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We consider ill-conditioned mixture-models with varying mixing-weights. We study
the classical homogeneity testing problem in the minimax setup and try to push the
model to its limits, that is to say to let the mixture model to be really ill-conditioned. We
highlight the strong connection between the mixing-weights and the expected rate of
testing. This link is characterized by the behavior of the smallest eigenvalue of a particular
matrix computed from the varying mixing-weights. We provide optimal testing proce-
dures and we exhibit a wide range of rates that are the minimax and minimax adaptive
rates for Besov balls.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

For many years, the mixture-models have gained a lot of interests in statistics, particularly because of their large fields
of application as in finance, economy, biology, astronomy among many others. Most of the theoretical results found in the
literature deal with the problem of estimation of the mixing-weights as in the work of Hall (1981), Titterington (1983), Hall
and Titterington (1984) and Qin (1999), or of the mixing-components as in Maiboroda (1996, 2000a), Pokhyl'ko (2005) and
Lodatko and Maiboroda (2007). Facing with the problem of homogeneity tests for mixture-models, theoretical results are
fewer and more recent. For the case of fixed mixing-weights we refer the reader to the papers of Garel (2001, 2005) and
Delmas (2003).

Here, we are interested in studying mixture-models with varying mixing-weights. Such models are popular nowadays
especially since the works published by Maiboroda (1996, 2000a) and Pokhyl'ko (2005) that deal with the estimation of the
mixing-components, and since the work of Maiboroda (2000b) that deals with testing problems on the mixing-components.

Many applications of the varying mixing-weights model have been proposed. The first example is taken from Lodatko
and Maiboroda (2007). It deals with the difference between atypical pneumonia patients and healthy patients. Social
science data were also considered. Autin and Pouet (2011) modeled the annual working time for technical executive staff
and commercial and administrative executive staff in two French regions. The difference in travel time between the State of
New York and the State of California for several means of transportation was investigated in Autin and Pouet (2013). The
varying mixing-weights model was also successfully applied to medical data by Maiboroda and Sugakova (2012). They
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studied DNA microarray data collected on tumors. At last, successful applications to simulated and real data have also been
done. Parametric hypotheses testing was conducted by Autin and Pouet (2013) for simulated data.

As in Autin and Pouet (2011, 2012), we propose here to study a testing problem for mixture-models with varying mixing-
weights through the minimax adaptive approach as introduced by Spokoiny (1996). From two independent samples of n
independent random variables ðn42Þ, we are interested in testing whether these two samples can be considered as samples
with random variables built from the same mixture of M ðMANnÞ components or not. In particular, we aim at providing the
minimax rates of testing over the Besov spaces.

In Autin and Pouet (2011, 2012), the smallest eigenvalues of the Gram matrix of the mixing-weights vectors were fixed
and larger than or equal to kA ð0;1Þ; it was proved that
�

P
v

the minimax rate of testing over the balls of the Besov space Bs
2;1 (as defined later in (3)) was of order n�2s=ð1þ4sÞ,
�
 the minimax adaptive rate of testing over such spaces suffers from an unavoidable loss of order ðln ln nÞ�1=2 compared to
the minimax one.

Hence, the minimax rate of testing in this case is of the same order as the one in the case M¼ 1 proved by Butucea and Tribouley
(2006). Nevertheless, Autin and Pouet (2011) noted that the smaller the parameter k the worse the expected exact separation
constant. Although this result was a surprise, it is logical as the smallest eigenvalue k is directly connected with the matrix of the
mixing-weights, that is to say with the design of the statistical experiment. We also recall that if the mixing-weights are the same
for all the observations, we are in the usual mixture-model (see McLachlan and Peel, 2000) and the homogeneity test with two
samples is meaningless. Therefore here we address the natural question that arises from these previous works: what are the
minimax and minimax adaptive rates when the smallest eigenvalue of the Gram matrix of the mixing-weights vectors, namely kn,
is decreasing to zero as n is increasing? More than that, we exhibit for the first time a wide range of new rates that correspond to
minimax and minimax adaptive rates over the Besov spaces in statistical models lying on indirect observations. Although there are
some similarities between our underlying models and the well-known ill-posed inverse problems, here the deterioration of speed
due to the ill-conditioning aspect is not located in the power anymore.

After introducing the setting in Section 2, we prove in Section 3 that the faster the decrease, the worse the minimax rate
of testing over the Besov spaces. More precisely we prove that
�
 the minimax rate of testing over the balls of the Besov space Bs
2;1 is of order ðnknÞ�2s=ð1þ4sÞ,
�
 the minimax adaptive rate of testing over such spaces suffers from an unavoidable loss of order ðln ln nÞ�1=2 compared to
the minimax one, independently of the sequence ðknÞnAN that tends to zero not too fast.

In addition to the link between the mixing-weights and the expected rates, we provide both a minimax (see Section 3.1) and a
minimax adaptive testing procedure (see Section 3.2) that are based on the comparison between a test statistic inspired from the
ones used in Autin and Pouet (2011, 2012) and a well-chosen threshold value. The proofs of the results are given in Appendix A.

2. Setting of the study

2.1. Mixture-model with varying mixing-weights

For any integer n42, let us consider two independent samples Y ¼ ðY1;…;YnÞ and Z ¼ ðZ1;…; ZnÞ of independent random
variables with unknown marginal densities. For each sample, assume that the marginal densities are mixtures of MANn

common densities: the mixing-components. We denote respectively by

f ið�Þ ¼ ∑
M

l ¼ 1
ωlðiÞplð�Þ and gið�Þ ¼ ∑

M

l ¼ 1
ωlðiÞqlð�Þ

the marginal densities of Yi and Zi ðiAf1;…;ngÞ and by Γn the Gram matrix of the mixing-weights which is the symmetric
matrix of order M with ð1=nÞ∑n

i ¼ 1ωlðiÞωuðiÞ as element at line l and column u.
Here, the mixing-components pu and qu ð1rurMÞ are unknown but the mixing-weights ðωlðiÞ; 1r lrM;1r irnÞ are

supposed to be known and satisfy

8ðl; iÞAf1;…;Mg � f1;…;ng; ωlðiÞZ0;

8 iAf1;…;ng; ∑
M

l ¼ 1
ωlðiÞ ¼ 1:

We consider that the mixture-model is the one with varying mixing-weights corresponding to the case of an invertible matrix
Γn. We denote by kn the smallest eigenvalue of the matrix Γn. In addition, we consider Assumption 2.1 on our mixture-model.

Assumption 2.1. The sequence of positive real numbers ðknÞn42 is such that
1.
 limn-þ1kn ¼ 0,

2.
 limn-þ1nkn ¼ þ1.
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2.2. Hypotheses testing problem
We aim at studying whether the two samples of random variables come from the same mixing-components or not.
In the sequel,
�

P
v

p!≔ðp1;…;pMÞ and q!≔ðq1;…; qMÞ will characterize the mixing-components of the two samples Y and Z,

�
 P

p!; q! will denote the distribution of (Y, Z),

�
 E

p!; q!ð�Þ will denote the expected value and Var
p!; q!ð�Þ the variance under this distribution.
For any R40, let DðRÞ be the set of all probability densities such that their L2�norm and their L1�norm are bounded by R.
For s40, let Bs

2;1ðRÞ be the ball of the Besov space Bs
2;1 as defined in (3). We consider two subspaces containing vectors of

ðDðRÞÞ2M , namely Θ0ðRÞ and Θ1ðR;C; rn; sÞ, which are respectively defined by

Θ0ðRÞ ¼ fð p!; q!Þ : 8 lAf1;…;Mg; pl ¼ qlg;
Θ1ðR;C; rn; sÞ ¼ fð p!; q!Þ : 8 lAf1;…;Mg; ∇l≔pl�qlABs

2;1ðRÞ;
(uAf1;…;Mg; ðpu; quÞAΛðC; rn; sÞg;

where ΛðC; rn; sÞ ¼ fðp; qÞ; Jp�qJ2ZCr�2s=ð4sþ1Þ
n g, C is a positive constant and rn is a sequence of positive numbers tending to

infinity when n goes to infinity.
We are interested in the two kinds of hypotheses testing problems presented below.
Non-adaptive case (s is known and s41

4)

H0 : ð p!; q!ÞAΘ0ðRÞ;
H1 : ð p!; q!ÞAΘ1ðR;C; rn; sÞ: ð1Þ

Adaptive case (s belongs to ½s⋆; s⋆� with s⋆41
4 but s is unknown)

H0 : ð p!; q!ÞAΘ0ðRÞ;
H1 : ð p!; q!ÞAΘ⋆

1 ðR;C; rnlnÞ ¼ ⋃
sA ½s⋆ ;s⋆�

Θ1ðR;C; rnln; sÞ; ð2Þ

where ln (resp. rnln) is a sequence of positive numbers that goes to zero (resp. infinity) when n tends to infinity.
In our study we shall consider the minimax approach and the minimax adaptive approach which are often used to

evaluate the performances of testing procedures.
We recall that the minimax (resp. minimax adaptive) approach aims at providing testing procedures that achieve the

minimax rate r�2s=ð1þ4sÞ
n (resp. minimax adaptive rate ðrnlnÞ�2s=ð4sþ1Þ) that, in context (1) (resp. in context (2)), corresponds to

the best possible rate separating at least one of the M pairs of mixing-components pu and qu. We refer the interested reader
to Spokoiny (1996) for a precise presentation of the minimax and minimax adaptive approaches in testing problems.
Nevertheless we recall the two steps necessary to prove that rn2s=ð1þ4sÞ is the minimax rate (resp. rnln

�2s=ð1þ4sÞ is the
minimax adaptive rate) for the testing problem (1) (resp. for the testing problem (2)).

First step: [Upper bound]. For any γA �0;1½ there exist Cγ40 and a testing procedure Δs built from the samples such that,
for any CZCγ ,

lim
n-1

sup
ð p!; q!ÞAΘ0ðRÞ

P
p!; q!ðΔs ¼ 1Þþ sup

ð p!; q!ÞAΘ1ðR;C;rn ;sÞ
P
p!; q!ðΔs ¼ 0Þ

0
B@

1
CArγ

(resp. there exist C⋆40 and a testing procedure Δ⋆ built from the samples such that, for any C4C⋆,

lim
n-1

sup
ð p!; q!ÞAΘ0ðRÞ

P
p!; q!ðΔ⋆ ¼ 1Þþ sup

ð p!; q!ÞAΘ⋆
1 ðR;C;rnlnÞ

P
p!; q!ðΔ⋆ ¼ 0Þ

0
B@

1
CA¼ 0:Þ

Second step: [Lower bound]. There exists cγ40 such that, for any Cocγ ,

lim
n-1

inf
Δ

sup
ð p!; q!ÞAΘ0ðRÞ

P
p!; q!ðΔ¼ 1Þþ sup

ð p!; q!ÞAΘ1ðR;C;rn ;sÞ
P
p!; q!ðΔ¼ 0Þ

0
B@

1
CA4γ

(resp. there exists c⋆40 such that, for any Coc⋆,

lim
n-1

inf
Δ

sup
ð p!; q!ÞAΘ0ðRÞ

P
p!; q!ðΔ¼ 1Þþ sup

ð p!; q!ÞAΘ⋆
1 ðR;C;rnlnÞ

P
p!; q!ðΔ¼ 0Þ

0
B@

1
CA¼ 1Þ:

where the infimum is taken over all testing procedures.
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In that context, we shall say that r�2s=ð1þ4sÞ
n (resp. ðrnlnÞ�2s=ð1þ4sÞ) is the minimax rate of testing (resp. the minimax adaptive

rate of testing) over the Besov ball Bs
2;1ðRÞ (as defined in (3)) of the testing problem (1) (resp. (2)) and that Δs (resp. Δ⋆) is minimax

(resp. minimax adaptive).

2.3. Wavelet setting

Wavelets bases offer the advantage of being localized both in the frequency and time domains. Therefore they are often
used in many mathematical fields such as approximation theory, signal analysis and statistics.

Let us recall that such bases are built from functions ϕjk and ψ jkðjAN; kAZÞ that are dilatations and translations of a
chosen scaling function ϕ and a chosen wavelet function ψ . For any jAN, any h in L2 can be decomposed in the wavelet basis
built from ðϕ;ψÞ as follows:

hð�Þ ¼ ∑
kAZ

αjkϕjkð�Þþ ∑
j′Z j

∑
kAZ

βj′kψ j′kð�Þ;

where αjk ¼
R
hðtÞϕjkðtÞ dt and βj′k ¼

R
hðtÞψ j′kðtÞ dt.

For the sake of simplicity, we shall consider the Haar wavelet basis in the sequel that is built from the following scaling
and wavelet functions:

ϕ �ð Þ ¼ 1½0;1½ �ð Þ; ψ �ð Þ ¼ 1½0;12½ �ð Þ�1½12;1½ :ð Þ:

Nevertheless our results could be easily generalized for any choice of compactly supported wavelet basis.
To derive optimal results, we have considered that any function pu�quð1rurMÞ is regular enough, it means that the

energy of their wavelet coefficients is decreasing fast enough. More precisely, any function pu�qu is supposed to belong to
the ball of a Besov space Bs

2;1ðRÞ defined as follows:

Bs
2;1ðRÞ ¼ hAL2; sup

jAN

22js ∑
j′Z j

∑
kAZ

β2j′krR2

( )
: ð3Þ

3. Optimal testing procedures

In this section we provide procedures that are based on the test statistics Tj defined for any jAN by

Tj ¼
1
n2 ∑

n

i1 a i2 ¼ 1
∑
kAZ

∑
M

l ¼ 1
al i1ð Þal i2ð Þ½ϕjk Yi1

� ��ϕjk Zi1

� ��½ϕjk Yi2

� ��ϕjk Zi2

� ��; ð4Þ

where, for all ðl;uÞAf1;…;Mg2, ð1=nÞ∑n
i ¼ 1alðiÞωuðiÞ ¼ δlu and 〈al; al〉2 is minimal.

We recall the explicit formulas of alðiÞ given in Maiboroda (2000a):

al ið Þ ¼
1

detðΓnÞ
∑
M

u ¼ 1
ð�1Þlþuγluωu ið Þ; ð5Þ

where γlu is the minor (l, u) of the matrix Γn. Both motivations for the choice of these test statistics and similarities between
varying mixing-weights models and inverse problems are provided in Autin and Pouet (2011, 2012). In particular in those
previous works, the test statistics Tj is shown to be a natural estimator of ∑M

l ¼ 1‖pl�ql‖22, provided that j is large enough.
Following Autin and Pouet (2012) we recall that according to (5),

sup
1r irn

al ið Þ
�� ��rðM�1Þ!

k
M

n

: ð6Þ

3.1. Non-adaptive case

We assume that the smoothness parameter s for the differences pu�quð1rurMÞ is known. Hence we are interested in
the hypotheses testing problem (1).

3.1.1. Testing procedure Δs;t

For any s41
4 let jn;s be the smallest integer such that 2� jn;s rðnknÞ�2=ð1þ4sÞ. For any positive real number t, we denote by

Δs;t the testing procedure defined as follows:

Δs;t ¼
1 if ðnknÞ4s=ð1þ4sÞTjn;s 4t

0 otherwise

(
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3.1.2. Optimality of Δs;t and minimax rate

Theorem 3.1 (Upper bound). Let γA �0;1½. There exist Cγ ¼ CγðM;R; γÞ and t ¼ tðM;R; γÞ such that, for any CZCγ ,

lim
n-1

sup
ð p!; q!ÞAΘ0ðRÞ

P
p!; q!ðΔs;t ¼ 1Þþ sup

ð p!; q!ÞAΘ1ðR;C;nkn ;sÞ
P
p!; q!ðΔs;t ¼ 0Þ

0
B@

1
CArγ:

Theorem 3.2 (Lower bound). Let γA �0;1½. There exists cγ ¼ cγðM;R; γ; sÞ such that, for any Cocγ ,

lim
n-1

inf
Δ

sup
ð p!; q!ÞAΘ0ðRÞ

P
p!; q!ðΔ¼ 1Þþ sup

ð p!; q!ÞAΘ1ðR;C;nkn ;sÞ
P
p!; q!ðΔ¼ 0Þ

0
B@

1
CA4γ:

From Theorems 3.1 and 3.2, we deduce the following corollary:

Corollary 3.1. For any s41
4 , the testing procedure Δs;t is minimax. Moreover, the minimax rate of testing over the Besov ball

Bs
2;1ðRÞ is ðnknÞ� ð2s=ð1þ4sÞÞ.

We note that the smaller the kn, the worse the minimax rate of testing. Surprisingly the minimax rate does not only depend
on the size of the sample and the regularity of the underlying functions but also on the sequence ðknÞn42.

3.2. Adaptive case

Here, we assume that the parameter s of regularity is not known anymore. Nevertheless, we suppose that it belongs to
the interval ½s⋆; s⋆� with s⋆41

4 . Hence we are now interested in the hypotheses testing problem (2).

Assumption 3.1. The sequence of positive real numbers ðknÞn42 is such that

ln
1
kn

� �
¼ o ðln nÞδ� �

where δA �0; 1½:

Remark 3.1. This assumption will be sufficient to derive the minimax adaptive results. It deals with mixture-models for
which the rate of decrease of the sequence of parameters ðknÞn is not polynomially fast but faster than any logarithmic rate.

3.2.1. Testing procedure Δ⋆;t

For sA ½s⋆; s⋆�, let j⋆n;s be the smallest integer such that 2� j⋆n;s rðnknð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ln n

p
Þ�1Þ�2=ð1þ4sÞ. For any positive real number t,

we denote by Δ⋆;t the testing procedure defined as follows:

Δ⋆;t ¼
1 if maxsA ½s⋆ ;s⋆ �ðnknlnÞ4s=ð1þ4sÞTj⋆n;s

4t

0 otherwise

(

where ðlnÞn42 is the sequence of positive real numbers defined, for any n42, by ln ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ln n

p
Þ�1.

3.2.2. Optimality of Δ⋆;t and minimax adaptive rate

Theorem 3.3 (Upper bound). There exist C⋆ ¼ C⋆ðM;RÞ and t ¼ tðM;RÞ such that, for any C4C⋆,

lim
n-1

sup
ð p!; q!ÞAΘ0ðRÞ

P
p!; q!ðΔ⋆;t ¼ 1Þþ sup

ð p!; q!ÞAΘ⋆
1 ðR;C;nknlnÞ

P
p!; q!ðΔ⋆;t ¼ 0Þ

0
B@

1
CA¼ 0:

Theorem 3.4 (Lower bound). There exists c⋆ ¼ c⋆ðM;R; δ; s⋆Þ such that for any Coc⋆,

lim
n-1

inf
Δ

sup
ð p!; q!ÞAΘ0ðRÞ

P
p!; q!ðΔ¼ 1Þþ sup

ð p!; q!ÞAΘ⋆
1 ðR;C;nknlnÞ

P
p!; q!ðΔ¼ 0Þ

0
B@

1
CA¼ 1:

From Theorems 3.3 and 3.4, we deduce the following corollary:

Corollary 3.2. The testing procedure Δ⋆;t is minimax adaptive. Moreover, for any s41
4 , the minimax adaptive rate of testing over

the Besov ball Bs
2;1ðRÞ is ðnknlnÞ�2s=ð1þ4sÞ.
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Whenwe compare the adaptive case to the non-adaptive one, we deduce that there is a price to pay for adaptation and it
is of order ln. We also note that this cost does not depend on kn.

4. Conclusion

This work is a contribution to nonparametric hypotheses testing problems from indirect observations through the
varying mixing-weights. Optimal testing procedures have been proposed and new rates have been exhibited as the minimax
and minimax adaptive rates for Besov spaces in the underlying testing models. We proved that the minimax and minimax
adaptive rates strongly depend on the smallest eigenvalue kn of the Gram matrix of the mixing-weights : the bigger the kn
the better the minimax and minimax adaptive rates.

At first glance, it could be surprising that the minimax and minimax adaptive rates differ from the ones in ill-posed
inverse problems. We claim that the reason for this difference is the following: in the context of mixture-models the
dimension of the matrix Γn involved in the determination of the rates is finite, whatever n, contrary to ill-posed inverse
problem for which the matrix involved in the determination of the rates has infinite dimension.

Here the threshold values of our testing methods are calibrated to entail the theoretical result, that is to say the
asymptotic distinguishability of the two hypotheses. In practical cases, the threshold values can be computed by Monte-
Carlo methods. Other popular approaches can also be applied and are related to the computation of the p-value such as
bootstrap tests or permutation tests (see Efron and Tibshirani, 1993).

Appendix A. Proofs of theorems

In this section, we prove the main theorems. The proofs follow some results previously given in Autin and Pouet (2011,
2012). In Proposition A.1 we recall the properties of the test statistic Tj given in Corollary 3.3 and Proposition 3.4 of Autin
and Pouet (2011).

Proposition A.1. Let jAN and Tj be the test statistic defined in (4). There exists a positive constant CR that depends on R such
that, for any n42 and any ð p!; q!ÞADðRÞ2M:

E
p!; q! Tj

� �� 1
n2 ∑

M

l ¼ 1
∑
kAZ

∑
n

i ¼ 1
alðiÞ

Z
R

ðf i�giÞϕjk

� �2
�����

�����r8LMR2

nkn
; ð7Þ

Var
p!; q! Tj

� �
rCRM

2

k2n

2j

n2þ
1
n

∑
M

l ¼ 1
Jpl�ql J

2
2þ

ffiffiffiffiffi
2j

n3

s
∑
M

l ¼ 1
Jpl�ql J2

0
@

1
A: ð8Þ

Remark A.1. For any jAN and any ð p!; q!ÞAΘ0ðRÞ, the test statistic is centered and its variance is such that
Var

p!; q!ðTjÞrCRM
2ðnknÞ�22j.

A.1. Proof of Theorem 3.1

Let us fix 0oγo1 and s41=4. By the Bienayme–Chebyshev inequality and following (8), for any ð p!; q!ÞAΘ0ðRÞ:

P
p!; q!ðΔs;t ¼ 1Þ ¼P

p!; p! Tjn;s 4tðnknÞ�4s=ð1þ4sÞ
� 	

rt�2ðnknÞ8s=ð1þ4sÞVar
p!; p!ðTjn;s Þ

rCRM
2t�22jn;s ðnknÞ�2=ð1þ4sÞ:

According to the definition of the level jn;s and for the choice t ¼ 2M
ffiffiffiffiffiffiffiffiffiffi
CR=γ

p
, it entails that

P
p!; p! Δs;t ¼ 1

� �
r γ

2
:

We now focus on the alternative and we put tn;s ¼ tðnknÞ�4s=ð1þ4sÞ. The second type error can be rewritten as follows:

P
p!; q!ðΔs;t ¼ 0Þ ¼P

p!; q!ð�Tjn;s þE
p!; q!ðTjn;s ÞZ�tn;sþE

p!; q!ðTjn;s ÞÞ:

According to (7), the wavelet expansion in the Besov ball Bs
2;1ðRÞ leads to

E
p!; q!ðTjn;s Þ�tn;s ¼ ∑

M

l ¼ 1
‖pl�ql‖22� ∑

M

l ¼ 1
∑

jZ jn;s

∑
kAZ

Z
R

ðpl�qlÞψ jk

� �2

� 1
n2 ∑

M

l ¼ 1
∑
kAZ

∑
n

i ¼ 1
alðiÞ

Z
R

ðf i�giÞϕjn;sk

� �2

�tn;s
Please cite this article as: Autin, F., Pouet, C., Minimax rates over Besov spaces in ill-conditioned mixture-models with
varying mixing-weights. Journal of Statistical Planning and Inference (2013), http://dx.doi.org/10.1016/j.jspi.2013.09.008i

http://dx.doi.org/10.1016/j.jspi.2013.09.008
http://dx.doi.org/10.1016/j.jspi.2013.09.008
http://dx.doi.org/10.1016/j.jspi.2013.09.008


F. Autin, C. Pouet / Journal of Statistical Planning and Inference ] (]]]]) ]]]–]]] 7
Z ∑
M

l ¼ 1
‖pl�ql‖22�MR22�2sjn;s �8LMR2

nkn
�tn;s

Z
1
2

∑
M

l ¼ 1
‖pl�ql‖22�MR22�2sjn;s �tn;s;

for any n large enough. As a consequence, applying the Bienayme–Chebyshev inequality and (8), one gets

P
p!; q! Δs;t ¼ 0

� �¼P
p!; q! �Tjn;s þE

p!; q!ðTjn;s ÞZ�tn;sþE
p!; q!ðTjn;s Þ

� �

r
CRM

2ð2jn;s þn ∑
M

l ¼ 1
‖pl�ql‖22þ

ffiffiffiffiffiffiffiffiffiffi
2jn;s n

p
∑
M

l ¼ 1
Jpl�ql J2Þ

n2k2n
1
2 ∑

M

l ¼ 1
‖pl�ql‖22�MR22�2sjn;s �tn;s

 !2 :

The choice of jn;s and the fact that the functions are in the alternative lead to the following upper bounds for any n large
enough:

P
p!; q! Δs;t ¼ 0

� �
r CRM

2ð2jn;s þn∑M
l ¼ 1‖pl�ql‖22þ

ffiffiffiffiffiffiffiffiffiffi
2jn;s n

p
∑M

l ¼ 1‖pl�ql‖2Þ
n2k2nð12∑M

l ¼ 1‖pl�ql‖22�MR22�2sjn;s �tðnknÞ�4s=ð1þ4sÞÞ2

rCRM
2ð2jn;s þn∑M

l ¼ 1‖pl�ql‖22þ
ffiffiffiffiffiffiffiffiffiffi
2jn;s n

p
∑M

l ¼ 1‖pl�ql‖2Þ
n2k2nð2�1�MR2C�2�tC�2Þ2ð∑M

l ¼ 1‖pl�ql‖22Þ2

r3CR
C2

2M
�R2� t

M

 !�2

:

For all CZCγ;t ¼
ffiffiffiffiffiffiffiffi
2M

p
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6γ�1CR

p
þR2þtM�1Þ1=2, we finally obtain

P
p!; q! Δs;t ¼ 0

� �
r γ

2
:

The results on the first-type and second-type errors prove that if CZCγ;t the sum of the errors associated to the testing
procedure Δjn;s ;t is asymptotically less than γ. Therefore Theorem 3.1 is proved.

A.2. Proof of Theorem 3.2

For any p!ADðRÞM ,

inf
Δ

sup

ðp′
!

;q′
!

ÞAΘ0ðRÞ

P
p′
!

;q′
!ðΔ¼ 1Þþ sup

ðp′
!

;q′
!

ÞAΘ1ðR;C;nkn ;sÞ

P
p′
!

;q′
!ðΔ¼ 0Þ

0
B@

1
CAZ1�1

2
JP

p!; p!�Pπ J ð9Þ

where J � J is the L1�distance and π is an a priori probability measure concentrated on the set ΛðC;nkn; sÞ.
Therefore, it suffices to prove that for judicious choices of p! and π we get

JP
p!; p!�Pπ Jo2ð1�γÞ:

Let p! be such that for any lAf1;…;Mg,

x; pl xð Þ41
2


 �
*½0;1½:

Let θ¼ ðθ1;…; θMÞ denote an eigenvector associated with the smallest eigenvalue kn of Γn such that ‖θ‖2 ¼ 1.
Let T s ¼ f0;1;…;2jn;s �1g be the subset of Z of cardinality T ¼ 2jn;s . The following parametric family of functions is

considered:

ql;ζð�Þ ¼ plð�Þþ2sC
ffiffiffiffiffi
M

p
θl ∑

kAT s

ζk2
� sjn;s � jn;s=2ψ jn;skð�Þ;

where, for any kAT s, ζkAf�1;1g.
Assume that the marginal densities of Yi and Zið1r irnÞ are respectively

f ið�Þ ¼ ∑
M

l ¼ 1
ωlðiÞplð�Þ and gi;ζð�Þ ¼ ∑

M

l ¼ 1
ωlðiÞql;ζð�Þ:

The functions ql;ζ are clearly densities that satisfy for large n:

x; ql;ζðxÞ4
1
2


 �
*½0;1�:
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Moreover, if CoRM�1=2 2� s, then ql;ζ�pl belongs to the Besov ball Bs
2;1ðRÞ. We notice that for at least one lAf1;…;Mg,

Mθ2l Z1. Hence

‖ql;ζ�pl‖22ZC2 ðnknÞ�4s=ð1þ4sÞ:

We consider the probability measure π such that the ζk's are independent Rademacher random variables with parameter
1/2. Clearly,

P
p!; p!�Pπ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
p!; p! Eπ ∏

n

i ¼ 1

gi;ζðZiÞ
f iðZiÞ

 ! !2
2
4

3
5�1

vuuut :

�������
������� ð10Þ

We introduce the following random variables:

~Z ik ¼ 2sC
ffiffiffiffiffi
M

p
2� sjn;s � jn;s=2

ψ jn;skðZiÞ
f iðZiÞ

∑
M

l ¼ 1
θlωl ið Þ:

We only need to evaluate the second-order moment of the likelihood ratio:

E
p!; p! Eπ ∏

n

i ¼ 1

gi;ζðZiÞ
f iðZiÞ

 ! !2
2
4

3
5¼ E

p!; p! ∏
kAT s

Z
∏
n

i ¼ 1
ð1þζk ~Z ikÞ dπðζ1;…; ζT Þ

 !2
2
4

3
5:

We have

E
p!; p! ∏

kAT s

Z
∏
n

i ¼ 1
ð1þζk ~Z ikÞ dπðζ1;…; ζT Þ

 !2
2
4

3
5

¼ E
p!; p! ∏

kAT s

1
4

∏
n

i ¼ 1
ð1þ ~Z ikÞþ ∏

n

i ¼ 1
ð1� ~Z ikÞ

" #22
4

3
5

¼ E
p!; p! ∏

kAT s

1
2

∏
n

i ¼ 1
ð1þ ~Z

2
ikÞþ ∏

n

i ¼ 1
ð1� ~Z

2
ikÞ

 !
þ ∑

kAT s

∑
n

i ¼ 1

~Z ik
~hiðkÞ

" #
;

where functions ~hiðkÞ are sums of products of random variables ~Z jκ where the pairs ðj; κÞ are in the set f1;…;ng � T s\fði; kÞg.
Since E

p!; p!ð ~Z ikÞ ¼ 0 and ~Z ik
~Z ik′ ¼ 0 for kak′, the last term vanishes. Thus only the first term remains. As ~Z ik

~Z ik′ ¼ 0 for

kak′ and the random variables ~Z ik and ~Z i′k for ia i′ are independent, we have

E
p!; p! ∏

kAT s

1
2

∏
n

i ¼ 1
ð1þ ~Z

2
ikÞþ ∏

n

i ¼ 1
ð1� ~Z

2
ikÞ

 !" #

r ∏
kAT s

1
2

∏
n

i ¼ 1
ð1þE

p!; p!½ ~Z2
ik�Þþ ∏

n

i ¼ 1
ð1�E

p!; p!½ ~Z2
ik�Þ

 !" #

r ∏
kAT s

cosh ∑
n

i ¼ 1
E
p!; p!ð ~Z2

ikÞ
 !

rexp
1
2

∑
kAT s

∑
n

i ¼ 1
E
p!; p!ð ~Z2

ikÞ
 !2

0
@

1
A:

Each expectation E
p!; p!ð ~Z2

ikÞ is bounded as follows:

E
p!; p!ð ~Z2

ikÞrC2M22sþ1�2sjn;s � jn;s ∑
M

l ¼ 1
θlωlðiÞ

 !2

:

Therefore this bound entails

E
p!; p! Eπ ∏

n

i ¼ 1

gi;ζðZiÞ
f iðZiÞ

 ! !2
2
4

3
5

rexp
1
2

∑
kAT s

∑
n

i ¼ 1
E
p!; p!ð ~Z2

ikÞ
 !2

0
@

1
A

rexp
1
2

∑
kAT s

24sþ2�4sjn;s �2jn;s C4M2 ∑
n

i ¼ 1
∑
M

l;m ¼ 1
θlθmωlðiÞωmðiÞ

 !2
0
@

1
A
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¼ exp ∑
kAT s

24sþ12�4sjn;s �2jn;s C4M2ðtθnΓnθÞ2
 !

¼ exp ∑
kAT s

24sþ12�4sjn;s �2jn;s C4M2ðnknÞ2
 !

rexpð24sþ1C4M2Þ: ð11Þ
Inequalities (10) and (11) lead to

P
p!; p!�Pπ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expð24sþ1C4M2Þ�1

q
:

����
���� ð12Þ

Hence, according to inequalities (9) and (12), the choice of any constant Cocγ ¼M�1=2ð2R44 lnð1þ4ð1�γÞ2ÞÞ1=42�ðsþð1=4ÞÞ

entails that

inf
Δ

sup
ð p!; q!ÞAΘ0ðRÞ

P
p!; q!ðΔ¼ 1Þþ sup

ð p!; q!ÞAΘ1ðR;C;nkn ;sÞ
P
p!; q!ðΔ¼ 0Þ

0
B@

1
CA4γ:

Therefore Theorem 3.2 is proved.

A.3. Proof of Theorem 3.3

The proof of Theorem 3.3 is a direct consequence of two propositions taking C⋆ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MðR2þ

ffiffiffiffiffiffiffiffi
2CR

p
Þ

q
, where CR is the

constant introduced in Proposition A.1, and choosing t such that M
ffiffiffiffiffiffiffiffi
2CR

p
otoC2=2�MR2. Proposition A.2 deals with the

control of the first-type error and Proposition A.3 deals with the control of the second-type error.

Proposition A.2. Let R40, CR as in Proposition A.1 and t4M
ffiffiffiffiffiffiffiffi
2CR

p
. Then,

lim
n-þ1

sup
ð p!; q!ÞAΘ0ðRÞ

P
p!; q!ðΔ⋆;t ¼ 1Þ ¼ 0:

Proof. We denote by J n and Sn the following sets:

J n ¼ fjANn; j¼ j⋆n;s; sA ½s⋆; s⋆�g;
Sn ¼ sn;jA ½s⋆; s⋆�; 2� j ¼ ðnknlnÞ�2=ð1þ4sn;jÞ; jAJ n

n o
:

According to the definition of Δ⋆;t and Bonferroni inequality, one gets for any ð p!; q!ÞAΘ0ðRÞ:

P
p!; q!ðΔ⋆;t ¼ 1Þr ∑

jAJ n

P
p!; p! Tj4tðnknlnÞ�4sn;j=ð1þ4sn;jÞ

� 	
:

Analogous to Lemma 1 in Autin and Pouet (2012) we easily check that, for any n large enough,

card J nr
2

1þ4s⋆
� 2
1þ4s⋆

þ1
� �

lnðnknlnÞ
ln 2

and similar to the proof of Proposition 4.1 given in Autin and Pouet (2012) we can prove that under (3.1), for any

jAJ n;P p!; q!ðTj4tðnknlnÞ�4sn;j=ð1þ4sn;jÞÞ converges to zero faster than ðlnðnknlnÞÞ�1 as n tends to infinity provided t4M
ffiffiffiffiffiffiffiffi
2CR

p
and s⋆41

4. Hence,

lim
n-þ1

sup
ð p!; q!ÞAΘ0ðRÞ

P
p!; q!ðΔ⋆;t ¼ 1Þ ¼ 0

and the proof of Proposition A.2 is also ended. □

Proposition A.3. Let R40 and C4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MðR2þ

ffiffiffiffiffiffiffiffi
2CR

p
Þ

q
, where CR is as in Proposition A.1. Then, for toC2=2�MR2,

lim
n-þ1

sup
ð p!; q!ÞAΘ⋆

1 ðR;C;nknlnÞ
P
p!; q!ðΔ⋆;t ¼ 0Þ ¼ 0:

Proof. Consider ð p!; q!ÞAΘ⋆
1 ðR;C;nknlnÞ. We aim at getting an upper bound for the second-type error that corresponds

to P
p!; q!ðΔ⋆;t ¼ 0Þ. From the definition of Δ⋆;t , we remark that it suffices to prove that, for one sASn,

P
p!; q!ðTj⋆n;s

rtðnknlnÞ�4s=ð1þ4sÞÞ tends to zero when n goes to infinity.
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Let sA ½s⋆; s⋆� be such that ð p!; q!ÞAΘ1ðR;C;nknln; sÞ. Analogous to the proof of Theorem 3.1, we get for any n large enough:

P
p!; q! Tj⋆n;s

rtðnknlnÞ�4s=ð1þ4sÞ
� 	

r
CRM

2 2j⋆n;s þn∑M
l ¼ 1 Jpl�ql J

2
2þ

ffiffiffiffiffiffiffiffiffiffi
2j⋆n;s n

p
∑M

l ¼ 1 Jpl�ql J2
� 	

n2k2nð2�1�MR2C�2�tC�2Þ2 ∑M
l ¼ 1 Jpl�ql J

2
2

� 	2
r CR

ðð2MÞ�1C2�R2�tM�1Þ2
2l2nþ

ðnknlnÞ4s=ð1þ4sÞ

nk2n
þ 1

k2n

ffiffiffiffiffiffiffiffi
2M
n3

r
ðnknlnÞð1þ6sÞ=ð1þ4sÞ

 !
:

The right-hand side of the last inequality does not depend on p! and q! and goes to zero when n tends to infinity according
to Assumption 3.1. Proposition A.3 is also proved. □

A.4. Proof of Theorem 3.4

This proof looks like the proof of Theorem 3.3.
Let Sn denote a net on the smoothness space such that

8s; tASn : s⋆rs; trs⋆; js�tjZ 1
N
; N¼ card Sn ¼O ðln nÞ1� δ

� 	
;

where N also satisfies

lim
n-þ1

ln
1

lnkn

� �
� 2 lnðnÞ
ð4s⋆þ1Þ2N

¼ �1:

This choice is made possible because of Assumption 3.1 .
Let J n denote the associated net on the level space that is

J n ¼ fjANn; j¼ j⋆n;s; sASng:
Let p! such that for any lAf1;…;Mg,

fx; pl xð Þ41
2 g*½0;1½:

For any given sASn and any lAf1;…;Mg, we introduce the following densities:

ql;ζ;sð�Þ ¼ plð�Þþ2sC
ffiffiffiffiffi
M

p
θl ∑

kAT ⋆
s

ζk;s2
� sj⋆n;s � j⋆n;s=2ψ j⋆n;sk

ð�Þ;

where T ⋆
s ¼ f0;…;2j⋆n;s �1g and, for any kAT ⋆

s , ζk;sAf�1;1g.
Here, θ¼ ðθ1;…; θMÞ is still an eigenvector associated with the smallest eigenvalue kn of Γn such that JθJ2 ¼ 1.
Suppose that the marginal densities of Yi and Zi ð1r irnÞ are respectively

f ið�Þ ¼ ∑
M

l ¼ 1
ωlðiÞplð�Þ and gi;ζ;sð�Þ ¼ ∑

M

l ¼ 1
ωlðiÞql;ζ;sð�Þ:

The functions ql;ζ;s are clearly densities that satisfy for large n:

fx; ql;ζ;sðxÞ41
2 g*½0;1½:

Moreover, if CoRM�1=2 2� s, then the difference ql;ζ;s�pl belongs to the Besov ball Bs
2;1ðRÞ. Notice that for at least one

lAf1;…;Mg, Mθ2l Z1. Hence

‖ql;ζ;s�pl‖22ZC2 ðnknlnÞ�4s=ð1þ4sÞ:

The prior probability πs on ΛðC;nknln; sÞ is chosen such that the random variables ζk;sðkAT ⋆
s Þ are independent Rademacher

whereas the level j⋆n;s is chosen uniformly on J n.
Unless explicitly specified, the expectation Eð�Þ is taken regarding the random variables Y1;…;Yn; Z1;…; Zn, ζk;s; kAT s and

j⋆n;sAJ n.
The general calculation follows the same path as in Theorem 3.2. The sum of the errors is lower-bounded as follows:

inf
Δ

P
p!; p! Δ¼ 1ð ÞþP

p!; q! Δ¼ 0ð Þ
� �

Z1�1
2

1
N

∑
sAS n

Pπs �P
p!; p!

�����
�����:

An upper bound of the L1�distance is given by

1
N

∑
sASn

Pπs �P
p!; p!

�����
�����r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

1
N

∑
sASn

dPπs

dP
p!; p!

�1

0
@

1
A

2
0
B@

1
CA

vuuuut
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r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2 ∑
sASn

E
dPπs

dP
p!; p!

�1

0
@

1
A

2
0
B@

1
CAþ 1

N2 ∑
sa s′AS n

E
dPπs

dP
p!; p!

dPπs′

dP
p!; p!

0
@

1
A�1

2
4

3
5

vuuuut :

The first term is called the square term and is handled as in the non-adaptive case. The second term is called the cross term.
It only appears in the adaptive case and leads to technical calculations.

We state a more general result than Lemma 6 of Autin and Pouet (2012). As it is easily proved by following the proof of
Lemma 6 of Autin and Pouet (2012) we decide to omit its proof.

Lemma A.1. For any s′os in Sn, i.e. js′o js, the following bound holds:

E
dPπs

dP
p!; p!

dPπs′

dP
p!; p!

0
@

1
A�1r2ðC221þ s⋆MÞ2ðlnknÞ�2 exp �2 ln nlnknð Þ 2ðs′�sÞ

ð4s′þ1Þð4sþ1Þ

� �
:

The choice of N and the fact that s′ is smaller than s entail that the upper bound of each summand in the cross term is the
same and goes to zero when n tends to infinity.

The second part of the proof is the study of the square term. It is handled as in the non-adaptive case but here leads to an
upper bound which goes to infinity. This behavior is compensated by the normalizing factor N�1. Similar to Autin and Pouet
(2012), we have

E
dPπs

dP
p!; p!

�1

0
@

1
A

2
0
B@

1
CArexp 24s⋆ þ1C4M2l�2

n

� 	
�1:

If C4oð1�δÞ2�4s⋆ �1M�2, then the following limit holds:

lim
n-þ1

N�1ðln nÞ24s
⋆ þ 1M2C4 ¼ 0:

This result entails that the square term goes to zero when n tends to infinity provided Coc⋆ ¼ 2� s⋆M�ð1=2ÞðR4
ð2�1ð1�δÞÞ1=4Þ.

Gathering the results for the square and cross terms, we conclude that the lower bound goes to one as n tends to infinity
and that the loss ln ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ln n

p
Þ�1 is unavoidable.
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