Estimating the intensity function of spatial point processes outside the observation window

Edith Gabriel & co*

Laboratoire de Mathématiques d'Avignon

RENCONTRES DE STATISTIQUE AVIGNON-MARSEILLE Marseille, June 2018

* J Chadœuf ; P Monestiez, F Bonneu ; F Rodriguez-Cortes, J Mateu ; J Coville

Motivations

Predicting the local intensity

Defining the predictor by a linear combination of the point process realization

Solving the Fredholm equation

to find the weights of the linear combination \Rightarrow approximated solutions

Work in progress

Discussion

Motivations	Predicting the local intensity	Solving the Fredholm equation	Work in progress	Discussion
About p	ooint processes			

A point process, Φ on \mathbb{R}^d is a random variable taking values in a measurable space $[\mathbb{X}, \mathcal{X}]$, where \mathbb{X} is the family of all sequences φ of points of \mathbb{R}^d satisfying

- (i) the sequence is locally finite, i.e each bounded subset of R^d contains a finite number of points of φ.
- (ii) the sequence is simple: $x_i \neq x_j$, if $i \neq j$.

Notations

- $\Phi_W = \Phi \cap W$: point process observed in $W \subset \mathbb{R}^2$
- $\Phi(B) = \sum_{x \in \Phi} \mathbb{I}_B(x)$: number of points of Φ within the set B.

Motivations	Predicting the local intensity	Solving the Fredholm equation	Work in progress	Discussion
Intensity	/ function			

Probability of one event within an elementary region:

$$\mathbb{P}[$$
 there is point of Φ in $dx] = \lambda(x) dx$

where dx is an elementary region centered at x, with volume $\nu(dx)$.

$$\lambda(x) = \lim_{\nu(dx)\to 0} \frac{\mathbb{E}\left[\Phi(dx)\right]}{\nu(dx)}.$$

Inhomogeneity (i.e spatial variations) of the intensity can reflect:

- spatial variation in abundance (of a bird population), fertility (of a forest) or risk (of tornadoes),
- preference (of animal for certain types of habitat),
- dependence on external factors.

 Motivations
 Predicting the local intensity
 Solving the Fredholm equation
 Work in progress
 Discussion

 Operation
 Correlation function
 Fredholm equation
 Solving the fredholm equat

Relationship between number of events in a pair of subregions

 $g(x_i, x_j) = \frac{\lambda_2(x_i, x_j)}{\lambda(x_i)\lambda(x_j)}$

where λ_2 is the second-order intensity function :

Probability of two events, each within an elementary region:

$$\mathbb{P}\left[\begin{array}{c} \text{one point of } \Phi \text{ in } dx_i \\ \text{and} \\ \text{one point of } \Phi \text{ in } dx_j \end{array}\right] = \lambda_2(x_i, x_j) \, dx_i \, dx_j$$
$$\lambda_2(x_i, x_j) = \lim_{\nu(dx_i) \to 0, \nu(dx_j) \to 0} \frac{\mathbb{E}\left[\Phi(dx_i)\Phi(dx_j)\right]}{\nu(dx_i)\nu(dx_j)}$$

Remark: for an isotropic process $\lim_{\|x_i - x_j\| \to \infty} g(x_i, x_j) = 1$, since the events "there is a point of Φ in dx_i " and "there is a point of Φ in dx_j " are independent for large $\|x_i - x_j\|$.

Motivations	Predicting the local intensity	Solving the Fredholm equation	Work in progress	Discussion
Our aim				

Let Φ a spatial point process, observed in a window W_{obs} .

Can we predict its intensity function outside W_{obs} , conditionally to $\Phi \cap W_{obs}$?

Why? Exhaustive observations are impossible \Rightarrow observation in quadrats.

Motivating example

How to estimate the spatial distribution of a bird species at a national scale from observations made in windows of few hectares?

i.e. how to map *local intensity variations* of a point process in a large window when observation are available at a much smaller scale only?

Motivations	Predicting the local intensity	Solving the Fredholm equation	Work in progress	Discussion
Local in	tensity			

Definition

We call *local* intensity of the point process Φ , its intensity conditional to its realization in W_{obs} : $\lambda(x|\Phi \cap W_{obs})$.

Window of interest:

 $W = W_{obs} \cup W_{unobs}$ $= (\cup \square) \cup (\cup \square)$

$$\Phi = \{ \bullet, \bullet \}; \ \Phi_{W_{obs}} = \{ \bullet \}$$

Our aim

To predict the local intensity in an unobserved window W_{unobs} .

Predicting the intensity of a spatial point process

Motivations	Predicting the local intensity	Solving the Fredholm equation	Work in progress	Discussion
Example	es			

Thomas process:

- κ : intensity of the Poisson process parents, Z,
- μ : mean number of offsprings per parent,
- σ : standard deviation of Gaussian displacement.

If W_{obs} splits a cluster, the local intensity across the boundary should be larger than λ .

Softcore process

If an event is observed close to the boundary of W_{obs} , the local intensity should be smaller the global one.

Motivations	Predicting the local intensity	Solving the Fredholm equation	Work in progress	Discussion
Existing	solutions			

- From the reconstruction of the process
 - Reconstruction method based on the 1st and 2^d-order characteristics of Φ (see e.g. Tscheschel & Stoyan, 2006).
 - Get the intensity by kernel smoothing.

A simulation-based method \Rightarrow long computation times.

- For specific models
 - Diggle *et al.* (2007, 2013): Bayesian framework
 - Monestiez et al. (2006, 2013): Derived from classical geostatistics.

Models constrained within the class of Cox processes.

■ van Lieshout and Baddeley (2001).

Based on exact simulations.

Motivations	Predicting the local intensity	Solving the Fredholm equation	Work in progress	Discussion
Our alte	rnative approach			

We want to predict the local intensity $\lambda(x|\Phi_{W_{obs}})$

- without precisely knowing the underlying point process model ⇒ we only consider the 1st and 2^d-order characteristics,
- in a reasonable time.

We define the predictor, similarly to a kriging interpolator, ie

- it is linear,
- it is unbiased,
- it minimizes the error prediction variance,

with weights depending on the structure of the point process.

Motivations	Predicting the local intensity	Solving the Fredholm equation	Work in progress	Discussion
Context				

Let Φ a point process observed in W_{obs} .

For sake of clarity, we start by assuming that Φ is stationary¹, thus the global intensity and pair correlation function are

$$\lambda = \frac{\mathbb{E}\left[\Phi(W_{obs})\right]}{\nu(W_{obs})} ; g(x-y) = \frac{\lambda_2(x-y)}{\lambda^2}.$$

¹Assumption being relaxed later in the talk

Predicting the intensity of a spatial point process

Motivat	ions Predicting the local intensity DOO Decode	Solving the Fredholm equation	Work in progress	Discussion
Our	predictor			
	Proposition (Gabriel, Covil	le & Chadœuf, 2017)		
	For $x_o \in W_{obs}$,			
	$\widehat{\lambda}(x_o \Phi_{W_{obs}}) = \int_{\mathbb{R}^2} w(x_o \Phi_{W_{obs}}) = \int_{\mathbb$	$x; x_o) \sum_{y \in \Phi_{W_{obs}}} \delta(x - y) \mathrm{d}x = \sum_{x \in \Phi$	$\sum_{a \in \Phi_{W_{obs}}} w(x; x_o)$	
i	s the Best Linear Unbiased I The weights, $w(x)$, are solut	Predictor of $\lambda(x_o \Phi_{W_{obs}})$. ion of the Fredholm equation	of the 2 ^d kind:	
	$w(x)+\lambda\int_{W_{obs}}w(y)(g(x-y))$	$-1) \operatorname{dy} - rac{1}{ u(W_{obs})} \left[1 + \lambda \int_{W^2_{obs}} w($	$y)\left(g(x-y)-1\right)$	$d \times d y$
	= 2	$\lambda (g(x_o - x) - 1) - \frac{\lambda}{\nu(W_{obs})} \int_{W_o}$	$(g(x_o-x)-1)$	dx
ä	and satisfy $\int_{W_{obs}} w(x) \mathrm{d}x = 1$	L.		
-	The variance of the predictor	r is given by		

$$\mathbb{V}\mathrm{ar}\left(\widehat{\lambda}(x_o|\Phi_{W_{obs}})\right) = \lambda \int_{W_{obs}} w^2(x) \, \mathrm{d}x + \lambda^2 \int_{W_{obs} \times W_{obs}} w(x)w(y) \left(g(x-y) - 1\right) \, \mathrm{d}x \, \mathrm{d}y.$$

Motivations	Predicting the local intensity	Solving the Fredholm equation	Work in progress	Discussion
Element	s of proof			

Linearity:

We set

$$\widehat{\lambda}(x_o|\Phi_{W_{obs}}) = \int_{\mathbb{R}^2} w(x;x_o) \sum_{y \in \Phi_{W_{obs}}} \delta(x-y) \, \mathrm{d}x = \sum_{x \in \Phi_{W_{obs}}} w(x;x_o)$$

Unbiasedness:

$$\begin{split} \mathbb{E}\left[\widehat{\lambda}(x_o|\Phi_{W_{obs}}) - \lambda(x_o|\Phi_{W_{obs}})\right] &= 0\\ \iff \int_{W_{obs}} \lambda w(x) \, dx - \mathbb{E}\left[\lim_{\nu(B) \to 0} \frac{\mathbb{E}\left[\Phi(B \oplus x_o)|\Phi_{W_{obs}}\right]}{\nu(B)}\right] = 0\\ \iff \lambda\left(\int_{W_{obs}} w(x) \, dx - 1\right) &= 0\\ \iff \int_{W_{obs}} w(x) \, dx = 1. \end{split}$$

Predicting the intensity of a spatial point process

Motivations	Predicting the local intensity	Solving the Fredholm equation	Work in progress	Discussion
Element	s of proof			

Minimum error prediction variance:

For any Borel set B,

$$\mathbb{V}$$
ar ($\Phi(B)$) = $\lambda \nu(B) + \lambda^2 \int_{B \times B} (g(x - y) - 1) dx dy$

and for $B_o = B \oplus x_o$ with $x_o \notin W_{obs}$,

$$\lim_{\nu(B)\to 0} \frac{1}{\nu(B)} \int_{B_o \times W_{obs}} (g(x-y) - 1) \, \mathrm{d}x \, \mathrm{d}y = \int_{W_{obs}} (g(x_o - x) - 1) \, \mathrm{d}x$$

Then minimizing $\mathbb{V}ar\left(\widehat{\lambda}(x_o|\Phi_{W_{obs}}) - \lambda(x_o|\Phi_{W_{obs}})\right)$ is equivalent to minimize

$$\lambda \int_{W_{obs}} w^2(x) \, \mathrm{d}x + \lambda^2 \int_{W_{obs} \times W_{obs}} w(x) w(y) \left(g(x-y) - 1\right) \, \mathrm{d}x \, \mathrm{d}y$$
$$- 2\lambda^2 \int_{W_{obs}} w(x) \left(g(x_o - x) - 1\right) \, \mathrm{d}x$$

Predicting the intensity of a spatial point process

Motivations	Predicting the local intensity	Solving the Fredholm equation	Work in progress	Discussion
Element	s of proof			

Using Lagrange multipliers under the constraint on the weights, we set

$$T(w(x)) = \lambda \int_{W_{obs}} w^2(x) \, \mathrm{d}x + \lambda^2 \int_{W_{obs} \times W_{obs}} w(x)w(y) \left(g(x-y)-1\right) \, \mathrm{d}x \, \mathrm{d}y$$
$$- 2\lambda^2 \int_{W_{obs}} w(x) \left(g(x_o-x)-1\right) \, \mathrm{d}x + \mu \left(\int_{W_{obs}} w(x) \, \mathrm{d}x - 1\right)$$

Then, for $\alpha(x) = w(x) + \varepsilon(x)$,

$$T(\alpha(x)) \approx T(w(x)) + 2\lambda \int_{W_{obs}} \varepsilon(x) \left[w(x) + \lambda w(y) \left(g(x-y) - 1\right) dy -\lambda \left(g(x_o - x) - 1\right) + \frac{\mu}{2\lambda}\right] dx$$

Motivations	Predicting the local intensity	Solving the Fredholm equation	Work in progress	Discussion
EL .				

Elements of proof

From variational calculation and the Riesz representation theorem,

$$T(\alpha(x)) - T(w(x)) = o(\varepsilon(x))$$

$$\Leftrightarrow \int_{W_{obs}} \varepsilon(x) \left[w(x) + \lambda \int_{W_{obs}} w(y) (g(x-y)-1) \, dy - \lambda (g(x_o - x)-1) + \frac{\mu}{2\lambda} \right] dx = 0$$

$$\Leftrightarrow w(x) + \lambda \int_{W_{obs}} w(y) (g(x-y)-1) \, dy - \lambda (g(x_o - x)-1) + \frac{\mu}{2\lambda} = 0$$

Thus,

$$1 + \lambda \int_{W_{obs}^2} w(y) \left(g(x - y) - 1 \right) \, \mathrm{d}y \, \mathrm{d}x - \lambda \int_{W_{obs}} \left(g(x_o - x) - 1 \right) \, \mathrm{d}x + \frac{\nu(W_{obs})}{2\lambda} \mu = 0$$

from which we obtain μ and we can deduce the Fredholm equation

$$w(x) + \lambda \int_{W_{obs}} w(y) (g(x - y) - 1) dy - \frac{1}{\nu(W_{obs})} \left[1 + \lambda \int_{W_{obs}^2} w(y) (g(x - y) - 1) dx dy \right]$$

= $\lambda (g(x_o - x) - 1) - \frac{\lambda}{\nu(W_{obs})} \int_{W_{obs}} (g(x_o - x) - 1) dx$

Any existing solution already considered in the literature can be used!

Our aim is to map the local intensity in a given window \Rightarrow access to fast solutions.

Several approximations can be used to solve the Fredholm equation.

The weights w(x) can be defined as

- step functions \rightsquigarrow direct solution,
- linear combination of known basis functions, e.g. finite elements, splines
 - \rightsquigarrow continuous approximation.

...

Here, we illustrate the ones with the less heavy calculations and implementation.

Motivations	Predicting the local intensity	Solving the Fredholm equation	Work in progress	Discussion
Finite el	ement approach			

The Fredholm equation can be written as

$$w(x) + \int_{W_{obs}} w(y)k(x,y) \, \mathrm{d}y = f(x;x_o), \tag{1}$$

with
$$k(x, y) = \lambda \left(g(x - y) - \frac{1}{\nu(W_{obs})} \int_{W_{obs}} g(x - y) dx \right)$$

and $f(x; x_o) = \frac{1}{\nu(W_{obs})} + \lambda \left(g(x - x_o) - \frac{1}{\nu(W_{obs})} \int_{W_{obs}} g(x - x_o) dx \right).$

The Galerkin method, with T_h a mesh partitioning W_{obs} and V_h an approximation space, plugged into a weak formulation of (1), leads to:

$$\sum_{j=1}^{N} w_j \int_{W_{obs}} \left(\varphi_i(x) \varphi_j(x) + \int_{W_{obs}} \int_{W_{obs}} k(x, y) \varphi_j(y) \varphi_i(x) \, \mathrm{d}y \right) = \int_{W_{obs}} f(x; x_o) \varphi_i(x) \, \mathrm{d}x,$$

with $w(x) \approx \sum_{i=1}^{N} w_i \varphi_i(x)$, $N = \dim V_h$ and $\{\varphi_i\}_{i=1,...,N}$ a basis of V_h .

Motivations	Predicting the local intensity	Solving the Fredholm equation	Work in progress	Discussion
Finite e	lement approach			

Using a matrix formulation, we have the Galerkin equation:

$$Mw + Kw = F, (2)$$

with *M* the FEM mass matrix,
$$F = \left(\int_{W_{obs}} f(x; x_o) \varphi_i(x) dx \right)_{i=1,...,N}$$

and $K = \left(\int_{W_{obs}} \int_{W_{obs}} k(x, y) \varphi_i(x) \varphi_j(y) dx dy \right)_{i,j}$.

We propose to solve (2) using $k(x, y) \approx \sum_{l,m} \mathcal{K}_{lm} \varphi_l(x) \varphi_m(y)$.

Thus, for $\mathcal{K} = (\mathcal{K}_{lm})_{l,m}$ and $\mathcal{K} = M\mathcal{K}M$, this leads to consider the problem:

$$(Id + \mathcal{K}M)w = M^{-1}F, \qquad (3)$$

When T_h is fine enough, (3) inherits the resolvability of the Fredholm equation, ensuring the consistency of the approximations.

Predicting the intensity of a spatial point process

Simulation of a Thomas process within $[0,1] \times [0,1]$ Parents: $\mathcal{P}\textit{ois}(\mu), \ \mu = 50$

Offspring: $Pois(\kappa)$, $\kappa = 10$, normally distributed, with $\sigma = 0.05$

Weight function $w(\cdot; x_o)$

 $x_o = (0.38, 0.57)$

Simulation of a cluster process within $[0, 10] \times [0, 10]$ Parents: hardcore process with interaction radius 0.5 Offspring: normally distributed, with $\sigma = 0.1$

Predicting the intensity of a spatial point process

Weight function $w(\cdot; x_o)$

902 trees sampled in a 15*ha* quadrat to study the sahelian ecosystem².

Prediction within W_{unobs}

 2 Dataset issued from an Intern. Biological Program conducted in Fété Olé, North Sénégal (Poupon, 1979)

Predicting the intensity of a spatial point process

Motivations	Predicting the local intensity	Solving the Fredholm equation	Work in progress	Discussion
Step fur	octions			

Let us consider the following partition $S_{obs} = \bigcup_{j=1}^{n} B \oplus c_j$, $B \oplus c_j$: elementary square centered at c_j , $B \oplus c_k \cap B \oplus c_j = \emptyset$,

n: number of grid cell centers lying in S_{obs} .

Setting $w(x) = \sum_{j=1}^{n} w_j \frac{\mathbb{I}\left\{x \in B \oplus c_j\right\}}{\nu(B)}$, leads to GBMC's predictor³:

$$\widehat{\lambda}(x_o|\Phi_{S_{obs}}) = \sum_{j=1}^n w_j \frac{\Phi(B \oplus c_j)}{\nu(B)}$$

with $w = (w_1, \ldots, w_n) = C^{-1}C_o + \frac{1-1^TC^{-1}C_o}{1^TC^{-1}1}C^{-1}1$, where

• $C = \lambda \nu(B) \mathbf{I} + \lambda^2 \nu^2(B)(G-1)$: covariance matrix, with \mathbf{I} the *n*×*n*-identity matrix and $G = \{g_{ij}\}_{i,j=1,...,n}, g_{ij} = \frac{1}{\nu^2(B)} \int_{B \times B} g(c_i - c_j + u - v) du dv$,

• $C_o = \lambda^2 \nu^2(B)(G_o - 1)$: covariance vector, with $G_o = \{g_{io}\}_{i=1,...,n}$.

Predicting the intensity of a spatial point process

³Gabriel, Bonneu, Monestiez & Chadœuf (2016)

 Motivations
 Predicting the local intensity
 Solving the Fredholm equation
 Work in progress
 Discussion

 00000000
 0000000
 0000000
 0000000
 0000000
 0000000

Step functions: variance of the predictor

We consider the Neuman series to invert the covariance matrix, $C = \lambda \nu(B) \mathbf{I} + \lambda^2 \nu^2(B)(G-1)$, when $\lambda \nu(B) \rightarrow 0$:

$$C^{-1} = \frac{1}{\lambda \nu(B)} \left[\mathbf{I} + \lambda \nu(B) J_{\lambda} \right],$$

where a generic element of the matrix J_λ is given by

$$\begin{aligned} J_{\lambda}[i,j] &= \sum_{k=1}^{\infty} (-1)^k \lambda^{k-1} \left(g(x_i, x_{l_1}) - 1 \right) \left(g(x_{l_{k-1}}, x_j) - 1 \right) \\ &\times \int_{W_{obs}^{k-1}} \prod_{m=1}^{k-2} (g(x_{l_m}, x_{l_{m+1}}) - 1) \ dx_{l_1} \dots \ dx_{l_{k-1}}. \end{aligned}$$

This leads to

$$\begin{split} \mathbb{V}\mathrm{ar}\left(\widehat{\lambda}(x_{o}|\Phi_{W_{obs}})\right) &= \lambda^{3}\nu^{2}(B)(G_{o}-1)^{T}(G_{o}-1) + \lambda^{4}\nu^{3}(B)(G_{o}-1)^{T}J_{\lambda}(G_{o}-1) \\ &+ \frac{1 - \left[\lambda\nu(B)\mathbf{1}^{T}(G_{o}-1) + \lambda^{2}\nu^{2}(B)\mathbf{1}^{T}J_{\lambda}(G_{o}-1)\right]^{2}}{\frac{\nu(W_{obs})}{\lambda} + \nu^{2}(B)\mathbf{1}^{T}J_{\lambda}\mathbf{1}}. \end{split}$$

 Motivations
 Predicting the local intensity
 Solving the Fredholm equation
 Work in progress
 Discussion

 0000000
 000000
 0000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000

Step functions: illustrative results

 R^2 in linear regression of predicted and theoretical values

Motivations	Predicting the local intensity	Solving the Fredholm equation	Work in progress	Discussion
Two pro	ocesses			

Let $\Phi^{(1)}$ and $\Phi^{(2)}$ two stationary point processes observed in W_1 and W_2 .

We want to predict the intensity of the Φ_1 at $x_o \notin W_1$ given $\Phi_{W_1}^{(1)}$ and $\Phi_{W_2}^{(2)}$.

We define

$$\widehat{\lambda_{1}}(x_{o}|\Phi_{W_{1}}^{(1)},\Phi_{W_{2}}^{(2)}) = \sum_{x \in W_{1}} \omega_{1}(x) + \sum_{y \in W_{2}} \omega_{2}(y)$$

such that

$$\mathbb{E}\left[\widehat{\lambda_{1}}(x_{o}|\Phi_{W_{1}}^{(1)},\Phi_{W_{2}}^{(2)})\right] = \lambda_{1}$$
$$\mathbb{V}\operatorname{ar}\left(\widehat{\lambda_{1}}(x_{o}|\Phi_{W_{1}}^{(1)},\Phi_{W_{2}}^{(2)}) - \lambda_{1}(x_{o}|\Phi_{W_{1}}^{(1)},\Phi_{W_{2}}^{(2)})\right) \text{ minimum}$$

 \rightsquigarrow a system of Fredholm equations.

 \rightsquigarrow depend on the cross pair correlation function.

Two processes: illustration

Multi-type Cox process driven by a boolean process of discs

- Generate a boolean process of discs
 Centers: from a Poisson process P(λ_b); Radius: R_b
- Generate two independent Poisson processes $\Phi_{init}^{(1)} \sim \mathcal{P}(\lambda_{o,1})$ and $\Phi_{init}^{(2)} \sim \mathcal{P}(\lambda_{o,2})$.
- Final processes: $\Phi^{(1)}$ and $\Phi^{(2)}$
 - Retain all points outside the union of discs,
 - Retain with probability p_i the points of $\Phi_{init}^{(i)}$ lying inside the union of discs.

Then, for $i,j \in 1,2$ $\lambda_i = \lambda_{o,i}(e^{-\lambda_b \pi R_b^2} + (1 - e^{-\lambda_b \pi R_b^2})p_i)$, and

$$g_{i,j}(r) = \frac{A + B(p_i + p_j) + (1 - A - 2B)p_i p_j}{(e^{-\lambda_b \pi R_b^2} + (1 - e^{-\lambda_b \pi R_b^2})p_i)(e^{-\lambda_b \pi R_b^2} + (1 - e^{-\lambda_b \pi R_b^2})p_j)}$$

with $A = e^{-\lambda_b S_r}$, $B = (1 - e^{-\lambda_b (\pi R_b^2 - s_r)})e^{-\lambda_b \pi R_b^2}$, S_r (s_r): area of the union (intersection) of two discs of radii R_b , distant by r.

Solving the Fredholm equation

Work in progress

Discussion

Two processes: illustration

Parameters:

- Boolean process: $\lambda_b = 0.01$; $R_b = 10$,
- Poisson processes: $\lambda_{o,i} = 0.75$,
- Retention probabilities: $p_i = 0.05$.

Non-stationary processes

We relax the stationary assumption.

We assume that Φ is Second-Order Intensity-Reweighted Stationary, i.e.

- its intensity λ(x) is spatially varying
 e.g. it can be linked to covariates,
- the interaction between point depends on their difference (/distance):

$$g(x-y) = \frac{\lambda_2(x,y)}{\lambda(x)\lambda(y)}.$$

Non-stationary processes

The predictor has a similar definition: $\hat{\lambda}(x_o | \Phi_{W_{obs}}) = \sum_{x \in \Phi_{W_{obs}}} w(x; x_o)$

The constraint on the weight function is

$$\int_{W_{obs}} \lambda(x) w(x) \, \mathrm{d}x = \lambda(x_o)$$

and the Fredholm equation becomes:

$$w(x) + \int_{W_{obs}} w(y)\lambda(y) (g(x - y) - 1) dy$$

- $\frac{1}{\nu(W_{obs})} \left[\int_{W_{obs}} w(x) dx + \int_{W^2_{obs}} w(y)\lambda(y) (g(x - y) - 1) dx dy \right]$
= $\lambda(x_0) (g(x_0 - x) - 1) - \frac{\lambda(x_0)}{\nu(W_{obs})} \int_{W_{obs}} (g(x_0 - x) - 1) dx$

Non-stationary processes: goodness of prediction

Let Φ be a SOIRS Neyman-Scott process obtained by p(x)-thinning, with

- intensity $\lambda(x) = \kappa \mu p(x)$,
- $\Phi^{(p)} \sim \mathcal{P}(\kappa)$ the process of parents,
- f(x; R) the dispersion kernel for the offspring, with range R,
- mean number of offspring μ .

For $\partial W = W_{\oplus r} \setminus W$, the local intensity is

$$\lambda(x_o|\Phi_W) = \int \left[\sum_{y \in b(x_o,R) \cap (W \cup \partial W)} \mu p(x_o) f(y - x_o) + \\ \mu \kappa \int_{b(x_o,R) \setminus (W \cup \partial W)} p(x_o) f(y - x_o) \, \mathrm{d}y\right] \, \mathrm{d}P[\Phi_{W \cup \partial W}^{(p)}|\Phi_W]$$

Then, we can get a Monte Carlo approximation of $\lambda(x_o | \Phi_W)$ by simulating K realizations of parent points in ∂W .

Motivations	Predicting the local intensity	Solving the Fredholm equation	Work in progress	Discussion

Non-stationary processes: illustration

Independent thinning of a Matérn cluster process:

- Thinning probability: $p(x) = p(x_1, x_2) = 0.8 \mathbb{I}_{\{x_1 \le 0.5\}} + 0.2 \mathbb{I}_{\{x_1 > 0.5\}}.$
- Offspring x are uniformly distributed on a disc of radius R around its parent point x_p: f(x) = 1/πR² I{ ||x−x_p||≤R}; R = 0.05.

Prediction:
$$\widehat{\lambda}(x_o | \Phi_{W_{obs}})$$

Conditional intensity

Motivations	Predicting the local intensity	Solving the Fredholm equation	Work in progress	Discussion
Forthcor	ning work extend	to spatio-temporal proc		

For $(x_o, t_o) \notin D_{obs} = W_{obs} \times T_{obs}$, the spatio-temporal predictor given by $\hat{\lambda}((x_o, t_o) | \Phi_{D_{obs}}) = \sum_{(x,t) \in \Phi \cap D_{obs}} w(x, t)$ is the BLUP of $\lambda((x_o, t_o) | \Phi_{D_{obs}})$.

Assuming Φ stationary, w(x, t) satisfies $\int_{D_{obs}} w(x, t) dx dt = 1$, and is solution of the Fredholm equation of the second kind:

$$\begin{split} \lambda(g(x_o - x_1, t_o - t_1) - 1) &- \frac{\lambda}{\nu(D_{obs})} \int_{D_{obs}} w(x_1, t_1)(g(x_o - x_1, t_o - t_1) - 1) \, dx_1 \, dt_1 \\ &= w(x_1, t_1) + \lambda \int_{D_{obs}} w(x_2, t_2)(g(x_1 - x_2, t_1 - t_2) - 1) \, dx_2 \, dt_2 \\ &- \frac{1}{\nu(D_{obs})} \left[1 + \int_{D_{obs} \times D_{obs}} w(x_2, t_2)(g(x_1 - x_2, t_1 - t_2) - 1) \, d(x_1, x_2) \, d(t_1, t_2) \right]. \end{split}$$

Predicting the intensity of a spatial point process Edith Gabriel

Solve the Fredholm equation using the finite element approach:

$$w(x,t)\approx \sum w_i\varphi_i(x,t),$$

(should work because $D_{obs} = W_{obs} \times T_{obs}$).

Extend to SOIRS ⁴ spatio-temporal processes.

⁴Space-time Second-Order Intensity Reweighted Stationarity, see Gabriel & Diggle (2009)

Forthcoming work: extending to fibre processes

Applying the same approach to fibre processes:

- \blacksquare \Rightarrow switch from summation on points to integral along fibres
- Again with the pair correlation function
 - \rightarrow local fibre orientation weakly taken into account.

The problem can also occur for point processes, e.g. for a Cox process driven by a boolean segment process

Consider both

- data point locations, $\Phi_{W_1} = \Phi \cap W_1$,
- count data, $\Phi(W_2)$.
- \Rightarrow How to predict $\lambda(x_o | \Phi_{W_1}, \Phi(W_2))$, $x_o \notin W_1 \cup W_2$?

A (very) first candidate:

$$\widehat{\lambda}(x_o|\Phi_{W_1},\Phi(W_2)) = \sum_{x\in\Phi\cap W_1} w(x) + \alpha \Phi(W_2).$$

to be continued ...

References

E. Bellier *et al.* (2013) Reducting the uncertainty of wildlife population abundance: model-based versus design-based estimates. *Environmetrics*, 24(7):476–488.

P. Diggle *et al.* (2013) Spatial and spatio-temporal log-gaussian cox processes: extending the geostatistical paradigm. Statistical Science, 28(4):542–563.

E. Gabriel, J. Coville, J. Chadœuf (2017) Estimating the intensity function of spatial point processes outside the observation window. *Spatial Statistics*, 22(2), 225–239.

E. Gabriel, F. Bonneu, P. Monestiez, J. Chadœuf (2016) Adapted kriging to predict the intensity of partially observed point process data. *Spatial Statistics*, 18, 54–71.

E. Gabriel, P. Diggle (2009) Second-order analysis of inhomogeneous spatio-temporal point process data. *Statistica Neerlandica*, 63, 43–51.

P. Monestiez *et al.* (2006) Geostatistical modelling of spatial distribution of balaenoptera physalus in the northwestern mediterranean sea from sparse count data and heterogeneous observation efforts, *Ecological Modelling*, 193:615–628.

A. Tscheschel and D. Stoyan (2006) Statistical reconstruction of random point patterns. *Computational Statistics and Data Analysis*, 51:859–871.

M-C. van Lieshout and A. Baddeley (2001) Extrapolating and interpolating spatial patterns, *In Spatial Cluster Modelling*, A.B. Lawson and D.G.T. Denison (EDS.) Boca Raton: Chapman And Hall/CRC, pp 61–86.