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Abstract

This paper is devoted to nonlinear propagation phenomena in general unbounded
domains of RN , for reaction-diffusion equations with Kolmogorov-Petrovsky-Piskunov
(KPP) type nonlinearities. This article is the second in a series of two and it is the
follow-up of the paper [8] which dealt which the case of periodic domains. This paper
is concerned with general domains and we give various definitions of the spreading
speeds at large times for solutions with compactly supported initial data. We study the
relationships between these new notions and analyze their dependency on the geometry
of the domain and on the initial condition. Some a priori bounds are proved for large
classes of domains. The case of exterior domains is also discussed in detail. Lastly,
some domains which are very thin at infinity and for which the spreading speeds are
infinite are exhibited ; the construction is based on some new heat kernel estimates in
such domains.
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1 Introduction and main results

1.1 Introduction

This paper is concerned with nonlinear spreading and propagation phenomena for reaction-
diffusion equations in general unbounded domains. We consider reaction terms of the Fisher
or KPP (for Kolmogorov, Petrovsky, Piskunov) type. Propagation phenomena in a homoge-
neous framework are well understood and we will recall below the main results. This article
is the second in a series of two and it is the follow-up of the article [8] (part I). Both pa-
pers deal with heterogeneous problems. Part I was concerned with equations with periodic
coefficients in domains having periodic structures. The present paper (part II) deals with
reaction-diffusion equations with constant coefficients, but in very general domains which
are not periodic. We define and analyze various notions of asymptotic spreading speeds for
solutions with compactly supported initial data. Before introducing the main notions and
stating the main results, let us recall some basic features of the homogeneous framework in
RN and let us shortly recall some of the results in the periodic framework.

Consider first the Fisher-KPP equation :

ut −∆u = f(u) in RN . (1.1)

It has been introduced in the celebrated papers of Fisher (1937, [18]) and KPP (1937, [32])
originally motivated by models in biology (u stands for the concentration of a species in such
models). The main assumption is that f is say a C1(R+) function satisfying{

f(0) = f(1) = 0, f ′(1) < 0, f ′(0) > 0, f > 0 in (0, 1), f < 0 in (1,+∞),
f(s) ≤ f ′(0)s for all s ∈ [0, 1].

(1.2)

Archetypes of such nonlinearities are f(s) = s(1− s) or f(s) = s(1− s2).
Two fundamental features of this equation account for its success in representing prop-

agation (or invasion) and spreading. First, this equation has a family of planar travelling
fronts. These are solutions of the form u(t, x) = U(x · e − ct) where e is a fixed vector of
unit norm which is the direction of propagation, and c > 0 is the speed of the front. Here
U : R 7→ R is given by

−U ′′ − cU ′ = f(U) in R, U(−∞) = 1, U(+∞) = 0.

In the original paper of Kolmogorov, Petrovsky and Piskunov, it was proved that, under the
above assumptions, there is a threshold value c∗ = 2

√
f ′(0) > 0 for the speed c. Namely, no
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fronts exist for c < c∗, and, for each c ≥ c∗, there is a unique front U of the previous type.
Uniqueness is up to shift in space or time variables.

Another fundamental property of this equation was established mathematically by Aron-
son and Weinberger (1978, [1]). It deals with the asymptotic speed of spreading. Namely, if
u0 is a nonnegative continuous function in RN with compact support and u0 6≡ 0, then the
solution u(t, x) of (1.1) with initial condition u0 at time t = 0 spreads with the speed c∗ in
all directions for large times : as t→ +∞,

max
|x|≤ct

|u(t, x)− 1| → 0 for each c ∈ [0, c∗), and max
|x|≥ct

u(t, x) → 0 for each c > c∗.

In Part I [8] and in an earlier paper [5], we introduced a general heterogeneous periodic
framework extending (1.1). The types of equations which were considered there were :

ut −∇ · (A(x)∇u) + q(x) · ∇u = f(x, u) in Ω, ν · A∇u = 0 on ∂Ω, (1.3)

where ν denotes the outward unit normal on ∂Ω. Both the coefficients of the equation,
namely the diffusion matrix A(x), the drift q(x) and the reaction term f(x, s), as well as the
geometry of the underlying domain Ω were assumed to be periodic. More precisely, there
are d ∈ {1, . . . , N} and d positive real numbers L1, . . . , Ld such that{

∀k ∈ L1Z× · · · × LdZ× {0}N−d, Ω + k = Ω
∃ C ≥ 0, ∀ x = (xi)1≤i≤N ∈ Ω, |xd+1|+ · · ·+ |xN | ≤ C,

(1.4)

and the functions A, q and f are periodic with periods L1, . . . , Ld in the variables x1, . . . , xd.
Given a unit direction e ∈ Rd × {0}N−d, a pulsating travelling front in the direction e is a
solution u(t, x) of the type u(t, x) = U(x · e − ct, x), where U = U(s, x) is periodic in the
variables x1, . . . , xd (wtih periods L1, . . . , Ld) and U(s, x) → 1 as s → −∞, U(s, x) → 0 as
s → +∞, uniformly with respect to x ∈ Ω (assuming that f(x, 0) = f(x, 1) = 0). Under
some natural assumptions on f (generalizing the hypothesis (1.2)) and on A and q, existence
of pulsating fronts for, and only for, speeds c ≥ c∗(e) was proved in [5] and [8]. A variational
formula for the minimal speed c∗(e), in terms of some periodic eigenvalue problems) was also
derived in [8]. These results extended some earlier results in dimension 1 (see e.g. [28, 42])
and in straight infinite cylinders with shear flows [13]. Let us mention here that other types
of nonlinearities (combustion type, bistable type, other nonlinearities arising in population
dynamics...) were also dealt with in the literature (see [3, 5, 9, 10, 12, 23, 24, 25, 27, 37,
39, 43, 44, 47] for some references on the existence of fronts in homogeneous or periodic
media and formulæ for the speeds of propagation). Many papers dealt with the stability of
travelling fronts in dimension 1, for equation (1.1) in RN , or in straight infinite cylinders
(see e.g. [1, 11, 14, 17, 30, 32, 33, 38, 36, 40, 41, 46]).

Furthermore, the same type of spreading properties holds in the periodic framework as in
the homogeneous one. Namely, for problem (1.3) under the assumption that 0 < f(x, s) ≤
f ′s(x, 0)s for all s ∈ (0, 1) and x ∈ Ω, Gärtner and Freidlin [21] and Freidlin [19] in the
case of RN , and then Weinberger [45] in the general periodic framework described above,
proved the existence of an asymptotic spreading speed (or ray speed) w∗(e) > 0 such that if
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u(t, x) solves (1.3) with a nonnegative, continuous and compactly supported initial condition
u0 6≡ 0, then,

max
x∈K, 0≤s≤ct, x+se ∈ Ω

|u(t, x+ se)− 1| → 0 if 0 ≤ c < w∗(e)

max
x∈K, s≥ct, x+se ∈ Ω

u(t, x+ ste) → 0 if c > w∗(e),
as t→ +∞, (1.5)

for any large enough compact set K so that the sets in which the maxima are taken are not
empty. Moreover, w∗(e) is given in terms of the minimal speeds of pulsating fronts by the
geometrical formula w∗(e) = minξ∈Rd×{0}N−d, ξ·e>0 c∗(ξ)/(e · ξ) ([45], see also [1, 17, 29, 30]
for other results with other types of nonlinearities in the homogeneous case, and [36, 41] for
equations with shear flows in straight infinite cylinders ; other results, including some with
more general time-space scalings, were also obtained in [35]). The dependency of c∗(e) and
w∗(e) on the coefficients of (1.3) (monotonicity, bounds, asymptotics) is analyzed in Part I
[8] (see also [2, 4, 7, 15, 26, 31]).

We also studied in [8] the influence of the geometry of the periodic domain Ω (under
assumption (1.4)) on the propagation speeds, for the equation

ut = ∆u+ f(u) in Ω, ν · ∇u = 0 on ∂Ω

under assumption (1.2) for f . More precisely, one of the results was that

w∗(e) ≤ c∗(e) ≤ 2
√
f ′(0)

and w∗(e) = 2
√
f ′(0) if and only if Ω is invariant in the direction e (straight cylinder in

the direction e, with bounded or unbounded section). Notice that this geometrical condi-
tion is also necessary for the equality c∗(e) = 2

√
f ′(0) to hold (see [8]). In other words,

the presence of holes or of an undulating boundary always hinder the progression or the
spreading. Moreover, we proved in [8] that the speeds c∗(e) are not in general monotone
with respect to the size of the perforations. The inequality w∗(e) ≤ c∗(e) always works. The
equality w∗(e) = c∗(e) (= 2

√
f ′(0)) holds in the homogeneous framework (1.1) in RN , but

the inequality w∗(e) ≤ c∗(e) may be strict in general (see Remark 1.12 in [8]).

1.2 Spreading speeds in general domains and main results

Let us now come back to the general non periodic case and deal with the Cauchy problem
for the Fisher-KPP equation

ut = ∆u+ f(u) in Ω, t > 0,
ν · ∇u = 0 on ∂Ω, t > 0,
u(0, x) = u0(x) in Ω,

(1.6)

where Ω is an open connected and locally C1 subset of RN , with outward unit normal ν. The
initial condition u0 is continuous, nonnegative, u0 6≡ 0 in Ω and u0 is compactly supported
in Ω. One calls E the set of such functions u0. The C1 function f : R+ → R is assumed
to satisfy (1.2). This assumption on f is made from now on throughout the paper. The
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function u(t, x) is defined as the nondecreasing limit, as n → +∞, of the functions un(t, x)
which solve the equation unt = ∆un + f(un) in Ω ∩ Bn for t > 0, with boundary condition
ν · ∇un = 0 on ∂Ω ∩ Bn, u

n = 0 on Ω ∩ ∂Bn and initial condition un(0, ·) = u0|Ω∩Bn
. Here,

Br denotes the open euclidean ball of RN with centre 0 and radius r > 0. Notice that, for
all t > 0 and x ∈ Ω, 0 < u(t, x) < max(maxΩ u0, 1) from the maximum principle.

Traveling or pulsating fronts do not exist anymore in this general non periodic framework,
even if the notion of fronts can be generalized in very general geometries (see [6]). But
the purpose of this paper is rather, first, to understand how we can extend the notions of
asymptotic spreading speeds for the solutions of the Cauchy problem (1.6) with a compactly
supported initial condition u0 ∈ E . Different definitions can be given, which are coherent with
the periodic case. We then analyze the relationships between these general new definitions.
Some other fundamental questions will then be asked : how do the spreading speeds depend
on the initial condition ?, can they be compared to the spreading speed 2

√
f ′(0) of the whole

space RN ? We will especially see that the answer to this last question is yes for a large
class of domains, but is no in some domains for which the spreading speed is infinite. We
also analyze in detail the case of exterior domains.

Let us now make more precise the definitions of spreading speeds in unbounded directions
of Ω. In all what follows, one calls B(z, r) the open euclidean ball of centre z and radius r
in RN . We also take the convention that, for a function v : E ⊂ RN → R, max∅ v = +∞.

Definition 1.1 We say that Ω is unbounded in a direction e ∈ SN−1 if there exist R0 ≥ 0
and s0 ∈ R such that B(se, R0) ∩ Ω 6= ∅ for all s ≥ s0. With a slight abuse of notation, we
set B(y, 0) = {0} for all y ∈ RN . We then define R(e) ≥ 0 as

R(e) = inf { R ≥ 0, ∃ s ∈ R, ∀ s′ ≥ s, B(s′e,R) ∩ Ω 6= ∅ }.

As an example, a periodic domain Ω, satisfying (1.4), is unbounded in any unit direction
e ∈ Rd × {0}N−d.

Since problem (1.6) is well-understood when N = 1 (in which case unboundedness in the
direction ±1 means that Ω ⊃ ±[a,+∞) for some a ∈ R), one can assume that N ≥ 2 in the
sequel.

Definition 1.2 Let e be a direction in which Ω is unbounded and let R(e) ≥ 0 be as in
Definition 1.1. Let u be the solution of (1.6) with initial condition u0 ∈ E.

We define the spreading speed of u in the direction e as

w∗(e, u0) = inf

{
c > 0, ∀ A > R(e), lim sup

t→+∞, s≥ct,
max

x∈B(se,A)∩Ω
u(t, x) = 0

}
.

We set w∗(e, u0) = +∞ if there is no c > 0 such that sups≥ct maxx∈B(se,A)∩Ω u(t, x) → 0 as

t→ +∞ for all A > R(e).

The nonnegative real number w∗(e, u0), if finite, can be viewed as the asymptotic speed of
the leading edge of the solution u uniformly with respect to all cylinders along the direction
e.

Another related notion, which is more precise in some sense, is that of spreading speed
along a half-line.
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Definition 1.3 Under the same assumptions as in Definition 1.2, we define the spreading
speed of u along the half-line z + R+e, for z ∈ RN , as

w∗(e, z, u0) = inf

{
c > 0, ∃ A > 0, lim sup

t→+∞, s≥ct
max

x∈B(z+se,A)∩Ω
u(t, x) = 0

}
.

We set w∗(e, z, u0) = +∞ if for all c > 0 and A > 0, sups≥ct maxx∈B(z+se,A)∩Ω u(t, x) 6→ 0
as t→ +∞.

The nonnegative real number w∗(e, z, u0), if finite, is the asymptotic spreading speed of
u locally along the line z + R+e (notice that w∗(e, z, u0) = w∗(e, z + se, u0) for all s ∈ R).
We would like to thank S. Luckhaus for pointing us out this other notion of spreading speed.

Remark 1.4 Under the above notations, call

R(e, z) = inf { R ≥ 0, ∃ s ∈ R, ∀ s′ ≥ s, B(z + s′e, R) ∩ Ω 6= ∅ }.

Notice that R(e, 0) = R(e) and that R(e)− |z − (z · e)e| ≤ R(e, z) ≤ R(e) + |z − (z · e)e| for
all z ∈ RN . If R(e, z) > 0 and if there exists s ∈ R such that B(z + s′e,R(e, z)) ∩ Ω 6= ∅ for
all s′ ≥ s,1 then the definition of w∗(e, z, u0) is equivalent to the following one :

w∗(e, z, u0) = inf

{
c > 0, lim sup

t→+∞, s≥ct
max

x∈B(z+se,R(e,z))∩Ω
u(t, x) = 0

}
.

In the case where R(e, z) = 0 or if there is no s ∈ R such that B(z + s′e, R(e, z)) ∩ Ω 6= ∅
for all s′ ≥ s, then the definition of w∗(e, z, u0) is equivalent to the following one :

w∗(e, z, u0) = inf

{
c > 0, ∃ A > R(e, z), lim sup

t→+∞, s≥ct
max

x∈B(z+se,A)∩Ω
u(t, x) = 0

}
.

Furthermore, it immediately follows from the above definitions that

∀ γ > w∗(e, u0), ∀ A > R(e), max
x∈B(γte,A)∩Ω

u(t, x) → 0 as t→ +∞

and that

∀ γ > w∗(e, z, u0), ∃ A > 0, max
x∈B(z+γte,A)∩Ω

u(t, x) → 0 as t→ +∞.

1Notice that the existence of such a real number s is not guaranteed in general, as the following example
shows : in R2, call xk = (k2, 0) for k ∈ N and set Ω = R2 \

⋃
k∈N

B(xk, 1 + 1/k). For e = (1, 0) and z = (0, 0),

one has R(e) = R(e, z) = 1 but there is no s ∈ R such that B(z + s′e, 1) ∩ Ω 6= ∅ for all s′ ≥ s.

6



If Ω is a periodic domain satisfying (1.4), then these new notions of asymptotic spreading
speeds are coherent with the previous one w∗(e) characterized by (1.5), namely

w∗(e, z, u0) = w∗(e, u0) = w∗(e)

for all u0 ∈ E , for all z ∈ RN and for all unit direction e ∈ Rd × {0}N−d.
In general non periodic domains, it is clear that the inequality

w∗(e, z, u0) ≤ w∗(e, u0)

holds for all z ∈ RN . However, the inequality may be strict, as the following theorem shows.
We can furthermore make more precise the relationship between w∗(e, u0) and the w∗(e, z, u0)
when z varies.

Before stating these results, let us introduce the following notation :

Definition 1.5 Let Ω be unbounded in a direction e ∈ SN−1. For any y and z in RN , we
say that Ω satisfies Hypothesis Hy,z if there exist s0 ∈ R and a bounded open set ω ⊂ RN

such that 1) B(y,R(e, y))∪B(z, R(e, z)) ⊂ ω and 2) ω+ se ∩ Ω is connected for all s ≥ s0

and ∂(ω + se ∩ Ω) ∩ Ω is of class C2,α uniformly with respect to s ≥ s0, for some α > 0.

Theorem 1.6 (Dependency on z) Let N ≥ 2 and e ∈ SN−1 be given.
a) For each domain Ω which is unbounded in the direction e and for each initial condition

u0 ∈ E, one has
sup
z∈RN

w∗(e, z, u0) = w∗(e, u0). (1.7)

b) Assume that Ω is unbounded in the direction e and that it satisfies Hypothesis Hy,z for
some y and z in RN . Then

∀ u0 ∈ E , w∗(e, y, u0) = w∗(e, z, u0).

As a consequence, if Ω satisfies Hypothesis Hy,z for all points y and z in RN , then
w∗(e, z, u0) = w∗(e, u0) for all z ∈ RN and u0 ∈ E.

c) Given z ∈ RN , there are some domains Ω which are unbounded in the direction e and
such that w∗(e, z, u0) < w∗(e, u0) for all u0 ∈ E.

Part b) gives a sufficient condition for the spreading speed w∗(e, z, u0) not to depend
on z. This condition is a type of relative connectedness and smoothness assumption in the
direction e. It is especially satisfied if Ω is a smooth periodic domain of the type (1.4).

The proof of part c) relies of some precise heat kernel estimates as well as on some lower
bounds of w∗(e, u0) for some domains containing half-spaces (see Remark 1.11 below). We
actually prove more than what is stated in part c) : namely, up to translation and rotation,
we exhibit some domains Ω for which w∗(e, u0) = 2

√
f ′(0) for all u0 ∈ E and w∗(e, z, u0) = 0

for all u0 ∈ E and for all z ∈ RN such that z · e′ > h (here, e′ ∈ SN−1 is any given direction
which is orthogonal to e, and h is any given real number).

Some other fundamental questions concern the possible a priori dependency of w∗(e, u0)
or w∗(e, z, u0) on the initial condition u0 ∈ E , as well as some bounds for the spreading
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speeds. For periodic domains satisfying (1.4), one recalls that the spreading speeds do not
depend on u0 (or on z) and are bounded from above by 2

√
f ′(0). We will see that the

same properties hold for a general class of domains. This class of domain is defined now :
quoting Davies [16], an open subset Ω of RN is said to have the extension property if, for all
1 ≤ p ≤ +∞, there exists a bounded linear map E from W 1,p(Ω) into W 1,p(RN) such that
Ef is an extension of f from Ω to RN for all f ∈ W 1,p(Ω). This property is equivalent to
the existence of ε > 0, k ∈ N, M > 0 and of a countable sequence of open sets (Un)n∈N such
that :

(i) if x ∈ ∂Ω, then the ball with centre x and radius ε is contained in Un for some n,
(ii) no point in RN is contained in more than k distinct sets Un,
(iii) for each n, there exists an isometry Tn : RN → RN and a Lipschitz-continuous

function φn : RN−1 → R whose Lipschitz norm is bounded by M . Moreover, Un ∩ Ω =
Un ∩ TnΩn, where

Ωn = {(z1, · · · , zN) ∈ RN , φn(z1, · · · , zN−1) < zN}.

Any smooth bounded or exterior domain satisfies the extension property. So does any
smooth periodic domain.

The following theorem provides a general sufficient condition for the spreading speeds
w∗(e, u0) and w∗(e, z, u0) not to depend on u0.

Theorem 1.7 (Dependency on u0) Let Ω be a connected open subset of RN satisfying the
extension property, and assume that ∂Ω is globally of class C2,α for some α > 0. Let µzr
denote the Lebesgue-measure of Ω ∩ B(z, r). Assume that there exists R0 such that µzr > 0
for all z ∈ RN and r ≥ R0, and that µzr+1/µ

z
r → 1 as r → +∞, uniformly in z ∈ RN . Let u

be the solution of (1.6) with a given initial condition u0 ∈ E.
Then u(t, x) → 1 locally in x ∈ Ω as t → +∞. Furthermore, Ω is unbounded in any

direction e ∈ SN−1 and w∗(e, u0) and w∗(e, z, u0) do not depend on the initial condition u0,
provided that u0 < 1.

As far as bounds for the spreading speeds are concerned, the speed 2
√
f ′(0), which is

the spreading speed if Ω = RN , bounds from above the spreading speed if Ω is a periodic
domain satisfying (1.4). Furthermore, the same property turns out to be true for the large
class of domains satisfying the extension property :

Theorem 1.8 (General upper bound) Let Ω be a locally C1 connected open subset of RN

satisfying the extension property. Assume that Ω is unbounded in a direction e. Let u be the
solution of (1.6) with a given initial condition u0 ∈ E. Then

w∗(e, u0) ≤ 2
√
f ′(0) (1.8)

and
∀ c > 2

√
f ′(0), max

|x|≥ct, x∈Ω
u(t, x) → 0 as t→ +∞. (1.9)
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Under the assumptions of Theorem 1.8, inequality (1.8) especially yields

w∗(e, z, u0) ≤ 2
√
f ′(0)

for all z ∈ RN . Notice that property (1.9) is actually stronger than (1.8). Theorem 1.8 means
that, for the large class of domains satisfying the extension property, the minimal speed of
planar fronts, 2

√
f ′(0), turns out to be an upper bound for the asymptotic spreading speeds

in any direction e in which Ω is unbounded, as for periodic domains.
Furthermore, as already underlined, for a periodic domain Ω satisfying (1.4), for any unit

vector e ∈ Rd × {0}N−d and for any u0 ∈ E , inequality (1.8) is an equality if and only if Ω
is a cylinder in direction e. However, this property is far from true for general domains, as
shows the following theorem for exterior domains :2

Theorem 1.9 (Exterior domain) Let Ω be a connected exterior domain of class C1. Then,

∀e ∈ SN−1, ∀z ∈ RN , ∀u0 ∈ E , w∗(e, z, u0) = w∗(e, u0) = 2
√
f ′(0).

Furthermore, if u solves (1.6) with u0 ∈ E, one has
∀ 0 ≤ c < 2

√
f ′(0), max

|x|≤ct, x∈Ω
|u(t, x)− 1| → 0

∀ c > 2
√
f ′(0), max

|x|≥ct, x∈Ω
u(t, x) → 0

as t→ +∞. (1.10)

Remark 1.10 The second property is clearly stronger than the first one. Theorem 1.9
actually extends the classical result of Aronson and Weinberger [1] mentionned above which
was concerned with the case of the whole space RN .

Remark 1.11 (Lower bounds for the spreading speeds for domains containing semi-infinite
cylinders) The arguments used in the proof of Theorem 1.9 imply that if Ω contains a semi-
infinite cylinder in the direction e with large enough section, then w∗(e, u0) is bounded from
below by a constant close to 2

√
f ′(0). More precisely, given ε > 0, there exists R0 = R0(ε) >

0 such that if

Ω ⊃ Ce,A,x0,R := {x ∈ RN , x · e > A, |(x− x0)− ((x− x0) · e)e| < R} (1.11)

for some A ∈ R, x0 ∈ RN and R > R0, then

w∗(e, u0) ≥ 2
√
f ′(0)− ε and w∗(e, z, u0) ≥ 2

√
f ′(0)− ε (1.12)

for all u0 ∈ E and z ∈ RN such that |z − x0 − ((z − x0) · e)e| < R. We refer to the end of
Section 3 for the proof.

As a consequence, if Ω contains a sequence of semi-infinite cylinders of the type
(Ce,An,x0,n,Rn)n∈N with An ∈ R, x0,n ∈ RN and Rn → +∞ as n → +∞, then w∗(e, u0) ≥
2
√
f ′(0) for all u0 ∈ E . Of course, if Ω satisfies the extension property as well, then

w∗(e, u0) = 2
√
f(0) in this case. Lastly, notice that the property of containing a sequence of

2A domain Ω ⊂ RN is called exterior if RN\Ω is compact.
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such semi-infinite cylinders holds especially if Ω contains a “semi-infinite half-space” in the
direction e, namely if

Ω ⊃ {x ∈ RN , x · e > A, ±(x · e′ −B) > 0}

for some (A,B) ∈ R2 and e′ ∈ SN−1 with e′ · e = 0. In this last case, one actually has that
w∗(e, z, u0) ≥ 2

√
f ′(0) for all u0 ∈ E and z such that ±(z · e′ − B) > 0 (see Remark 3.3

below).

As already underlined, any periodic domain Ω satisfying (1.4) is such that 0 < w∗(e, u0) ≤
2
√
f ′(0) for all unit vector e ∈ Rd × {0}N−d and for all u0 ∈ E . Furthermore, the upper

bound holds for a large class of domains (see Theorem 1.8). However, the following theorem
asserts that the spreading speeds w∗(e, u0) and w∗(e, z, u0) may be zero or infinite for some
domains.

Theorem 1.12 (Domains with zero or infinite spreading speeds) a) There are some domains
of R2 which satisfy the extension property and are unbounded in every direction e ∈ S1, and
such that w∗(e, z, u0) = w∗(e, u0) = 0 for all e ∈ S1, z ∈ R2 and u0 ∈ E.

b) For every N ≥ 2 and e ∈ SN−1, there are some domains of RN , which do not satisfy
the extension property, and such that w∗(e, z, u0) = w∗(e, u0) = +∞ for all z ∈ RN and
u0 ∈ E.

Therefore, even in the class of domains satisfying the extension property, there are do-
mains for which the asymptotic speeds w∗(e, z, u0) and w∗(e, u0) are zero in any direction
e (such a phenomenon does not happen under the periodicity condition (1.4). We actually
exhibit in the proof of Theorem 1.12 some domains which have the shape of a spiral and for
which the asymptotic spreading speeds are zero in all directions.

Furthermore, there is no universal upper bound without the extension property. Some
domains with an infinite cusp have infinite spreading speeds (see the proof of Theorem 1.12,
part b). For such domains, we prove some new specific lower bounds for the heat kernel (see
Lemma 4.2 in Section 4.3 below).

1.3 Other related notions

Here, we would like to mention some other notions of spreading speeds. We compare them
to the notions introduced in Definitions 1.2 and 1.3 and state their main properties.

First, given a connected C1 open subset Ω of RN , given e ∈ SN−1 and u0 ∈ E , we can
define the asymptotic spreading speed of the leading edge of the solution u of (1.6) in the
direction e, uniformly with respect to the directions which are orthogonal to e, as

w∗∗(e, u0) = inf

{
c > 0, lim

t→+∞
sup

x·e≥ct, x∈Ω

u(t, x) = 0

}
,

provided that Ω satisfies

∃ s ∈ R, ∀ s′ ≥ s, {x ∈ RN , x · e ≥ s′} ∩ Ω 6= ∅. (1.13)
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Notice that if Ω is unbounded in the direction e in the sense of Definition 1.1, then assump-
tion (1.13) is immediately satisfied. This notion of asymptotic spreading speed w∗∗(e, u0)
is rougher than the previous ones w∗(e, u0) or w∗(e, z, u0), and it does not give a precise
description of where or in which precise direction the leading edge of the solution u moves.
However, we can compare it to the previous notions w∗(e, u0) and w∗(e, z, u0) and we can
derive some properties of w∗∗(e, u0) from the above results.

It is immediate to check that if Ω satisfies (1.13) and if it is unbounded in a direction
e′ ∈ SN−1 such that e′ · e > 0, then

∀ u0 ∈ E , ∀ z ∈ RN , w∗∗(e, u0) ≥ w∗(e′, u0)× (e′ · e) ( ≥ w∗(e′, z, u0)× (e′ · e) ).

It may then happen that w∗∗(e, u0) > w∗(e, u0) for all u0 ∈ E . For instance, in R2, call
H = {x ∈ R2, x2 − x1 > 0}, let (an)n∈N∗ be a sequence of negative numbers such that
an/n→ −∞ as n→ +∞, let

Γ =
⋃
n∈N

( [2n, 2n+ 1]× {0} ∪ [2n+ 1, 2n+ 2]× {an+1} ∪ {2n+ 1, 2n+ 2} × [an+1, 0] )

and let Ω be a smooth open connected domain satisfying the extension property and such
that

H ∪ Γ ⊂ Ω ⊂ {x ∈ R2, d(x,H ∪ Γ) < 1/3},

where d(x,E) denotes the euclidean distance of a point x to a set E. With e = (1, 0) and e′ =
(1/

√
2, 1/

√
2), one can check that w∗(e, u0) = 0 for all u0 ∈ E (by using the same arguments

as in the proofs of Theorem 1.8 or Theorem 1.12, part a)), while w∗(e′, u0) = 2
√
f ′(0) for

all u0 ∈ E (because of Theorem 1.8 and Remark 1.11). Thus,

∀ u0 ∈ E , w∗∗(e, u0) ≥
√

2
√
f ′(0) > 0 = w∗(e, u0).

Furthermore, with the same arguments as in the proofs of Theorems 1.7, 1.8, 1.9 and
1.12, the following properties hold :

1) if Ω satisfies the general assumptions of Theorem 1.7, then assumption (1.13) is satisfied
for all e ∈ SN−1 and w∗∗(e, u0) does not depend on u0 ∈ E , provided that u0 < 1 ;

2) if Ω satisfies the assumptions of Theorem 1.8 (extension property), then –because of
(1.9)– w∗∗(e, u0) ≤ 2

√
f ′(0) for all u0 ∈ E and for any direction e ∈ SN−1 such that (1.13)

holds ;
3) if Ω is an exterior domain, then –because of (1.10)– w∗∗(e, u0) = 2

√
f ′(0) for all

e ∈ SN−1 and for all u0 ∈ E ;
4) with the same examples as in Theorem 1.12, there are some domains of R2 satisfying

(1.13) for all e ∈ S1 and such that w∗∗(e, u0) = 0 for all e ∈ S1 and for all u0 ∈ E ;
5) given e ∈ SN−1, there are some domains of RN satisfying (1.13) and such that

w∗∗(e, u0) = +∞ for all u0 ∈ E .

Other notions are these of asymptotic spreading speeds, locally uniformly in the direction
e or locally along a line z + R+e, of the expanding region where u converges to 1. Namely,
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if Ω is unbounded in a direction e ∈ SN−1 and if u solves (1.6) with a given initial condition
u0 ∈ E , we can define, under the same notations as above,

w∗(e, u0) = sup {c > 0, u(t, x) → 1 as t→ +∞ locally uniformly in x ∈ Ω and

∀ A > R(e), lim
τ→+∞

lim sup
t→+∞, τ≤s≤ct

max
x∈B(se,A)∩Ω

|u(t, x)− 1| = 0

}

and, for z ∈ RN ,

w∗(e, z, u0) = sup {c > 0, u(t, x) → 1 as t→ +∞ locally uniformly in x ∈ Ω and

∃ A > 0, lim
τ→+∞

lim sup
t→+∞, τ≤s≤ct

max
x∈B(z+se,A)∩Ω

|u(t, x)− 1| = 0

}
.

By convention, we set w∗(e, u0) = 0 if u(t, x) → 1 as t→ +∞ locally uniformly in x ∈ Ω but if
there is no c > 0 such that, for allA > R(e), lim supt→+∞, τ≤s≤ct maxx∈B(se,A)∩Ω |u(t, x)− 1| →
0 as τ → +∞. We set w∗(e, z, u0) = 0 if u(t, x) → 1 as t→ +∞ locally uniformly in x ∈ Ω
but if lim supt→+∞, τ≤s≤ct maxx∈B(z+se,A)∩Ω |u(t, x)−1| 6→ 0 as τ → +∞, for any c > 0 and

A > 0. Lastly, we set w∗(e, u0) = w∗(e, z, u0) = −∞ if u(t, x) does not converge to 1 locally
uniformly in x ∈ Ω as t→ +∞.

It follows immediately from the above definitions that

w∗(e, u0) ≤ w∗(e, z, u0) ≤ w∗(e, z, u0) ≤ w∗(e, u0)

for all z ∈ RN and u0 ∈ E . if Ω is a periodic domain satisfying (1.4), then, because of (1.5),
the equality holds for all e ∈ Rd × {0}N−d, z ∈ RN and u0 ∈ E . It is an interesting open
question to ask if the equality w∗(e, z, u0) = w∗(e, z, u0) always hold, or if there are some
domains for which the inequality w∗(e, z, u0) < w∗(e, z, u0) may be strict.

Furthermore, with the same arguments as the ones used in the next sections, one can
prove the following properties :

1) if Ω is unbounded in a direction e ∈ SN−1, then

∀ u0 ∈ E , w∗(e, u0) = inf
z∈RN

w∗(e, z, u0) ;

2) if Ω is unbounded in a direction e ∈ SN−1 and satisfies hypothesis Hy,z for some points
y and z in RN , and if u0 ∈ E is less than 1, then w∗(e, y, u0) = w∗(e, z, u0) ;

3) if Ω satisfies the general assumptions of Theorem 1.7, then w∗(e, u0) and w∗(e, z, u0)
are nonnegative and do not depend on u0 ∈ E , provided that u0 < 1 ;

4) if Ω satisfies the assumptions of Theorem 1.8 (extension property), then –because of
(1.9)– w∗(e, u0) ≤ w∗(e, z, u0) ≤ 2

√
f ′(0) for all u0 ∈ E , z ∈ RN and for any direction

e ∈ SN−1 in which Ω is unbounded ;
5) if Ω is an exterior domain, then –because of (1.10)– w∗(e, u0) = w∗(e, z, u0) = 2

√
f ′(0)

for all e ∈ SN−1, for all z ∈ RN and for all u0 ∈ E ;
6) there are some domains of R2 which are unbounded in all directions e ∈ S1 and such

that w∗(e, u0) = w∗(e, z, u0) = 0 for all e ∈ S1, for all z ∈ R2 and for all u0 ∈ E (notice
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that such domains are constructed in Section 4.2 so that the assumptions of Theorem 1.7 are
satisfied, thus u converges to 1 locally in Ω as t→ +∞ and 0 ≤ w∗(e, u0) ≤ w∗(e, z, u0)) ;

7) given e ∈ SN−1, there are some domains of RN which are unbounded in the direction
e and such that w∗(e, u0) = w∗(e, z, u0) = +∞ for all u0 ∈ E and z ∈ RN .

Outline of the paper. The paper is organized as follows : Section 2 is devoted to
the proof of the general properties (Theorems 1.6 (parts a) and b)), 1.7, 1.8), Section 3 is
concerned with exterior domains (Theorem 1.9) and Section 4 deals with the construction
of some domains for which the spreading speeds w∗(e, z, u0) really depend on z (Theorem
1.6, part c)). We also exhibit in Section 4 some domains with zero or infinite speeds of
propagation (Theorem 1.12).

2 General properties

This section is devoted to the proofs of Theorems 1.6 (parts a) and b)), 1.7, 1.8. More
precisely, we prove in Section 2.1 the relationship between the spreading speeds w∗(e, u0)
and w∗(e, z, u0). In Section 2.2, we study the dependency on u0. Lastly, in Section 2.3,
we prove the general upper bound for the spreading speeds in the large class of domains
satisfying the extension property.

2.1 Relationship between w∗(e, z, u0) and w∗(e, u0)

This section is devoted to the proof of parts a) and b) of Theorem 1.6. The proof of part c)
is given in Section 4. Let us begin with the
Proof of formula (1.7) in Theorem 1.6. Let Ω ⊂ RN be unbounded in a given direction
e ∈ SN−1 and let u0 ∈ E be given. Call R = R(e) the real number defined in Definition 1.1.

As already emphasized, the inequality

0 ≤ w∗(e, z, u0) ≤ w∗(e, u0)

follows from Definitions 1.2 and 1.3, for all z ∈ RN . Notice also that formula (1.7) is
immediate in the case where w∗(e, u0) = 0. One can then assume here that w∗(e, u0) > 0.
Fix any ε ∈ (0, w∗(e, u0)) and set

γ = w∗(e, u0)− ε.

There exists A > R such that

sup
s≥γt

max
x∈B(se,A)∩Ω

u(t, x) 6→ 0 as t→ +∞.

Therefore, there exist some sequences (tn)n∈N → +∞, (sn)n∈N such that sn ≥ γtn, and some
points (xn)n∈N in BA such that xn + sne ∈ Ω and

lim inf
n→+∞

u(tn, xn + sne) > 0. (2.1)
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Up to extraction of some subsequence, one can assume that xn → z ∈ BA.
We now claim that

w∗(e, z, u0) ≥ γ.

Assume not. Then, owing to Definition 1.3, there is A′ > 0 such that

sup
s≥γt

max
x∈BA′ , x+z+se ∈ Ω

u(t, x+ z + se) → 0 as t→ +∞.

For n large enough, xn − z ∈ BA′ . On the other hand, sn ≥ γtn and (xn − z) + z + sne =
xn + sne ∈ Ω. Thus, u(tn, xn + sne) → 0 as n→ +∞. This contradicts (2.1).

Therefore, the claim w∗(e, z, u0) ≥ γ is proved. Hence,

w∗(e, z, u0) ≥ w∗(e, u0)− ε

for all ε > 0 and formula (1.7) follows.

Proof of part b) of Theorem 1.6. Assume that Ω satisfies Hypothesis Hy,z for some
points y and z in RN . Let the real number s0 and the open set ω be as in Hypothesis 1.5.

From the definition of R(e, y) and R(e, z), and from the smoothness assumption in Hy-
pothesis 1.5, there exist β > 0, γ > 0, s1 ≥ s0 and a map s 7→ ws ∈ RN defined in [s1,+∞)
such that

∀ δ ∈ [0, β], B(y + δe, R(e, y) + β) ∪ B(z + δe, R(e, z) + β) ⊂ ω,

∀ s ≥ s1, B(y + se, R(e, y) + β) ∩ Ω 6= ∅, B(z + se, R(e, z) + β) ∩ Ω 6= ∅,
∀ s ≥ s1, B(ws, γ) ⊂ ω + se ∩ Ω.

Fix any u0 in E and let u solve (1.6). If both spreading speeds w∗(e, y, u0) and w∗(e, z, u0)
are infinite, then the desired conclusion w∗(e, y, u0) = w∗(e, z, u0) follows. Assume now that
at least one of the spreading speeds, say w∗(e, z, u0), is finite. Fix any c > w∗(e, z, u0). From
the connectedness and smoothness assumptions in Hypothesis 1.5, Harnack inequality yields
the existence of η > 0 such that

∀ t ≥ 1, ∀ s ≥ s1, max
x∈B(y+se,R(e,y)+β)∩Ω

u(t, x) ≤ η min
x∈B(z+se+βe,R(e,z)+β)∩Ω

u(t+β/c, x). (2.2)

From Definition 1.3, there exists A > 0 such that

sup
s≥ct

max
x∈B(z+se,A)∩Ω

u(t, x) → 0 as t→ +∞.

As already underlined in Remark 1.4, one can assume, even if it means decreasing A, that
A ≤ R(e, z) + β.

Let ε be any positive real number. There exists then t0 ≥ max(1, s1/c) such that

∀ t ≥ t0, ∀ s ≥ ct, max
x∈B(z+se,A)∩Ω

u(t, x) ≤ ε.

Choose any t ≥ t0 and s ≥ ct. Observe that t+ β/c ≥ t0 and s+ β ≥ c(t+ β/c), whence

max
x∈B(z+se+βe,A)∩Ω

u(t+ β/c, x) ≤ ε. (2.3)
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Since t ≥ t0 ≥ 1 and s ≥ ct ≥ ct0 ≥ s1, and since A ≤ R(e, z) + β, it follows from (2.2) and
(2.3) that

max
x∈B(y+se,R(e,y)+β)∩Ω

u(t, x) ≤ η min
x∈B(z+se+βe,A)∩Ω

u(t+ β/c, x) ≤ η ε.

Since this is true for all t ≥ t0 and s ≥ ct and since η is independent of ε, one gets that

sup
s≥ct

max
x∈B(y+se,R(e,y)+β)∩Ω

u(t, x) → 0 as t→ +∞.

Therefore, w∗(e, y, u0) ≤ c. Since this inequality holds for all c > w∗(e, z, u0), one concludes
that w∗(e, y, u0) is finite and satisfies w∗(e, y, u0) ≤ w∗(e, z, u0).

By changing the role of y and z, one then concludes that w∗(e, y, u0) = w∗(e, z, u0) and
the proof of part b) of Theorem 1.6 is complete.

2.2 Independence of w∗(e, u0) and w∗(e, z, u0) from u0

The proof of Theorem 1.7 is based on some auxiliary results. Let us first introduce a few
notations. If D is an open subset of RN such that Ω ∩D 6= ∅, we call

λD = inf
ψ∈C1

c (Ω∩D), ψ 6≡0

∫
Ω∩D

|∇ψ|2∫
Ω∩D

ψ2

,

where C1
c (Ω ∩ D) denotes the set of functions which are of class C1 in Ω ∩ D and have a

support which is compactly included in Ω ∩D. Under the assumptions of Theorem 1.7, for
all r ≥ R0 and z ∈ RN , we denote

λzr = λB(z,r),

where we recall that B(z, r) denotes the open euclidean ball of radius r and centre z.

Lemma 2.1 Under the assumptions of Theorem 1.7,

λzr → 0 as r → +∞ uniformly in z ∈ RN .

Proof. Fix a family (ζr)r≥R0 of C∞(RN) functions such that, for each r ≥ R0, the support
of ζr is included in B(0, r+1) and ζr = 1 in B(0, r). One can choose the functions ζr so that
‖ζr‖C1(B(0,r+1)) ≤ C, for some constant C independent from r ≥ R0.

Let r ≥ R0 and z be any point in RN . Call ζzr the function defined by ζzr (x) = ζr(x− z)
for all x ∈ RN . One has

0 ≤ λzr+1 ≤

∫
Ω∩B(z,r+1)

|∇ζzr |2∫
Ω∩B(z,r+1)

(ζzr )
2

≤ C2 |Ω ∩ (B(z, r + 1)\B(z, r))|
|Ω ∩B(z, r)|

≤ C2µ
z
r+1 − µzr
µzr

,
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where |E| denotes the Lebesgue-measure of a measurable set E ⊂ RN . Since µzr+1/µ
z
r → 1

uniformly in z ∈ RN as r → +∞, the conclusion of Lemma 2.1 follows.

It is immediate by definition that D 7→ λD is nonincreasing with the respect to the
inclusion (in the class of open sets D such that Ω ∩ D 6= ∅), and it is known that if Ω
and D are smooth, with outward unit normals ν and νD such that ν(x) · νD(x) = 0 for all
x ∈ ∂Ω∩∂D, then there is an eigenfunction function ψD ∈ C2(Ω∩D)∩C1(Ω∩D) such that

−∆ψD = λDψD in Ω ∩D
ψD ≥ 0 in Ω ∩D
ψD = 0 on Ω ∩ ∂D

∂νψD = 0 on ∂Ω ∩D
‖ψD‖L∞(Ω∩D) = 1.

(2.4)

Furthermore, if Ω ∩D is connected, then ψD > 0 in Ω ∩D.

Proposition 2.2 Let Ω be a domain satisfying the assumptions of Theorem 1.7. Let g :
[0,+∞) → R be a C1 function such that g(0) = g(1) = 0, g′(0) > 0, g > 0 in (0, 1) and
g < 0 in (1,+∞). Let u be a classical bounded solution of

∆u+ g(u) = 0 in Ω
u ≥ 0 in Ω

∂νu = 0 on ∂Ω.
(2.5)

Then u ≡ 0 or u ≡ 1.

If compared to Proposition 1.14 in Part I ([8]), the proof of this Proposition 1.14 strongly
used the periodicity of the domain but could deal with equations involving gradient terms.
Proposition 2.2 is restricted to the case of equation (2.5) without gradient terms but it deals
with the case of domains Ω which may or may not be periodic.

Proof of Proposition 2.2. Without loss of generality, one can assume that u 6≡ 0, whence
u > 0 in Ω from the strong maximum principle and Hopf lemma.

First, from of Lemma 2.1, there exists R > R0 such that

0 ≤ λzR <
g′(0)

2
for all z ∈ RN .

Assume now infΩ u = 0. There exists then a sequence (zn)n∈N in Ω such that

u(zn) → 0 as n→ +∞.

From Harnack inequality, it follows that

max
z∈Ω∩B(zn,R+1)

u(z) → 0 as n→ +∞.
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Therefore, there exists N ∈ N such that

0 = ∆u+ g(u) > ∆u+
g′(0)

2
u in Ω ∩B(zN , R + 1) (2.6)

because u > 0 in Ω and g′(0) > 0. Let now D be a smooth open subset of RN such that
B(zN , R) ⊂ D ⊂ B(zN , R + 1) and ν(x) · νD(x) = 0 for all x ∈ ∂Ω ∩ ∂D, and let ψD solve
(2.4). Since u is continuous and positive in Ω, there exists ε0 > 0 such that

εψD ≤ u in Ω ∩D

for all ε ∈ [0, ε0]. Let
ε∗ = sup {ε > 0, εψD ≤ u in Ω ∩D}.

0ne has 0 < ε0 ≤ ε∗ < +∞, and ε∗ψD ≤ u in Ω ∩ D. Furthermore, there is a point
x ∈ Ω ∩ D such that ε∗ψD(x) = u(x). Since u > 0 is Ω, it follows that x ∈ Ω ∩ D. But
λD ≤ λB(zN ,R) = λzN

R ≤ g′(0)/2, whence ε∗ψD satisfies

−∆(ε∗ψD) ≤ g′(0)

2
ε∗ψD in Ω ∩D.

If x ∈ Ω∩D, it follows from the strong maximum principle that ε∗ψD ≡ u in the connected
component of Ω∩D containing x. This is impossible because of the strict inequality in (2.6)
and the positivity of u and g′(0).

As a consequence, ε∗ψD < u in Ω ∩ D and x ∈ ∂Ω ∩ D. But Hopf lemma then yields
∂ν(ε

∗ψD)(x) > ∂νu(x), which is again impossible because both quantities are zero.
One has then reached a contradiction. Therefore,

m := inf
Ω

u > 0.

Choose now ξ0 such that
0 < ξ0 < min(m, 1),

and let ξ(t) be the solution of ξ̇(t) = g(ξ(t)) with ξ(0) = ξ0. Since g > 0 on (0, 1) and
g(1) = 0, one gets that ξ′(t) > 0 for all t ≥ 0 and ξ(+∞) = 1. On the other hand, since
u solves (2.5), the parabolic maximum principle implies that u(z) ≥ ξ(t) for all z ∈ Ω and
t ≥ 0. Thus, m ≥ 1.

Similarly, using the fact that g < 0 in (1,+∞), one gets that M := supΩ u ≤ 1. As a
conclusion, u ≡ 1, and the proof of Proposition 2.2 is complete.

Let us now turn to the
Proof of Theorem 1.7. Under the notations of Theorem 1.7, it follows from the strong
parabolic maximum principle that u(t, x) > 0 for all t > 0 and x ∈ Ω. From Lemma 2.1,
there exists R > R0 such that λ0

R ≤ f ′(0)/2. Let D be a smooth open subset of RN such
that B(0, R) ⊂ D ⊂ B(0, R+ 1) and ν(x) · νD(x) = 0 for all x ∈ ∂Ω ∩ ∂D, and let ψD solve
(2.4). By continuity, one has

u(1, ·) ≥ εψD in Ω ∩D
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for some ε > 0 small enough. Since λD ≤ λ0
R ≤ f ′(0)/2, one can choose ε > 0 small enough

so that ε ≤ 1 and

∆(εψD) + f(εψD) = −λDεψD + f(εψD) ≥ 0 in Ω ∩D.

Therefore,
∀t ≥ 1, ∀x ∈ Ω, u(t+ 1, x) ≥ v(t, x), (2.7)

where v solves (1.6) with initial condition

v(0, x) =

{
εψD(x) if x ∈ Ω ∩D
0 if x ∈ Ω\D.

From the choice of ε, v(0, ·) is a subsolution of the corresponding elliptic equation, whence
v(t, x) is nondecreasing in t for each x ∈ Ω. Since 0 ≤ εψD ≤ ε ≤ 1 and f(1) = 0, one also
has v(t, x) ≤ 1 for all t ≥ 0 and x ∈ Ω. From standard parabolic estimates, v(t, x) converges
locally uniformly in Ω to a classical solution w = w(x) of

∆w + f(w) = 0 in Ω
∂νw = 0 on ∂Ω

0 ≤ w ≤ 1 in Ω.

Furthermore, w ≥ v(0, ·), whence w 6≡ 0. It follows from Proposition 2.2 that w ≡ 1.
Inequality (2.7) then yields

lim inf
t→+∞

min
x∈K

u(t, x) ≥ 1

for all compact K ⊂ Ω.
On the other hand, u0 is bounded, whence u0 ≤M for some M > 0. Thus, u(t, x) ≤ ξ(t)

for all t ≥ 0 and x ∈ Ω, where ξ = ξ(t) solves ξ̇ = f(ξ) with ξ(0) = M . From the choice of
f (f is positive in (0, 1) and negative in (1,+∞)), one concludes that ξ(t) → 1 as t→ +∞.
Hence,

lim sup
t→+∞

max
x∈K

u(t, x) ≤ 1

for all compact K ⊂ Ω.
One concludes that u(t, x) → 1 as t→ +∞ locally uniformly in x ∈ Ω.
Let now u0 and v0 be two continuous, nonnegative and nonzero functions which are

compactly supported in Ω. Assume that u0 and v0 are less than 1. Let e be a unit vector in
RN . Notice that the assumptions in Theorem 1.7 immediately imply that Ω is unbounded
in the direction e.

Since maxΩ v0 < 1 and v0 is compactly supported, it follows from the first part of the
proof of Theorem 1.7 that u(t0, x) ≥ v0(x) for all x ∈ Ω, for some t0 ≥ 0. Therefore,
u(t+ t0, x) ≥ v(t, x) for all t ≥ 0 and x ∈ Ω, whence w∗(e, u0) ≥ w∗(e, v0).

Changing the roles of u and v leads to the inequality w∗(e, v0) ≥ w∗(e, u0). Therefore,
w∗(e, u0) = w∗(e, v0).

The same arguments also imply that

w∗(e, z, u0) = w∗(e, z, v0)

for all e ∈ SN−1, z ∈ RN and (u0, v0) ∈ E2 with u0, v0 < 1 in Ω. That completes the proof of
Theorem 1.7.
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2.3 Upper bound for domains with the extension property

This section is devoted to the
Proof of Theorem 1.8. As already underlined, it is sufficient to prove property (1.9). Fix
a speed c > 2

√
f ′(0) and u0 ∈ E . Let then R0 > 0 be such that BR0 contains the support of

u0 and let C0 > 4, ε > 0 and t0 > 0 be such that

∀ t ≥ t0, ∀ z ∈ BR0 , ∀ |x| ≥ ct,
|z − x|2

C0t
≥ (f ′(0) + ε)t. (2.8)

Call v(t, x) the solution of {
vt = ∆v

∂νv = 0 on ∂Ω

with initial condition u0. Since f(s) ≤ f ′(0)s for all s ≥ 0, the maximum principle yields

0 ≤ u(t, x) ≤ ef
′(0)tv(t, x)

for all t ≥ 0 and x ∈ Ω.
The function v can be written as

v(t, x) =

∫
Ω

p(t, z, x)u0(z)dz,

where p is the heat kernel in Ω with Neumann boundary conditions on ∂Ω. Since Ω satisfies
the extension property, it follows from Theorem 2.4.4 by Davies [16] that there exists C1 > 0
such that 0 ≤ p(t, z, x) ≤ C1t

−N/2 in Ω × Ω and for all 0 < t < 1. Since p(t, x, x) is
nonincreasing with respect to t for each x, one gets that

∀ x ∈ Ω, ∀ t > 0, p(t, x, x) ≤ 1

g(t)
,

where, say, g(t) = (C1t
−N/2 + C1)

−1.
Since the function g is “regular” in the sense of [22] and since C0 > 4, it follows from the

Gaussian upper bounds by Grigor’yan [22] that there exist two positive constants δ and C2,
which only depends on C0 and g, such that

∀ (z, x) ∈ Ω× Ω, ∀ t > 0, p(t, z, x) ≤ C2

g(δt)
e
− r2

C0t ,

where r = r(z, x) denotes the geodesic distance between z and x in Ω.
Since the geodesic distance in Ω is bounded from below by the euclidean distance, it

follows from all above estimates that

0 ≤ u(t, x) ≤ ef
′(0)t‖u0‖∞

∫
BR0

C2

g(δt)
e
− |z−x|2

C0t dz.

One concludes from (2.8) that

0 ≤ u(t, x) ≤ ‖u0‖∞
C2

g(δt)
|BR0|e−εt
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for all t ≥ t0 and |x| ≥ ct, x ∈ Ω. The estimate (1.9) follows and

w∗(e, z, u0) ≤ w∗(e, u0) ≤ 2
√
f ′(0)

for all z ∈ RN and u0 ∈ E .

3 The case of exterior domains

This section is devoted to the proof of Theorem 1.9. Throughout this section, we say that
Ω is an exterior domain if Ω is a connected open subset of RN such that RN\Ω is compact
and ∂Ω is of class C1.

Lemma 3.1 Let Ω be an exterior domain of RN , let u0 6≡ 0 be nonnegative, continuous,
bounded in Ω and let u(t, x) be the solution of (1.6) with initial condition u0. Assume that
f : R+ → R is C1, and such that f(0) = f(1) = 0, f ′(0) > 0, f > 0 on (0, 1) and f < 0 on
(1,+∞). Then u(t, x) → 1 locally uniformly in x ∈ Ω as t→ +∞.

If Ω were smoother (of class C2,α), then Lemma 3.1 would follow from Theorem 1.7. The
proof of Lemma 3.1 will actually be similar but simpler than that of the first part of Theorem
1.7. It is sketched here for the sake of completeness.

Proof of Lemma 3.1. First of all, as in the proof of Theorem 1.7, it follows from the
boundedness of u0 and from the profile of f that lim supt→+∞ supx∈Ω u(t, x) ≤ 1.

Choose R > 0 large enough so that λR < f ′(0), where (λR, ψR) is the pair of first
eigenvalue and first eigenfunction of problem

−∆ψR = λRψR in BR

ψR > 0 in BR

ψR = 0 on ∂BR

‖ψR‖L∞(BR) = 1.

(3.1)

This is indeed possible since λR → 0 as R→ +∞.
Then fix R0 > 0 such that RN\Ω ⊂ BR0 . From the strong parabolic maximum principle,

one has u(t, x) > 0 for all t > 0 and x ∈ Ω. Therefore, by continuity, there exists ε > 0 small
enough so that

u(1, x) ≥ εψR(x− x0) for all x ∈ B(x0, R)

and for all x0 ∈ RN with |x0| = R0 +R.
As a consequence, u(1 + t, x) ≥ v(t, x) for all t ≥ 0 and for all x ∈ Ω, where v is the

solution of (1.6) with initial condition

v0(x) =

{
0 if x ∈ Ω and (|x| ≤ R0 or |x| ≥ R0 + 2R)

max
|x0|=R0+R, x∈B(x0,R)

εψR(x− x0) if R0 < |x| < R0 + 2R.

Even if it means decreasing ε > 0, one can assume from the choice of R that

∆(εψR) + f(εψR) = −ελRψR + f(εψR) ≥ 0 in BR
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and that ε ≤ 1 (whence εψR ≤ 1 and v0 ≤ 1 in Ω). Therefore, v0 is a subsolution for
the associated elliptic equation and v(t, x) is nondecreasing with respect to t. Moreover,
v(t, x) ≤ 1 for all t ≥ 0 and x ∈ Ω. Hence, standard parabolic estimates imply that v(t, x)
converges locally uniformly in x ∈ Ω as t→ +∞ to a classical solution v∞ of{

∆v∞ + f(v∞) = 0 in Ω
∂νv∞ = 0 on ∂Ω.

Furthermore, 0 ≤, 6≡ v0 ≤ 1, whence 0 ≤ v0 ≤ v∞ ≤ 1. From the strong elliptic maximum
principle, one gets that v∞ > 0 in Ω.

Using the same arguments as in the proof of Proposition 2.2, one easily gets that

v∞(x) ≥ εψR(x− te) in B(te, R)

for all e ∈ SN−1 and for all t ≥ R + R0. Indeed, ε′ψR(· − te) vanishes on ∂B(te, R) and is a
subsolution of ∆φ+ f(φ) ≥ 0 in B(te, R), for each ε′ ∈ [0, ε].

Thus, v∞(x) ≥ εψR(0) as soon as |x| ≥ R0 +R, whence

inf
RN\BR0+R

v∞ > 0.

Since v∞ is continuous and positive in Ω, it follows that m = infΩ v∞ > 0.
If m is reached at some point x ∈ Ω, the strong elliptic maximum principle and Hopf

lemma yield m ≥ 1, since f > 0 in (0, 1). Then v∞ ≡ 1 (remember that v∞ ≤ 1 in Ω). If
m is not attained, there exists a sequence of points (xn)n∈N in Ω such that |xn| → +∞ and
v∞(xn) → m as n→ +∞. The functions wn(x) = v∞(x+xn) then converge locally uniformly
in RN , up to extraction of some subsequence, to a classical solution w∞ of ∆w∞+f(w∞) = 0
in RN with m = w∞(0) ≤ w∞ ≤ 1 in RN . One concludes as above that m = 1.

Therefore, v∞ ≡ 1 in Ω. Since u(1+ t, x) ≥ v(t, x) for all t ≥ 1 and x ∈ Ω, it follows that

lim inf
t→+∞

min
x∈K

u(t, x) ≥ 1,

for all compact subset K ⊂ Ω. Together with lim supt→+∞ supx∈Ω u(t, x) ≤ 1, that com-
pletes the proof of Lemma 3.1.

Lemma 3.2 Let u(t, x) be a solution of (1.6) with Ω = RN and with an initial condition
u0 6≡ 0 which is nonnegative, continuous and bounded. Let g : R+ → R be of class C1, and
such that g(0) = g(1) = 0, g′(0) > 0, g > 0 on (0, 1) and g < 0 on (1,+∞). Then, for all
0 ≤ c < 2

√
g′(0) and for all e ∈ RN with |e| = 1,

u(t, x+ ct e) → 1

locally uniformly in x ∈ RN as t→ +∞.

This lemma could actually follow from a result by Aronson and Weinberger [1], which was
based on the construction of subsolutions involving planar travelling fronts, for the parabolic
problem. We present a simpler proof here, which is mainly based on elliptic arguments.
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Notice also that the case c = 0 is included in Lemma 3.1.

Proof of Lemma 3.2. As in Lemma 3.1, one has that lim supt→+∞ supx∈RN u(t, x) ≤ 1.

Let e ∈ RN be fixed such that |e| = 1 and let 0 ≤ c < 2
√
g′(0). Let R > 0 be large

enough so that λR + c2/4 < g′(0), where (λR, ψR) is the pair of first eigenvalue and first
eigenfunction of problem (3.1) in the ball BR. Since u is continuous and u(t, x) > 0 for all
t > 0 and x ∈ RN , one can choose ε > 0 small enough so that

∀ x ∈ BR, u(1, x+ ce) ≥ εe−ce·x/2ψR(x) =: w0(x).

Even if it means decreasing ε > 0, one can assume that w0 ≤ 1 in BR and

∆w0 + ce · ∇w0 + g(w0) = −
(
λR +

c2

4

)
w0 + g(w0) ≥ 0 in BR.

Since the function (t, x) 7→ v(t, x) := u(t, x+ ct e) satisfies the equation

∂tv = ∆v + ce · ∇v + g(v),

it follows then that v(1+ t, x) ≥ w(t, x) for all t ≥ 0 and x ∈ RN , where w satisfies the same
equation as v with initial condition w(0, x) = w0(x) if x ∈ BR and w(0, x) = 0 if |x| ≥ R.

Furthermore, from the choice of ε, w(t, x) is nondecreasing in t for all x ∈ RN and
converges as t→ +∞ locally uniformly in x ∈ RN to a classical solution w∞ of

∆w∞ + ce · ∇w∞ + g(w∞) = 0 in RN

such that 0 ≤ w∞ ≤ 1 in RN and w∞ ≥ w0 in BR. It follows from Proposition 1.14 in [8]
that w∞ ≡ 1.

Therefore, lim inft→+∞ minx∈K u(t, x + ct e) ≥ 1 for all compact subset K ⊂ RN . That
completes the proof of Lemma 3.2.

Let us now turn to the
Proof of Theorem 1.9. As already underlined, one only has to prove formula (1.10). Let
u solve (1.6) with an initial condition u0 ∈ E . Under the assumptions of Theorem 1.9, the
exterior domain Ω satisfies the extension property, whence

max
|x|≥ct, x∈Ω

u(t, x) → 0 as t→ +∞,

as soon as c > 2
√
f ′(0).

On the other hand, one easily gets as usual that

lim sup
t→+∞

sup
x∈Ω

u(t, x) ≤ 1.

Therefore, one only has to prove that lim inft→+∞ min|x|≤ct, x∈Ω u(t, x) ≥ 1 if 0 ≤ c <

2
√
f ′(0).
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Let c be fixed such that 0 ≤ c < 2
√
f ′(0) and let ε ∈ (0, 1) be fixed. It follows from

Lemma 3.1 that there exists t0 > 0 such that

∀ t ≥ t0, ∀ x ∈ ∂Ω, u(t, x) ≥ 1− ε.

Let now g be a C1 function such that g ≤ f in [0,+∞), g(0) = g(1 − ε) = 0, g > 0 in
(0, 1 − ε), g < 0 in (1 − ε,+∞) and g′(0) = f ′(0). Let v0 be a continuous and compactly
supported function defined in RN , such that 0 ≤ v0 ≤ 1−ε and v0 6≡ 0. Assume furthermore
that v0 is radially symmetric, nonincreasing with respect to r = |x| and that u(t0, x) ≥ v0(x)
for all x ∈ Ω. Lastly, let v(t, x) be the solution of (1.6) in RN , with nonlinearity g instead of
f , and initial condition v0.

It follows by construction of g that v(t, x) ≤ 1− ε for all t ≥ 0 and x ∈ RN . Therefore,
u(t + t0, x) ≥ 1− ε ≥ v(t, x) for all t ≥ 0 and x ∈ ∂Ω. The above assumptions on g and v0

then yield that
∀ t ≥ 0, ∀ x ∈ Ω, u(t+ t0, x) ≥ v(t, x).

Thus,

lim inf
t→+∞

min
|x|≤ct, x∈Ω

u(t, x) ≥ lim inf
t→+∞

min
|x|≤ct+ct0, x∈Ω

v(t, x) ≥ lim inf
t→+∞

min
|x|≤ct+ct0, x∈RN

v(t, x).

On the other hand, v stays radially symmetric in RN and nonincreasing with respect to
r = |x| for all time t ≥ 0. Therefore,

lim inf
t→+∞

min
|x|≤ct, x∈Ω

u(t, x) ≥ lim inf
t→+∞

v(t, c(t+ t0)e)

for any given direction e ∈ SN−1. But,

lim inf
t→+∞

v(t, c(t+ t0)e) = 1− ε,

by applying the conclusion of Lemma 3.2 to the function g (remember that 0 ≤ c <
2
√
f ′(0) = 2

√
g′(0) from the choice of g).

Since ε ∈ (0, 1) was arbitrary, one concludes that

lim inf
t→+∞

min
|x|≤ct, x∈Ω

u(t, x) ≥ 1.

Eventually,
lim
t→+∞

max
|x|≤ct, x∈Ω

|u(t, x)− 1| = 0

for all c ∈ [0, 2
√
f ′(0)) and the proof of Theorem 1.9 is complete.

The same type of arguments as above give a lower bound for the spreading speeds
w∗(e, u0) and w∗(e, z, u0) in a domain Ω containing a semi-infinite cylinder in the direc-
tion e, with large enough section :
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Proof of formula (1.12) in domains Ω satisfying (1.11). Fix ε ∈ (0, 2
√
f ′(0)] and

R0 > 0 large enough so that

∀ R ≥ R0, λR +
(2

√
f ′(0)− ε)2

4
< f ′(0),

where (λR, ψR) is the pair of first eigenvalue and first eigenfunction of problem (3.1) in the
ball BR. Let Ω satisfy (1.11) for some A ∈ R, x0 ∈ RN and R > R0. Fix any R′ such that
R0 ≤ R′ < R and set

z0 = x0 − (x0 · e)e+ (A+ 1 +R′)e.

The assumption (1.11) implies that

∀ s ≥ 0, Ω ⊃ B(z0 + se, R′).

As in the proof of Lemma 3.2, there exists η > 0 small enough so that

∀ x ∈ BR′ , u(1, x+ z0) ≥ ηe−(2
√
f ′(0)−ε)e·x/2ψR′(x) =: w0(x)

and w0 ≤ 1 in BR′ . From the choice of R0, the function w0 is a subsolution of

∆w0 + (2
√
f ′(0)− ε)e · ∇w0 + f(w0) ≥ 0 in BR′ .

The function v(t, x) = u
(
t+ 1, x+ z0 + (2

√
f ′(0)− ε)te

)
satisfies

∂tv = ∆v + (2
√
f ′(0)− ε)e · ∇v + f(v),

especially for all t ≥ 0 and x ∈ BR′ . Furthermore, v(t, x) ≥ 0 for all x ∈ ∂BR′ . It follows
from the maximum principle that

v(t, x) ≥ w(t, x) for all t ≥ 0 and for all x ∈ BR′ ,

where w solves the same equation as v in BR′ , with initial condition w(0, x) = w0(x) in BR′

and boundary condition w(t, x) = 0 for all t ≥ 0 and x ∈ ∂BR′ . Furthermore, 0 ≤ w(t, x) ≤ 1
for all t ≥ 0 and x ∈ BR′ , and w is nondecreasing in t for all x ∈ BR′ . Standard parabolic
estimates imply that w(t, x) → w∞(x) as x → +∞, where w∞ satisfies the corresponding
elliptic equation and w∞(x) ≥ w0(x) for all x ∈ BR′ .

As a consequence,

∀ x ∈ BR′ , lim inf
t→+∞

u
(
t+ 1, x+ z0 + (2

√
f ′(0)− ε)te

)
≥ w0(x) > 0.

Thus, w∗(e, z, u0) ≥ 2
√
f ′(0)−ε for all u0 ∈ E and z ∈ RN such that |z−z0−((z−z0) ·e)e| <

R′. Since this is true for all R′ ∈ [R0, R), one concludes that

w∗(e, z, u0) ≥ 2
√
f ′(0)− ε

for all u0 ∈ E and z ∈ RN such that |z − z0 − ((z − z0) · e)e| < R.
Together with Theorem 1.6, that completes the proof of (1.12).
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Remark 3.3 The above arguments imply that if

Ω ⊃ {x ∈ RN , x · e > A, ±(x · e′ −B) > 0}

for some (A,B) ∈ R2 and e′ ∈ SN−1 with e′ · e = 0, then, for all ε > 0, there exists R0 > 0
such that w∗(e, z, u0) ≥ 2

√
f ′(0)− ε for all u0 ∈ E and

z ∈
⋃

R≥R0, z0∈RN , ±(z0·e′−B)>R

B(z0, R).

Therefore, w∗(e, z, u0) ≥ 2
√
f ′(0) for all u0 ∈ E and z such that ±(z · e′ −B) > 0.

4 Domains with zero or infinite spreading speeds, or

spreading speeds depending on z

This section is devoted to the construction of some particular domains for which the sprea-
ding speeds may be zero, infinite, or may depend on the position z.

4.1 Domains for which w∗(e, z, u0) depends on z

This subsection is devoted to the
Proof of Theorem 1.6, part c). Up to translation and rotation, one can assume, say,
that e = (1, 0, . . . , 0) and z = (0, 2, 0, . . . , 0).

Let (an)n∈N be a sequence of positive real numbers such that

an
n
→ +∞ as n→ +∞.

Let Γ be the subset of R2 defined by

Γ = {(x1, 0), x1 ≥ 0} ∪
⋃
n∈N∗

{n} × [0, an].

Let Ω̃ be any open subset of R2 such that

Γ ⊂ Ω̃ ⊂
{
x ∈ R2, d(x,Γ) <

1

3

}
and such that Ω2 := R2\Ω̃ is connected and satisfies the extension property defined in Section
1. Here, d(y, E) denotes the euclidean distance of a point y ∈ Rm to a subset E ⊂ Rm.

We then set Ω = Ω2 is N = 2 and Ω = Ω2 × RN−2 if N ≥ 3. The open set Ω is clearly
unbounded in the direction e. But such a domain clearly does not satisfy the assumptions
of part b) of Theorem 1.6 (more precisely, Ω does not satisfy Hypothesis Hy,y′ , for any y and
y′ such that, say, y2 > 1/3 > −1/3 > y′2).

Furthermore,
∀ u0 ∈ E , w∗(e, u0) ≤ 2

√
f ′(0)
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from Theorem 1.8. On the other hand, since Ω ⊃ {x ∈ RN , x2 < −1/3}, Remark 1.11
implies that w∗(e, u0) ≥ 2

√
f ′(0) and w∗(e, z′, u0) ≥ 2

√
f ′(0) for all u0 ∈ E and z′ ∈ RN

such that z′2 < −1/3. Hence, w∗(e, u0) = w∗(e, z′, u0) = 2
√
f ′(0) for all u0 ∈ E and z′ ∈ RN

such that z′2 < −1/3.
Remember that z = (0, 2, 0, . . . , 0). Let γ > 0 be any fixed positive real number and let

u0 be in E . From the construction of Ω, one has that

∀ s ≥ 0, B(z + se, 1) ∩ Ω 6= ∅.

Let C0 > 4 be given. The same arguments and notations as in the proof of Theorem 1.8
yield the existence of some positive constants C1, C2 and δ such that

0 ≤ u(t, x) ≤ ef
′(0)t‖u0‖L∞(Ω)

∫
supp(u0)

C2C1(δ
−1t−1 + 1)e

− r2(y,x)
C0t dy

for all t > 0, s ≥ 0 and x ∈ B(z + se, 1) ∩ Ω. Here, supp(u0) denotes the support of u0 and
r(y, y′) stands for the geodesic distance in Ω between two points y and y′ in Ω. Since supp(u0)
is compact, it follows from the construction of Ω (especially the fact that an/n → +∞ as
n→ +∞) that

inf
y ∈ supp(u0), s≥γt, x∈B(z+se,1)∩Ω

r(y, x)

t
→ +∞ as t→ +∞.

Thus, for all β > 0, there is t0 > 0 such that

0 ≤ u(t, x) ≤ ef
′(0)t‖u0‖L∞(Ω)C2C1(δ

−1t−1 + 1)|supp(u0)|e−βt

for all t ≥ t0, s ≥ γt and x ∈ B(z + se, 1) ∩ Ω. Therefore,

lim sup
s≥γt, t→+∞

max
x∈B(z+se,1)∩Ω

u(t, x) = 0.

Since this is true for all γ > 0, one concludes that w∗(e, z, u0) = 0.
Actually, the same type of arguments imply that

w∗(e, z′, u0) = 0

for all u0 ∈ E and z′ ∈ RN such that z′2 > 1/2 (by changing the radius 1 by 1/2 + ε for some
small ε = ε(z′) > 0).

4.2 Domains with zero spreading speeds

Proof of Theorem 1.12, part a). Let us define the curve

Γ = {(t cos t, t sin t), t ≥ 0}

and let Ω be a smooth open connected subset of R2 satisfying the extension property and
such that, say, Ω\B2π = {x, d(x,Γ) < 1}\B2π. Such a domain Ω is like a spiral. It is clear
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that Ω is unbounded in every unit direction e of R2. It is also clear that Ω satisfies the
assumptions of Theorem 1.7, and thus u(t, x) → 1 locally in x ∈ Ω as t → +∞, for any
solution u of (1.6) with initial condition u0 ∈ E .

Let u0 6≡ 0 be a nonnegative, continuous and compactly supported function in Ω. Let
C0 > 4, e ∈ S1 be given, and let R > 0 such that Ω ∩ B(se, R) 6= ∅ for all s ≥ 0. With the
same arguments and notations as in the proof of Theorem 1.8, one has

∀ t > 0, ∀ x ∈ Ω, 0 ≤ u(t, x) ≤ ef
′(0)t‖u0‖L∞(Ω)

∫
supp(u0)

C2C1(δ
−1t−1 + 1)e

− r2(z,x)
C0t dz,

for some positive constants C1, C2 and δ.
Fix any γ > 0 and A ≥ R. For all s ≥ 0 and for all t > 0, one has

0 ≤ max
x∈B(se,A)∩Ω

u(t, x) ≤ C1C2‖u0‖L∞(Ω)(δ
−1t−1 + 1)ef

′(0)t

∫
supp(u0)

e
−

r̃2
z,s

C0t dz,

where
r̃z,s = min

y∈B(se,A)∩Ω
r(z, y).

But, owing to the definition of Ω, there exist η > 0 and t0 > 0 such that

∀ t ≥ t0, ∀ s ≥ γt, ∀ z ∈ supp(u0), r̃z,s = min
y∈B(se,A)∩Ω

r(z, y) ≥ η t2.

Thus, for all t ≥ t0,

0 ≤ sup
s≥γt

max
x∈B(se,A)∩Ω

u(t, x) ≤ C1C2‖u0‖L∞(Ω)(δ
−1t−1 + 1)ef

′(0)t|supp(u0)|e−ηt
3/C0 → 0

as t→ +∞.
Therefore, w∗(e, z, u0) = w∗(e, u0) = 0 for all e ∈ S1, z ∈ RN and u0 ∈ E .

4.3 Domains with infinite spreading speeds

The proof of part b) of Theorem 1.12 is based on the following Lemmas 4.1 and 4.2. In the
remaining part of this section, we fix N ≥ 2 and we call (x, x′) the coordinates in RN , where
x = x1 and x′ = (x2, · · · , xN). Let us set r′ = |x′| =

√
x2

2 + · · ·+ x2
N . Let h : R → R be the

function defined for all s ∈ R by
h(s) = e−e

s+s.

Set
Ω̃ = {(x, x′) ∈ RN , x > A, 0 ≤ r′ < h(x)},

where A > 0 is a positive real number to be chosen later, and let Ω be an open connected
and locally C1 domain such that

Ω̃ ⊂ Ω ⊂ Ω̃ ∪ {A− 1 ≤ x ≤ A, 0 ≤ r′ < 1}.

Such a domain Ω has the shape of an infinite cusp, and it obviously does not satisfy the
extension property defined in Section 1.
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Lemma 4.1 Under the above notations, call φ(x, x′) = φ(x, r′) = cos r′ − e−x cos(
√

2r′) for
all (x, x′) ∈ RN . Then there exists A > 0 large enough such that{

∆φ+ φ ≤ 0 in Ω̃

∂νφ ≥ 0 on ∂Ω̃ ∩ {x > A}

and 1/2 ≤ φ ≤ 1 in Ω.

Proof. A straighforward calculation gives that the function φ is of class C2 in RN and that

∆φ+ φ =
N − 2

r′
(− sin r′ +

√
2e−x sin(

√
2r′))

if r′ > 0. Therefore, ∆φ+ φ ≤ 0 in Ω̃ for A large enough.
On the other hand, for (x, x′) ∈ ∂Ω̃ ∩ {x > A}, one has r′ = h(x) and

∂νφ(x, x′) =
1√

h′(x)2 + 1

(
−h′(x)e−x cos(

√
2h(x))− sinh(x) +

√
2e−x sin(

√
2h(x))

)
=

h(x)√
h′(x)2 + 1

(
e−x +O(h2(x))

)
≥ 0 for x large enough.

Lastly, the condition 1/2 ≤ φ ≤ 1 in Ω immediately holds if A is large enough. That com-
pletes the proof of Lemma 4.1.

The following lemma provides some lower estimates for the heat kernel in such domains
Ω.

Lemma 4.2 Under the assumptions of Lemma 4.1, let p(t, w, z) denote the heat kernel in
Ω with Neumann boundary conditions on ∂Ω. Then, there exists a time T > 0 such that, for
all compact subset K ⊂ Ω,

inf
t≥T, w∈K, z∈Ω

p(t, w, z) > 0.

Proof. Let us first fix T0 > 0 such that e−T0 ≤ 1/4. Let K be a compact subset of Ω and
let R > 0 be such that the open ball BR contains K and Ω ∩ {x ≤ A}. Let q(t, w, z) denote
the heat kernel in Ω ∩ BR with Neumann boundary conditions on ∂Ω ∩ BR and Dirichlet
boundary conditions on Ω ∩ ∂BR. One has immediately that p(t, w, z) ≥ q(t, w, z) for all
t > 0 and (w, z) ∈ (Ω ∩BR)2. Therefore, there exists η > 0 such that, say,

∀ 1 ≤ t ≤ 1 + T0, ∀ w ∈ K, ∀ z = (x, x′) ∈ Ω∩ {x ≤ A}, p(t, w, z) ≥ q(t, w, z) ≥ η. (4.1)

Let η be as above, and let w be any given point inK. Let ε > 0 and β > 0 be two arbitrary
positive real numbers, and let u be the function defined for all t ≥ 0 and z = (x, x′) ∈ Ω by

u(t, z) = p(1 + t, w, z) + εeβx.
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One immediately checks that

∂tu−∆u+ β2u = β2p(1 + t, w, z) > 0

for all t ≥ 0 and z ∈ Ω. Furthermore, for all z = (x, x′) ∈ ∂Ω̃ ∩ {x > A}, one has

∂νu = − εβeβxh′(x)√
h′(x)2 + 1

≥ 0.

Lastly, u(t, ·) ≥ η on ∂Ω̃ ∩ {x = A} for all 0 ≤ t ≤ T0, because of (4.1).
Call now u the function defined for all t ≥ 0 and z ∈ Ω by

u(t, z) = η − 2ηφ(z)e−(1+β2)t − β2ηt.

From Lemma 4.1, the function u satisfies

∂tu−∆u+ β2u = 2η(∆φ+ φ)e−(1+β2)t − β4ηt ≤ 0

for all z ∈ Ω̃ and t ≥ 0. Furthermore,

∂νu = −2η∂νφ e
−(1+β2)t ≤ 0 on ∂Ω̃ ∩ {x > A}

from Lemma 4.1, and u(t, ·) ≤ η in Ω for all t ≥ 0. Lastly, since φ ≥ 1/2 in Ω, one has that

u(0, ·) ≥ ε > 0 ≥ u(0, ·) in Ω̃.

The parabolic maximum principle yields u(t, z) ≥ u(t, z) for all 0 ≤ t ≤ T0 and z ∈ Ω̃.
In other words,

∀ 0 ≤ t ≤ T0, ∀ z ∈ Ω̃, p(1 + t, w, z) + εeβx ≥ η − 2ηφ(z)e−(1+β2)t − β2ηt.

Since ε > 0 and β > 0 were arbitrary, it follows that

∀ 0 ≤ t ≤ T0, ∀ z ∈ Ω̃, p(1 + t, w, z) ≥ η − 2ηφ(z)e−t.

Since φ ≤ 1 in Ω, one has φe−T0 ≤ e−T0 ≤ 1/4 from the choice of T0. Therefore,

∀ z ∈ Ω̃, p(1 + T0, w, z) ≥ η/2.

From (4.1), one concludes that p(1 + T0, w, z) ≥ η/2 for all z ∈ Ω. As a consequence,

p(t, w, z) ≥ η/2

for all t ≥ T := 1 + T0 and for all z ∈ Ω. Since w ∈ K was arbitrary, the proof of Lemma
4.2 is complete (notice that T does not depend on K).

Let us now turn to the
Proof of Theorem 1.12, part b). Let Ω be as above and such that the conclusion of
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Lemma 4.1 holds. Let e = e1 = (1, 0, · · · , 0). It is clear that Ω is unbounded in the direction
e. Let u0 6≡ 0 be a continuous, nonnegative and compactly supported function in Ω, and let
u(t, x) be the solution of (1.6) with initial condition u0.

Let us first observe that

∀ t ≥ 0, ∀x ∈ Ω, u(t, x) ≥ v(t, x),

where v is the solution of (1.6) with initial condition v0 = min(u0, 1). Since 0 ≤ v(t, x) ≤ 1
for all t ≥ 0 and x ∈ Ω, and since f ≥ 0 in [0, 1], one gets that

∀ t ≥ 0, ∀ x ∈ Ω, v(t, x) ≥ V (t, x),

where V solves the heat equation Vt = ∆V with Neumann boundary conditions on ∂Ω and
initial condition v0.

Therefore, under the notations of Lemma 4.2, one has

∀ t ≥ 0, ∀ x ∈ Ω, u(t, x) ≥ V (t, x) =

∫
supp(v0)

p(t, w, x)v0(w)dw.

Since supp(v0)(= supp(u0)) is a compact subset of Ω, Lemma 4.2 implies that there exist
T > 0 and δ > 0 such that

∀ t ≥ T, ∀ w ∈ supp(u0), ∀ x ∈ Ω, p(t, w, x) ≥ δ.

Hence,

u(t, x) ≥ ε := δ

∫
supp(u0)

v0(w)dw > 0

for all t ≥ T and x ∈ Ω.
As a consequence, u(t+T, x) ≥ ζ(t) > 0 for all t ≥ 0 and x ∈ Ω, where ζ solves ζ̇ = f(ζ)

with ζ(0) = ε > 0. Since ζ(t) → 1 as t → +∞ (because of the profile of f), one gets that
lim inft→+∞ infx∈Ω u(t, x) ≥ 1.

On the other hand, u(t, x) ≤ ξ(t) for all t ≥ 0 and x ∈ Ω, where ξ solves ξ̇ = f(ξ)
and ξ(0) = maxΩ u0 ∈ (0,+∞). Since ξ(t) → 1 as t → +∞, one gets as usual that
lim supt→+∞ supx∈Ω u(t, x) ≤ 1.

As a conclusion, u(t, x) → 1 as t→ +∞ uniformly with respect to x ∈ Ω.
Owing to Definitions 1.2 and 1.3, it follows that w∗(e, z, u0) = w∗(e, u0) = +∞ for all

z ∈ RN and u0 ∈ E . That completes the proof of Theorem 1.12, part b).
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