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We present a novel method for detecting some structural characteristics of 
multidimensional functions. We consider the multidimensional Gaussian white 
noise model with an anisotropic estimand. Using the relation between the Sobol 
decomposition and the geometry of multidimensional wavelet basis we can build test 
statistics for any of the Sobol functional components. We assess the asymptotical 
minimax optimality of these test statistics and show that they are optimal in 
presence of anisotropy with respect to the newly determined minimax rates of 
separation. An appropriate combination of these test statistics allows to test some 
general structural characteristics such as the atomic dimension or the presence 
of some variables. Numerical experiments show the potential of our method for 
studying spatio-temporal processes.

© 2017 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Multidimensional data often exhibit a simpler underlying structure, meaning that their effective di-
mension is smaller than the observed dimension. Detecting the presence of such structure can enhance 
the understanding of the data and allows for more effective modeling and inferential strategies. There is 
a flourishing literature dealing with nonparametric methods for structure detection. These contributions 
are concerned with different types of structures (such as additivity, small atomic dimension and variable 
selection) and with different modeling approaches according to the nature of the noise, the smoothness 
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assumptions for instance. A brief overview of the most directly related contributions are given hereafter. 
The main characteristic of this paper is to provide a rigorous theoretical study of structure detection in the 
presence of an anisotropically smooth estimand. We consider a multidimensional Gaussian white noise model 
and derive test statistics for the atomic dimension of multidimensional objects (i.e., the maximal degree of 
interaction between the variables) and for variable selection. Then, following the Sieve estimation of Birgé 
and Massart [5], we build a data-driven procedure. It is first tested in ‘idealistic’ numerical experiments 
before being applied to a more sophisticated context of time series data analysis.

The main ingredient of our methodology is to project the data onto an hyperbolic (wavelet) basis and to 
build test statistics based on the projection coefficients. Its motivation relies on the relation that emerges 
between the geometry of that basis and the ‘functional components’ of the Sobol decomposition of the 
estimand (see Sobol [34]). The use of an appropriate basis allows to benefit from a sparse representation 
and an optimal adaptation to the anisotropic smoothness of the estimand. In this paper we construct optimal 
testing procedures for the functional components accordingly to the minimax hypothesis testing framework 
of Ingster [11–13]. Appropriately combined these functional components can be rephrased in terms of more 
general structures such as the atomic dimension.

This project is motivated by the recent results of Autin et al. [3,4] who studied the ability of a tensor-
product wavelet basis, the so-called hyperbolic wavelet basis to estimate multidimensional functions having 
anisotropic smoothness. Tensor-product bases (Fourier or wavelets) have already been widely used in signal 
detection notably to test for additivity (i.e. atomic dimension equals to 1) as in De Canditiis and Sapatinas 
[8]. Nevertheless, in the latter they do not provide deep theoretical results on the performance of their 
method. Abramovich et al. [1] describe another procedure for testing additivity. They propose an adaptive 
procedure based on the thresholding wavelet coefficients and derive interesting theoretical results. Never-
theless, they exploit a standard (isotropic) wavelet basis that cannot optimally deal with the more realistic 
situation of having anisotropic estimands. Moreover, their method is limited to test for additivity and does 
not exploit the full directional representation of a multidimensional wavelet basis. The functional frame-
work (where the dimension d → ∞) has also been investigated by Gayraud and Ingster [10] who studied 
the problem of signal detection in the case of sparse additive functions. Other developments include, for 
example, multichannel signal detection as in Ingster and Suslina [18], and detection in inverse models as in 
Ingster et al. [14].

Comminges and Dalalyan [6] made profound theoretical contributions on hypothesis testing procedures 
based on quadratic functionals. They study various testing problems involving multidimensional anisotropic 
functions. They exploit a tensor-product Fourier basis to build non adaptive procedures, i.e. procedures that 
are built on the knowledge of the regularity parameters of the anisotropic function spaces in the alternative. 
In this paper, we focus on the consequences of dealing with anisotropic estimands. Therefore, we define two 
classes of testing procedures, referred to as minimax optimal and adaptive minimax optimal methods for 
the Besov balls, see Section 4. The former methodology is built using the full knowledge of the regularity 
parameters while the latter uses only a part of it.

These methods differ by the nature of the truncation applied to the hyperbolic wavelet coefficients se-
quence. An intuitive way to think about this is to consider the better known multidimensional function 
estimation context. The truncation rule characterizing the minimax optimal method can be viewed as a 
linear but directionally dependent smoothing. While the truncation rule of the adaptive minimax optimal 
method finds its roots in the approximation of the hyperbolic cross that is naturally associated to tensor-
product spaces (see for instance Schmeisser [31], Schmeisser and Sickel [32] and Sickel and Ullrich [33]). 
Tensor-product spaces are also often considered in various statistical contexts such as in estimation with 
for example the tensor-product space ANOVA model as in Lin [24] or in signal detection as in Ingster and 
Stepanova [15]. They are of great interest since one can hope to reach performances close to the unidi-
mensional case. It is sometimes promoted as a way to ‘tackle’ the curse of dimensionality, nevertheless it 
is a restrictive assumption. In the context of functional ANOVA, for example, assuming a tensor-product 
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model means that the interaction term’s complexity has to be inversely proportional to its degree. In this 
paper we do not restrict to the structure detection of functions belonging to tensor-product of Besov spaces 
but to larger classes such as the anisotropic Nikolskii class. We show that our methods attain the optimal 
separation rates between the null and the alternative hypothesis and we discuss how to combine sets of 
testing procedures in a way that is adapted to the anisotropic case.

Such testing procedures find applications in many fields. We illustrate its usage in time series data 
analysis. Our aim is to test the structure of the spatio-spectrum associated to a spatio-temporal process 
that is time stationary. This allows us also to illustrate how to adapt such testing procedure in the context 
of multidimensional data where the number of observations is very large, making p-values useless.

This paper is structured as follows. First, in Section 2, we give the fundamental knowledge on hyperbolic 
wavelet bases and their relation to the Sobol decomposition of a multidimensional function. In Section 3 we 
introduce the multidimensional Gaussian white noise model and the minimax hypothesis testing framework. 
Then we describe our test statistics for Sobol functional components in Section 4 before introducing tests for 
global structural characteristics in Section 5. Section 6 describes our data-driven adaptation and validation 
in a practical setting of the adaptive minimax optimal procedure and a final discussion is provided in 
Section 7. The proofs of the theoretical results are postponed to the appendix.

2. Hyperbolic wavelet bases

We start from a one-dimensional periodized wavelet basis B1 of L2([0, 1)) which is built from the dilations 
and translations of a scaling function φ and a wavelet ψ with V (for some V ≥ 1) vanishing moments,

B1 =
{
φ(.), ψj,k(.) = 2j/2ψ(2j .− k) : j ∈ N, k ∈ {0, . . . , 2j − 1}

}
.

A d-dimensional hyperbolic wavelet basis results by forming d-variate functions taking appropriate products 
of the univariate functions φ and ψ as follows,

Bd =
{
φ0,0(.), ψi

j, k(.) : i ∈ {0, 1}d \ 0, j ∈ J
i, k ∈ Kj

}

where 0 = (0, . . . , 0), φ0,0(.) = φ(.) × · · · × φ(.), ψi
j,k(.) = ψi1

j1,k1
(.) × · · · × ψid

jd,kd
(.), i = (i1, . . . , id) with the 

following notations:

ψiu
ju,ku

(·) =
{

2ju/2φ(2ju · −ku) if iu = 0
2ju/2ψ(2ju · −ku) if iu = 1

and

J
i =
{
j = (j1, . . . , jd) : ∀u ∈ {1, . . . , d}, ju = j′uiu, j

′
u ∈ N

}
,

Kj =
{
k = (k1, . . . , kd) : ∀u ∈ {1, . . . , d}, ku ∈ {0, . . . , 2ju − 1}

}
.

The basis Bd is generated by a set of a scaling function φ0,0 and translated and dilated wavelet functions 
ψi
j,k. If all the components of the vector of directional dilations j are equal, this results in the standard 

(isotropic) wavelet basis. Hereafter we consider that the components of j can take different values. The 
wavelet functions are then supported on hyper-rectangles and the resulting wavelet basis, the so-called 
hyperbolic or tensor-product wavelet basis, is proven to be able to optimally deal with anisotropic functions 
[3,4]. We say that each of the 2d− 1 elements of i defines an orientation. In such a basis, any f ∈ L2([0, 1)d)
can be decomposed as follows:
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f = 〈f, φ0,0〉2φ0,0 +
∑
i�=0

(∑
j∈Ji

∑
k∈Kj

〈f, ψi
j,k〉2ψ

i
j,k

)
≡ f0 +

∑
i�=0

fi (1)

where 〈., .〉2 is the L2-scalar product. This representation facilitates a characterization of a specific struc-
ture, such as additivity. Indeed, for an additive function fadd, that is a function with Sobol decompo-
sition fadd(x1, . . . , xd) = f0 +

∑d
u=1 fu (xu), the coefficients θij,k = 〈f, ψi

j,k〉2 in each orientation i with 
|i| = i1 + i2 + · · · + id > 1 are exactly equal to 0. Information about the component functions fi in equa-
tion (1) can be retrieved via the wavelet coefficient sequence through the geometry of the hyperbolic wavelet 
basis. This enables the design of specific testing procedures for structural information for multivariate func-
tions, more general than merely testing for additivity.

Dalalyan et al. [7] introduced the atomic dimension in the physical domain that we denote as δ(f). It re-
flects the maximal degree of interaction between the d variables in the Sobol decomposition. For instance, the 
additive model fadd has δ(fadd) = 1, while a function f(x1, . . . , xd) =

∑d
u=1 fu(xu) +

∑d
u=1
∑d

v=1,v �=u xuxv

has δ(f) = 2. In the sequel, we use the definition from Autin et al. [3] of the atomic dimension in the 
wavelet coefficient domain relating the orientations of the nonzero wavelet coefficients with corresponding 
Sobol functional components.

Definition 2.1. Let f ∈ L2([0, 1)d) be decomposed in the hyperbolic wavelet basis as

f = f0 +
∑
i�=0

fi = θ0
0,0φ0,0 +

∑
i/∈0

⎛
⎝∑

j∈Ji

∑
k∈Kj

θij,kψ
i
j,k

⎞
⎠ .

Define Af = {i ∈ {0, 1}d \ 0; θij,k 
= 0 for some (j, k)}. The atomic dimension of f with respect to Bd is the 
integer δBd

= δBd
(f) ∈ {0, . . . , d} such that:

δBd
=
{

max{|i|; i ∈ Af} if Af 
= ∅
0 if Af = ∅.

Definition 2.1 gives us more flexibility than its definition in the physical domain. Indeed, the atomic 
dimension δBd

depends on the number of vanishing moment (even directional ones) of the considered basis Bd. 
More precisely, the atomic dimension δ(f) of a d-dimensional function f in the physic domain and the atomic 
dimension δBd

(f) of the same function f in the coefficient domain are clearly tied by the following inequality: 
δBd

(f) ≤ δ(f). We mention here two situations to emphasize the practical importance of being able to 
characterize the atomic dimension in the coefficient domain. The first example concerns multidimensional 
function estimation. Autin et al. [3] introduced a novel estimation procedure based on the thresholding of 
the hyperbolic wavelet coefficients. They show that it outperforms the standard hard thresholding whenever 
some structural conditions on the estimand are satisfied. These conditions also include some constraint on the 
value of the atomic dimension δBd

. Here we provide a test statistic to test the structure of the estimand before 
applying the aforementioned estimation method. A second example concerns the exploitation of sparsity 
in statistical modeling that can be useful for building a statistical model using the hyperbolic wavelet 
coefficients or in generalized linear modeling. For example, Zhou et al. [38] describe such a generalized 
linear model with multidimensional covariates, their first step consists in dimension reduction by tensor 
decomposition. One could instead exploit the sparsity of the hyperbolic wavelet sequence. In such a case, 
one may seek for the hyperbolic wavelet basis that provides the sparsest situation.

3. Model and minimax approach for hypothesis testing

The observed signal under the Gaussian white noise model is a realization of the process
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dYε(x) = f(x)dx + εdW (x) (2)

where x = (x1, . . . , xd) ∈ [0, 1)d, f ∈ L2([0, 1)d), W (x) is the Brownian sheet and ε is the noise level, consid-
ered here to be close to zero. For technical reasons (see the proofs of Proposition A.3 and Proposition A.4), 
without loss of generality, we assume that it is smaller than εo = e−e, where e denotes the Euler’s number. 
We consider the sequential version of the Gaussian white noise model which consists of the observations of 
the following random variables

θ̂0
0,0 = θ0

0,0 + εξ = 〈f, φ0,0〉L2 + εξ and θ̂ij,k = θij,k + εξij,k = 〈f, ψi
j,k〉L2 + εξij,k

where, ξ, ξij,k are i.i.d. N (0, 1) and (j, k) ∈ Nd ×Kj .
For any chosen orientation i 
= 0, we may test the following null hypothesis Hi,0 versus one of the two 

stated alternative hypotheses Hi,a and H′
i,a:

Hi,0 : f ∈ Ni(R) =

⎧⎨
⎩f : ‖f‖2 ≤ R, fi(x) =

∑
j∈Ji

∑
k∈Kj

θij,kψ
i
j,k(x) = 0, ∀x ∈ [0, 1)d

⎫⎬
⎭ , (3)

Hi,a : f ∈ Ai(R,C, s, rε,i) =

⎧⎪⎨
⎪⎩f : f ∈ Fs(R), ‖fi‖2 =

⎛
⎝∑

j∈Ji

∑
k∈Kj

(
θij,k

)2
⎞
⎠

1
2

≥ Crε,i

⎫⎪⎬
⎪⎭ , (4)

H′
i,a : f ∈ ∪s:

∑
u ius

−1
u =γ−1

i
Ai(R,C, s, r′ε,i). (5)

In the above expression, C is a positive constant which does not depend on ε and rε,i, r′ε,i are continuous 
sequences of positive real numbers tending to 0 as ε goes to 0. Fs(R) denotes a ball of radius R in a function 
space characterized by a vector of directional regularities s with harmonic sum in the orientation i denoted 
as γ−1

i .
Given a simultaneous control on the probabilities of type I and II errors, we consider the asymptotic 

minimax setup: we aim at providing, for any orientation i, the order of the optimal separation rates in 
the sense of Section 2.6 in Ingster and Suslina [17] between the null hypothesis Hi,0 and each one of the 
alternative hypotheses Hi,a and H′

i,a associated to a particular choice of Fs when:

• s is known;
• only the harmonic sum γ−1

i =
∑

u ius
−1
u of s with respect to orientation i is known.

Related to this, we search for both a sequence of Fs-minimax optimal testing procedures and a sequence of 
Fs-adaptive minimax optimal testing procedures.

Definition 3.1. Let α ∈
(
0, 1

2
)
, s ∈ (0, +∞)d and i ∈ {0, 1}d \ 0. We say that rε,i corresponds to the 

Fs-minimax rate separating the hypotheses Hi,0 and Hi,a, up to a constant, if the two following statements 
are satisfied:

1. (Upper bound) for any C > Ci,α, with Ci,α an absolute positive constant, there exists a sequence of 
testing procedures 

(
Δ∗

ε,α

)
ε

such that

sup
0<ε<εo

(
sup

f∈Ni(R)
Pf (Δ∗

ε,α = 1) + sup
f∈Ai(R,C,s,rε,i)

Pf (Δ∗
ε,α = 0)

)
≤ α,
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2. (Lower bound) for any C < ci,α, with ci,α an absolute positive constant, the following inequality holds

inf
0<ε<εo

inf
Δ

(
sup

f∈Ni(R)
Pf (Δ = 1) + sup

f∈Ai(R,C,s,rε,i)
Pf (Δ = 0)

)
> α.

The sequence of testing procedures 
(
Δ∗

ε,α

)
ε

is said to be Fs-minimax optimal.

Definition 3.2. Let α ∈
(
0, 1

2
)
. Consider i ∈ {0, 1}d such that |i| > 1 and let γi > 0. We say that r′ε,i

corresponds to the Fs-adaptive minimax rate separating the hypotheses Hi,0 and H′
i,a, up to a constant, if 

the two following statements are satisfied:

1. (Upper bound) for any C > C ′
i,α, with C ′

i,α an absolute positive constant, there exists a sequence of 
testing procedure 

(
Δ�

ε,α

)
ε

such that

sup
0<ε<εo

⎛
⎝ sup

f∈Ni(R)
Pf (Δ�

ε,α = 1) + sup
s:
∑

u ius
−1
u =γ−1

i

sup
f∈Ai

(
R,C,s,r′ε,i

)Pf (Δ�
ε,α = 0)

⎞
⎠ ≤ α,

2. (Lower bound) for any C < c′i,α, with c′i,α an absolute positive constant, the following inequality holds

inf
0<ε<εo

inf
Δ

⎛
⎝ sup

f∈Ni(R)
Pf (Δ = 1) + sup

s:
∑

u ius
−1
u =γ−1

i

sup
f∈Ai

(
R,C,s,r′ε,i

)Pf (Δ = 0)

⎞
⎠ > α.

The sequence of testing procedures 
(
Δ�

ε,α

)
ε

is said to be Fs-adaptive minimax optimal.

In the latter situation, we have only the information about the harmonic sum of the directional smooth-
ness parameters of the function class in the alternative. To determine the minimax and adaptive minimax 
separation rates, we naturally consider the combination of directional smoothness with a given harmonic 
sum that is giving the worst type II error rate. The fully adaptive case corresponds to an unknown value 
γi. It is a direct extension studied here which could be called partially adaptive, that is to say when γi is 
known. In this work for the sake of simplicity we use adaptive instead of partially adaptive.

Remark 3.1. The definition of minimax and adaptive minimax rates are equivalent to the ones given in 
Section 1 of Lepski and Tsybakov [22] (Section 1) and slightly more precise than the ones given in Section 
2.6 of Ingster and Suslina [17]. We will show that both the minimax separation rate and the adaptive 
minimax separation rate of testing depend on the smoothness of the underlying functional space and on 
the noise level ε. At the end of the appendix, we highlight the relationships between the absolute constants 
Ci,α, ci,α, C ′

i,α, c
′
i,α and the parameters appearing in the problem such as R and the smoothness.

4. Nonparametric tests for a given orientation

In this paragraph we present test statistics and testing procedures that are used in the sequel. These 
test statistics are going to provide sequences of testing procedures that are Fs-minimax and Fs-adaptive 
minimax optimal in the particular case where Fs corresponds to a Besov space with s as smoothness 
parameter.

Definition 4.1 (Test statistic). Let i 
= 0 and j = (j1, . . . , jd) ∈ Ji. The nonnegative random variable

Ti,j =
∑

j′∈Ji: j′ <max(j ,1),∀u

∑
k∈K ′

(θ̂ij′,k)
2

u u j
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is called the i-oriented test statistic with level parameter j.

Definition 4.2 (Testing procedure). Let i 
= 0, j = (j1, . . . , jd) ∈ Ji and t > 0. The random variable

Δi,j(t) = 1{Ti,j>t}

is called the (i, j, t)-testing procedure.

4.1. Bs
2,∞-minimax optimal sequence of testing procedures

We define appropriate test statistics based on the estimated empirical energy that is the sum of the 
squared values of the empirical hyperbolic wavelet coefficients within the specified orientation over certain 
scales. We show that this sequence of tests constructed using hyperbolic wavelet bases gets optimal minimax 
properties when f belongs to a Besov ball with smoothness parameter s.

Definition 4.3 (Besov ball). Let R > 0 and s = (s1, . . . , sd) ∈ (0, +∞)d. We say that f ∈ L2([0, 1)d) belongs 
to the Besov ball Bs

2,∞(R) if and only if

sup
i�=0

sup
j∈Ji

max
1≤u≤d

{22jusu}
∑
k∈Kj

|θij,k|2 ≤ R2.

In this section we assume that we have the full knowledge about the smoothness parameter s of the 
functions in the alternative. In other words it corresponds to the non adaptive set up. We define a vector 
j∗ = (j∗1 , . . . , j∗d) ∈ Ji of truncation scales such that

2−j∗u ≤ ε4iuγi/(1+4γi)su < 21−j∗u (6)

with γi = (
∑d

u=1 ius
−1
u )−1.

Theorem 4.1. Let α ∈
(
0, 1

2
)
, R > 0, s in (0, +∞)d and i ∈ {0, 1}d \ 0. Consider, as in (3) and (4), testing 

the hypotheses Hi,0 versus Hi,a where Fs(R) = Bs
2,∞(R). Then the sequence of the (i, j∗, tε,i,α)-testing 

procedures 
(
Δi,j∗(tε,i,α)

)
ε

is Bs
2,∞-minimax optimal with j∗ as in (6), and with ε−2tε,i,α = χ1−α/2(2|j

∗|), 
the 1 − α/2 quantile of the Chi-Square distribution with 2|j∗| = 2j∗1+···+j∗d degrees of freedom. Moreover the 
Bs

2,∞-minimax rate separating Hi,0 and Hi,a is of order of

rε,i = ε
4γi

1+4γi .

The proof of Theorem 4.1 is stated in the appendix. The absolute constants Ci,α and ci,α from Defini-
tion 3.1 will be given there.

This theorem can be compared to the results given in the book of Ingster and Suslina [17] for Besov 
bodies in the one-dimension case. In this book, Theorem 3.9 states distinguishability conditions and sharp 
asymptotics are given in Theorem 4.4. The results stated above in Theorem 4.1 is similar but in any 
dimension; therefore the smoothness parameter is replaced by the average smoothness value obtained from 
the harmonic sum.

The reader could note that the worst rate is associated with γ1 with 1 = (1, . . . , 1), i.e. to the interaction 
term of highest degree. This case is similar to the one considered in Ingster and Stepanova [16] (Remark 3.3). 
We obtain the same minimax rate of testing hypotheses involving the harmonic sum of smoothness as the one 
they found for a signal function f in a Sobolev space. Nevertheless we can point that their null hypothesis 
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H0 : f = 0 is different from the one considered here and briefly reformulated as H1,0 : f1 = 0 which 
consists of functions with an atomic dimension strictly smaller than the dimension d. The separation rate 
can be different for every orientation. When it comes to test for the structure of a d-dimensional function, a 
sequential testing procedure based on these different test statistics seems to be ideal because one can benefit 
from better separation rates.

Remark 4.1. In the context of multidimensional function estimation, the maxiset approach introduced by 
Kerkyacharian and Picard [20] has been proved useful to study the performance of wavelet-based estima-
tors [3]. It consists in determining the largest function space such that the risk of an estimator is controlled 
at a chosen rate. If the choice of the rate is often an issue, it is common to use the minimax or near-minimax 
rates over some ‘standard’ functional spaces F . Then the maxiset approach reveals a set of functions that 
contains F strictly or not. This is an optimistic approach in the sense that finally, we can estimate at 
the minimax or near-minimax rate more functions that previously thought. In minimax hypothesis testing 
problems, we can get inspired from the maxiset approach to remark that under the alternative, we naturally 
model the ‘estimand’ as a function in a d-variate smoothness space, here Bs

2,∞(R). Nevertheless, since we 
are only concerned by the presence of information along given directions, the behavior along the directions 
that are not of interest can be let ‘uncontrolled’. Hence, the sequence space in the alternative can be enlarged 
to the set of all Besov spaces Bs′

2,∞(R) with s′u ≤ su for iu = 0 and s′u = su otherwise.

4.2. Bs
2,∞-adaptive minimax procedure

We now suppose that the regularity parameter s appearing in the alternative hypothesis is unknown but 
its harmonic sum γ−1

i =
∑d

u=1 ius
−1
u is known for a chosen i such that |i| > 1. In some sense, we consider 

now the adaptive setup.
To define the test statistic using the knowledge about γ, we denote by Ji the integer such that

2−Ji ≤
(
ε4 log log ε−1) 1

1+4γi < 21−Ji . (7)

Theorem 4.2. Let α ∈
(
0, 1

2
)
, R > 0, i ∈ {0, 1}d satisfying |i| > 1 and let γi > 0. Consider, as in (3)

and (5), testing the hypotheses Hi,0 versus H′
i,a where Fs(R) = Bs

2,∞(R), where γ−1
i =

∑d
u=1 ius

−1
u . Then 

the sequence of testing procedures 
(
Δi,max(t′ε,i,γi,α

)
)
ε

built from the maximum of the (i, j, t′ε,i,γi,α
)-testing 

procedures Δi,j(t′ε,i,γ,α) for which j is satisfying |j| = Ji is Bs
2,∞-adaptive minimax optimal provided that, for 

any ε ∈ (0, εo), ε−2t′ε,i,γi,α
= χ1−α/2Kγi

(2Ji), with Kγi
= #{j ∈ Ji : |j| = Ji}. Moreover the Bs

2,∞-adaptive 
minimax rate separating Hi,0 and Hi,a is of order of

r′ε,i =
(
ε4 log log ε−1) γi

1+4γi .

The proof of Theorem 4.2 is stated in the appendix. The absolute constants C ′
i,α and c′i,α from Defini-

tion 3.2 will be given there.
Results given for adaptation in Theorem 4.2 can be compared to usual results obtained for adaptation 

in hypothesis testing problems. The unavoidable loss due to adaptation is the usual one that can also be 
found for example in Theorem 7.2 in Ingster and Suslina [17]. The results stated above in Theorem 4.2 can 
be compared to the loss obtained by Spokoiny [35] in the Gaussian white noise model in one-dimension for 
the signal detection problem.

Remark 4.2. Note that compared to the Bs
2,∞-minimax case, the optimal separation rate is slower because 

log log ε−1 → ∞ as ε → 0. This attests of the deterioration of the information about the function space in 
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the alternative. Nevertheless, in the alternative hypothesis, the union of sequence spaces Bs
2,∞(R) can be 

replaced by another larger sequence space, denoted Aγi,2(R) and defined hereafter.

Definition 4.4 (Truncation ball). Let R > 0, i ∈ {0, 1}d satisfying |i| > 1 and γi > 0. We say that 
f ∈ L2([0, 1)d) belongs to the truncation ball Aγi,2(R) if and only if

sup
j∈Ji

22|j|γi

∑
k∈Kj

(θij,k)
2 ≤ R2.

The truncation ball Aγi,2(R) is similar to a Besov ball in the sense that it controls the decay of the energy 
of the hyperbolic wavelet coefficients over the scales and hence it is used to control the approximation error. 
Following Lemma 2.2 of Neumann [26], the following inclusion property holds.

Proposition 4.1. Fix i ∈ {0, 1}d \ 0. Let γi > 0. For any R > 0, there exists R′ > 0 such that

⋃
s: i1s

−1
1 +...ids

−1
d =γ−1

i

Bs
2,∞(R) ⊂ Aγi,2(R′).

Considering the functional component fi of f does not only enable us to explore fine structures but it is 
also a way to improve the performance of the testing procedures for more general structure, see Section 6.

5. Tests that combine different orientations

Many interesting hypotheses on the structure of a function can be tested by ‘aggregating’ the previously 
described optimal testing procedures for the Sobol functional components. In this paragraph we describe 
such results in the context of the Bs

2,∞-minimax framework, but it can be easily given for the Bs
2,∞-adaptive 

minimax setting as well. We first state the following proposition:

Proposition 5.1. [Max-testing] Fix α ∈
(
0, 1

2
)
, s ∈ (0, +∞)d and consider β = 1 −

(
1 − α

2
)|I| such that |I|

denotes the cardinality of a nonempty set of orientations I that characterizes the alternative hypothesis.
Consider the following testing hypotheses

H0 : f ∈ S(R, I)= {f : ‖f‖2 ≤ R, fi(x) = 0, ∀i ∈ I, ∀x ∈ [0, 1)d},

Ha : f ∈ T (R, I)= {f : f ∈ Bs
2,∞(R),∃ i ∈ I, ‖fi‖2 ≥ Crε,i}.

(8)

Then, for any ε ∈ (0, εo), the testing procedure ΛI,ε,α = maxi∈I Δi,j∗(tε,i,α) is β-level, i.e. its probability of 
type I error is equal to β.

The proof of Proposition 5.1 is an immediate consequence of Theorem 4.1. Since the testing procedures 
involved are independent for different orientations, the limiting distributions can be exactly computed and 
we do not need the probably conservative FWER. For any ε ∈ (0, εo),

sup
f∈S(R,I)

Pf (ΛI,ε,α = 1) = sup
f∈S(R,I)

(
1 − Pf

(
max
i∈I

Δi,j∗(tε,i,α) = 0
))

= 1 −
(
1 − α

2

)|I|
= β.

Remark 5.1. Under the alternative, we naturally model the estimand as a function in a d-variate smoothness 
space, here and once again a Bs

2,∞(R). Nevertheless, inspired from Remark 4.1, we can state another analogy 
with the maxiset approach. Let us consider the testing problem with the same hypotheses as in (8) but 
with a rate that is chosen to be the worst optimal one with respect to s, that is rε,1 = ε4γ/(1+4γ). Since 
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we are only concerned by the presence of information along at least one given direction that belongs to I, 
no assumption on the smoothness is needed in the other orientations. Hence, the sequence space in the 
alternative associated with the chosen rate rε,1 can be considered larger than the initial one, Bs

2,∞(R). More 

precisely it could be replaced by the sequence space defined by the union of all Besov balls Bs′

2,∞(R) with 
s′ ∈ (0, +∞)d such that 

∑
u ius

′
u = γ−1 for at least one i ∈ I.

In what follows, we present some examples where the optimal testing procedures that combine different 
orientations could be useful.

5.1. Testing the structure of the goal function

Take the set I(δ0) = {i ∈ {0, 1}d : |i| > δ0} that contains all orientations for which the number of 
contributing components of the d-vector is strictly larger than a specified value δ0. The corresponding 
hypotheses for testing for the atomic dimension are:

H0 : f ∈ S(R, I(δ0))= {f : ‖f‖2 ≤ R, δBd
(f) ≤ δ0},

Ha : f ∈ T (R, I(δ0))= {f : f ∈ Bs
2,∞(R),∃ i ∈ I(δ0), ‖fi‖2 ≥ Crε,i}.

(9)

Tests for the atomic dimension are more versatile than merely testing for additivity, the latter which is a 
special case with δ0 = 1. Concluding that a structure is simpler than a full d-dimensional object leads to 
an efficiency gain in estimation by using the appropriate methods escaping (at least partly) the curse of 
dimensionality when δ(f) is smaller than d.

Combining tests over multiple orientations i ∈ I can be done by computing the maximum of testing 
procedures in the separate orientations.

From our testing procedures Δi,j∗ (tε,i,α) , i 
= 0, there is a quite natural way to estimate the structure 
of the goal function f by considering

Âf,tε,i,α =
{
i ∈ {0, 1}d \ 0 : Δi,j∗ (tε,i,α) = 1

}
as an estimator of Af . Nevertheless this estimator could lead to many false discoveries that are any orienta-
tion i ∈ Af,tε,i,α such that fi is the null function. Obviously the larger α, the bigger the number of expected 
false discoveries.

There is also a way to naturally get an estimator δ̂ of the atomic dimension δ(f) of a d-dimensional signal 
f by putting, for a chosen α ∈

(
0, 1

2
)
,

δ̂Bd
=
{

max{|i|; i ∈ Âf,tε,i,α} if Âf,tε,i,α 
= ∅
0 if Âf,tε,i,α = ∅.

Rejecting a combined orientations null hypothesis as in (9) when δ̂Bd
≥ δ0 is equivalent with rejecting 

H0 when ΛI(δ0),ε,α = 1.

5.2. Reduction of model: selection of variables

Another application is to test whether some variables among x1, . . . , xd may be omitted from the model 
or not. Consider the case of leaving out variable xm for some m ∈ {1, . . . , d}. In this case Im = {i =
(i1, . . . , im, . . . , id) ∈ {0, 1}d : im = 1} and the relevant hypotheses are

H0 : f ∈ U(R,m)={f : ‖f‖2 ≤ R,∀i ∈ Im, fi(x) = 0, ∀x ∈ [0, 1)d},

H : f ∈ V(R,m)={f : f ∈ Bs (R),∃ i ∈ I , ‖f ‖ ≥ Cr }.
(10)
a 2,∞ m i 2 ε,i
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In addition to possibly reduce the model, when considering such a testing problem could find applications 
in modeling time series (see Section 6 for details).

Following the two previous paragraphs, an interesting point must be underlined here. Estimating the 
atomic dimension of a d-dimensional object or reducing the number of its relevant variables can be considered 
as a first step to guarantee that the object is a function of a number of variables smaller than d (usually 
called ‘sparse variable function’). This assumption was often assumed in recent works in estimation problem 
as in Autin et al. [3] and in testing problem as in Ingster and Suslina [19]. From the data, our methodology 
also permits to test whether this assumption is reasonable or not.

6. Numerical experiments

In this section we first describe a practical implementation of the adaptive method. We present its 
performance in terms of empirical power curves w.r.t. signal to noise ratio for testing the atomic dimension 
of some multidimensional functions corrupted by an additive Gaussian white noise. Then, we propose 
an application in time series analysis that consists in exploring the structure of the spatio-spectrum of 
spatio-temporal processes.

6.1. Data-driven structure detection

To link our theory to the practical setting we refer the reader to Reiss [30] for the equivalence in the 
Le Cam’s sense between the multidimensional nonparametric regression problem (11) and the Gaussian 
white noise model (2). This equivalence is assumed to hold and typically relies on some minimal regularity 
conditions and an appropriate calibration of the noise level ε = σN− d

2 . Let ζl1,...,ld be i.i.d. N (0, 1),

Yl1,...,ld = f

(
l1
N

, . . . ,
ld
N

)
+ σζl1,...,ld , 1 ≤ lu ≤ N, 1 ≤ u ≤ d. (11)

Both, the Bs
2,∞-minimax and Bs

2,∞-adaptive minimax optimal procedures studied previously truncate the 
wavelet coefficient sequence at scales that are calibrated based on the knowledge of the unknown smoothness 
of the estimand (based either on the knowledge of all the directional regularities or only of their harmonic 
sum). Following the idea of Sieve estimation described in Birgé and Massart [5], we build a data-driven 
version of the adaptive testing procedure. In this numerical part, we consider only the Bs

2,∞-adaptive 
minimax optimal method since its algorithmic complexity is of about O (log2(N)) compared to O

(
log2(N)|i|

)
for the Bs

2,∞-minimax optimal method.
Let us consider the sets of all possible adaptive models FMA

N
based on ε−2 observations,

FMA
N

=
{
f̂mA = θ̂0

0,0φ0,0 +
∑
i�=0

∑
(j,k)∈mA

i

θ̂ij,kψ
i
j,k; m

A := {mA
i ∈ MA

N,i}
}
,

with MA
N,i :=

{
m′

i,J :=
{
(j, k) ∈ J

i ×Kj ; |j| ≤ J ; ju ≤ log2(N), ∀u
}
; J ≤ |i| log2(N)

}
.

The oracle approach leads to consider the estimator f̂mA
o

of FMA
N

such that E‖f̂mA
o
− f‖2

2 is minimal. This 
corresponds to find mA, denoted as mA

o , such that the following quantity is minimal:

−
∑

(i,j,k)∈mA

(
(θij,k)

2 − σ2

Nd

)
.
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The optimizer is found by solving the following problem for every i ∈ {0, 1}d\{0},

mA
i,o = arg min

mA
i ∈MA

N,i

⎧⎨
⎩−

∑
(j,k)∈mA

i

(
(θij,k)

2 − σ2

Nd

)⎫⎬
⎭ .

In practice, we plug in empirical quantities and adjust for the variability in the data proposing the following 
optimization, with λ̂ = σ̂

√
2dN−d logN the universal threshold,

m̂A
i,o = arg min

mA
i ∈MA

N,i

⎧⎨
⎩−

∑
(j,k)∈mA

i

(
(θ̂ij,k)

2 − λ̂2
)⎫⎬
⎭ . (12)

6.2. Empirical power functions

In this section we consider 3-dimensional functions f and we test for their atomic dimension H0 : δ (f) = 1
versus H1 : δ (f) > 1. Therefore we consider the hyperbolic Haar wavelet basis so that δBd

(f) = δ (f). For 
sake of simplicity, we generate them using the Sobol decomposition of a d-variate function f ∈ L2([0, 1)d)
into orthogonal summands of growing dimensions,

f(x1, . . . , xd) =
d∑

u=1

∑
i1<···<iu

fi1...iu(xi1 , . . . , xiu). (13)

The marginal functional components are chosen to be univariate functions that are frequently consid-
ered in the wavelet literature [2]. The interaction terms are obtained as weighted product of the marginal 
functions. In this experiment we choose the following test functions we describe below.

A: f1 (x1): ‘blip’, f2 (x2): ‘blip’, f3 (x3): ‘blip’,
B: f1 (x1): ‘blip’, f2 (x2): ‘wave’, f3 (x3): ‘bumps’.

We consider the null hypothesis with δ (f) = 1 and two functions in the alternative with atomic dimension 
δ (f) = 2 or δ (f) = 3.

• under H0 : δ (f) = 1, f (x1, x2, x3) = f1 (x1) + f2 (x2) + f3 (x3)
• under H1 : δ (f) = 2, f (x1, x2, x3) = f1 (x1) + f2 (x2) + f3 (x3) + Df1 (x1) f2 (x2)
• under H1 : δ (f) = 3, f (x1, x2, x3) = f1 (x1)+f2 (x2)+f3 (x3)+Df1 (x1) f2 (x2)+D′f1 (x1) f2 (x2) f3 (x3).

Here, Fig. 1 gives an illustration of some of these test functions.
The total energy of these functions f(x1, x2, x3) is normalized. Then the observed data are generated by 

adding Gaussian white noise to the test functions. The empirical power is computed as a function of the 
SNR as follows:

P (j) = 1
M

M∑
m=1

1{Λ(δ0)m,SNRj
=1
},

where the signal to noise ratio (SNR) is defined as the ratio of the standard deviation of the function 
values to the standard deviation of the noise. Λ (δ0)m,SNRj

is the result of the procedure ΛI(δ0),ε,α (with 
δ0 ∈ {1, 2, 3}) at the SNRj and m-th Monte Carlo iteration. We generate these data sets with sample sizes 
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Fig. 1. Three dimensional test functions that are used in the numerical experiments.

Fig. 2. Simulated rejection probabilities under H0 and H1 for both sets of test functions A and B, as a function of the signal to 
noise ratio.

N ∈ {32, 64}, 1 ≤ j ≤ 50 and with M = 100 Monte Carlo replications at every values of SNRj. The results 
are summarized in Fig. 2.

Fig. 2 shows that for both test functions, the nominal level of the test at α = 5% under the null 
hypothesis H0 is maintained over the different values of the SNR. Under the alternative, we observe firstly 
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that the detection appears at very low SNR values, secondly, an increase in the sample size improves the 
detection power of the method, and thirdly, under the two different alternatives, when the energy of the 
function is more spread over orientations (δ (f) = 3), the detection power decreases. These tests confirm 
the proper calibration of the data-driven adaptive method. We can now apply it to a more realistic data 
example.

6.3. Application in time series analysis

Neumann and von Sachs [28] consider testing the stationarity of a time series by studying the structure of 
its time-varying spectrum. They form local contrast test statistics in the time direction also based on hyper-
bolic wavelet coefficients of an estimator of the time-varying spectral density, namely the preperiodogram. 
A crucial problem for practical application of this method in testing stationarity is due to the inherent 
nature of the preperiodogram data which suffers from interferences, very low SNR and non Gaussian noise 
distribution. This may strongly affect the performances of the data-driven choice of the truncation scales. 
Adapting our testing methodology to this context is an interesting research problem in itself. In the sequel, 
we test the structure of the spatio-spectrum of spatio-temporal processes that are time stationary. A specific 
concern for this application is the high dimensional setting. We face the problem of having small p-values 
due to a large number of observations [23]. We illustrate how to properly use our results to assess the 
structure of such data. We first define a class of spatio-temporal processes, its spatio-spectrum, explain how 
to estimate this and finally we apply our data-driven method to simulated data.

6.3.1. Spatio-temporal model
Following Ombao et al. [29], we define the Cramér representation of a spatio-temporal process {Xt (u) ;

u = (u1, u2) ∈ [0, 1)2, t ∈ Z}, where u is the spatial index, as follows:

Xt (u) =
π∫

−π

A (u, ω) exp (iωt) dZ (ω) (14)

where Z (ω) is a complex-valued stochastic process with zero mean and orthogonal increments, which satisfies

E [dZ (ω)] = 0, Cov (dZ (ω1) , dZ (ω2)) = Dirac (ω1 − ω2) dω1

where Dirac(.) means the Dirac function at mass point 0 and A (u, λ) is the spatial complex-valued transfer 
function. It is Hermitian A (.,−ω) = A∗ (., ω), where A∗ is the adjoint operator. The location-dependent 
spectrum is given by

f (u, ω) := |A (u, ω)|2 .

6.3.2. Estimation
In a practical setting we observe the spatio-temporal process over a discrete grid of dimensions 

(N1 ×N2 × T ) ∈ N3. Since we assume it to be time stationary, we can compute the bias-corrected log-
periodogram at every spatial location

log

⎛
⎝ 1

2πT

∣∣∣∣∣
T∑

t=1
Xt (u) exp (iωt)

∣∣∣∣∣
2⎞⎠+ κ

where κ = 0.57721 is the Euler–Mascheroni constant, as in Wahba [37].
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Fig. 3. Spatial AR(1) parameter for the time series application. The value of the AR(1) parameter at each spatial location ranges 
from 0.2 (black) to 0.99 (white color).

From these spatial log-periodograms we test the structure of the spatio-spectrum f (u, ω). Hereafter we 
directly apply our methodology without adaptation for the non Gaussian nature of the log-periodogram 
ordinates. The central limit theorem in the coefficient domain permits to consider that the wavelet coeffi-
cients are approximately normally distributed up to comparatively fine scales. The actual procedure could 
be improved in that specific context, for example by adapting the methodology of Gao [9] in the penaliza-
tion of the data-driven selection of the truncation scales. Nevertheless, omitting this adaptation helps us to 
illustrate the practical application of our method considering a slightly suboptimal procedure.

In the previous section we checked that our method is well-calibrated. In this time series example, we are 
away from this idealistic framework. We are now dealing with periodogram data that are non Gaussian and 
the spatio-spectrum may have a complicated structure (in terms of energy along the different orientations). 
In this high-dimensional and more realistic context, the p-values have not longer any practical importance. 
For (very) large sample sizes, p-values are almost always extremely small, suggesting the rejection of the 
null hypothesis since, with real life data, the situation of total absence of information in some orientation is 
rarely exactly true. A solution in this context is to use our test statistic values to describe the proportions 
to the total energy of the function that are in the different orientations, similarly as in principal components 
analysis. This is the approach adopted hereafter for time series data examples.

6.3.3. Results
We generate the following time series models using a discretized version of their Cramér representation 

given by equation (14). We consider two spatial AR(1) processes, i.e., their spatio-spectrum is given by

f (u, ω) = σ2

2π

(
1 − 2φ (u) cosω + φ (u)2

)−1
.

Let ‘Model 1’ be a constant parameter over space, i.e., φ (u) = φ = 0.9, ∀u ∈ [0, 1]2, and ‘Model 2’ to have 
a complex spatial AR(1) structure over space as illustrated in Fig. 3.

Table 1 gives the result of the Monte Carlo experiments on generated time series data for N1 = N2 = 128
and T = 128. Looking at the energy repartition for the logarithm of the true spatio-spectrum under Model 
1, it is clear that all the information is just contained in the marginal function of frequency. Under the 
Model 2, one can realize that the difference in the energy in orientations involving the space variable is 
pretty low. For what concerns the repartition estimation in the different orientation, there is no problem for 
identifying the first leading orientation, nevertheless, under model 2, we do not get a clear message about 
the second dominant orientation.
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Table 1
True vs Estimated repartition of the total energy (in %).

orientation 
i

Model 1 Model 2
True repartition Estimated True repartition Estimated

(1, 0, 0) 0 0 (0.013) 0.1 0.1 (0.09)
(0, 1, 0) 0 0 (0.01) 0 0.1 (0.078)
(1, 1, 0) 0 0 (0.01) 0 0.1 (0.069)
(0, 0, 1) 100 99.9 (0.014) 91.8 90.5 (0.150)
(1, 0, 1) 0 0 (0.001) 4.9 3.3 (0.051)
(0, 1, 1) 0 0 (0.001) 3.1 5.9 (0.074)
(1, 1, 1) 0 0 (0.001) 0 0 (0.008)

7. Discussion

In this paper we describe how the Sobol decomposition in relation to the geometry of the multidimensional 
hyperbolic wavelet basis allows to build simple test statistics with impressive theoretical performance in 
the presence of anisotropic estimand. Appropriately combined, these test statistics allow to test for general 
structural properties such as the atomic dimension. We determine the minimax rates for separating the null 
and alternative hypothesis for detecting the Sobol functional component in cases of full or partial knowledge 
about the smoothness parameter. We propose two sequences of testing procedures that are based on different 
knowledges of the smoothness parameter (full or partially known) and we show that they are asymptotically 
optimal in the minimax sense. Interestingly we observe on the one hand that a loss of information about the 
smoothness parameter is accompanied with a deterioration of the minimax rate of separation; on the other 
hand the set of functions in the alternative hypothesis can be larger. Finally, we describe a methodology 
for a data driven version of the testing procedure and its application to time series data.

In the context of time series analysis, we consider extending our application example to deal with spatial 
and time non-stationary processes. We are therefore interested in spatial time-varying spectrum of these 
processes. We can compute at every spatial locations an estimator of the time-varying spectrum such as the 
preperiodogram (see Neumann and von Sachs [28]). Neumann and von Sachs [27] provide arguments about 
the asymptotic equivalence of the preperiodogram estimation problem, the Gaussian white noise model and 
the multidimensional nonparametric regression model so that our theory actually can easily be extended to 
this context. Nevertheless, in a practical setting, the nature of the preperiodogram data requires to develop 
an adapted methodology for choosing the truncation scales. In combination with the fully adaptive testing 
procedure, this method certainly encounters success for practical applications. Already in the context of 
estimation of the time-varying spectral density, the adaptive smoothing of the preperiodogram is still an 
actual research topic (see for instance van Delft and Eichler [36]).
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Appendix A

A.1. Proof of Theorem 4.1

The proof of Theorem 4.1 is a direct consequence of Propositions A.1 and A.2 that respectively deal with 
the upper bound and the lower bound of the minimax result.
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Proposition A.1. Under the same assumptions of Theorem 4.1 and for any C > Ci,α, the following inequal-
ities hold

sup
0<ε<εo

sup
f∈Ni(R)

Pf

(
Δi,j∗ (tε,i,α) = 1

)
= α

2 and sup
0<ε<εo

sup
f∈Ai(R,C,s,rε,i)

Pf

(
Δi,j∗ (tε,i,α) = 0

)
≤ α

2 .

Remark A.1. The constant Ci,α corresponds to the absolute positive constant Ci,α appearing in Definition 3.1
and will be given at the end of the proof below.

Proof. Consider ε ∈ (0, εo). Suppose that f ∈ Ni(R). Then ε−2Ti,j∗ has a Chi-Square distribution with 
2|j∗| degrees of freedom. Hence

Pf

(
Δi,j∗ (tε,i,α) = 1

)
= Pf

(
Ti,j∗ > tε,i,α

)
= Pf

(
ε−2Ti,j∗ > χ1−α

2

(
2|j

∗|
))

= α

2 .

Suppose now that f ∈ Ai(R, C, s, rε,i). Then ε−2Ti,j∗ is a noncentral Chi-Square distribution with 2|j∗|

degrees of freedom. Moreover, if V i
j∗ characterizes the following linear span of

{
ψi
j,k : j ∈ J

i : ju < max(j∗u, 1), ∀u and k ∈ Kj

}
,

then,

Ef (Ti,j∗) = ε22|j
∗| +

∑
j∈Ji: ju<max(j∗u,1),∀u

∑
k∈Kj

(
θij,k

)2
= ε22|j

∗| + ‖ProjV i
j∗

(fi)‖2
2,

Varf (Ti,j∗) = 2ε42|j
∗| + 4ε2

∑
j∈Ji: ju<max(j∗u,1),∀u

∑
k∈Kj

(
θij,k

)2
= 2ε42|j

∗| + 4ε2‖ProjV i
j∗

(fi)‖2
2.

By considering the Cramér–Chernoff method (see Chapter 2 of Massart [25]), we easily obtain the following 
concentration inequality for the noncentral Chi-Square distribution with 2|j∗| degrees of freedom,

Pf

(
Ef (Ti,j∗) − Ti,j∗ ≥ u

)
≤ exp

(
− u2

2Varf (Ti,j∗)

)
, ∀u > 0.

So,

Pf

(
Δi,j∗ (tε,i,α) = 0

)
= Pf

(
Ti,j∗ ≤ tε,i,α

)
= Pf

(
Ef (Ti,j∗) − Ti,j∗ ≥ Ef (Ti,j∗) − tε,i,α

)

≤ exp

⎛
⎜⎝−

(
Ef (Ti,j∗) − tε,i,α

)2

2Varf (Ti,j∗)

⎞
⎟⎠

= exp

⎛
⎜⎜⎜⎝−

(
ε22|j∗| + ‖ProjV i

j∗
(fi)‖2

2 − tε,i,α

)2

4ε42|j∗| + 8ε2‖ProjV i
j∗

(fi)‖2
2

⎞
⎟⎟⎟⎠

= exp

⎛
⎜⎜⎜⎝−

(
ε22|j∗| + ‖fi‖2

2 − ‖fi − ProjV i
j∗

(fi)‖2
2 − tε,i,α

)2

4ε42|j∗| + 8ε2‖fi‖2
2

⎞
⎟⎟⎟⎠ .
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Remark that fi belongs to Bs
2,∞(R) because f does.

Since ‖fi‖2
2 ≥ C2r2

ε,i and χ1−α
2

(
2|j∗|

)
≤ 2|j∗| + 2 

(
2|j∗| log(2α−1)

) 1
2 (see the exponential inequality for 

Chi-Square distribution given in Lemma 1 of Laurent and Massart [21]), one gets,

(
− log

(
Pf

(
Δi,j∗ (tε,i,α) = 0

)))−1

≤ 4ε42|j∗| + 8ε2‖fi‖2
2(

ε22|j∗| + ‖fi‖2
2 − ‖fi − ProjV i

j∗
(fi)‖2

2 − tε,i,α

)2

≤ 4ε42|j∗| + 8ε2‖fi‖2
2(

ε22|j∗| + ‖fi‖2
2 −R22−2|j∗|γi − tε,i,α

)2
≤ 4ε42|j∗|(

(C2 −R2)2−2|j∗|γi − 2ε2
(
2|j∗| log(2α−1)

) 1
2
)2 + 8ε2‖fi‖2

2(
‖fi‖2

2 −R22−2|j∗|γi − 2ε2
(
2|j∗| log(2α−1)

) 1
2
)2

= 4ε42(1+4γi)|j∗|(
C2 −R2 − 21+ |i|

2 (log(2α−1))
1
2
)2 + 8C4ε2‖fi‖−2

2(
C2 −R2 − 21+ |i|

2 (log(2α−1))
1
2
)2

≤ 22+(1+4γi)|i| + 8C2e
− 2e

1+4γi(
C2 −R2 − 21+ |i|

2 (log(2α−1))
1
2
)2 (15)

≤
(
log
(
2α−1))−1

provided that C ≥ Ci,α. The constant Ci,α is the largest value of C such that the last inequality can be 

replaced by an equality. That leads to Pf

(
Δi,j∗ (tε,i,α) = 0

)
≤ α

2 for any C large enough and uniformly 
in f .

Note that the smaller α the larger Ci,α. This remark is not a surprise obviously because when α is chosen 
to be small, the problem of detection becomes harder. Nevertheless the order of the minimax rate does not 
depend on α. We also note that (15) is obtained because we assumed that ε < e−e. �
Proposition A.2. Under the same assumptions of Theorem 4.1 and for any C < ci,α, the following inequality 
holds

inf
0<ε<εo

inf
Δ

(
sup

f∈Ni(R)
Pf (Δ = 1) + sup

f∈Ai(R,C,s,rε,i)
Pf (Δ = 0)

)
> α.

Remark A.2. The constant ci,α corresponds to the absolute positive constant ci,α appearing in Definition 3.1
and will be given at the end of the proof below.

Proof. For any ε ∈ (0, εo) let us consider

fζ =
∑

k∈Kj∗

θij∗,kψ
i
j∗,k =

∑
k∈Kj∗

(
L

d∏
u=1

2−j∗u(γi+ 1
2 )ζk

)
ψi
j∗,k

where L > 0 and ζk ∈ {−1, 1} for any k. The values j∗u are chosen as in the upper bound. We recall that

2−j∗u ≤ ε
4iuγi

(1+4γi)su < 21−j∗u , ∀ u = 1, . . . , d.
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First we check that fζ is in the alternative, that is to say it belongs to the Besov ball of radius R with 
the expected parameter of regularity and it is separated from 0 sufficiently. According to the definition of 
the Besov ball with radius R, we have to check that

max
1≤u≤d

{22j∗usu}
∑

k∈Kj∗

∣∣∣θij∗,k∣∣∣2 < R2.

Because of our choice of θij∗,k, we have

max
1≤u≤d

{22j∗usu}2
∑d

u=1 j∗uL2
d∏

u=1
2−2j∗u(γi+ 1

2 ) = L2 max
1≤u≤d

{22j∗usu}
d∏

u=1
2−2j∗uγi ≤ 2min1≤u≤d suL2.

A first condition on the constant L is that it has to be chosen smaller than R√
2minu su . It ensures that fζ

belongs to the Besov ball under consideration.
Next we compute the square of the L2-distance between fζ and 0. We have

∑
k∈Kj∗

(
θij∗,k

)2
= L2

d∏
u=1

2−2j∗uγi

≥ L22−2|i|γiε
8γi

4γi+1 .

Therefore L has to be larger than 2|i|γiC. This kind of choice guarantees that ‖fζ‖2 ≥ Crε,i.
Following Propositions 2.11 and 2.12 of Ingster and Suslina [17], we have that:

inf
Δ

(
sup

f∈Ni(R)
Pf (Δ = 1) + sup

f∈Ai(R,C,s,rε,i)
Pf (Δ = 0)

)
≥ 1 − 1

2

√
E

((
Eπ

(
Lfζ

))2)− 1 (16)

where π is any prior probability measure concentrated on the set of alternatives Ai (R,C, s, rε,i) and

Lfζ = exp
(
ε−2
∫

fζ(x) dY (x) − 1
2ε

−2
∫

fζ(x)2 dx

)
.

Therefore, according to (16), it suffices to prove that for judicious choices of π we can get

E

((
Eπ

(
Lfζ

))2)
< 4(1 − α)2 + 1. (17)

We consider now the probability measure π such that the ζk’s are independent Rademacher random variables 
with parameter 1

2 . Note that

Lfζ = exp
(
ε−2
∫

fζ(x) dY (x) − 1
2ε

−2
∫

fζ(x)2 dx

)

= exp
(
−1

2ε
−2L22|j

∗|
d∏

u=1
2−2j∗u(γi+ 1

2 )

) ∏
k∈Kj∗

exp
(
ε−1L ζk ξij∗,k

d∏
u=1

2−j∗u(γi+ 1
2 )

)
.

As a first step we take the expectation according to the prior probability measure π.
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Eπ

(
Lfζ

)
= exp

(
−1

2ε
−2L22|j

∗|
d∏

u=1
2−2j∗u(γi+ 1

2 )

)

×
∏

k∈Kj∗

1
2

[
exp
(
ε−1L ξij∗,k

d∏
u=1

2−j∗u(γi+ 1
2 )

)
+ exp

(
−ε−1L ξij∗,k

d∏
u=1

2−j∗u(γi+ 1
2 )

)]
.

As a second step we take the expectation according to the independent standard Gaussian random variables 
ξij∗,k:

E

((
Eπ

(
Lfζ

))2) =
∏

k∈Kj∗

cosh
(
ε−2L2

d∏
u=1

2−j∗u(2γi+1)

)
(18)

≤ exp
(

1
22|j

∗|ε−4L4
d∏

u=1
2−2j∗u(2γi+1)

)

≤ exp
(
L4

2

)

< 4(1 − α)2 + 1.

The last inequality is obtained by choosing L < min
((

2 log(1 + 4(1 − α)2)
) 1

4 , R√
2minusu

)
. So (17) is 

proved, when considering C small enough, that is C ≤ ci,α = 2−|i|γiL.

A.2. Proof of Theorem 4.2

The proof of Theorem 4.2 follows the same path as the proof of Theorem 4.1. It is a direct consequence 
of Proposition A.3 and Proposition A.4 that respectively deal with the upper bound and the lower bound 
of the minimax result.

Proposition A.3. Under the same assumptions of Theorem 4.2 and for any C > C ′
i,α, the following inequal-

ities hold

sup
0<ε<εo

sup
f∈Ni(R)

Pf

(
Δi,max

(
t′ε,i,γi,α

)
= 1
)
≤ α

2 and

sup
0<ε<εo

sup
s:
∑

u ius
−1
u =γ−1

i

sup
f∈Ai

(
R,C,s,r′ε,i

)Pf

(
Δi,max

(
t′ε,i,γi,α

)
= 0
)
≤ α

2 .

Remark A.3. The constant C ′
i,α corresponds to the absolute positive constant C ′

i,α appearing in Definition 3.2
and will be given at the end of the proof below.

Proof. Consider ε ∈ (0, εo). Suppose that f ∈ Ni(R). Then, for any j ∈ Ji, ε−2Ti,j has a Chi-Square 
distribution with 2|j| degrees of freedom. Hence

Pf

(
Δi,max

(
t′ε,i,γi,α

)
= 1
)

= Pf

(
max

j∈Ji:|j|=Ji

Δi,j

(
t′ε,i,γi,α

)
= 1
)

≤
∑

j∈Ji:|j|=Ji

Pf

(
Δi,j

(
t′ε,i,γi,α

)
= 1
)

=
∑

j∈Ji:|j|=J

Pf

(
Ti,j > t′ε,i,γi,α

)

i
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=
∑

j∈Ji:|j|=Ji

α

2Kγi

= α

2 .

Suppose now that f ∈ Ai(R, C, s, r′ε,i) where s :
∑

u ius
−1
u = γ−1

i . Then, for any fixed j′ ∈ Ji such 

that |j′| = Ji, ε−2Ti,j′ is a noncentral Chi-Square distribution with 2Ji degrees of freedom. Hence, if V i
j′

characterizes the following linear span of{
ψi
j,k : j ∈ J

i : ju < max(j′u, 1), ∀u and k ∈ Kj

}
,

then,

Pf

(
Δi,max

(
t′ε,i,γi,α

)
= 0
)
≤ Pf

(
Ti,j′ ≤ t′ε,i,γi,α

)
= Pf

(
Ef (Ti,j′) − Ti,j′ ≥ Ef (Ti,j′) − t′ε,i,γi,α

)

≤ exp

⎛
⎜⎝−

(
Ef (Ti,j′) − t′ε,i,γi,α

)2

2Varf (Ti,j′)

⎞
⎟⎠

= exp

⎛
⎜⎜⎜⎝−

(
ε22Ji + ‖ProjV i

j′
(fi)‖2

2 − t′ε,i,γi,α

)2

4ε42Ji + 8ε2‖ProjV i

j′
(fi)‖2

2

⎞
⎟⎟⎟⎠ .

Since ‖fi‖2
2 ≥ C2(r′ε,i)2 and χ1−α/2Kγ

(
2Ji
)
≤ 2Ji +2 

(
2Ji log(2α−1Kγi

)
) 1

2 (see [21]) with (K0 log ε−1)|i|−1 ≤
Kγi

≤ (K1 log ε−1)|i|−1 for some K0, K1 > 0, when computing similar calculus as in the non adaptive 
framework, we get
(
− log

(
Pf

(
Δi,max

(
t′ε,i,γi,α

)
= 0
)))−1

≤ 4ε42Ji + 8ε2‖fi‖2
2(

ε22Ji + ‖fi‖2
2 − ‖fi − ProjV i

j′
(fi)‖2

2 − t′ε,i,γi,α

)2

≤ 4ε42Ji + 8ε2‖fi‖2
2(

ε22Jγ + ‖fi‖2
2 −R22−2Jiγi − t′ε,i,γi,α

)2

≤ 4ε42Ji + 8ε2‖fi‖2
2(

‖fi‖2
2 −R22−2Jiγi − 2ε2

(
2Ji log(2α−1Kγi

) 1
2
)2

= 4ε42(1+4γi)Ji(
C2 −R2 − 2 3

2 (log(2α−1) + d(logK1 + 1))
1
2
)2 + 8C4ε2‖fi‖−2

2(
C2 −R2 − 2 3

2 (log(2α−1) + d(logK1 + 1))
1
2
)2

≤ 22+(1+4γi)(log log ε−1)−1(
C2 −R2 − 2 3

2 (log(2α−1) + d(logK1 + 1))
1
2
)2 + 8C4ε2‖fi‖−2

2(
C2 −R2 − 2 3

2 (log(2α−1) + d(logK1 + 1))
1
2
)2

≤ 22+(1+4γi) + 8C2e
− 2e

1+4γi(
C2 −R2 − 2 3

2 (log(2α−1) + d(logK1 + 1))
1
2
)2 (19)

≤
(
log
(
2α−1))−1
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provided that C ≥ C ′
i,α. The constant C ′

i,α is the value of C for which the last inequality can be replaced 

by an equality. That leads to Pf

(
Δi,max

(
t′ε,i,γi,α

)
= 0
)
≤ α

2 for any C large enough and uniformly in f . 
We also note that (19) is obtained because we assumed that ε < e−e.

Note, once again, that the smaller α the larger C ′
i,α.

Proposition A.4. Under the same assumptions of Theorem 4.2 and for any C < c′i,α, the following inequality 
holds

inf
0<ε<εo

inf
Δ

⎛
⎝ sup

f∈Ni(R)
Pf (Δ = 1) + sup

s:
∑

u ius
−1
u =γ−1

i

sup
f∈Ai

(
R,C,s,r′ε,i

)Pf (Δ = 0)

⎞
⎠ > α.

Remark A.4. The constant c′i,α corresponds to the absolute positive constant c′i,α appearing in Definition 3.2
and will be given at the end of the proof below.

Proof. For any ε ∈ (0, εo) let us consider the family of d-uple J =
{
j ∈ Ji : |j| = Ji

}
.

Remember that:

• Ji is such that 2−Ji ≤
(
ε4 log log ε−1) 1

1+4γi < 21−Ji ,
• #J = Kγi

≥ (K0 log ε−1)|i|−1 for some K0.

For j ∈ J , define

fζ,j =
∑
k∈Kj

θij,kψ
i
j,k =

∑
k∈Kj

(
L

d∏
u=1

2−ju(γi+ 1
2 )ζk

)
ψi
j,k

where L > 0 and ζk ∈ {−1, 1} for any k.
As in the proof of Proposition A.2, we can easily check that fζ,j is in the alternative, provided that 

2γC ≤ L ≤ R√
2γi

.
Since

inf
Δ

⎛
⎝ sup

f∈Ni(R)
Pf (Δ = 1) + sup

s:
∑

u ius
−1
u =γ−1

i

sup
f∈Ai

(
R,C,s,r′ε,i

)Pf (Δ = 0)

⎞
⎠

≥ 1 − 1
2

√√√√√√E

⎛
⎜⎝
⎛
⎝ 1
Kγ

∑
j∈J

Eπ′

(
Lfζ,j

)⎞⎠
2
⎞
⎟⎠− 1 (20)

where π′ is a prior probability measure concentrated on the set of alternatives Ai

(
R,C, s, r′ε,i

)
and

Lfζ,j = exp
(
ε−2
∫

fζ,j(x) dY (x) − 1
2ε

−2
∫

fζ,j(x)2 dx

)
.

Therefore, according to (20), it suffices to prove once again that for judicious choices of π′ we can get

E

⎛
⎜⎝
⎛
⎝ 1
Kγ

∑
j∈J

Eπ′

(
Lfζ,j

)⎞⎠
2
⎞
⎟⎠ = 1

K2
γ

E
∑
j∈J

(
Eπ′

(
Lfζ,j

)2
)

< 4(1 − α)2 + 1. (21)
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The left hand equality is due to the orthogonality of the hyperbolic wavelets.
We consider now the probability measure π′ such that the ζk’s are independent Rademacher random 

variables with parameter 1/2. Similarly to (18), we can easily get the following inequality

E

((
Eπ′

(
Lfζ,j

))2
)

=
∏
k∈Kj

cosh
(
ε−2L2

d∏
u=1

2−ju(2γi+1)

)

≤ exp
(

1
22Jiε−4L4

d∏
u=1

2−2ju(2γi+1)

)

≤ exp
(
L4

2 log log ε−1
)

≤
(
log ε−1)L4

2 .

Since Kγi
∼ (K log ε−1)|i|−1, we get the following inequalities:

1
K2

γi

E
∑
j∈J

(
Eπ′

(
Lfζ,j

)2
)

≤ 1
K2

γi

E
∑
j∈J

(
log ε−1)L4

2

= K−1
γi

(
log ε−1)L4

2

≤ K
1−|i|
0

(
log ε−1)1−|i|+L4

2

≤ K
1−|i|
0 e1−|i|+L4

2

< 4(1 − α)2 + 1.

The last two inequalities are obtained by choosing

L < min
((

2 log(K |i|−1
0 (1 + 4(1 − α)2)) + 2(|i| − 1)

) 1
4
,

R√
2γi

)

and by assuming that ε < e−e. So (21) is proved, when considering C small enough, that is C ≤ c′i,α = 2−γiL.
Following the proofs of Propositions A.1 to A.4, it clearly appears that there is a relationship between 

the constants Ci,α, ci,α, C ′
i,α, c

′
i,α, R and the level α. Moreover, as the threshold values tε,i,α and t′ε,i,γi,α

of our sequence of testing procedures depend on α, it also means that they are related to the constants C
and R. From a theoretical point of view, we decided to fix the constant R and the level α and we exhibit 
the constant C leading to the required level. Nevertheless, from a practical point of view, one can think of 
fixing two of these constants and get some information about the third one.
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