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Laboratoire de Mathématiques d’Avignon

Rencontres de Statistique Avignon-Marseille
Marseille, June 2018

∗ J Chadœuf ; P Monestiez, F Bonneu ; F Rodriguez-Cortes, J Mateu ; J Coville



Motivations

Predicting the local intensity
Defining the predictor by a linear combination of the point
process realization

Solving the Fredholm equation
to find the weights of the linear combination
⇒ approximated solutions

Work in progress

Discussion
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About point processes

A point process, Φ on Rd is a random variable taking values in a
measurable space [X,X ], where X is the family of all sequences ϕ of
points of Rd satisfying

(i) the sequence is locally finite, i.e each bounded subset of Rd

contains a finite number of points of ϕ.

(ii) the sequence is simple: xi 6= xj , if i 6= j .

Notations

ΦW = Φ ∩W : point process observed in W ⊂ R2

Φ(B) =
∑

x∈Φ IB(x): number of points of Φ within the set B.

Predicting the intensity of a spatial point process Edith Gabriel



Motivations Predicting the local intensity Solving the Fredholm equation Work in progress Discussion

Intensity function

Probability of one event within an elementary region:

P[ there is point of Φ in dx ] = λ(x) dx

where dx is an elementary region centered at x , with volume ν(dx).

λ(x) = lim
ν(dx)→0

E [Φ(dx)]

ν(dx)
.

Inhomogeneity (i.e spatial variations) of the intensity can reflect:

spatial variation in abundance (of a bird population), fertility (of a forest)
or risk (of tornadoes),

preference (of animal for certain types of habitat),

dependence on external factors.
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Pair correlation function

Relationship between number of events in a pair of subregions

g(xi , xj) =
λ2(xi , xj)

λ(xi )λ(xj)

where λ2 is the second-order intensity function :

Probability of two events, each within an elementary region:

P

 one point of Φ in dxi
and

one point of Φ in dxj

 = λ2(xi , xj ) dxi dxj

λ2(xi , xj ) = lim
ν(dxi )→0,ν(dxj )→0

E
[
Φ(dxi )Φ(dxj )

]
ν(dxi )ν(dxj )

Remark: for an isotropic process lim‖xi−xj‖→∞ g(xi , xj ) = 1,

since the events “there is a point of Φ in dxi” and “there is a point of Φ in dxj” are

independent for large ‖xi − xj‖.
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Our aim

Let Φ a spatial point process, observed in a window Wobs .

Can we predict its intensity function outside Wobs , conditionally to Φ ∩Wobs?

Why? Exhaustive observations are impossible ⇒ observation in quadrats.

Motivating example

How to estimate the spatial distribution of a bird species
at a national scale from observations made in windows
of few hectares?

i.e. how to map local intensity variations of a point process in a large
window when observation are available at a much smaller scale only?
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Local intensity

Definition

We call local intensity of the point process Φ, its intensity
conditional to its realization in Wobs : λ(x |Φ ∩Wobs).

Window of interest:

W = Wobs ∪Wunobs

= (∪��) ∪ (∪��)

Φ = {•◦, •◦}; ΦWobs
= {•◦}

Our aim

To predict the local intensity in an unobserved window Wunobs .
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Examples

Thomas process:

κ: intensity of the Poisson process parents, Z ,

µ: mean number of offsprings per parent,

σ: standard deviation of Gaussian displacement.

If Wobs splits a cluster, the local intensity across the
boundary should be larger than λ.

Softcore process

If an event is observed close to the boundary of Wobs ,
the local intensity should be smaller the global one.

Thomas
κ = 15, µ = 15, σ = 0.025
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Existing solutions

From the reconstruction of the process

Reconstruction method based on the 1st and 2d -order characteristics of Φ

(see e.g. Tscheschel & Stoyan, 2006).

Get the intensity by kernel smoothing.

A simulation-based method ⇒ long computation times.

For specific models

Diggle et al. (2007, 2013): Bayesian framework

Monestiez et al. (2006, 2013): Derived from classical geostatistics.

Models constrained within the class of Cox processes.

van Lieshout and Baddeley (2001).

Based on exact simulations.
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Our alternative approach

We want to predict the local intensity λ(x |ΦWobs
)

without precisely knowing the underlying point process model

⇒ we only consider the 1st and 2d -order characteristics,

in a reasonable time.

We define the predictor, similarly to a kriging interpolator, ie

it is linear,

it is unbiased,

it minimizes the error prediction variance,

with weights depending on the structure of the point process.

Predicting the intensity of a spatial point process Edith Gabriel



Motivations Predicting the local intensity Solving the Fredholm equation Work in progress Discussion

Context

Let Φ a point process observed in Wobs .

For sake of clarity, we start by assuming that Φ is stationary1, thus the
global intensity and pair correlation function are

λ =
E [Φ(Wobs)]

ν(Wobs)
; g(x − y) =

λ2(x − y)

λ2
.

1Assumption being relaxed later in the talk
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Our predictor

Proposition (Gabriel, Coville & Chadœuf, 2017)

For xo ∈Wobs ,

λ̂(xo |ΦWobs )=

∫
R2

w(x ; xo)
∑

y∈ΦWobs

δ(x − y) dx =
∑

x∈ΦWobs

w(x ; xo)

is the Best Linear Unbiased Predictor of λ(xo |ΦWobs ).
The weights, w(x), are solution of the Fredholm equation of the 2d kind:

w(x)+λ

∫
Wobs

w(y) (g(x − y)−1) dy−
1

ν(Wobs)

[
1+λ

∫
W 2

obs

w(y) (g(x − y)− 1) dx dy

]

= λ (g(xo − x)−1)−
λ

ν(Wobs)

∫
Wobs

(g(xo − x)−1) dx

and satisfy
∫
Wobs

w(x) dx = 1.
The variance of the predictor is given by

Var
(
λ̂(xo |ΦWobs

)
)

= λ

∫
Wobs

w2(x) dx+λ2
∫
Wobs×Wobs

w(x)w(y) (g(x − y)− 1) dx dy .
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Elements of proof

Linearity:

We set

λ̂(xo |ΦWobs )=

∫
R2

w(x ; xo)
∑

y∈ΦWobs

δ(x − y) dx =
∑

x∈ΦWobs

w(x ; xo).

Unbiasedness:

E
[
λ̂(xo |ΦWobs )− λ(xo |ΦWobs )

]
= 0

⇐⇒
∫
Wobs

λw(x) dx − E
[

lim
ν(B)→0

E [Φ(B ⊕ xo)|ΦWobs ]

ν(B)

]
= 0

⇐⇒ λ

(∫
Wobs

w(x) dx − 1

)
= 0

⇐⇒
∫
Wobs

w(x) dx = 1.
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Elements of proof

Minimum error prediction variance:

For any Borel set B,

Var (Φ(B)) = λν(B) + λ2
∫
B×B

(g(x − y)− 1) dx dy

and for Bo = B ⊕ xo with xo /∈Wobs ,

lim
ν(B)→0

1

ν(B)

∫
Bo×Wobs

(g(x − y)− 1) dx dy =

∫
Wobs

(g(xo − x)− 1) dx

Then minimizing Var
(
λ̂(xo |ΦWobs

)− λ(xo |ΦWobs
)
)

is equivalent to minimize

λ

∫
Wobs

w2(x) dx + λ2
∫
Wobs×Wobs

w(x)w(y) (g(x − y)− 1) dx dy

− 2λ2
∫
Wobs

w(x) (g(xo − x)− 1) dx
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Elements of proof

Using Lagrange multipliers under the constraint on the weights, we set

T (w(x)) = λ

∫
Wobs

w2(x) dx + λ2
∫
Wobs×Wobs

w(x)w(y) (g(x − y)− 1) dx dy

− 2λ2
∫
Wobs

w(x) (g(xo − x)− 1) dx + µ

(∫
Wobs

w(x) dx − 1

)

Then, for α(x) = w(x) + ε(x),

T (α(x)) ≈ T (w(x)) + 2λ

∫
Wobs

ε(x) [w(x) + λw(y) (g(x − y)− 1) dy

−λ (g(xo − x)− 1) +
µ

2λ

]
dx
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Elements of proof

From variational calculation and the Riesz representation theorem,

T (α(x)) − T (w(x)) = o(ε(x))

⇔
∫
Wobs

ε(x)

[
w(x)+λ

∫
Wobs

w(y) (g(x − y)−1) dy − λ (g(xo − x)−1) +
µ

2λ

]
dx=0

⇔ w(x) + λ

∫
Wobs

w(y) (g(x − y)− 1) dy − λ (g(xo − x)− 1) +
µ

2λ
= 0

Thus,

1 + λ

∫
W 2

obs

w(y) (g(x − y)− 1) dy dx − λ
∫
Wobs

(g(xo − x)− 1) dx +
ν(Wobs)

2λ
µ = 0

from which we obtain µ and we can deduce the Fredholm equation

w(x)+λ

∫
Wobs

w(y) (g(x − y)− 1) dy−
1

ν(Wobs)

[
1 + λ

∫
W 2

obs

w(y) (g(x − y)− 1) dx dy

]

= λ (g(xo − x)− 1)−
λ

ν(Wobs)

∫
Wobs

(g(xo − x)− 1) dx

Predicting the intensity of a spatial point process Edith Gabriel



Motivations Predicting the local intensity Solving the Fredholm equation Work in progress Discussion

Solving the Fredholm equation

Any existing solution already considered in the literature can be used!

Our aim is to map the local intensity in a given window
⇒ access to fast solutions.

Several approximations can be used to solve the Fredholm equation.

The weights w(x) can be defined as

step functions  direct solution,

linear combination of known basis functions, e.g. finite elements,
splines

 continuous approximation.

. . .

Here, we illustrate the ones with the less heavy calculations and implementation.
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Finite element approach

The Fredholm equation can be written as

w(x) +

∫
Wobs

w(y)k(x , y) dy = f (x ; xo), (1)

with k(x , y) = λ
(
g(x − y)− 1

ν(Wobs )

∫
Wobs

g(x − y) dx
)

and f (x ; xo) = 1
ν(Wobs )

+ λ
(
g(x − xo)− 1

ν(Wobs )

∫
Wobs

g(x − xo) dx
)

.

The Galerkin method, with Th a mesh partitioning Wobs and Vh an
approximation space, plugged into a weak formulation of (1), leads to:

N∑
j=1

wj

∫
Wobs

(
ϕi (x)ϕj (x) +

∫
Wobs

∫
Wobs

k(x , y)ϕj (y)ϕi (x) dy

)
=

∫
Wobs

f (x ; xo)ϕi (x) dx ,

with w(x) ≈
∑N

i=1 wiϕi (x), N = dimVh and {ϕi}i=1,...,N a basis of Vh.
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Finite element approach

Using a matrix formulation, we have the Galerkin equation:

Mw + Kw = F , (2)

with M the FEM mass matrix, F =

(∫
Wobs

f (x ; xo)ϕi (x) dx

)
i=1,...,N

and K =

(∫
Wobs

∫
Wobs

k(x , y)ϕi (x)ϕj (y) dx dy

)
i,j

.

We propose to solve (2) using k(x , y) ≈
∑

l,m Klmϕl (x)ϕm(y).

Thus, for K = (Klm)l,m and K = MKM, this leads to consider the problem:

(Id +KM)w = M−1F , (3)

When Th is fine enough, (3) inherits the resolvability of the Fredholm

equation, ensuring the consistency of the approximations.
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Finite element approach: illustrative results (1)

Simulation of a Thomas process within [0, 1]× [0, 1]
Parents: Pois(µ), µ = 50

Offspring: Pois(κ), κ = 10, normally distributed, with σ = 0.05

Point process

realization

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

λ = κµ = 500

Pair correlation

function

0.00 0.05 0.10 0.15 0.20 0.25
0

1

2

3

4

5

g(r) = 1 + 1
4πκσ2 exp

(
− r2

4σ2

)

Prediction within Wunobs

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

{•}: ΦWobs
; {•}: ΦWunobs
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Finite element approach: illustrative results (1)

Weight function w(·; xo)

xo = (0.18, 0.57) Prediction in Wobs

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

{•}: ΦWobs

xo = (0.38, 0.57)
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Finite element approach: illustrative results (2)

Simulation of a cluster process within [0, 10]× [0, 10]
Parents: hardcore process with interaction radius 0.5

Offspring: normally distributed, with σ = 0.1

Point process

realization

0 2 4 6 8 10
0

2

4

6

8

10

λ̂ = 12.58

Pair correlation

function

0.0 0.5 1.0 1.5 2.0 2.5
0

1

2

3

4

5

g(r) = 1+α δ
r

exp

(
−
(

r
δ

)β)
sin

(
r
δ

)
α̂ = 11.65; β̂ = 0.35; δ̂ = 1.25

Prediction within Wunobs

0 2 4 6 8 100

2

4

6

8

10

{•}: ΦWobs
; {•}: ΦWunobs
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Finite element approach: illustrative results (2)

Weight function w(·; xo)

xo = (2.22, 2.69) Prediction in Wobs

0 2 4 6 8 100

2

4

6

8

10

{•}: ΦWobs

xo = (4.88, 2.69)
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Finite element approach: application

902 trees sampled in a 15ha quadrat to study the sahelian ecosystem2.

Data location

0 5 10 15 20 25 30
0

10

20

30

40

λ̂ = 0.6

pcf

0 2 4 6
0

2

4

6

8

g(r) = 1+α exp
(
−δrβ

)
α̂ = 7.53; β̂ = 1.25; δ̂ = 0.3

Prediction within Wunobs

0 5 10 15 20 25 300

10

20

30

40

{•}: ΦWobs
; {•}: ΦWunobs

2
Dataset issued from an Intern. Biological Program conducted in Fété Olé, North Sénégal (Poupon, 1979)
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Step functions

Let us consider the following partition Sobs = ∪nj=1B ⊕ cj ,
B ⊕ cj : elementary square centered at cj ,
B ⊕ ck ∩ B ⊕ cj = ∅,
n: number of grid cell centers lying in Sobs .

Sobs = ■

Bj

xo

cj

Setting w(x) =
∑n

j=1 wj

I{x∈B⊕cj}
ν(B) , leads to GBMC’s predictor3:

λ̂(xo |ΦSobs
) =

∑n
j=1 wj

Φ(B ⊕ cj)

ν(B)

with w = (w1, . . . ,wn) = C−1Co + 1−1TC−1Co

1TC−11 C−11, where

C = λν(B)II +λ2ν2(B)(G−1): covariance matrix, with II the n×n-identity matrix

and G = {gij}i,j=1,...,n, gij = 1
ν2(B)

∫
B×B g(ci − cj + u − v) du dv ,

Co = λ2ν2(B)(Go−1): covariance vector, with Go = {gio}i=1,...,n.

3
Gabriel, Bonneu, Monestiez & Chadœuf (2016)
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Step functions: variance of the predictor

We consider the Neuman series to invert the covariance matrix,
C = λν(B)II + λ2ν2(B)(G − 1), when λν(B)→ 0:

C−1 =
1

λν(B)
[II + λν(B)Jλ] ,

where a generic element of the matrix Jλ is given by

Jλ[i , j] =
∞∑
k=1

(−1)kλk−1
(
g(xi , xl1 )− 1

) (
g(xlk−1

, xj )− 1
)

×
∫
W k−1

obs

k−2∏
m=1

(g(xlm , xlm+1
)− 1) dxl1 . . . dxlk−1

.

This leads to

Var
(
λ̂(xo |ΦWobs

)
)

= λ3ν2(B)(Go − 1)T (Go − 1) + λ4ν3(B)(Go − 1)T Jλ(Go − 1)

+
1−

[
λν(B)1T (Go − 1) + λ2ν2(B)1T Jλ(Go − 1)

]2

ν(Wobs )
λ

+ ν2(B)1T Jλ1
.
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Step functions: illustrative results

Simulated Thomas process
κ = 10, µ = 50, σ = 0.05

Prediction within Wunobs

R2 in linear regression
of predicted and theoretical values

(with the theoretical pcf)

(with the estimated pcf)

{•}: ΦWobs
; {•}: ΦWunobs
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Two processes

Let Φ(1) and Φ(2) two stationary point processes observed in W1 and W2.

We want to predict the intensity of the Φ1 at xo /∈W1 given Φ
(1)
W1

and Φ
(2)
W2

.

We define

λ̂1(xo |Φ(1)
W1
,Φ

(2)
W2

) =
∑
x∈W1

ω1(x) +
∑
y∈W2

ω2(y)

such that
E
[
λ̂1(xo |Φ(1)

W1
,Φ

(2)
W2

)
]

= λ1

Var
(
λ̂1(xo |Φ(1)

W1
,Φ

(2)
W2

)− λ1(xo |Φ(1)
W1
,Φ

(2)
W2

)
)

minimum.

 a system of Fredholm equations.

 depend on the cross pair correlation function.
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Two processes: illustration

Multi-type Cox process driven by a boolean process of discs

Generate a boolean process of discs

Centers: from a Poisson process P(λb); Radius: Rb.

Generate two independent Poisson processes

Φ
(1)
init ∼ P(λo,1) and Φ

(2)
init ∼ P(λo,2).

Final processes: Φ(1) and Φ(2)

- Retain all points outside the union of discs,

- Retain with probability pi the points of Φ
(i)
init lying inside the union of discs.

Then, for i , j ∈ 1, 2 λi = λo,i (e
−λbπR

2
b + (1− e−λbπR

2
b )pi ), and

gi,j (r) =
A + B(pi + pj ) + (1− A− 2B)pipj

(e−λbπR
2
b + (1− e−λbπR

2
b )pi )(e−λbπR

2
b + (1− e−λbπR

2
b )pj )

with A = e−λbSr , B = (1− e−λb(πR2
b−sr ))e−λbπR

2
b ,

Sr (sr ): area of the union (intersection) of two discs of radii Rb, distant by r .
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Two processes: illustration

Parameters:

Boolean process: λb = 0.01; Rb = 10,

Poisson processes: λo,i = 0.75,

Retention probabilities: pi = 0.05.

gi,j (r)

0 10 20 30 40 50
0

1

2

3

4

5

6

Observations: Φ
(1)
W1

and Φ
(2)
W2

λ̂1(xo |Φ(1)
W1
,Φ

(2)
W2

)
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Non-stationary processes

We relax the stationary assumption.

We assume that Φ is Second-Order Intensity-Reweighted Stationary, i.e.

its intensity λ(x) is spatially varying

e.g. it can be linked to covariates,

the interaction between point depends on their difference
(/distance):

g(x − y) =
λ2(x , y)

λ(x)λ(y)
.

Predicting the intensity of a spatial point process Edith Gabriel
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Non-stationary processes

The predictor has a similar definition: λ̂(xo |ΦWobs
) =

∑
x∈ΦWobs

w(x ; xo)

The constraint on the weight function is∫
Wobs

λ(x)w(x) dx = λ(xo)

and the Fredholm equation becomes:

w(x) +

∫
Wobs

w(y)λ(y) (g(x − y)− 1) dy

−
1

ν(Wobs)

[∫
Wobs

w(x) dx +

∫
W 2

obs

w(y)λ(y) (g(x − y)− 1) dx dy

]

= λ(xo) (g(xo − x)− 1)−
λ(xo)

ν(Wobs)

∫
Wobs

(g(xo − x)− 1) dx
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Non-stationary processes: goodness of prediction

Let Φ be a SOIRS Neyman-Scott process obtained by p(x)-thinning, with

intensity λ(x) = κµp(x),

Φ(p) ∼ P(κ) the process of parents,

f (x ;R) the dispersion kernel for the offspring, with range R,

mean number of offspring µ.

For ∂W = W⊕r\W , the local intensity is

λ(xo |ΦW ) =

∫  ∑
y∈b(xo ,R)∩(W∪∂W )

µp(xo)f (y − xo) +

µκ

∫
b(xo ,R)\(W∪∂W )

p(xo)f (y − xo) dy

]
dP[Φ

(p)
W∪∂W |ΦW ]

Then, we can get a Monte Carlo approximation of λ(xo |ΦW ) by simulating K

realizations of parent points in ∂W .
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Non-stationary processes: illustration

Independent thinning of a Matérn cluster process:

Thinning probability:
p(x) = p(x1, x2) = 0.8 I{x1≤0.5} + 0.2 I{x1>0.5}.

Offspring x are uniformly distributed on a disc of
radius R around its parent point xp :
f (x) = 1

πR2 I{‖x−xp‖≤R}; R = 0.05.

κ = 1000, µ = 20.

g(r)
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Forthcoming work: extend to spatio-temporal processes

For (xo , to) /∈ Dobs = Wobs × Tobs , the spatio-temporal predictor given by
λ̂((xo , to)|ΦDobs

) =
∑

(x,t)∈Φ∩Dobs
w(x , t) is the BLUP of λ((xo , to)|ΦDobs

).

Assuming Φ stationary, w(x , t) satisfies
∫
Dobs

w(x , t) dx dt = 1, and is
solution of the Fredholm equation of the second kind:

λ(g(xo − x1, to − t1)− 1)−
λ

ν(Dobs)

∫
Dobs

w(x1, t1)(g(xo − x1, to − t1)− 1) dx1 dt1

= w(x1, t1) + λ

∫
Dobs

w(x2, t2)(g(x1 − x2, t1 − t2)− 1) dx2 dt2

−
1

ν(Dobs)

1 +

∫
Dobs×Dobs

w(x2, t2)(g(x1 − x2, t1 − t2)− 1) d(x1, x2) d(t1, t2)

 .
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Forthcoming work: extend to spatio-temporal processes

Solve the Fredholm equation using the finite element approach:

w(x , t) ≈
∑

wiϕi (x , t),

(should work because Dobs = Wobs × Tobs).

Extend to SOIRS 4 spatio-temporal processes.

4
Space-time Second-Order Intensity Reweighted Stationarity, see Gabriel & Diggle (2009)
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Forthcoming work: extending to fibre processes

Applying the same approach to fibre processes:

⇒ switch from summation on points to integral along fibres

Again with the pair correlation function

→ local fibre orientation weakly taken into account.

The problem can also occur for point processes,

e.g. for a Cox process driven by a boolean seg-

ment process
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Forthcoming work: predicting the local intensity from data of different kind

Consider both

data point locations, ΦW1 = Φ ∩W1,

count data, Φ(W2).

⇒ How to predict λ(xo |ΦW1 ,Φ(W2)), xo /∈W1 ∪W2?

A (very) first candidate:

λ̂(xo |ΦW1 ,Φ(W2)) =
∑

x∈Φ∩W1

w(x) + αΦ(W2).

to be continued . . .
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