x)| ≥ ν on the support of ψ. Some
most popular examples of such bases are given in Daubechies [5] and Donoho and
Johnstone [7].

Suppose now that f can be represented as

f(t) =
∑

j≥−1

∑

k∈Z
βjkψ̃jk(t),

where ∀j ≥ −1 for all k ∈ Z:

• βjk =
∫

Ijk

f(t)ψjk(t) dt,

• Ijk =
{
x ∈ R;−m

2 ≤ (2j ∨ 1)x− k < m
2

}
.

Remark 2.1. As for each (j, k), the support of ψjk is contained in Ijk, we can
easily prove that for every j ≥ −1 and every x ∈ R,

(2.1) #{k; x ∈ Ijk} ≤ m.

Moreover, ψj,mi and ψj,mi′ have disjoint supports. Thus

(2.2)
∑

k

pjk =
m∑

l=1

∑

i

pj,mi+l ≤
m∑

l=1

∫
f(x) dx = m.

In the sequel, we shall denote:

• pjk =
∫

Ijk

f(t) dt, ∀j ≥ −1, ∀k ∈ Z,

• σ2
jk =

∫

Ijk

f(t)ψ2
jk(t) dt− β2

jk, ∀j ≥ −1, ∀k ∈ Z,

• fj =
j−1∑

l=−1

∑

k∈Z
βlkψlk, ∀j > −1.

3. Maxiset Point of View
In this paper, we consider the maxiset approach to measure the performance of

estimators. This new approach was introduced by Cohen et al. [4] and consists in
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finding the maximal space (maxiset), where a fixed procedure f̂ achieves a given rate
of convergence rn. In the following subsection, we introduce the maxiset notation.

3.1. Maxiset notation. For a loss function ρ, we denote by

MS(f̂ , ρ, rn) =
{
f ; sup

n∈N∗
r−1
n ρ(f̂ , f) < ∞}

the maxiset associated with the procedure f̂ and the rate rn.
Let us remark that the maxiset point of view is more optimistic than the minimax

one, since it provides the strong connection between an estimation procedure and
a functional space.

3.2. Functional spaces. In this subsection, we introduce the sequence
spaces often arising when dealing with the maxiset approach (see Cohen et al. [4]
and Kerkyacharian and Picard [17, 18]).

Definition 3.1. Let 0 < s < N + 1 and 1 ≤ p, q ≤ ∞. We say that a density f
of Lp(R) belongs to the Besov space Bs

p,q if and only if

(
2j(s− 1

p + 1
2 )‖βj·‖lp ; j ≥ −1

) ∈ lq.

Remark 3.1. It is clear, using the definition above, that a density f belongs to
Bs

p,∞ if and only if

(3.1) sup
J∈N

2Jsp
∑

j≥J

2j( p
2−1)

∑

k

|βjk|p < ∞.

The Besov spaces are of statistical interest, since they model important forms
of spatial inhomogeneity. These spaces have been proved to play a prominent role
when dealing with the maxiset approach. Indeed, Kerkyacharian and Picard [16]
have proved that the maximal space, where any linear procedure attains the rate of
convergence n−sp/(1+2s) for the Lp-risk, p ≥ 2, is contained in the Besov space Bs

p,∞.
Let us recall that the scale of Besov spaces includes the Hölder spaces (Cs = Bs

∞,∞)
and the Hilbert–Sobolev spaces (Hs

2 = Bs
2,2).

Definition 3.2. Let 0 < r < p < ∞. We say that f belongs to the weak Besov
space W (r, p) if and only if

sup
λ>0

λr
∑

j≥−1

2j( p
2−1)

∑

k

1{|βjk| > λ} < ∞,

which is equivalent to (see Cohen al. [4])

sup
λ>0

λr−p
∑

j≥−1

2j( p
2−1)

∑

k

|βjk|p1{|βjk| ≤ λ} < ∞.

These spaces naturally appear when studying the maximal spaces of thresholding
rules (see Cohen al. [4] and Kerkyacharian and Picard [17, 18]). Weak Besov spaces
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constitute a large class of functions since, using Markov’s inequality, it is easy to
prove that for r < p, the Besov space Bs

rr ⊂ W (r, p) when s ≥ p
2r − 1

2 . Under
the maxiset approach, we prove in Section 4 that weak Besov spaces are directly
connected with a large family of procedures called elitist rules.

Definition 3.3. Let 0 < r < p < ∞. We say that f belongs to the space
W ∗(r, p) if and only if

sup
λ>0

λr
∑

j≥−1

2j( p
2−1)

∑

k

σp
jk1

{ |βjk|
σjk

> λ

}
< ∞,

which is equivalent to (see Kerkyacharian and Picard [17])

sup
λ>0

λr−p
∑

j≥−1

2j( p
2−1)

∑

k

|βjk|p1
{ |βjk|

σjk
≤ λ

}
< ∞.

Note that W (r, p) and W ∗(r, p) are natural spaces to measure the sparsity of
a sequence by controlling the proportion of nonnegligible βjk’s. In Section 5, we
illustrate the strong link between the spaces W ∗(r, p) and procedures based on
data-driven thresholds.

Definition 3.4. We say that a function f belongs to the space χ(r, p) if and
only if

sup
λ>0

λr−p
∑

j≥−1

2j( p
2−1)

∑

k

|βjk|p1{pjk ≤ λ2} < ∞.

These functional spaces constitute a large family of functions. To be more
precise, consider the following proposition dealing with embeddings of functional
spaces.

Proposition 3.1. For any 0 < α < 1 and any 1 ≤ p < ∞, we have the following
inclusions of spaces:

(3.2)
Bα/2

p,∞ ∩W ((1− α)p, p) ⊂ Bα/2
p,∞ ∩ χ((1− α)p, p),

Bα/2
p,∞ ∩Wσ((1− α)p, p) ⊂ Bα/2

p,∞ ∩ χ((1− α)p, p).

Moreover, if αp > 2, then

(3.3) Bα/2
p,∞ ∩W ((1− α)p, p) ⊂ Bα/2

p,∞ ∩Wσ((1− α)p, p).

Proof. Here and later, C represents any constant we need and can be different
from one line to another.

Denote Kψ = ‖φ‖∞ ∨ ‖ψ‖∞. Let λ > 0 and let u be the integer such that
2u ≤ λ−2 < 21+u.

Clearly, if λ2 ≥ ν2

2K2
ψ

, then for any f that belongs to Bα/2
p,∞

∑

j≥−1

2j( p
2−1)

∑

k

|βjk|p1{pjk ≤ λ2} ≤
∑

j≥−1

2j( p
2−1)

∑

k

|βjk|p ≤ Cλαp.
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Suppose now that λ2 < ν2

2K2
ψ

. Since for any (j, k), |βjk| ≤ Kψ2j/2pjk, we have

for any j < u:
pjk ≤ λ2 =⇒ |βjk| ≤ Kψλ

and
σ2

jk ≥ 2jν2pjk − 2jK2
ψp2

jk = 2jpjk(ν2 −K2
ψpjk) ≥ 2j−1ν2pjk.

So, if f belongs to W ((1− α)p, p) (resp. W ∗((1− α)p, p)), then

∑

j≥−1

2j( p
2−1)

∑

k

|βjk|p1{pjk ≤ λ2}

≤
∑

j<u

2j( p
2−1)

∑

k

|βjk|p1{pjk ≤ λ2}+
∑

j≥u

2j( p
2−1)

∑

k

|βjk|p

≤ C

u−1∑

j=−1

2j( p
2−1)

∑

k

|βjk|p1{|βjk| ≤ Kψλ}+ C2−
α
2 up ≤ Cλαp,

resp.,

∑

j≥−1

2j( p
2−1)

∑

k

|βjk|p1{pjk ≤ λ2}

≤
∑

j<u

2j( p
2−1)

∑

k

|βjk|p1{pjk ≤ λ2}+
∑

j≥u

2j( p
2−1)

∑

k

|βjk|p

≤ C

u−1∑

j=−1

2j( p
2−1)

∑

k

|βjk|p1{|βjk| ≤ Kψ2j/2pjk}+ C2−
α
2 up

≤ C

u−1∑

j=−1

2j( p
2−1)

∑

k

|βjk|p1{|βjk| ≤
√

2Kψ

ν
λσjk}+ C2−

α
2 up ≤ Cλαp.

We conclude that f ∈ χ((1 − α)p, p). So (3.2) is satisfied. Now, (3.3) is clearly
satisfied since for every 1 ≤ p < ∞ and every α such that αp > 2, it is easy to
prove that f ∈ Bα/2

p,∞ =⇒ supj,k σjk < ∞. ¤

4. Ideal Maxiset for Elitist Rules
Here we focus on the maxiset performance of adaptive procedures (i.e., those

which do not depend on the parameter α).

4.1. Definition of ideal maxiset. Let us introduce the definition of the
ideal maxiset of a family of procedures.

Definition 4.1. Let ρ be a loss function, rn a rate, and Mn a family of estimation
procedures. We say that the functional space V is the ideal maxiset of the family
Mn for the rate rn if the two following properties hold:

1. ∀f̂ ∈Mn, MS(f̂ , ρ, rn) ⊂ V ,

2. ∃f̂∗ ∈Mn, MS(f̂∗, ρ, rn) = V .
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In the next subsection, we provide the ideal maxiset of a large family of proce-
dures, namely, the elitist rules, which consist in discarding small empirical coeffi-
cients in the reconstruction of the target density f .

4.2. Definition of elitist rules. Fix r > 0. Let (v(n))n∈N∗ be a
decreasing sequence of strictly positive real numbers tending to zero as n → ∞.
Denote jn the integer such that 2jn ≤ v(n)−r < 21+jn and let En be a sequence
of statistical experiments such that for any f we can estimate βjk by β̂jk for any j
and any k.

Let us consider the sub-family F ′
K of keep-or-kill procedures defined by:

F ′
K =

{
f̂(·) =

∑

j<jn

∑

k

ωjkβ̂jkψ̃jk(·); ωjk ∈ {0, 1} measurable
}

.

Definition 4.2. We say that f̂ ∈ F ′
K is an elitist rule if and only if for any j and

any k ∈ Z,
|β̂jk| ≤ v(n) =⇒ ωjk = 0.

This definition means that the ’small’ coefficients will be neglected.
In the sequel, the choice of the loss function will be the Besov norm. A possible

alternative could be to use the Lp-norm, but this choice leads to technical difficulties
avoided by choosing the Besov norm.

4.3. Upper bound for maxisets of elitist rules. The goal of this
subsection is to prove that the maximal space, where any elitist rule attains the
rate of convergence v(n)αp, is contained in the intersection of a Besov space and a
weak Besov space. We have the following theorem:

Theorem 4.1. Let f̂ be an elitist rule. Then, for any 1 ≤ p < ∞,

sup
n

v(n)−αp E ‖f̂ − f‖p
B0

p,p
< ∞ =⇒ f ∈ Bα/r

p,∞ ∩W ((1− α)p, p),

that is to say, using the maxiset notation,

(4.1) MS
(
f̂ , ‖ · ‖p

B0
p,p

, v(n)αp
) ⊂ Bα/r

p,∞ ∩W ((1− α)p, p).

Proof. Fix 1 ≤ p < ∞ and let f be such that supn>1 v(n)−αp E ‖f̂−f‖p
B0

p,p
< ∞.

On the one hand, for all n > 1, we have:
∑

j≥jn

2j( p
2−1)

∑

k

|βjk|p

≤ E
∑

j<jn

2j( p
2−1)

∑

k

∣∣βjk − β̂jk1{ωjk = 1}
∣∣p +

∑

j≥jn

2j( p
2−1)

∑

k

|βjk|p

= E ‖f̂ − f‖p
B0

p,p
≤ Cv(n)αp ≤ C2−jn

αp
r .

From (3.1), it follows that f ∈ Bα/r
p,∞.
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On the other hand, since

|βjk|1
{
|βjk| ≤ v(n)

2

}
≤

∣∣βjk − β̂jk1{ωjk = 1}1{|β̂jk| > v(n)}
∣∣,

we have

∑

j>−1

2j( p
2−1)

∑

k

|βjk|p1
{
|βjk| ≤ v(n)

2

}

≤
∑

j<jn

2j( p
2−1)

∑

k

|βjk|p1
{
|βjk| ≤ v(n)

2

}
+

∑

j>jn

2j( p
2−1)

∑

k

|βjk|p

6
∑

j<jn

2j( p
2−1)

∑

k

∣∣βjk − β̂jk1{ωjk = 1}1{|β̂jk| > v(n)}
∣∣p

+
∑

j>jn

2j( p
2−1)

∑

k

|βjk|p

=
∑

j<jn

2j( p
2−1)

∑

k

∣∣βjk − β̂jk1{ωjk = 1}∣∣p +
∑

j>jn

2j( p
2−1)

∑

k

|βjk|p

= E ‖f̂ − f‖p
B0

p,p
6 Cv(n)αp.

As vn tends to 0 when n goes to +∞, we conclude that f ∈ W ((1− α)p, p). ¤

In the next subsection, we aim at proving that the space Bα/r
p,∞ ∩W ((1− α)p, p)

is the ideal maxiset of the family of elitist rules when dealing with a fixed rate vαp
n .

Let us note that, according to Theorem 4.1, it suffices to provide an elitist rule
having this functional space as the maxiset to conclude that this particular set is
the ideal one.

4.4. Ideal elitist rule. We decompose the study into two parts. In the
first one, we recall the main result about maxisets of Cohen et al. [4] when dealing
with estimation for compactly supported densities (see Theorem 4.2). In the second
one, we extend it to noncompactly supported densities (see Theorem 4.4). The final
outcome of this section is proving that the hard thresholding rule, which is clearly
an elitist rule, is optimal in the maxiset sense among the family of elitist rules. In

the sequel, we suppose that v(n) = µ
√

log(n)
n , for some µ > 0 and that r = 2.

4.4.1. Compactly supported densities. Cohen et al. [4] have studied the maximal
space of hard thresholding rules. They obtained the following result:

Theorem 4.2 (Cohen et al. [4]). For any a > 0, let I = [−a, a], and let jn be
the integer such that 2jn ≤ n

log(n) < 2jn+1.

Denote β̂jk = 1
n

∑n
i=1 ψjk(Xi) and consider the following hard thresholding esti-

mator:

(4.2) f̂µ =
∑

j<jn

∑

k

β̂jk1
{
|β̂jk| > µ

√
log(n)

n

}
ψ̃jk,
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where µ is a large enough constant. We have for any 1 < p < ∞:

(4.3) MS
(
f̂µ, ‖ · ‖p

Lp
, vαp

n

)
= Bα/2

p,∞ ∩W ((1− α)p, p).

The proof of this theorem uses the unconditional nature of the wavelet basis
{ψ̃jk; j ≥ −1; k ∈ Z}. In the same way, it would be easy to prove the following
similar result.

Theorem 4.3. Let 1 ≤ p < ∞. Under the same assumptions and definitions as
in Theorem 4.2, we get for any 1 ≤ p < ∞:

(4.4) MS
(
f̂µ, ‖ · ‖p

B0
p,p

, vαp
n

)
= Bα/2

p,∞ ∩W ((1− α)p, p).

Thus, using Theorem 4.1, we conclude that Bα/2
p,∞ ∩ W ((1 − α)p, p) is the ideal

maxiset of the family of elitist rules. Moreover, we can conclude that the hard
thresholding procedure is optimal in the maxiset sense within the family of elitist
rules dealing with compactly supported functions.

A natural question arises here: Is the hard thresholding procedure still optimal
within this class of rules, without assuming compact support of the target density f?
The answer is YES. We shall prove it in the next subsection.

4.4.2. Noncompactly supported densities. Let us introduce the following quanti-
ties:

• mn =
µ

Kψ

(
1 ∧ µν2

2Kψ

)
log(n),

• njk =
n∑

i=1

1{Xi ∈ Ijk},

• β̂jk =
1
n

n∑

i=1

ψjk(Xi).

The following theorem can be viewed as a generalization of Theorem 4.3 when
dealing with density estimation on R.

Theorem 4.4. Let 0 < α < 1 and 1 ≤ p < ∞ be such that αp > 2. If µ is large
enough, then

(4.5) MS
(
f̂µ, ‖ · ‖p

B0
p,p

, vαp
n

)
= Bα/2

p,∞ ∩W ((1− α)p, p).

From Theorem 4.1 and Theorem 4.4, we deduce an immediate corollary:

Corollary 4.1. Let 0 < α < 1 and 1 ≤ p < ∞ be such that αp > 2. The ideal
maxiset of elitist rules for the rate vαp

n is Bα/2
p,∞∩W ((1−α)p, p). Moreover, the hard

thresholding rule is the best elitist procedure in the maxiset sense.
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Proof of Theorem 4.4. “⊂” It suffices to apply Theorem 4.1.

“⊃” Let f ∈ Bα/2
p,∞ ∩W ((1 − α)p, p). The Besov-risk of f̂µ can be decomposed

as follows:

E ‖f̂µ − f‖p
B0

p,p
= E

∑

j<jn

2j( p
2−1)

∑

k

∣∣βjk − β̂jk1{|β̂jk| > vn}
∣∣p

+ ‖f − fjn‖p
B0

p,p
= A0 + A1.

Since f ∈ Bα/2
p,∞, from (3.1)

A1 = ‖f − fjn‖p
B0

p,p
≤ E ‖f̂µ − f‖p

B0
p,p
≤ C2−jnαp/2 ≤ C

(
log(n)

n

)αp/2

.

A0 can be decomposed into two parts:

A0 = E
∑

j<jn

2j( p
2−1)

∑

k

∣∣βjk − β̂jk1{|β̂jk| > vn}
∣∣p

= E
∑

j<jn

2j( p
2−1)

∑

k

|βjk|p1{|β̂jk| ≤ vn}

+ E
∑

j<jn

2j( p
2−1)

∑

k

|βjk − β̂jk|p1{|β̂jk| > vn} = A
′
0 + A

′′
0 .

Now,

A
′
0 = E

∑

j<jn

2j( p
2−1)

∑

k

|βjk|p1{|β̂jk| ≤ vn}

= E
∑

j<jn

2j( p
2−1)

∑

k

|βjk|p1{|β̂jk| ≤ vn}
[
1{|βjk| ≤ 2vn}+ 1{|βjk| > 2vn}

]

= A
′
01 + A

′
02.

Using the definition of W ((1− α)p, p),

A
′
01 = E

∑

j<jn

2j( p
2−1)

∑

k

|βjk|p1{|β̂jk| ≤ vn}1{|βjk| ≤ 2vn}

≤
∑

j<jn

2j( p
2−1)

∑

k

|βjk|p1{|βjk| ≤ 2vn} ≤ C(2vn)αp ≤ C

(
log(n)

n

)αp/2

.

We need the following lemma:

Lemma 4.1. Let 1 ≤ p < ∞. For any γ > 0, there exists µ(γ) < ∞ and C < ∞
such that for any −1 ≤ j < jn and any k ∈ Z,

P
(
|β̂jk − βjk| > µ

√
log(n)

n

)
≤ C

nγ
.

The proof is clear by using the Bernstein inequality. ¤
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Choosing γ ≥ p
2 , one gets for µ large enough:

A
′
02 = E

∑

j<jn

2j( p
2−1)

∑

k

|βjk|p1{|β̂jk| ≤ vn}1{|βjk| > 2vn}

≤
∑

j<jn

2j( p
2−1)

∑

k

|βjk|pPf

(|β̂jk − βjk| > vn

) ≤ Cn−γ ≤ C

(
log(n)

n

)αp/2

.

Let us now consider the following lemma:

Lemma 4.2. For any j < jn and any k, |β̂jk| > vn =⇒ njk > mn.

The proof is given in the Appendix.

We can decompose A
′′
0 into three parts:

A
′′
0 = E

∑

j<jn

2j( p
2−1)

∑

k

|β̂jk − βjk|p1{|β̂jk| > vn}

= E
∑

j<jn

2j( p
2−1)

∑

k

|β̂jk − βjk|p1{|β̂jk| > vn}1{njk ≥ mn}

= E
∑

j<jn

2j( p
2−1)

∑

k

|β̂jk − βjk|p1{|β̂jk| > vn}1{njk ≥ mn}1
{

pjk <
mn

2n

}

+ E
∑

j<jn

2j( p
2−1)

∑

k

|β̂jk − βjk|p1{|β̂jk| > vn}1{njk ≥ mn}1
{

pjk ≥ mn

2n

}

×
[
1
{
|βjk| ≤ vn

2

}
+ 1

{
|βjk| > vn

2

}]

= A
′′
01 + A

′′
02 + A

′′
03.

To bound A
′′
01, A

′′
02 and A

′′
03, we introduce two lemmas.

Lemma 4.3. For any γ > 0 there exists µ = µ(γ) < ∞ such that for any j, k
and any n large enough:

Pf (njk < mn) ≤ pjk

nγ
if pjk ≥ 2mn

n
,

Pf (njk ≥ mn) ≤ pjk

nγ
if pjk <

mn

2n
.

This lemma is a generalization of Lemma 7 of Juditsky and Lambert-Lacroix [13].
Its proof is given in the Appendix.

Lemma 4.4. Let 1 ≤ p < ∞. Then:

1. E |β̂jk − βjk|2p ≤ C

(
2jpjk

n

)p

if pjk ≥ 1
n

,

2. E |β̂jk − βjk|2p ≤ C

(
2j

n2

)p

npjk if pjk <
1
n

,

3. E |β̂jk − βjk|2p ≤ C

(
2j

n

)p

pjk.

The proof is given in the Appendix.
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Using Lemma 4.3, Lemma 4.4 (3), and the Cauchy–Schwarz inequality, we have
for µ large enough:

A
′′
01 = E

∑

j<jn

2j( p
2−1)

∑

k

|β̂jk − βjk|p1{|β̂jk| > vn}1{njk ≥ mn}1
{

pjk <
mn

2n

}

≤ E
∑

j<jn

2j( p
2−1)

∑

k

|β̂jk − βjk|p1{njk ≥ mn}1
{

pjk <
mn

2n

}

≤
∑

j<jn

2j( p
2−1)

∑

k

E 1/2|β̂jk − βjk|2pP1/2
f (njk ≥ mn)1

{
pjk <

mn

2n

}

≤ C

nγ/2

∑

j<jn

2j( p
2−1)

∑

k

pjk

[
2j

n

]p/2

≤ C

(
log(n)

n

)αp/2

.

The last inequality is due to (2.2) and requires to choose γ ≥ 2(p− 1).
Using the Cauchy–Schwarz inequality, Lemma 4.1 with γ ≥ 2p − 1, and

Lemma 4.4 (3), one gets:

A
′′
02 = E

∑

j<jn

2j( p
2−1)

∑

k

|β̂jk − βjk|p1{|β̂jk| > vn}1
{
|βjk| ≤ vn

2

}

× 1{njk ≥ mn}1
{

pjk ≥ mn

2n

}

≤ E
∑

j<jn

2j( p
2−1)

∑

k

|β̂jk − βjk|p1
{
|β̂jk − βjk| > vn

2

}
1
{

pjk ≥ mn

2n

}

≤
∑

j<jn

2j( p
2−1)

∑

k

E 1/2|β̂jk − βjk|2p P1/2
f

(
|β̂jk − βjk| > vn

2

)
1
{

pjk ≥ mn

2n

}

≤ C
∑

j<jn

2j( p
2−1)

(
2j

n

)p/2

vγ−1
n

∑

k

pjk ≤ Cvαp
n .

Finally, from Lemma 4.4 (1), we have:

A
′′
03 = E

∑

j<jn

2j( p
2−1)

∑

k

|β̂jk − βjk|p1{njk ≥ mn}1
{

pjk ≥ mn

2n

}

× 1{|β̂jk| > vn}1
{
|βjk| > vn

2

}

≤
∑

j<jn

2j( p
2−1)

∑

k

E |β̂jk − βjk|p1
{

pjk ≥ mn

2n

}
1
{
|βjk| > vn

2

}

≤ C
∑

j<jn

2j( p
2−1)

∑

k

(
2jpjk

n

)p/2

1
{

pjk ≥ mn

2n

}
1
{
|βjk| > vn

2

}

≤ C
1

np/2

∑

j<jn

2j( p
2−1)

∑

k

1{|βjk| > vn

2
} ≤ Cvαp

n .

The last inequalities use the fact that supj,k 2
j

pjk < ∞ for any f ∈ Bα/2
p,∞ (with

αp > 2).
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Consequently, looking at the bounds for A0 and A1, we conclude that

sup
n>1

v−αp
n E ‖f̂µ − f‖p

B0
p,p

< ∞.

So f ∈ MS(f̂µ, ‖ · ‖p
B0

p,p
, vαp

n ). ¤

Until now, we have focused on nonrandom thresholds. In particular, we have
proved that the hard thresholding estimator is the best procedure among elitist ones,
in terms of the maxiset approach. It is of interest to answer the following question:
Do there exist adaptive procedures which outperform hard thresholding rules in
the maxiset sense? Once again, the answer is YES, by considering data-driven
thresholds (see Birgé and Massart [2], Donoho and Johnstone [8], Juditsky [12],
and Juditsky and Lambert-Lacroix [13]). This will be proved in the next section.

5. On the Significance of Data-Driven Thresholds
The aim of this section is to prove the significance of data-driven thresholds, in

the context of estimating compactly or noncompactly supported densities.
We study the maxiset associated with the data-driven thresholding procedure

described by Juditsky and Lambert-Lacroix [13]. Here, the decision to keep or
to kill empirical coefficients β̂jk is taken by comparing them to their standard
deviation. We prove that the maxiset associated with this particular data-driven
thresholding procedure is larger than the ideal maxiset of elitist rules. We shall
denote:

• γ̂jk = µ

√
log(n)

n
σ̂jk = vnσ̂jk, where σ̂2

jk =
1
n

n∑

i=1

(ψ2
jk(Xi)− β̂2

jk),

• γjk = µ

√
log(n)

n
σjk = vnσjk.

Consider the data-driven thresholding estimator defined by Juditsky and Lam-
bert-Lacroix [13]:

f̄n(t) =
jn−1∑

j=−1

∑

k∈Z
β̂jk1{|β̂jk| > γ̂jk}ψ̃jk(t),

with 2jn ≤ n
log(n) < 2jn+1.

Theorem 5.1. Let 0 < α < 1 and 1 ≤ p < ∞ be such that αp > 2. If µ is large
enough, then

(5.1) MS(f̄n, ‖ · ‖p
B0

p,p
, vαp

n ) = Bα/2
p,∞ ∩W ∗((1− α)p, p).

Combined with (3.3) of Proposition 3.1, this theorem proves that the maxiset
associated with the data-driven thresholding estimator f̄n is larger than the maxiset
of any elitist estimator f̂ built with a nonrandom threshold.
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Proof of Theorem 5.1. “⊂” Fix 1 ≤ p < ∞ and let f be such that

sup
n>1

(
n

log(n)

)αp/2

E ‖f̄n − f‖p
B0

p,p
< ∞.

On the one hand, with the same arguments as in the proof of Theorem 4.1, for all
n > 1, we have:

∑

j≥jn

2j( p
2−1)

∑

k

|βjk|p ≤ E ‖f̄n − f‖p
B0

p,p
≤ C

(
log(n)

n

)αp/2

≤ C2−jn
αp
2 .

It follows that f ∈ Bα/2
p,∞.

On the other hand, for any n > 1 we have,

∑

j<jn

2j( p
2−1)

∑

k

|βjk|p1
{
|βjk| ≤ vnσjk

4

}

=
∑

j<jn

2j( p
2−1)

∑

k

|βjk|p1
{
|βjk| ≤ γjk

4

}

=
∑

j<jn

2j( p
2−1)

∑

k

|βjk|p1
{
|βjk| ≤ γjk

4

}[
1
{

pjk <
mn

2n

}

+ 1
{mn

2n
≤ pjk ≤ ν2

2K2
ψ

}
+ 1

{
pjk >

ν2

2K2
ψ

}]
= B0 + B1 + B2.

Let us introduce the following lemma.

Lemma 5.1. For any j < jn, any k and any n large enough, |β̂jk| > γ̂jk =⇒
njk > mn.

The proof of this lemma is given in the Appendix.
To bound B0, we use Lemma 4.3 with γ ≥ p

2 and Lemma 5.1:

B0 =
∑

j<jn

2j( p
2−1)

∑

k

|βjk|p1
{
|βjk| ≤ γjk

4

}
1
{

pjk <
mn

2n

}

≤
∑

j<jn

2j( p
2−1)

∑

k

|βjk|p1
{

pjk <
mn

2n

}

= E
∑

j<jn

2j( p
2−1)

∑

k

|βjk|p1
{

pjk <
mn

2n

}[
1{njk < mn}+ 1{njk ≥ mn}

]

≤ E
∑

j<jn

2j( p
2−1)

∑

k

|βjk|p1{njk < mn}

+
∑

j<jn

2j( p
2−1)

∑

k

|βjk|pPf (njk ≥ mn)1
{

pjk <
mn

2n

}

≤ E ‖f̄n − f‖p
B0

p,p
+

∑

j<jn

2j( p
2−1)

∑

k

|βjk|p pjk

nγ
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≤ E ‖f̄n − f‖p
B0

p,p
+ C n−γ ≤ C

(
log(n)

n

)αp/2

.

To bound B1, let us consider the following lemma:

Lemma 5.2. Fix γ > 0. There exists µ = µ(γ) < ∞ such that

1. if pjk ≥ µ

2Kψ
· log(n)

n
, then Pf

(
γ̂jk > µ

√
log(n)

n

)
≤ pjk

nγ
;

2. moreover, if
µ

2Kψ
· log(n)

n
≤ pjk ≤ ν2

2K2
ψ

for n large enough, then

(a) Pf

(
|γ̂jk − γjk| > γjk

2

)
≤ 2pjk

nγ
,

(b) Pf

(
|β̂jk − βjk| > γ̂jk

2

)
≤ 2pjk

nγ
.

Proof. This lemma is a simple generalization of Proposition 1 in Juditsky and
Lambert-Lacroix [13]. The proof is omitted, since it uses similar arguments to those
used by therein. ¤

Since |βjk|1{|βjk| ≤ γ̂jk

2 } ≤ |βjk− β̂jk1{|β̂jk| > γ̂jk}|, by using Lemma 5.2 (2(a))
with γ ≥ p

2 , one gets:

B1 =
∑

j<jn

2j( p
2−1)

∑

k

|βjk|p1
{
|βjk| ≤ γjk

4

}
1
{mn

2n
≤ pjk ≤ ν2

2K2
ψ

}

≤ E
∑

j<jn

2j( p
2−1)

∑

k

|βjk|p1
{
|βjk| ≤ γjk

4

}[
1
{
|βjk| ≤ γ̂jk

2

}

+ 1
{
|βjk| > γ̂jk

2

}]
1
{mn

2n
≤ pjk ≤ ν2

2K2
ψ

}

≤ E
∑

j<jn

2j( p
2−1)

∑

k

(∣∣βjk − β̂jk1{|β̂jk| > γ̂jk}
∣∣p

+ |βjk|p1
{

γ̂jk <
γjk

2

}
1
{mn

2n
≤ pjk ≤ ν2

2K2
ψ

})

≤ E ‖f̄n − f‖p
B0

p,p
+

∑

j<jn

2j( p
2−1)

∑

k

|βjk|p

× Pf

(
|γ̂jk − γjk| > γjk

2

)
1
{mn

2n
≤ pjk ≤ ν2

2K2
ψ

}

≤ C

[(
log(n)

n

)αp/2

+
∑

j<jn

2j( p
2−1)

∑

k

|βjk|p pjk

nγ

]

≤ C

[(
log(n)

n

)αp/2

+ n−γ

]
≤ C

(
log(n)

n

)αp/2

.
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Now, using the fact that supj,k 2
j

pjk < ∞ and σ2
jk ≤ 2

j

K2
ψ pjk,

B2 =
∑

j<jn

2j( p
2−1)

∑

k

|βjk|p1
{
|βjk| ≤ γjk

4

}
1
{

pjk >
ν2

2K2
ψ

}

≤ C
∑

j<jn

2j( p
2−1)

∑

k

|γjk|p1
{
|βjk| ≤ γjk

4

}
1
{

pjk >
ν2

2K2
ψ

}

= Cvp
n

∑

j<jn

2j( p
2−1)

∑

k

|σjk|p1
{
|βjk| ≤ γjk

4

}
1
{

pjk >
ν2

2K2
ψ

}

≤ Cvp
n

∑

j<jn

2j( p
2−1)

∑

k

(2
j

pjk)p/21
{
|βjk| ≤ γjk

4

}
1
{

pjk >
ν2

2K2
ψ

}

≤ Cvp
n

∑

j<jn

2j( p
2−1)

∑

k

(2
j

pjk)p/21
{
|βjk| ≤ γjk

4

}
1
{

pjk >
ν2

2K2
ψ

}

≤ C

(
log(n)

n

)αp/2

.

Consequently, the bounds for Bi, 0 ≤ i ≤ 2, show that f ∈ W ∗((1− α)p, p).

“⊃” Let f ∈ Bα/2
p,∞ ∩W ∗((1 − α)p, p). The Besov-risk of f̄n can be decomposed

as follows:

E ‖f̄n − f‖p
B0

p,p
= E

∑

j<jn

2j( p
2−1)

∑

k

∣∣βjk − β̂jk1{|β̂jk| > γ̂jk}
∣∣p + ‖f − fjn‖p

B0
p,p

= C0 + C1.

Using similar arguments as in the proof of Theorem 4.4, since f ∈ Bα/2
p,∞,

C1 = ‖f − fjn‖p
B0

p,p
≤ C

(
log(n)

n

)αp/2

.

For n large enough, using Lemma 5.1, we can decompose C0 as follows:

C0 = E
∑

j<jn

2j( p
2−1)

∑

k

∣∣βjk − β̂jk1{|β̂jk| > γ̂jk}
∣∣p

≤ E
∑

j<jn

2j( p
2−1)

∑

k

|βjk|p1{njk < mn}

+ E
∑

j<jn

2j( p
2−1)

∑

k

∣∣β̂jk1{|β̂jk| > γ̂jk} − βjk

∣∣p1{njk ≥ mn}

= C
′
0 + C

′′
0 .

Since f ∈ Bα/2
p,∞ ∩W ((1 − α)p, p), f ∈ χ((1 − α)p, p). So, by using Lemma 4.3

with γ ≥ p
2 , one gets

C
′
0 = E

∑

j<jn

2j( p
2−1)

∑

k

|βjk|p1{njk < mn}
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= E
∑

j<jn

2j( p
2−1)

∑

k

|βjk|p1{njk < mn}
[
1
{

pjk <
2mn

n

}
+ 1

{
pjk ≥ 2mn

n

}]

≤ E
∑

j<jn

2j( p
2−1)

∑

k

|βjk|p1
{

pjk <
2mn

n

}

+
∑

j<jn

2j( p
2−1)

∑

k

|βjk|pP(njk < mn)1
{

pjk ≥ 2mn

n

}

≤ C

(
log(n)

n

)αp/2

+
∑

j<jn

2j( p
2−1)

∑

k

|βjk|p pjk

nγ

≤ C

(
log(n)

n

)αp/2

+ Cn−γ ≤ C

(
log(n)

n

)αp/2

.

We have the following decomposition for C
′′
0 :

C
′′
0 = E

∑

j<jn

2j( p
2−1)

∑

k

|β̂jk1{|β̂jk| > γ̂jk} − βjk|p1{njk ≥ mn}

= E
∑

j<jn

2j( p
2−1)

∑

k

∣∣β̂jk1{|β̂jk| > γ̂jk} − βjk

∣∣p1{njk ≥ mn}

×
[
1
{

pjk <
mn

2n

}
+ 1

{
pjk ≥ mn

2n

}]
= C

′′
01 + C

′′
02.

Now, since |β̂jk1{|β̂jk| > γ̂jk} − βjk| ≤ |β̂jk − βjk|+ |βjk|, C
′′
01 can be decomposed

into C
′′
011 + C

′′
012, with

C
′′
011 = E

∑

j<jn

2j( p
2−1)

∑

k

|β̂jk − βjk|p1{njk ≥ mn}1
{

pjk <
mn

2n

}

C
′′
012 = E

∑

j<jn

2j( p
2−1)

∑

k

|βjk|p1{njk ≥ mn}1
{

pjk <
mn

2n

}
.

Using again Lemma 4.3 with γ ≥ 2p− 1, Lemma 4.4 (3) and 4.4 (2), we get

C
′′
011 = E

∑

j<jn

2j( p
2−1)

∑

k

|β̂jk − βjk|p1{njk ≥ mn}1
{

pjk <
mn

2n

}

≤
∑

j<jn

2j( p
2−1)

∑

k

E 1/2|β̂jk − βjk|2p P1/2
f (njk ≥ mn)1

{
pjk <

mn

2n

}

≤
∑

j<jn

2j( p
2−1)

∑

k

(
2j

n

) p
2 pjk√

nγ
≤ C

2jn( p
2−1)

nγ/2
≤ C

(
log(n)

n

)αp/2

and

C
′′
012 = E

∑

j<jn

2j( p
2−1)

∑

k

|βjk|p1{njk ≥ mn}1
{

pjk <
mn

2n

}
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≤
∑

j<jn

2j( p
2−1)

∑

k

|βjk|p1
{

pjk ≤ mn

2n

}
≤ C

(
log(n)

n

)αp/2

.

The last inequality uses the fact that f ∈ χ((1− α)p, p).
We decompose C

′′
02 into two parts:

C
′′
02 = E

∑

j<jn

2j( p
2−1)

∑

k

|β̂jk1{|β̂jk| > γ̂jk} − βjk|p1{njk ≥ mn}1{pjk ≥ mn

2n
}

= E
∑

j<jn

2j( p
2−1)

∑

k

∣∣β̂jk1{|β̂jk| > γ̂jk} − βjk

∣∣p1{njk ≥ mn}

×
[
1
{

pjk >
ν2

2K2
ψ

}
+ 1

{mn

2n
≤ pjk ≤ ν2

2K2
ψ

}]
= C

′′
021 + C

′′
022.

Let us now consider this new lemma:

Lemma 5.3. There exists a constant C < ∞ such that, for any λ > 0,

|β̂jk1{|β̂jk| > γ̂jk}−βjk| ≤ C

(
|β̂jk−βjk|+µ

√
log(n)

n

)
+|βjk|1

{
γ̂jk > µ

√
log(n)

n

}

and

|β̂jk1{|β̂jk| > γ̂jk} − βjk|p ≤ C
(
|β̂jk − βjk|p1

{
|β̂jk − βjk| > γ̂jk

2

}

+ min(|βjk|, γjk)p
)

+ |βjk|p1
{

γ̂jk >
3γjk

2

}
.

Proof. This lemma is proved in Juditsky and Lambert-Lacroix [13]. ¤

Using Lemma 5.2 with γ ≥ p
2 and Lemma 5.3, one gets for µ large enough:

C
′′
021 = E

jn−1∑

j=−1

2j( p
2−1)

∑

k

∣∣β̂jk1{|β̂jk| > γ̂jk} − βjk

∣∣p1{njk ≥ mn}1
{

pjk >
ν2

2K2
ψ

}

≤ C

jn−1∑

j=−1

2j( p
2−1)

∑

k

E
[
|β̂jk − βjk|p + µp

√
logp(n)

np

+ |βjk|p1
{

γ̂jk > µ

√
log(n)

n

}]
1
{

pjk >
ν2

2K2
ψ

}

≤ C

jn−1∑

j=−1

2j( p
2−1)

∑

k

[(
2jpjk

n

) p
2

+

√
logp(n)

np
+

2jp/2

nγ

]
1
{

pjk >
ν2

2K2
ψ

}

≤ C

[(
1
n

) p
2

+

√
logp(n)

np
+ n−γ

]
≤ C

(
log(n)

n

)αp/2

.
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Using again Lemma 5.3,

C
′′
022 = E

jn−1∑

j=−1

2j( p
2−1)

∑

k

∣∣β̂jk1{|β̂jk| > γ̂jk} − βjk

∣∣p1{njk ≥ mn}

× 1
{mn

2n
≤ pjk ≤ ν2

2K2
ψ

}
= C (C

′′
0221 + C

′′
0222 + C

′′
0223).

Using the Cauchy–Schwarz inequality, Lemma 4.4 (1), and Lemma 5.2 with γ ≥
3p + 2, we get

C
′′
0221 = E

jn−1∑

j=−1

2j( p
2−1)

∑

k

|β̂jk − βjk|p1
{
|β̂jk − βjk| > γ̂jk

2

}
1
{mn

2n
≤ pjk ≤ ν2

2K2
ψ

}

≤ K

jn−1∑

j=−1

2j( p
2−1)

∑

k

(
2jpjk

n

) p
2

P
1
2
f

(
|β̂jk − βjk| > γ̂jk

2

)

× 1
{mn

2n
≤ pjk ≤ ν2

2K2
ψ

}
≤ K

2jn( p
2−1)

√
nγ

≤ K

(
log(n)

n

)αp/2

;

C
′′
0222 = E

jn−1∑

j=−1

2j( p
2−1)

∑

k

min(|βjk|, γjk)p1
{mn

2n
≤ pjk

}

≤ E
jn−1∑

j=−1

2j( p
2−1)

∑

k

|βjk|p1{|βjk| ≤ γjk}

+ E
jn−1∑

j=−1

2j( p
2−1)

∑

k

γp
jk1{|βjk| > γjk} ≤ C

(
log(n)

n

)αp/2

.

These inequalities are obtained using the fact that f ∈ W ∗((1− α)p, p).
Finally, using Lemma 5.2,

C
′′
0223 = E

jn−1∑

j=−1

2j( p
2−1)

∑

k

|βjk|p1
{

γ̂jk >
3γjk

2

}
1
{mn

2n
≤ pjk ≤ ν2

2K2
ψ

}

≤
jn−1∑

j=−1

2j( p
2−1)

∑

k

|βjk|p Pf

(
|γ̂jk − γjk| > γjk

2

)
1
{mn

2n
≤ pjk ≤ ν2

2K2
ψ

}

≤ C

jn−1∑

j=−1

2j( p
2−1)

∑

k

(
2

j
2 pjk

)p
pjk

nγ
1
{mn

2n
≤ pjk ≤ ν2

2K2
ψ

}

≤ C
2jn(p−1)

nγ
≤ C

(
log(n)

n

)αp/2

.

Consequently, looking at the bounds of C0 and C1, we deduce that

sup
n>1

v−αp
n E ‖f̄n − f‖p

B0
p,p

< ∞.

We conclude that f ∈ MS
(
f̄n, ‖ · ‖p

B0
p,p

, vαp
n

)
. ¤
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Concluding remarks
Adopting the maxiset point of view for the problem of density estimation, we ex-

tended the maxiset result of Cohen et al. [4] to the case of noncompactly supported
densities. What is more, we proved that if the usual hard thresholding procedure
has the best maxiset performance within the family of elitist rules, there is a way
to construct other procedures with larger maxisets, by using random thresholds.
An example of such a procedure is the Juditsky and Lambert-Lacroix’s [13] one.

The maxiset approach is quite interesting, since it allows us to discriminate in a
theoretical way between procedures which can have the same minimax performance.
According to this new approach, the larger is the maxiset of a procedure, the better
is the procedure.

Some other examples of procedures which outperform the hard thresholding
procedure in the maxiset sense are given in [1]. In particular, this author succeeds in
proving that procedures which threshold empirical coefficients by blocks often have
better maxiset performance than procedures which threshold empirical coefficients
term-by-term.

6. Appendix
Proof of Lemma 4.2. We have

µ

√
log(n)

n
< |β̂jk| = 1

n

∣∣∣
n∑

i=1

ψjk(Xi)
∣∣∣ ≤ 1

n

n∑

i=1

2j/2Kψ1{Xi ∈ Ijk}

≤ 1
n

n∑

i=1

√
n

log(n)
Kψ1{Xi ∈ Ijk} (since j < jn)

≤ 1
n

√
n

log(n)
Kψnjk.

Finally, one gets

|β̂jk| > µ

√
log(n)

n
=⇒ njk >

µ

Kψ
log(n). ¤

Proof of Lemma 4.3. Step 1 : Suppose that npjk ≥ 2ρ log(n). Since τ2
jk =

n Varf (1{X1 ∈ Ijk}) = npjk(1 − pjk), then 2τ2
jk ≤

n2p2
jk

ρ log(n) . Using the Bernstein
inequality, we have,

Pf

(
njk < ρ log(n)

)
= Pf

(
npjk − njk > npjk − ρ log(n)

) ≤ Pf

(
npjk − njk >

n

2
pjk

)

≤ exp
(
− n2p2

jk

8
(
τ2
jk +

np2
jk

6

)
)
≤ exp

(
− n2p2

jk

8n2p2
jk

(
1

2ρ log(n) + 1
6n

)
)

≤ exp(−Kρ log(n)) = n−Kρ ≤ pjk

nγ
.

The last inequality is obtained by taking ρ such that Kρ ≥ 1 + γ.
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Step 2 : Suppose now that 1
nγ+1 ≤ npjk ≤ 2ρ log(n). Using the Bernstein in-

equality, we get

Pf

(
njk ≥ ρ log(n)

)

= Pf

(
njk − npjk ≥ ρ log(n)− npjk

) ≤ Pf

(
njk − npjk ≥ ρ log(n)

2

)

≤ exp
(
− ρ2 log(n)2

8
(
τ2
jk + ρ log(n)

6

)
)
≤ exp

(
− ρ2 log(n)2

8
(
npjk + ρ log(n)

6

)
)

≤ exp
(−Kρ log(n)

)
= n−Kρ ≤ pjk

nγ
.

The last inequality requires that ρ satisfies Kρ ≥ 2(1 + γ).

Step 3 : Consider the case npjk ≤ 1
nγ+1 . Using simple bounds on the tails of the

binomial distribution (see inequality 1 on p. 482 in Shorack and Wellner [22]), we
get

Pf

(
njk ≥ ρ log(n)

) ≤ (1− pjk)

1− (n+1)pjk

2

C2
n p2

jk(1− pjk)n−2

≤ n2p2
jk

2
(
1− (n+1)pjk

2

) ≤ n2pjk

nγ+2
=

pjk

nγ
. ¤

Proof of Lemma 4.4. Parts 1 and 2: By the Rosenthal inequality, for any j, k

E (β̂jk − βjk)2p = E
(

1
n

n∑

i=1

ψjk(Xi)− βjk

)2p

≤ C

n2p

[ n∑

i=1

E
(
ψjk(Xi)− βjk

)2p +
( n∑

i=1

E (ψjk(Xi)− βjk)2
)p

]

≤ C

n2p
(D0 + D1),

where

D0 =
n∑

i=1

E
(
ψjk(Xi)− βjk

)2p ≤ Cn
(
E (ψ2p

jk(X1)) + (βjk)2p
)

≤ Cn
(
2jppjk + (2j/2pjk)2p

) ≤ C2jpnpjk,

D1 =
( n∑

i=1

E
(
ψjk(Xi)− βjk

)2
)p

=
( n∑

i=1

Var
(
ψjk(Xi)

))p

≤
( n∑

i=1

E
(
ψ2

jk(Xi)
))p

≤ Cnp(2jpjk)p ≤ C2jp(npjk)p.

Now, if npjk ≥ 1, then npjk ≤ (npjk)p. So

E (β̂jk − βjk)2p ≤ C

(
2jpjk

n

)p

.
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If npjk < 1, then npjk > (npjk)p. So

E (β̂jk − βjk)2p ≤ Cnpjk

(
2j

n2

)p

.

Finally, part 3 is just a consequence of parts 1 and 2. ¤

Proof of Lemma 5.1. Suppose that γ̂jk < |β̂jk|. Then,

µ2 log(n)
n

· 1
n

n∑

i=1

ψjk(Xi)2 < µ2 log(n)
n

β̂2
jk + β̂2

jk =
(

µ2 log(n)
n

+ 1
)

β̂2
jk.

By using bounds on the left- and right-hand sides, one gets for n large enough:

µ2 log(n)
n2

2jν2njk < 2β̂2
jk.

And since n|β̂jk| ≤ 2j/2Kψnjk,

µ2ν2 log(n) < 2K2
ψnjk.

Finally, one gets

|β̂jk| > γ̂jk =⇒ njk >
µ2ν2

2K2
ψ

log(n). ¤
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