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ABSTRACT. We prove a generalization of Gabrielov’s rank theorem for families
of rings of power series which we call W-temperate. Examples include the
family of complex analytic functions and of Eisenstein series. Then the rank
theorem for Eisenstein series allows us to give new proofs of the following two
results of W. Pawthucki:

I) The non regular locus of a complex or real analytic map is an analytic set.
II) The set of semianalytic or Nash points of a subanalytic set X is a subanalytic
set, whose complement has codimension two in X.

Algebra is the offer made by the devil to the mathematician. The
devil says: “I will give you this powerful machine, it will answer
any question you like. All you need to do is give me your soul:
give up geometry and you will have this marvellous machine."

Sir Michael Atiyah, (Collected works. Vol. 6.
Oxford Science Publications, 2004).

1. INTRODUCTION

This article contains two sets of results concerning rank Theorems in commutative
algebra and their application to analytic and subanalytic geometry.

We start by proving a rank Theorem for general families of rings which we call
W-temperate, see Theorem [I.1] generalizing the classical Gabrielov’s rank Theorem
[Ga73| BCR21] (see the latter reference for a historical overview on the Theorem and
its importance). These are families of Weierstrass rings (K{{z1, ...,z }})ren, that
is, families of rings of power series satisfying the Weierstrass division theorem, see
Definition where K is any uncountable algebraically closed field of characteristic
zero, which satisfies three axioms: closure under local blowing-down, closure under
restriction to generically hyperplane sections and temperateness, a closure under
evaluation by algebraic elements type condition, see Definition [2.2] Examples
include the family of germs of complex-analytic functions, algebraic power series,
and Eisenstein power series; the latter allow us to obtain rank Theorems for families
of morphisms. In particular, we obtain a new proof of Gabrielov’s rank Theorem,
which greatly simplifies and shortens our previous work [BCR21].

As an application of the rank Theorem for W-temperate families, we provide
new proofs of two fundamental results of analytic and subanalytic geometry due
to Pawlucki [Pa90, Pa92]: I) the non-regular (in the sense of Gabrielov) locus of a
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complex or real-analytic map ® : M — N is a proper analytic subset of M, see
Theorem and II) the set of semianalytic or Nash points of a subanalytic set X is
a subanalytic set, whose complement has dimension has dimension < dim(X) — 2,
see Theorem [I.4] In spite of being considered as fundamental results of subanalytic
geometry, the original proofs of these results are considered to be very hard, as noted
by Lojasiewicz: “Sans doute, parmi les faits établis en géométrie sous-analytique
le théoréme de Pawlucki [result II] est le plus difficile & prouver (la démonstration
compte environ soixante dix pages!)", [Lo93, Page 1591].

Our first set of results concerns rank Theorems. Let K be an algebraically
closed field. We consider families of rings of power series (K{{z1,...,2}})ren
which we call Weierstrass temperate, see Definitions [2.1] and [2.2} note that the
completion of K{{z1,...,2,}} is K[x1,...,z,], see Proposition [2.8]i)l Given a ring

homeomorphism:

¢ Ki{x}p — K{{u}}
where x = (z1,...,2,) and u = (u1,...,uy), we say that ¢ is a morphism of
W-temperate power series if ¢(f) = f(¢(x)) for every f € K{{x}}, see Definition
We denote by ¢ its extension to the ring of formal power series. We define:

the Generic rank:  r(p) := raunquwmc(,C{{u}})(Jac(go))7

(1) the Formal rank: 17 () := dim <K’2E)((£)> ,

and the temperate rank: 17 (¢) := dim K{ix}h 7
Ker(p)

of ¢, where Jac(p) stands for the matrix [0y, ¢(z;)]; ;. Our first main result is:

Theorem 1.1 (W-temperate rank Theorem). Let ¢ : K{x}} — K{{u}} be a
morphism of rings of W-temperate power series. Then

r(e) =17 () = 1(p) =17 (¢) =17 (p).

This result generalizes the original rank Theorem of Gabrielov [Ga73], which
concerns the case that {{x}} stands for the family of complex analytic function
germs. As noted before, we rely on [BCR21] for a presentation of the importance
and consequences of the Theorem to local analytic geometry and commutative
algebra. In spite of Gabrielov’s rank Theorem being considered a fundamental result
in local analytic geometry, its original proof is considered to be very difficult, cf.
[[z89 Page 1]. Recently, we have provided an alternative proof of Gabrielov’s rank
Theorem [BCR21], by developing geometric-formal techniques inspired by works of
Gabrielov [Ga73] and Tougeron [To90]. One of the difficulties involved in the proof
is the intricate interplay between algebraic geometry and complex analysis. Our new
result simplifies the proof by addressing this difficulty. Indeed, the proof of Theorem
follows from algebraic geometry methods; complex analysis is only used in order
to show that complex analytic functions form a W-temperate family, see §§[3:2] As
a mater of fact, we systematically generalize the arguments introduced in [BCR21]
to their most general context, which demand us to introduce new commutative
algebra arguments. It seems likely that the discussion of rank Theorems for non
W-temperate families will demand a complete different strategy. In order to motivate
this discussion, we provide a family of local rings of interest to function theory and
tame geometry (that is, families of quasianalytic Denjoy-Carleman functions and

(
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families of C'°°-definable functions over an o-minimal and polynomially bounded
structure) where the rank Theorem does not hold, see §

Remark 1.2. Theorem[I.I]can be seen a "dual’ of the Artin approximation Theorem.
More precisely, let ¢ be such that r(¢) =17 (¢). Then,
VF(x) € K[x], such that F(p(x)) =0,
Ve € N,3F.(x) € K{{x}}, Fe(p(x)) =0 and F(x) — F.(x) € (x)°.

where p(x) = (p(x1),...,9(zy,)). Indeed, the ideals Ker(¢) and Ker(¢) are prime
ideals of K{{x}} and KC[x] respectively, and the equality 17 () = r7 (¢) is equivalent
to the equality of the heights of these two ideals. Since K{{x}} is Noetherian (see
Proposition R.§|[)]), the height of Ker()K[x] equals the height of Ker(¢). Now, by
Artin Approximation Theorem, see Corollary[2.11} Ker(y)K[x] is again a prime ideal,
so the equality 17 () = r7 (¢) is equivalent to the equality Ker(¢)K[x] = Ker(®). It
is well known that, since K{{x}} is Noetherian, Ker(p)K[x] is the closure of Ker(y)
in K[x] for the (x)-adic topology, and we conclude easily.

Our second set of results concerns two fundamental results of analytic and
subanalytic geometry. Let K = C or R, and consider a K-analytic map ® : M — N
between K-analytic manifolds M and N. Given a € M, we denote by ®, the germ of
the morphism at a point a € M, and by @7 : Og(q) — O, the associated morphism
of local rings, where O, stands for the ring of analytic function germs at a. For
each a € M, we set 14(®) :=1(®%) and 17 (®) := r7 (®%). Consider:

R(®, M) = {a € M; 14(®) =17 (P)},

which is called the set of regular (in the sense of Gabrielov) points of ®. By combining
Theorem [T.1] applied to Eisenstein power series, see with the uniformization
Theorem, see e.g. [BM88|, Th 0.1], we prove the following result:

Theorem 1.3 (Pawlucki Theorem I, [Pa92]). Let ® : M —— N be an analytic map
between connected manifolds. Then M ~ R(®, M) is a proper analytic subset of M.

We now specialize our presentation to K = R, and we refer to §§5.2] and §§5.6]
for all the details of the following discussion. Let X C M be a subanalytic set.
Given a point a € M, we denote by X, the germ set of X at a. We say that an
equidimensional subanalytic set X is a Nash set at a € M (which might not belong
to X) if there exists a germ Y, of semi-analytic set at a such that X, C Y, and
dim(X,) = dim(Y,). More generally, a subanalytic set X C M of dimension d is
Nash at a point a € M, if X is a union of equidimensional Nash sets X(*)| where
k=0, ...,d. We consider the sets:

N(X):={a€ M| X, is the germ of a Nash set}
SA(X):={ae M| X, is the germ of a semianalytic set}.
It is trivially true that M \ X C SA(X) C N(X). But in general, SA(X) # N(X),

see example [5.25] below. Now, by combining Theorem [I.3] with the uniformization
Theorem, see e.g. [BM88|, Th 0.1], we prove the following result:

Theorem 1.4 (Pawtucki Theorem II, [Pa90|). Let X be a subanalytic set of a real
analytic manifold M. Then
i) The sets N(X) and SA(X) are subanalytic.
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i) dim(M ~ N(X)) < dim(M ~ SA(X)) < dim(X) — 2.
In particular, if dim(X) < 1, then N(X) =SA(X) =M.

Remark 1.5. The case of dim(X) < 1 was originally proved by Lojasiewicz [Lo65)]
and an alternative proof is given in [BMS88, Theorem 6.1].

The original proof of Theorem given in [Pa90] is an intricate construction
between geometrical, algebraic, and analytic arguments, which we do not fully
understand. Pawlucki then deduces Theorem from Theorem in [Pa92]. Our
proof of these results relies heavily on algebraic arguments, namely on Theorem
and the use of Eisenstein power series, see §§3.3] instead of geometric and analytic
arguments as in [Pa90]. We develop new commutative algebra methods, in particular
concerning power series with coefficients in a UFD, which are of independent interest,
see e.g. Theorem [377] Our use of geometric techniques is essentially reduced the
extension Lemma [6.]] together with the use of the Uniformization Theorem of
Hironaka [H73]; the former has been inspired from the work of Pawlucki [Pa90l
Lemme 6.3], while the later is not used in [Pa90l [Pa92].

We would like to thank Edward Bierstone for bringing the topic of this paper to
our attention and for useful discussions. This work was supported by the CNRS
project IEA00496 PLES. The first author is supported by the project IDEX UP
ANR-18-IDEX-0001.

1.1. On rank Theorems for non W-temperate families. We start by providing
examples of a families of local rings where the rank Theorem does not hold. We
consider an example given in [BB22, Example 1.8], which is based on a construction
due to Nazarov, Sodin and Volberg [NSV04, §5.3]. We refer the reader to [BB22|
§3] for a detailed presentation of quasianalytic classes, and we follow its notation.
Consider quasianalytic Denjoy-Carleman classes Qj; which satisfies two properties:

1) There is a function g € Q/([0,1)) which admits no extension to a function
in Qpr((—0,1)), for all § > 0 and all quasianalytic Denjoy-Carleman class
Qs (these classes exist by [NSV04, §5.3));

2) The shifted class Q) , where M,gp) := Mpy, is a quasianalytic Denjoy-
Carleman class for every p € N.

For example, the class Qps given by the sequence M = (My)ken, where My =
(log(log k))*, satisfies both conditions.

Let ® : (—1,1) — R? denote the Qp/-morphism ®(u) = (u?, g(u?)), and let
¢ = ®* denote its pull-back at 0. Note that r(¢) = 17 (p) since G(z) = 2 — §(z1)
is a formal power series such that ¢(G) = g(u?) — g(u?) = 0. Now, suppose by
contradiction that there exists a function germ h € Qs (—e, €), for some € < 1, such
that @(h) = ho p(u) = 0. We remark that h(t, §(t)) = 0 since

0= @(h) = h(uQ,g(uQ)),
so we conclude that the equation h(x7,z2) = 0 admits a formal solution x5 = §(x1).
By [BBBI17, Theorem 1.1], apart from shrinking e, there exists a function f €
Qo) (—€,€), for some p € N, such that h(zq, f(z1)) =0 and f = §. Since Qu
is quasianalytic by condition 2) and contains Qys, we conclude that fijo.c) = gjjo,e)-

This implies that g admits an extension in the shifted quasianalytic class Qe ,
contradicting condition 1). We conclude Theorem does not hold for these classes.
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We can also consider the o-minimal structure Rg,, given by expansion of the real
field by restricted functions of class Qs satisfying conditions 1) and 2) above, cf.
[RSW03], and the quasianalytic class Q of C* functions that are locally definable in
Rg,,. By [BBCIS8| Theorem 1.6], any function h € Q((—1,1)) belongs to a shifted
Denjoy-Carleman class Q) , for some positive integer p. We conclude that the
morphism ® defined above shows that the rank Theorem can not hold for Q.

Remark 1.6. Every quasianalytic class which properly contains the analytic func-
tions does not satisfy the Weierstrass preparation property [PR13].

Finally, let us note that Theorem [T.1] holds for at least one family of rings which
is not Weierstrass. For instance, if we set K{{z1,...,2,}} = K[21,.. ., Zn] (21, 20)
for any integer n, then for any morphism ¢ : C{x}} — K{{u}}, we have

r(p) =17 () = dim (K{x}}/ Ker())

essentially by Chevalley’s constructible set Theorem. But the rings of rational
functions are not Henselian local rings, so they do not form a Weierstrass family, c.f.

Proposition [2.8}i)| below.

2. WEIERSTRASS TEMPERATE FAMILIES

2.1. W-Temperate families. Let I be a field of characteristic zero. For every
n € N, we denote by (z1,...,z,) indeterminacies; we will use the compact notation
x = (x1,...,2,) and X" = (21, ...,2,—1) whenever there is no risk of confusion on
n. We start by recalling the notion of Weierstrass family introduced in [DL80]:

Definition 2.1. A Weierstrass family (over K), or just a W-family, of rings is a
family (K{{z1,...,2n}})nen of K-algebras such that,
i) For every n,
K[x] ¢ K{{x}} c K[x].

ii) For every n and m, denoting x = (21,...,2,) and y = (y1,...,Ym):

Ki{x, vy} N Klx] = K{{x}}-

iii) For any permutation o of {1,...,n}, and any f € K{{x}},

f(@oq), - Ta(m)) € K{{x}-
iv) If f € K{{x}} with f(0) # 0, then f is a unit in K{{x}}.
v) The family is closed by Weierstrass division. More precisely, let F' € K{{x}}
be such that F(0,r,) = x%u(z,) where u(0) # 0. For every G € K{{x}},

G=FQ+R,
where Q € K{{x}} and R € K{{x'}}[2,11], deg,, (R) < d, are unique.
A W-family satisfies several extra well-known properties which we recall in §§2.3]

below; in what follows we use these properties. Let us now provide the definition of
W-temperate family:

Definition 2.2. Let K be an uncountable algebraically closed field of characteristic
zero. A Weierstrass temperate family (over K), or just a W-temperate family, of
rings is a Weierstrass family (C{{z1,...,2n}})nen over K satisfying the following
three properties:
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i) Closure by local blowings-down: For every f € K[x], n > 1, we have
f& man) € Ki{x}} = f(x) € K{x}}.
ii) Closure by generic hyperplane sections: Let F' € K[[x] ~ K{{x}}. Set
W:={Ne K| F(x' \z1) € C{x'}}}.

Then the set K ~ W is uncountable.
iii) Temperateness: Let x = (z1,z2) and o € N*. Consider

y(t) e KHtY  and  P(x,z) =Y aipi(es, 2) € Kx][2],
keN
where () is finite over K[t] and py (2, 2) € K[zz, 2] is such that deg,, (pr) <
ak for every k € N. Let 7/ be a conjugate of :

P(x,y(x2)) € K{{x}} = P(x,7(22)) € K{x}}.

Note that properties [ii )| and are used only once in the paper, see § and
the proof of Theorem [4.19] respectively.

2.2. W-Temperate morphisms and ranks. We start by proving a detailed
definition of the morphisms we consider:

Definition 2.3. Let ¢ : K{{x}} — K{{u}} be a morphism of local rings. We call
@ a morphism of rings of W-temperate power series if there exist W-temperate
power series ¢1(u), ..., p,(u) € (u)K{u}} such that

Vf(X) € K:{{X}}a @(f) = flp1(u),..., <Pn(u))-

For such a morphism, we have introduced in the introduction three notions of
ranks: generic, formal and temperate, see . Note that the generic and formal
ranks can be introduced, in an obvious way, for general morphisms of power series
rings ¢ : K[x] — K[u]. Let us start by showing that these ranks are well-defined:

Lemma 2.4. Let ¢ : K{{x}} — K{u}} be a morphism of W-temperate power
series. Then (), 7 (¢) and 17 (p) are natural numbers such that:

r(¢) <17 (p) <17 (p).

Proof. Tt is straightforward that r(p) is well-defined; r” (¢) and r7 () are well-
defined since K[X]]/Ker(@) and ’C{{X}}/Ker(cp) are Noetherian local rings. Next,
consider a general morphism of power series ring ¢ : K[x] — K[u] and set
r =r(¢). Apart from re-ordering the coordinates, we may assume that the matrix
[0u,0(5)]i<m,j<r has rank 7. Therefore, if we set R := K[y, ..., 2], ¥, is injective
by [Ga73| Lemma 4.2] (whose proof remains valid over any characteristic zero field
K). Thus r = dim(R) < dim (’C[[XH/Ker(w)) This proves the first inequality.
Finally, by Artin approximation Theorem Ker(¢)K[x] is a prime ideal, and by

[Mat89, Theorem 9.4] the height of Ker(¢)K[x] is less than or equal to the height
of Ker(p). We conclude that 17 () < 17 (¢). O

Remark 2.5. The proof of the above Lemma also shows the result for a general
morphism of power series rings 1 : K[x] — K[u], that is, its generic and formal
ranks are well defined and:

r(y) <17 ().
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Definition 2.6. Let ¢ : K{{x}} — K{{u}} be a morphism of W-temperate power
series. We say that ¢ is regular (in the sense of Gabrielov) if r(¢) = r7 ().

We finish this subsection by useful results about the ranks of a morphism of
W-temperate power series, which is a W-temperate version of [BCR21l, Prop. 2.2]:

Proposition 2.7 (cf. [BCR21], Prop.2.2]). Let ¢ : K{{x}} — K{{u}} be a mor-
phism of W-temperate power series. The ranks v(p), r7(¢) and r7 (¢) are preserved
if we compose © with:

(1) a morphism o : K{u1, ..., um}} — K{ul,...,ul}} such that r(c) = m,

(2) an injective finite morphism 7 : K{z,..., 20} — K{z1,...,z.}},

(3) an injective finite morphism 7 : K{z},...,z}}} — K{{X}}/Ker(go)

Proof. We start by proving (1). Note that it is straightforward from linear algebra
that r(c o) = r(p). In order to prove the other two equalities, it is enough to prove
that o and & are injective morphisms of local rings. This follows from Lemma
since m =r(0) <17 (0) <17 (0) < dim K{ug, ..., un}} = m.

We now prove that 17 (¢) = r7 (p o 7) under the hypothesis given in (2) and
(3). Indeed, we have Ker(p o 7) = Ker(p) N K{{x'}} because T is injective. Since
K{{u}} is an integral domain, Ker(y) and Ker(p o 7) are prime ideals. Thus, by
the Going-Down theorem for integral extensions [Mat89 Theorem 9.4ii], we have
that ht(Ker(¢ o 7)) < ht(Ker(y)), thus r7 (¢) <17 (¢ o 7). On the other hand, we
have the equality 17 (p) =17 (¢ o7) because ht(Ker(¢o7)) = ht(Ker(y)) by [Mat89,
Theorem 9.3].

We now prove that 17 (¢) = r” (¢ o 7) under the hypothesis given in (2). Indeed,
since 7 is finite, 7 is also finite by the Weierstrass division Theorem (see for instance
[BCR21), Cor. 1.10] for this claim). Moreover, we have

dim(K[x']) — ht(Ker 7) = dim(K[x]) = n

since finite morphisms preserve the dimension and 7 is injective. But ht(Ker(7)) =0
if and only if Ker(7) = (0) because K{{x'}} is an integral domain. Thus, 7T is
injective and 17 (¢ o 7) = 17 ().

Now we prove that 17 () = 17 (p o 7) under the hypothesis given in (3). We
denote by 7/ the morphism induced by 7:

Klah, ...zl fz—1 (Ker(p)) — ’C[[X]]/Ker(@)
As in the previous case, since 7 is finite, 7 is also finite, therefore 7/ is finite.
Moreover, by definition, 7 is injective. Thus, by Theorem [Mat89, Theorem 9.3],
we have 17 (¢ o 7) = 17 (p).

We now turn to the proof of r(¢) = r(p o 7). We start by (2). Let J, and J;
denote the Jacobian matrices of ¢ and 7. Then we have Jyor = J, - ¢(J;); note
that it is enough to prove that the hypothesis imply that r(r) = n in order to
conclude by standard linear algebra. Indeed, since 7 is finite and injective, for every
i € {1,...,n}, there is a monic polynomial P;(x’, x;) € K{x'}}[x;] such that

Py (%), ...y 10(x), 2;) = 0 and Z? (1 (x")y ..y (x),25) # 0.

Therefore, for every i and j, we have

oPp;

Z syl [ O i
Bm 0x; Ti L,
¢ J 0 if i#£j
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Thus

€

{amg 61’41] T Oy
where e; is the vector whose coordinates are zero except the i-th one which is equal
to 1. In particular J, is generically a matrix of maximal rank, that is r(7) = n, so
r(¢) =r(p o 7) by standard linear algebra. This proves (2).

Finally, let us finish the proof of (3). By adding the 2} to the z;, we can assume
that z} = x; for i < t. By assumption, for every i € {1,...,n}, there is a monic
polynomial P;(x’,z;) € K{x'}}[z;] such that

Pi(t1(x),...,ma(x),2;) = fi(x) € Ker(yp) and ZPZ (1 (x"), ..., 7 (x), z;) ¢ Ker(yp).

z;
s op oP oP of of
[&t’l . ax;} I == oo, e+ {83:1 (x) Bz, (x)

Since f; € Ker(p), we have f;(¢(u)) = 0. By differentiation we obtain
Pt _

Vi=1,...,m, R —,
J — Oy, ou;
that is,
ofi Ofi
... . J = O.
Lot - 2],
This proves that the generic rank of Jyor = J, - ¢(J;) is the rank of J,,. O

2.3. Properties of Weierstrass families. We now recall several useful properties
of W-families which are either proved in [DL80) [Ro09] (see precise references in the
proof), or which follow easily from classical results:

Proposition 2.8. Let (K{{z1,...,2n}})nen be a Weierstrass family. Then the
following properties are satisfied:

i) For every n, K{{x}} is a Henselian, Noetherien, UFD regular local ring
whose mazximal ideal is generated by (x1,...,2,), and completion is K[x].

it) For f € K{t,x}} and any g € (x) K{x}}, f(g,x) € K{x}}.
iii) For every f € K[x], and any q € N*, we have
f(x,af) € Ki{x}} = f(x) € K{x}}.

iv) For every n and k < n,

K 0 () KIx] = () {3}
v) Weierstrass preparation Theorem: Let f € K{{x}} be such that f(0,...,0,2,) #
0 has order d in x,,. Then there exists a unit U and a Weierstrass polynomial
P=xd +a;(x)2xd"t + .- + aq(x') such that
fx) =Ux) - (2f +ay(x)zd "+ + ag(x')).
vi) Noether Normalization: Let A = K{x}}/1 where I is an ideal of K{x}}.

Then, apart from a linear change of indeterminates x1, ..., x,, there exists
an integer v > 0 such that the canonical morphism

K{{z1,....2p — Kf{{zr, .. 2y

is finite. Moreover, since the dimension does not change under finite mor-

phisms, if dim (K{x}}/1) =r, then ht(I) =n —r.
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Proof. Properties are given in [DL80, Remark 1.3]; property [iii)| is given in
[Ro09, Lemme 5.13]. To prove property it is enough to consider the Weierstrass
division of 2¢ by f(x). Finally, it is classical that property follows from the
Weierstrass division Theorem, see e.g. [dJPf00] 3.319). O

We add to this list of properties the following two Theorems:

Theorem 2.9 ([PR12] Theorem 5.5]). A W-temperate family of rings satisfies the
Abhyankar-Jung Theorem. More precisely, let P(x,Z) € K{x}}[Z] be a monic
polynomial in Z. Assume that

Discz(P) = xu(x)
where u(x) € K{{x}} satisfies u(0) # 0. Then there is ¢ € N* such that the roots of
P belong to K{a1/9,... ax/ '}

The next result motivates the introduction of the notion of W-families in [DL80].

Theorem 2.10 ([DL80, Theorem 1.1]). A W-temperate family of rings satisfies
the Artin Approzimation Theorem: let F = (Fy,...,F,) € K(x)[y]? withy =
(Y1, Ym), and let g(x) = (q1(X), ..., Gm(x)) € K[x]™ be a formal power series
solution:

F(x,9(x)) = 0.
Let ¢ € N. Then there is an algebraic solution g(°)(x) = (g%c) (x),... gt (x)) €
K{x)™:

Fx,g©(x)) =0
with gic) (x) — gi(x) € (x)¢ for every i.

In what follows, we will use the following well known corollaries of the above
result (and we provide their proofs for the sake of completeness).

Corollary 2.11. Let ¢ : K{{x}} — K{{u}} be a morphism of Weierstrass power
series. Then Ker(o)K[x] is a prime ideal.

Proof. The following is a well-known argument. Let f, g € K[x] be such that
fg € Ker(p)K[x]. That is, there exist f1, ..., fs € Ker(¢) and hq, ..., hs € K[X]
such that
fG3=Y_ fihi=o0.
i=1
By Artin approximation Theorem applied t0 ys11Ys+2 — 2 ;—, fi¥i, for every ¢ € N*,
there exist f(°), g(¢), h:(LC), LR e KA{{x}} such that

FO 3 0 =0
i=1

and f— £, 5 — ¢ e (x)°. Since Ker(y) is a prime ideal, then f(©) or ¢(®) is
in Ker(p). Apart from replacing f by g, we may assume that f(©) € Ker(y) for
infinitely many c. Therefore, f is the limit of elements of Ker(y), that is, f belongs
to the closure of Ker(p) in K[x] for the (x)-topology. But, by [Mat89, Theorem
8.11], this closure is exactly Ker(p)K[x], so f € Ker(¢)K[x]. This proves that
Ker(p)K[x] is a prime ideal. O
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Corollary 2.12. Suppose that P and @ are monic polynomials in y, P € K[x][y]
and Q € K{x}[y], that are not coprime in K[x,y]. Then P and Q admits a
common W-factor R € K{x}}[y].

Proof. By hypothesis, there is a non unit R € K[x,y] that divides P and @ in
K[x,y]. Since P is monic in y, then R(0,y) # 0, so R equals a unit times a monic
polynomial by Weierstrass preparation for formal power series. By replacing R by
this monic polynomial we may assume that R is monic in y. So we have RS = Q
where S € K[x][y] is monic in y. We write

d+e

d e
R=> ri(x)y', S=> si(x)y’ andQ=> gx)y"
1=0 1=0 =0

The equality RS = @ is equivalent to the system of equations
min{¢,d}
Z re(X)se—k(x) —qe(x) =0 for £=0,...,d+e.
k=max{0,l—e}
By Artin approximation Theorem [2.10] for any ¢ € N, this system of equations has
a solution (r}(x), s}(x)) € K{x}}****? and that coincide with (r;(x), s;(x)) up to
(x)¢. We set R'(x,y) = Z?:o 7 (x)y’. Since K{{x}} is a UFD by Proposition
@ has finitely many monic factors of degree d in y that we denote by Ry, ..., Rs.
Let us choose ¢ € N large enough to insure that R; — R; ¢ (x)¢ when ¢ # j. Since
R’ equals one of the R;, necessarily R’ = R. This proves that R € K{{x}}[y], so P
has a temperate monic factor. ([

3. EXAMPLES OF W-TEMPERATE FAMILIES

3.1. Algebraic power series. When K is a field, we denote by K(z1,...,z,) the
subring of K[z1,...,x,] of formal power series that are algebraic over K[x1, ..., x,].
We have the following proposition:

Proposition 3.1. Let K be an uncountable algebraically closed field of characteristic
zero. The family of algebraic power series rings (K{x1,...,xn))n is a minimal W-
temperate family, that is, it is contained in every other W-temperate family.

Proof. Let (K{{z1,...,2,}})n be a arbitrary W-temperate family. Since K{{x}} is
a Henselian local ring containing K[x](x), and since K(x) is the Henselization of
K[x](x), we have K(x) C K{{x}} by the universal property of the Henselization.

Next, let us prove that (K{x1,...,x,)), is a W-temperate family. The first four
axioms of Definition [2:1] are classical, while the fifth axiom has been proved by Lafon
in [La65], see also [Rol8b]. So, let us check that Definition is verified. Once
again, axiom [i)|is straightforward, and we consider:

Axiom of Definition We prove the contrapositive of the axiom, that is,
let F' € K[x] be such that

W :={ e K| F(x', \z) € K{(x)}
is uncountable and let us prove that F' € K(x'). Let us denote by K¢ the algebraic
closure of the field extension of Q generated by the coefficients of F. Since F' has

a countable number of coefficients, Ky is a countable field. Let A € W ~ Koy; in
particular A is transcendental over K. By assumption on W, we have

(2) ao(X')VF(x', Az1)? + ay (X )F(x, Ae) 4+ - Fag(x) =0
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where the a;(x’) € K[x/]. Let us denote by (a) the vector whose entries are the
coefficients of the a;(x’). Then (_2)) is satisfied if and only if (a) satisfies a (countable)
system of linear equations (S) whose coefficients are in Ko(A) (determined by the
vanishing of the coefficients of each monomial x'* for o € N*=1). And (S) is
equivalent to a finite system of linear equations (S’) with coefficients in Ky(X). And
this system has a nonzero solution in I if and only if it has a nonzero solution in
Ko(X), and this solution yields non trivial polynomials @;(x’) € Ko(\)[x'] such that

Go(xX)F (X', Axq) 4+ a1 (X)) F(x', Ax) T 4 -+ aa(x) = 0.
By multiplying by some polynomial in Ky[A] we may assume that the a;(x’) belong
to Ko[x'][A], thus we write a; = @;(x’,\). By dividing by a large enough power of
n — AT1, we may assume that one of them is not divisible by z,, — Azy. Therefore
not all the @;(x’, z,/x1) are zero, and

ao(x', &y /21 F (X', 2 J21) ¥ ar (X, 20 210 ) F (X, 0 f21) T 4 Fag(X 20 f21) = 0,
whence F'(x) € K(x). This proves the result.

Axiom of Definition We follow the notation of axiom For each
pr (2, z), we consider its Euclidean division by the minimal polynomial I of ~:

pr(w2,2) = D(22, 2) - qr(@2, 2) + re(z2, 2)
where deg,(ry) < d = deg,(I'). By Lemma there is a € N such that
deg,, (1% (w2, 2)) < ak for every k.
Note that pg (a2, (z2)) = ri(x2,v (z2)) for every root v'(x3) of I, so we may
consider the auxiliary function:

d—1

Q(z1, 22,2 Zfﬂﬁk (x2,2) = qu(x)zk
keN k=0

where ¢;(x) € Kzz][z1], and note that P(x,7'(z2)) = Q(x,7'(x2)) for every

root 7'(x2) of I'. Since deg,, (rx(z2,2)) < ak for every k, we may write qx(x) =

Qr(1, 2129, ..., 212%) for some formal power series qp(z1,vy1,..-,%.) € K[x1,y].

Now, there exist formal power series g;, for i =1, ..., a, and k such that:

7

qu z1,y)z +Z = 212)3i (%, y,1,2) + (2 = 1) k(x, ¥, 1, 2).

By the nested approximation Theorem for linear equations (see [CPR19, Theorem
3.1]) this equation has a non trivial nested algebraic solution

(ij(mh y)aﬁi(x> Yy, t7 Z))7 k(X, Yy, t7 Z)) € K:<x1a Y>d X IC<X7 Yy, t7 Z>a+1'
In particular Q := Go(w1, 120, ..., 2128) + - + Qu_1(71, 2120, . .., 7128) 2971 is an

algebraic power series satisfiying

Qx,7(2)) = Q(x,7(x2)).

Moreover we have Q = Y keN %7, (29, 2) where the 7 (z2,2) € Kl[wa,z] with
deg,(7%) < d — 1 and deg,,(7:) < ak. So, since for every k, ri(z2,v(x2)) =
Tx(z2,v(22)), we have Ty, = ry, since the degree of the minimal polynomial of v(x5)
over K[zz] is d. In particular we have

P(x,7(x2)) = Q(x,7(x2)) = Q(x,7 (x2)) € K{w1,x2)
for every root 7/(z3) of . This ends the proof. a
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Lemma 3.2. Let I'(x,z) € K[x, 2] be a monic polynomial in z of degree e. Let
p(x, z) € K[x, z] with deg,(p) < d, where d > e —1. Consider the division of p by I':

p(x,2) = T(x, 2)q(x, 2) + (%, 2)
with deg, (1) < e. Then deg,(r) < deg,(p) + (d — e + 1) deg, (T).

Proof. The proof is made by induction on d > e—1. If d = e — 1, it is clear. Assume
that the result is proved for polynomials of degree d — 1 where d > e. We can write

p(x,2) = T(x,7) X be(x) +g(x, z)

where p.(x) is the coefficient of z¢ in p(x, z), and deg,(p) < deg,(b). Therefore
deg,(p) < degy(p) + degy(T"). Since p and p have the same remainder r by the
division by I'(x, z), we apply the inductive assumption to see that

degy (r) < degy(p) + (d — €) degy(T') < degy(p) + (d — e + 1) degy (I'),
finishing the proof. (]

3.2. Convergent complex power series. In our previous work [BCR21], we gave
a proof of Gabrielov’s rank Theorem for the family of rings of complex convergent
power series (C{x1,...,2p})n. In fact this family is also a W-temperate family.
Indeed every property of Definition is classical. Property [i)| and [ii)| of Definition
are well-known; they are respectively given in [BCR21] Lemma 2.6] and [AMT70,
p. 31]. Finally property has been essentially proven at the end of the proof
of [BCR21] Theorem 5.18] and is based on [BCR21I Lemma 5.36]. We now recall
the idea of the proof, starting by the statement of the later Lemma:

Lemma 3.3 (|[BCR21, Lemma 5.36]). Let C C C™ be an irreducible algebraic curve,
and Dy, Do be two compact subsets of C, such that the interior of D1 is nonempty.
Then

3IM > 0,YP € Clz1,...,2n], ||Pllp, < M¥9D)||P|p,,

where ||P||p denotes max |P(z)].
z€D

We now follow the notation of axiom Denote by I' € K[t, z] the minimal
polynomial of v and let 7/ € K[t] be a conjugate root; note that v and ~" € K{{t}}
since they are algebraic. Consider the curve C C K7, given by T'[t, z] = 0, and let
7 : K7, — K be the projection 7(t,z) = t. Since v and 7' € K{{t}}, there exists
a compact disc Dy C Ky centered at the origin such that, v and ' are analytic
function for ¢ € Dy. Denote by D and D’ C C the graphs of v and +' over D
respectively. Now, recall that P(x,y(z2)) € K{{z1,x2}}, where:

P(x,z) = Z iy (2, 2)
keN

and pg(z2,z) are polynomials such that deg,, (pr) < ak for some a € N. In
particular this implies that there exists A and B > 0 such that:

lpk (22, 7(22)) | Dy = [Ipr(22,2) |0 < AB* Kl VkeN
so that, by Lemma we conclude that:
Ipr(x2,7 (@2)) Dy = [Pr(2, 2) D < M**||pi (@2, 2) [0 < A(M*B)* k!, Vk €N
which implies that P(x,7/(x2)) € K{{z1,22}} as we wanted to prove.
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3.3. Eisenstein power series. Let O be a UFD, and let I be an algebraic closure
of its fraction field. The ring of Eisenstein series over O is the filtered limit of rings:

U U Orlz, .- -, zn][c]

cek feO~{0}

where Oy denotes the localization of O with respect to the multiplicative family

L2

Remark 3.4. In our proofs of Theorems and [I.4] we will use of Eisenstein
power series in the proof of Lemma [5.1§ below, in the following way. Given a
closed polydisc D C C"™, denote by O(D) the ring of analytic functions defined in a
neighborhood of D, and note that it is an UFD by [Da74]. We then consider the
Eisenstein power series given by O = O(D).

The main result of this subsection is the following:

Proposition 3.5. If O is a UFD containing an uncountable characteristic zero
field k, the ring of Eisenstein series is a W-temperate family over K.

Proof. Axioms of Definition are easily verified.

Axiom [v)| of Definition consider F' and G € O¢[x][¢] as in the statement of
Axiom We have F(0,z,,) = z¢u(z,). If we multiply f by u(0), we may assume
that u(zy) is a unit in O¢[c][z,]. Let L be the fraction field of O[¢]. By the
Weierstrass division theorem for power series in L[x], G = QF + R where Q € L[x]
and R € L[x'][x,] and deg, (R) < d. We claim that the coefficients of ) and R are

also in O[c]. Indeed, fix the following order on the monomials: We have x* < x” if
(a1+' : '+an71+(d+1)ana A1, ., an) <lex (51+ : +5n71+(d+1)5n7ﬂ17 CIEIE 7ﬁn)

where <j¢x denotes the lexicographic order. In particular the nonzero monomial of
least order in the expansion of F' is Cz& where C is a unit in Oy[c]. For a series
H € L[x] we denote by in(H) the monomial of least weight in the expansion of H.
We now consider an inductive way to construct the unique coefficients Q and
R. We start by setting G = G, Q©® = 0 and R©® = 0. Fix k£ > 0, and
assume that Q¥ and R have been constructed for every ¢ < k in such a way
that G¥) = G — FQY — RY satisfies ord(Gyy1) = ord(Gy). We consider the two
following cases:
i) If in(G®) is divisible by z¢, we set R := R*) and Q-+ .= Q) 4
in(G(k))/in(F)~
i) If in(G®)) is not divisible by z¢, we set R**tD .= R®) 4+ in(G*) and
QU+ .= Q).

By the formal Weierstrass division Theorem, this process converges as G*) —; 0,
QW™ — @ and R*®) — R when k — co. But we see that we do not need to
introduce elements of L that does not belong to O[c¢] because the coefficient of
initial term of F' is a unit in Of[c|. This proves the claim.

Axiom [i)| of Definition This property is easily verified.

Axiom of Definition The property follows from the following Lemma,
which is stronger version of the axiom valid for Eisenstein power series:
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Lemma 3.6. In the conditions of the statement of Proposition[3.5, consider F €
K[x] and assume that F' ¢ K{{x}}. Then the following set is countable

W= {Aek| F(x, 1) € K{x'}}}.

Proof. We start by a general claim. Let P(x1,x2) € O[z1,z2] be a homogeneous
polynomial. Write

d
d—k_k
P:g pPrT] Ty,
k=0

so that P(z1,\x1) = (Zk pk)\k) x¢. Let g € O, g # 0; we claim that if ged(py, k =
0,...,d) =1, then ged (Zk pk)\k7g) # 1 for at most finitely many A € k. Indeed,
assume that ged (Zk pk)\k,g) # 1 for infinitely many A € k. Since g has finitely
many factors, this implies that ¢ has an irreducible factor h such that, for infinitely
many A\ € k, h divides ), peAF. Hence the polynomial Q(T) := kaka €
Frac(o/(h))[T] has infinitely many roots in k, which is possible only if h divides
all the py since Frac((')/(h)) is an infinite field (it is a field containing k). This
contradicts the hypothesis, proving the Claim.

Now, we prove the contrapositive of the Lemma, that is, consider an element
F € K[x] such that

W :={Xek| F(x', \z1) € C{x'}}}

is uncountable, and let us prove that F' € K{{x}}. Let L be the fraction field of
O. Since F has countably many coefficients, the field extension of L. generated by
the coefficients of F' is a L-vector space of countable dimension. Let (¢x)xen be a
LL-basis of this vector space, so

F(X) = Z Cka(X)
keN
where the Fj(x) are in L[x] and, for each o € N”, the coefficient of x is zero in
all but finitely many Fj(x). Moreover, we can write

P a,d(21, 0 a n_
Fx)= > (Z’“’ b )>ww

aeNn—2 \deN 9k,a,d
where the Py o 4 € O[21,z,] are homogeneous polynomials of degree d, and g o 4 is
coprime with the ged of the coefficients of Py 4. Now ged(Pr.o,a(1, ), gkad) =1
for A € Ej,q,q where Ej, o g C W is cofinite by the Claim. Thus the complement
of the set E := Nk q,aFka,q in k is at most countable. Therefore ENW # 0
if k is uncountable. Hence, by choosing A € E N W, there is f € O such that
Fi(x',Ax1) € Of[x'] for every k. Then we see that for every k, a and d, gi,aq
divides a power of f, whence F(x) € Of[x]. O

Axiom of Definition The proof of this result is based on the following
Galois-type result whose proof we postpone to §§43.3.1

Theorem 3.7. Let A be a UFD, L be its fraction field and ¢ be in an algebraic
closure of I and be separable over L. Let T in Alt, z| be irreducible. Assume that T
splits as a polynomial with coefficients in A[c|[t] and let the v;(t) € Alc][t] denote
the roots of T'. Then there is f € A such that, for every Q € L[t, z]:

Qt,m) € Al[t] = Q(t,72) € Ay[e][t]-
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We now follow the notation of axiom By the definition of Eisenstein power
series and the assumption, we know that P(x,y(z2)) € Oglc][z1, z2] for some g € O
and some ¢ € K; note that ¢ is separable over K since K is of characteristic zero.
Moreover, by assumption:

P(x,z) = Zx’fpk(acg,z)
keN
where py (22, z) are polynomials such that deg, is bounded by a liner function in k.
Since P(x,v(x2)) € Oglc][x1, 2], we conclude that pi(z2,v(z2)) € Oglc][z2]. Let
~' be a conjugate root of v. By Theorem applied to A = Oy, there is f € O such
that, for every k € N, pi(22,7'(22)) € Of4lc][z2]. Thus P(x,7'(x2)) € Of4lcl[x],
proving that the axiom is verified. O

Remark 3.8. The following example shows that we really need f in the statement of
Theorem Let f € A irreducible and let T'(t, z) = 22 — (1 + ft). Soy1 = V1 + ft
and v9 = —/1 + ft. For Q = %(1 — 2), we have

Qn) = % (1-VITT7) € Al Q) = % (1+ VI 77) € Al ~ AT

3.3.1. Algebraic power series with coefficients in a UFD and proof of Theorem [3.7
In this subsubsection, we provide a proof of Theorem [3.7 and we collect results
concerning algebraic power series which are of independent interest. We start with
a simple Lemma:

Lemma 3.9. Let T'(t,2) € A[t, z] be a polynomial with coefficients in an integral
domain A. Let us write T = ag(t)z? + - -+ + aq(t). Assume that T'(t,z) has a root in
Alt] of degree D. Then D < max;{deg,(a;(t))}.

Proof. After changing the indices we may assume that ag(t) # 0. Let F(t) € A[t]
with deg,(F(t)) = D and assume that D > max;{deg,(a;(t))}. Then for ¢ > 0:

ey (1) (1)) < mac{degy (a;(1))} + (d — )D) < dD < deg (ao () F(1").
Therefore T'(¢, F(t)) # 0. d

The next Lemma shows that the coefficients of an algebraic infinite series over
an UFD satisfies strong relations:

Lemma 3.10. Let A be a UFD, ¢ in an algebraic closure of Frac(A) be finite and
separable over A. Let P be a representative family of primes of A (i.e. each principal
prime ideal of A is generated by a unique element of P) and F(t) € A[c][t] ~ Alc, ]
be algebraic over Alt]. Then the following set is finite

{geP[F(t) e Ale,t] + (9) A[e][t]} -

Proof. We start by showing that we can reduce the Lemma to the case that F(t) €
Aft] ~ Alt], that is, F' is independent of ¢. Indeed let e denote the degree of ¢ over
A. Then F(t) can be written in a unique way as

F(t) = Fo(t)+ Fy(t)e+ -+ Fo_q (t)c* !

where the F;(t) belong to A[t]. We denote by ¢a, ..., ¢, the distinct conjugates of
¢ over A. The power series FU)(t) = Fyo(t) + Fy(t)c; + -+ + Fe_l(t)c;_1 for j =2,
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.., e are the conjugates of F(t) over A[t], therefore they are also algebraic over
Alt]. We have

F(t) 1 ¢ ¢& oo ot Fo(t)
F@)(¢) 1 ¢ & - &t Fi(t)
F)(t) 1 oc & o & |Fea(t)

The Vandermonde matrix is invertible, its entries are algebraic over A, thus the
entries of its inverse are algebraic over A. Therefore the F;(t) € A[t] are algebraic
over Aft]. Thus, it is enough to prove the lemma for the F;(t); we may therefore
assume that F(t) € A[t].

Write F(t) = Y, oy Fit” with Fi, € A for every k. Let g € A and N € N*. We
have that F(t) is equal to a polynomial of degree < N in ¢ modulo gA[t] if and
only if

Vk > N, Fy€(g).

Therefore for distinct g1, ..., gs € P and because A is a UFD, F(t) is equal to a
polynomial of degree < N in t modulo every g¢; A[t] if and only if

Vk >N, Fi € (91 -9s)

Since F'(t) ¢ A[t], we conclude that there does not exist an infinite subset Gy C
P such that for every g € Gy, F(t) is equal to a polynomial of degree < N
in ¢ modulo gA[¢]. In particular, if we assume by contradiction that the set
{geP|F(t) € Alt] + (9)A[t]} is not finite, then there exists a sequence (g, ) of
distinct primes in P, such that F(t) is equal to a polynomial of degree N,, modulo
gnA[[t] where the sequence (N,,), is increasing and tends to infinity. In what follows,
we show that the existence of this sequence would contradict Lemma [3.9

Indeed, since F(t) is algebraic, we may consider I'(t,2) := ag(t)2? + - - -+ aq(t) €
Alt, z] a polynomial such that I'(¢, F(t)) = 0 and ag(t) # 0. Denote by F,(t) (resp.
I (t,2)) the image of F(t) in A/(gn)[t] (resp. of I'(t,2) in A/(gn)t, z]). We have
deg,(F,(t)) = N, and T',(t, F\,(t)) = 0. For n € N large enough we have that
T (t, 2) # 0 and deg, (T, (¢, 2)) = d, because any given a € A has finitely many
prime divisors. We conclude from Lemma that N,, < max;{deg,(a;(t))} for
every n sufficiently big, yielding a contradiction. O

Remark 3.11. Recall that, in general, an irreducible polynomial I'(z) with coeffi-
cients in a UFD may be reducible modulo infinitely many primes of A. One classical
example is given by I'(z) = 2% 4 1 that is irreducible over Z|[z] but reducible modulo
every prime number p. In contrast, Lemma [3.10] guarantees that for an irreducible
polynomial T'(¢, z) € A[t, 2], the set

{g € P | I'(t, 2) is reducible modulo (g)}
is finite, provided that I' has a root in A[c][¢t] ~ A[c][t].

Before proving Theorem recall that given a UFD A and f € A, f # 0, the
the localization Ay is also a UFD; we will use this observation implicitly below. We
recall that this claim follows from the fact that a UFD is a Krull domain in which
every prime ideal of height 1 is principal. Since A is a UFD, it is a Krull domain so
Ay is also a Krull domain. Because the localization morphism A — A induces an
isomorphism between the primes of Ay and the primes of A avoiding f, every prime
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ideal of Ay of height 1 is necessarily principal. We are now ready to prove our main
result about algebraic power series with coefficients in a UFD:

Proof of Theorem[3.7. We start by showing that we may suppose that I' is monic.
We write

I'=poz’ +p1z" +-- +pa
We have pi~'T'(t,2) = R(t, poz) where

R(t,z) = T+ py T + popoT® % + -+ + papf .

We have R(t,poy;) = 0 for i = 1, 2. If we set 7, = poy;, and we prove the statement
of the Theorem for the «; then we also deduce the statement of the Theorem for the
i, since Q(t, py*2) € L[t, 2] if and only if Q € L]t, z]; therefore, we suppose that T'
is monic in z.

Let us first treat the case that ¢ € . By replacing A by A, for some well chosen
g € A, we can assume that ¢ € A. We claim that there exists f € A such that

(3) VP € Alt, 2],Vg € A, P(t,m) € gA[t] = P(t,72) € gAs[t].

Note that the Theorem then follows from the Claim. Indeed, if @ € L[¢, 2] then
there exists g € A such that P = g@Q € A[t,z]. In particular, Q(¢,71(t)) € A[t]
implies that P(¢,71(t)) € gA[t], so the Claim implies that P(t,z) € gA[t] and,
therefore, @ € A;[t]. In order to prove the Claim, we start by noting that, since A
is a UFD, it is enough to prove the Claim for every irreducible element g of A. By
replacing P by its remainder under its Euclidean division by I', furthermore, we
may assume that deg,(P) < d. So let’s consider the set

G:={g € Aprime | 3P, P(t,11) € gA[t], P(t,2) ¢ gAlt, z] and deg,(P) < d},

and let’s prove that it is finite (up to multiplication by a unit). Indeed, note that if
P(t,y1) € gA[t] and P(t,z) ¢ gA[t, z], we have that T is not irreducible A/glt, z],

where R denote the image of a polynomial R € A[t][z] in A/g[t][z]. Thus

II =7 € A/glt. 2]
ic€E,
for some E, C {1,...,d}. For E C {1,...,d}, we set I'p := [[,cp(2 — 7).

Now assume by contradiction that G is infinite. In this case, there is £ C
{1,...,d} such that Ty € A/glt, 2] for infinitely many primes g. But the coefficients
of ' are in A[t], and at least one of them is not in A[t] because T is irreducible in
Alt, z]. Since the ~; are algebraic over A[t], the coefficients of Qg are also algebraic
over A[t]. We therefore obtain a contradiction with Lemma and conclude that
G is finite. We may therefore define

f=1]s
9geg

Note that the Claim is verified with this choice of f for every irreducible g by
construction. Thus the Claim is proved, finishing the case that ¢ € L.

Now we assume that ¢ ¢ LL. Since ¢ is algebraic, we may write agc® + ajc™! +
-+ a. = 0 where a; € A for every i = 0,...,e. By replacing A by A,, we may
assume that ¢ is finite over A (of degree e). For every i we can write in a unique way

(4) Vi = %0+ ¥iaC+ -+ Yieo1¢!
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where the ; ; belong to A[t] and are algebraic over A[t]. For @ € L[¢, z] we can
expand in a unique way

e—1
Q(t, 2o+ z1¢+ -+ Ze_lteil) = ZQk(t, 20y Ze_l)tk
k=0

where the Qj, belong to L[t, zp, . . ., ze—1]. For i # 1, v; is obtained from ~y; expanded
as in by replacing the i ; by its conjugates ; ;. Following the same logic as of
the first case, we are reduced to proving the claim that there is f € A such that for
every P € Alt, z0,...,2.—1] and every g € A,

P(t, 71,00 -57,e-1) € gA[t] = P(t,72,0,.-.,72,e-1) € gA;[t].

By the primitive element Theorem (that we can apply since L[t] — L(¢) is
separable), we have that

e—1
L(t,%i,05- -5 Vie—1) = L (t, Z )\k')/i.,k)
k=0

for every (Ag) in a Zariski open dense subset V; of L¢. Therefore we may choose
(Ak)k € N, V; and assume that for every i =1, ..., d

e—1
L(t,¥i,0,- - Vie—1) = L (t, Z /\k’)’i,k> .
k=0

Thus there is I'; , € L(¢)[U] such that

e—1
(5) Yik = ik (t, > Ak%,k) -
k=0

By replacing the «; j, by their conjugates v; j in we see that we can choose the
I'; . to be independent of i. From now we denote I'; ;, by I'y;, and Zz;é AkYik by
d;. By the claim made in the first case where we assumed that ¢ € L, there exists
f € A such that

VP € Alt, z|,Yg € A, P'(t,61) € gA[t] = P'(t,02) € gAs[t].
Now, let P € Alt, zo,...,2.—1] and g € A such that

P(t, 71,05, 71,e-1) € gA¢[t].

Let D(t) € A[t] be a common denominator of the I'y, that is, a polynomial such
that D(t)I'y € At, U] for every k. Then there is an integer ¢, depending on P, such
that

R(t,z) := D(t)‘P(t,To(t,2),...,Te_1(t, 2)) € A[t, 2].

By assumption R(t,01) € gA[t], whence R(t,d2) € gAf[t]. We can write D(t) =
fotd x u(t) where fo € A and u(t) € Ay, [t] satisfies u(0) = 1. This shows that
P(t,72,0,--,72,e—1) € gAsy, [t] proving the Claim, and the Theorem is proven. 0O
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4. PROOF OF W-TEMPERATE RANK THEOREM

4.1. Reduction of Theorem to Theorem We start by proving by
contradiction that the following result implies Theorem

Theorem 4.1. Let ¢ : K{x,y}} — K{{u}} be a morphism of rings of W-temperate
power series such that

i) The kernel of ¢ is generated by one Weierstrass polynomial P € K[x][y].
ii) r(p) =17 () = n.
Then P € K{x}}[y].

Reduction of Theorem[1.1] to Theorem[].1 We follow closely [BCR21, page 1347].
Assume that Theorem does not hold, that is, there exists a morphism of rings
of W-temperate power series ¢ : K{{x}} — K{{u}}, where x = (z1,...,2,) and
u = (u,...,um), such that r(¢) = 17(p) > 1, but 17 (¢) < 17 (p). Consider
the induced injective morphism K{{X}}/Ker(ap) — K{{u}} and, by the Noether
normalization given in Proposition there exists a finite injective morphism
T: K {x}} — K{{X}}/Ker(go)~ By Proposition we can replace ¢ by po T, that
is, we may assume that ¢ is injective.

Next, since 17 (¢) < 17 (p) = m, we know that Ker() # (0). Now, suppose
that Ker(@) is not principal or, equivalently, that its height is at least 2. By the
normalization theorem for formal power series, after a linear change of coordinates,
the canonical morphism

Klx]
K ey Ty — =
el = )
is finite and injective. Thus, the ideal p := Ker(®) N K[z1,. .., Zr()4+1] is a nonzero
height one prime ideal. Because K[z, ... 7xr(¢)+1]] is a unique factorization domain,

p is a principal ideal (see [Mat89, Theorem 20.1] for example). After a linear change
of coordinates, we may assume that p is generated by a Weierstrass polynomial
P e IC[[.%‘l, . ,xr(w)]][mr(w)+1].

Now, denote by ¢ the restriction of ¢ to K{{z1,...,2(s)41}}. By definition
P is a generator of Ker(®'), thus 1’ (') = 1(p) + 1 -1 = r(¢) = 17 (p). Since
¢ is injective, ¢’ is injective and P does not belong to K{{x1, ..., %) }}HTr(p)+1]-
Moreover, since 7 is finite, we can use again Proposition [2.7] to see that

(') = 1(¢) = 1(@) = 1(yp).

Therefore we have r(¢’) =17 (¢’) = m — 1, contradicting Theorem [4.1 O

4.2. Reduction to the low-dimensional case. We now prove by contradiction
that the following result implies Theorem

Theorem 4.2. Let ¢ : K{{z1,22,y}} — K{u1,u2}} be a morphism of rings of
W-temperate power series such that

i) p(x1) = u1 and p(x2) = uruz,

it) Ker(p) is generated by one Weierstrass polynomial P € K[x][y].
Then P € K{x}}[y].

Reduction of Theorem[{.1] to Theorem[.4 We follow closely [BCR21, 3rd Reduc-
tion]. Assume that there is a morphism ¢ satisfying the hypothesis of Theorem [4.1
but where P ¢ K{{x}}[y].
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(1) First, after a linear change of coordinates in u we may assume that
o(z1)(u1,0,...,0) # 0. Thus, the morphism o o ¢, where ¢ is given by

o(ur) =up and o(u;) = ugu; Vi >1

satisfies the hypotheses of Theorem and its kernel is generated by P, by Propo-
sition Thus we may assume that ¢(x1) = u§ x U(u) where U(u) is a unit. And
by replacing x; by ﬁxl we may further assume that U(0) = 1.

(2) We define the morphism 7 by
7(z1) = 2§ and 7(z;) = x; Vi > 1.

Let V(u) € K[u] be a power series such that V(u)¢ = U(u). Such a power series
exists since U(0) = 1 and, by the Implicit Function Theorem cf. Proposition
V(u) € K{{u}}. We define the morphism 1 by

Y(z1) = w1V (u) and ¢ (z;) = p(z;) Vi > 1.

Then ¢ o7 = ¢ and P(z$,22,...,2pn,Yy) € Ker(@). Since P(x§,x2,...,%n,Yy) is
a Weierstrass polynomial in y, Ker(lz) is generated by a Weierstrass polynomial
Q@ that divides P. Thus P is the product of @@ with the distinct polynomials
Q(&x1,x2,...,Tn,y) where & runs over the e-th roots of unity. Therefore, if Q €
K{x}}y], P € K{{x}}[y] which contradicts the hypothesis. Thus, v satisfies the
hypothesis of Theorem but Ker(@) is generated by a Weierstrass polynomial
that is not in K{{x}}[y]. By Proposition we may replace ¢ by ¥ and assume
that ¢(x1) = x1 by composing ¢ by the inverse of the temperate automorphism
that sends uy onto ui V' (u).

(3) Now we have ¢(x1) = uy; and we perform “Gabrielov’s trick", cf. [BCR21]
Example 3.5]. We denote by ¢;(u) the image of x; by ¢. We consider the temperate
automorphism x defined by
x(z1) = z1 and x(z;) = x; — ¢i(21,0,...,0) Vi>1.
If we replace ¢ by ¢ o x we may assume that every nonzero monomial of ¢(x;)
is divisible by one of the w; for ¢ > 1. Then by replacing ¢ by ¢ o ¢, where o is
defined above, we may assume that ¢(z;) = u{’g;(u) where a; > 0, ¢;(0) = 0 and
9i(0,29,...,2,) # 0, for i > 1. Moreover, by composing with the morphism
T — xink#i o
for ¢ > 1, we may assume that a; = a is independent of ¢. Finally, by replacing x;

by 24t we may assume that ¢(z;) = ufT'. Composing ¢ with these morphisms

does not change the ranks, by Proposition
(4) Now we set, for A = (Aa,...,A,) € K" 71 {0}, hy =21 — Y1y Niwi. We have
p(hx) = uiga(u)
where gx(u) = u1 — Y i, Nigi(u) € K{{u}}. By the implicit function Theorem,
there exists a unique nonzero &y (ug, . .., u,) € K{{u}} such that £,(0) =0 and
a(Exn(zay ... Tn), oy ..oy Tp) = 0.

Let M (u) be a nonzero minor of the Jacobian matrix of ¢ that is of maximal rank.
Then assume that M (u) is divisible by hy(u) for every A € A, where A cannot be
written as a finite union of sets included in proper affine subsets of X"~!. Thus,
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because K[u] is a UFD, there is a finite number of subsets A, C K"~ k=1, ...,
N, whose union equals A, and such that for every A\, X € Ay, h) and hy/ are equal
up to multiplication by a unit. Thus, by the assumption on A, there is k& such that
Ay, contains n vectors of K", denoted by AV, ..., A(") such that the vectors
M@ — X1 are K-linearly independent. Therefore, there are units U;(u), for i = 2,
..., m, such that

uy — (9) - AD = Ui(u)(ug — (9) - AM) Vi=2,...,n

where (g) denote the vector whose entries are the g;(u). This implies that the
(9)-(A® = XM are divisible by hy ). But the A — A1) being K-linearly independent,
every g;(\) is divisible by hya), thus uy is divisible by hy@), which implies that
&\ = 0 contradicting the assumption. Therefore, there is a finite union of proper
affine subspaces of K"~1, denoted by A, such that M (u) is not divisible by h for
every A € K"~1 < A. In particular X"~ \ A is uncountable.

After a linear change of coordinates, we may assume that X x {0}"~2 is not
included in A, in particular (K x {0}"=2) N A is finite. For any (A,0,...,0) €
(K x {0}"72) . A the morphism

K21, 2]yl Klus, ..., un][y]
Va (z1 — Az2) - (u1 — Aga(u))

is of rank r(py) = n — 1. Then if n > 3, by Bertini’s Theorem [BCR21, Theorem
3.4], and by Definition (note that this is the only point of the paper where we
use Definition R.I|[ii)]), the polynomial P remains irreducible and not in K{{x}}[y] in

Klz1, ... xa]y]
(l‘l — )\.232)

~ ICHZL’Q, - ,xnﬂ [y}

when A belongs to W C K that is uncountable. Therefore we can choose (A,0,...,0) €
(W x{0}"2)~ A, and this allows us replace n by n—1 in Theorem By repeating
this process, we construct an example of a morphism ¢ with n = 2 satisfying Theo-
rem [4.2] (i) such that Ker(®) is generated by a Weierstrass polynomial that is not
K{{x}}]y]; note that we must stop the reduction at n = 2, because Bertini’s Theorem
does not hold for n < 3, cf. [BCR2I, Remark 3.6(3)]. Moreover, by repeating the
argument given in part (2) if necessary, we may assume that ¢(x1) = uq, and ¢(x2)
has the form u§g(u) with g(0) = 0 and ¢(0, uz) # 0.

By composing ¢ with the morphism o defined in (1), we can assume that
g(u) = wbU(u) for some unit U(u). Now let o/ be the morphism defined by
o' (u1) = ub and o’ (ug) = uyuy ™. Then, we have

o' o p(z1) = ub and o’ o p(x2) = (uyup)’ @IV (u)
for some unit V' (u). Therefore, as done in (2), we can assume that
p(z1) = ur and p(z2) = urus.

Hence, we have constructed a morphism ¢ that satisfies the hypothesis of Theorem
but Ker(p) is generated by Weierstrass polynomial in y that is not in K{{x}}[y],
contradicting Theorem [4.2] O

The rest of this section is devoted to the proof of Theorem given in §§4.7
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4.3. Newton-Puiseux-Eisenstein Theorem. In [BCR21 Section 5|, we pro-
vided a framework allowing us to obtain a good factorization of a polynomial in
C[x][y]. We recall here the main definitions and adapt the main results to the more
general context of polynomials in K[x][y].

Consider the ring of power series K[x] where x = (z1,...,2,) and denote by
K((x)) its field of fractions. We denote by v the (x)-adic valuation on K[x]. The
valuation v extends to K((x)) by defining v(f/g) = v(f) —v(g) for every f, g € K[x],

g # 0. Denote V,, the valuation ring of v in K((x)), and V, its completion with
respect to v. Let us now recall the notion of homogeneous element:

Definition 4.3 (Homogeneous elements). Let w = p/e € Qs¢. We say that
T € K[x, 2] is w-weighted homogeneous if T'(x§,- -, x&, 2P) is homogeneous.

A homogeneous element 7 is an element of an algebraic closure of K(x), satisfying
a relation of the form I'(x,~) = 0 for some w-weighted homogeneous polynomial
I'(x, z), where w € Qs¢. Furthermore, if I'(x, z) is monic in z, we say that v is an

integral homogeneous element. In this case, w is called the degree of ~.

Given an integral homogeneous element ~ of degree w, there exists an extension
of the valuation v, still denoted by v, to the field (x)[v], defined by

d—1
v (Z ak(x)'yk> = min{v(ay) + kw}.
k=0

where d is the degree of the field extension K(x) — K(x)[y]. We denote V,, - the
valuation ring of v in K(x)[y], and V,, 5 its completion with respect to v.

Definition 4.4 (Projective rings and temperate projective rings). Let h € K[x]
be a homogeneous polynomial. Denote by Py ((«)) the ring of elements A for which
there is kg € Z, «, 8 € N and ay(x) homogeneous polynomials in K[z] for k > ko
such that:

ar(X
A= hi&% where v(ay) — (ak + B)u(h) = k, Vk > ko
k>ko

We denote by Pp,[x] the subring of Pp,((x)) of elements A such that ko belongs to
Z>o, and we denote by P, {{x}} the subring of P, [x] of elements A such that

Z ar(x) € K{x}}.
k>ko

When + is an integral homogeneous element, we denote by Pp,[x,~] the subring of
Vi, whose elements £ are of the form:

d—1
£ = ZAk(x)'yk, where Ay, € Py((x)) and v(AL(x)y*) >0, k=0,...,d - 1.
k=0

Remark 4.5. Lemma below shows that if A € P,[x], the fact that A € Pp{{x}}
is independent of the presentation of A, that is, P,{{x}} is well-defined. This
observation greatly simplifies [BCR21) Prop 5.13], which relied in complex analysis.

The next two results have been proven (in greater generality) in [Rol7], but we
refer the reader to [BCR21] where the statement is given when I = C, but whose
proof remains valid in the case of a general characteristic zero field.
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Theorem 4.6 (Newton-Puiseux-Eisenstein, c¢f. [BCR2I, Th 5.8]). Let K be a
characteristic zero field and let P(x,y) € K[x][y] be a monic polynomial. There
exists an integral homogeneous element 7y, and a homogeneous polynomial h(x), such
that P(x,y) factors as a product of degree 1 monic polynomials in y with coefficients

in Ppx,7].
The following result is a convenient reformulation of Theorem

Corollary 4.7 (Newton-Puiseux-Eisenstein factorization, cf. [BCR21, Cor 5.9]).
Let K be a characteristic zero field and let P € K[x][y] be a monic polynomial.
Then, there is a homogenous polynomial h and integral homogenous elements y; ;,
such that P can be written as

(6) Pxy) =[[Q, and Qi=]]- &)
i=1 j=1
where

(i) the Q; € PL[x][y] are irreducible in V,[y],
(ii) for every i, there are A; 1(x) € Py, (%)), for 0 < k < k; such that

ki
&(x,7i5) = Y Aik(X)VE; € Pallx, 7]
k=0

(iit) for every i, the v; ; are distinct conjugates of an homogeneous element ~;,
that is, roots of its minimal polynomial T'; over K(x).

4.4. Blowings-up and the geometric setting. In what follows, we use algebraic-
geometry methods concerning blowings-up o : N’ — N, where N will stand for
some affine space over K (the precise meaning of this statement will be clarified
in this subsection). Nevertheless, and in contrast to usual algebraic and analytic
geometry, we do not have access ,as far as we know, to a theory of varieties and
sheaves valid for W-temperate families. We do not have the ambition to develop
such a general theory in here, but rather to introduce the minimal set of definitions
which are necessary for this work. In particular, we will greatly exploit the fact that
we only need to work over K{{x}}, where x = (1, x2) stands for two indeterminates,
in order to avoid a more technical discussion.

Let us start by fixing a set of indeterminate x = (x1,...,x,), and a W-temperate
ring {{x}}. In what follows, we will often need to change indeterminate:

Definition 4.8 (Temperate automorphism). Let ¢ be a -automorphism of the
ring of power series C[x]. We say that ¢ is temperate if p(KK{x}}) C K{x}}.

Lemma 4.9. A K-automorphism ¢ given by series p(x;) € K[x] is temperate if
and only if for every i we have p(z;) € K{{x}}. In this case ¢~ is also temperate.
In particular, when ¢ is temperate, we have p(K{{x}}) = K{x}}.

Proof. The condition is necessary by definition, and sufficient from the fact that
K{{x}} is stable by composition. Now ¢! is also temperate since K{{x}} satisfies
the implicit function Theorem, cf. Proposition [2.8}i)|

It follows directly from this lemma that any K-linear automorphism in x is
a temperate automorphism. We are ready to introduce the notion of temperate
coordinate systems:
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Definition 4.10 (Temperate coordinates). Let K{{x}} be a temperate ring. A
system of parameters X of the ring K[x] is said to be temperate if X is obtained
from x by a temperate K-automorphism. A system of parameters X of K[x] which
is not temperate will be called formal.

We will denote by O the intrinsic ring of temperate power series associated
to K{{x}} up to temperate automorphisms, that is, O denotes {{x}}, for some
temperate coordinate system x, and is isomorphic to K{{x}} for any temperate
coordinate system X.

We now specialize to the case that n = 2. Let K{{z1,z2}} be a temperate ring
and Ny = A% be the affine scheme associated to the complete local ring K[z1, x2].

We denote by Oy and @0 the rings of temperate and formal power series at 0. We
consider the formal blowing-up of the origin:

o (Nl,El) — (NQ,O)

where 071(0) = E is called the exceptional divisor. Given any closed point b € E, we
can localize o to b in order to obtain a morphism between local rings oy; : OO — Ob,
where Ob stands for the local ring of formal power series at b. Now, apart from a
K-linear change of indeterminacy in x (which is a temperate change of coordinates),
we may suppose that b is the origin of the z;-chart of the blowing-up, that is, there
exists a system of parameters v = (vy,v2) of Oy such that op  K[x] — K[v] is
given by
(.131, xz) — (Ul, ’U1U2).
We note that the ideal of E is the ideal generated by vp in this chart.

Definition 4.11. Following the above construction, we say that v = (v1,v2) is a
system of temperate coordinates at b. In particular o, induces a morphism:

op : K{x}} — K{{v}-

The next lemma shows that this definition is consistent with temperate changes
of coordinates, allowing us to write:

UZIOo—>Ob.

Lemma 4.12. Let X = (T1,Z2) be a different system of temperate coordinates at
0, that is, there exists a temperate authomorphism ¢ : K{x}} — K{{x}}. Suppose
that there exists a system of parameters v = (v1,02) of Oy such that:

(51, %2) — (’171, 61’172).
Then v is a system of temperate coordinates, that is, there exists a temperate
automorphism ¢ : K{v}} — K{v}}.
Proof. Let (1) = ¢1(21,22) and p(Z2) = @a(21, 22). From the assumption
pa2(v1, v1v2)
@1 (v1,v1v2)’
and from usual formal algebraic geometry, we know that defines an authomor-

phism of (55. Let us show that this automorphism is temperate. We consider the
Taylor expansion of ¢; and g9 in order to get:

(7) U1 = p1(v1,v102), Uy =

1(vi,v1v2) = vy (a1,1 + a12v2 +v1P1),  @2(v1,v102) = v1 (az,1 + az 202 + V1 P2)
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where the K-matrix A = [a; ;] is invertible and ®; and ®, are temperate functions
by Proposition Therefore:
5 = a1 + ag2v2 + v1 P2
? a1,1 + a1,2v2 + 019y

and we conclude that a; 1 # 0 and ag; = 0. The result is now immediate from the
implicit function Theorem, cf. Proposition O

In what follows, we will consider sequences of point blowings-up
(erFT) L> e & (NlaFl) L (N070) = (&Izc?())

and it will be convenient to fix notation. We set ¢ = 01 0 --- 0 0, and, for every
je{l,...,r}, Fj is a simple normal crossing divisor that can be decomposed as

_p | @ ()
Fi=FYUF?YU. . UF}

where F' j(k) is the strict transform of F j(f)l (when k < j) and F j(j ) is the exceptional

divisor of ;. Now, fixed a temperate ring O = K{{z1,z2}} at 0, the formal
morphism ¢ can be localized at every point b € F). in order to generate a morphism
between temperate rings, that is, there are system of parameters v = (v1,vs) of (5[,
such that o) : K{x}} — K{{v}} is well-defined and can be written o : Oy — Op.

Remark 4.13. If b € Fr(l) then, from usual combinatorial considerations about
blowings-up, we may further suppose that o : K{x}} — K{v}} is given by:

c c+1
(z1,m2) = (vivg,v1vy" )
for some natural number 0 < ¢ < r.

4.5. Blowings-up and Projective rings. We present in this subsection different
results about the behavior of projective series and temperate projective series under
blowing-up, which will be most useful in the sequel.

Definition 4.14. Let A € Py[x] and o : (N,, F.) — (N, 0) a sequence of point
blowings-up. We say that A extends at a point b € F,. if Ay := o (A) belongs to
@b. Furthermore, we say that A extends temperately if Ap € Oy, where we recall
that Oy stands for the ring of W-temperate functions at b.

The next Lemma is a generalization of [BCR21l Proposition 5.13 and Lemma
5.14] for W-temperate rings. Note that the proof given in [BCR21] relies in complex
analysis, cf. [BCR21l §§5.3], and does not adapt in a trivial way to W-temperate
rings, so we provide a new commutative algebra argument:

Lemma 4.15 (cf. [BCR21), Proposition 5.13 and Lemma 5.14]). Let A € Pp[x]
and let o : (N, F.) — (No,0) be a sequence of point blowings-up. Let b € FWY pe
such that A extends at b (that is the case for instance when b does not belong to the
strict transform of h = 0 or the in the intersection with F,«(j) for some j > 1). Then
A € Pp{{x}} if and only if Ay € Oy. In particular, Pr{{x}} N K[x] = L{x}}.

Proof. Let A € P,,[x] and fix a point b € Y. By definition and the local
expressions of blowings-up given in Remark we can write:

— a’k(x) o ok ak(].,l]g)
A= Z W’ and Ab = Z ('1)11)2) W

k>ko k>ko
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Denote by d the degree of h, and consider:
A=>"ap(x), and Ay, =op(A) = > (vyv5) DG, (1, 0y).
k>ko k>ko
Let us define the following auxiliary function:
B(w) = Y (wiw§)*ax(1,wz) € K[uw].
k>ko

Now, writing h(1,ve) = v5*g(ve), where g is a unit and m € N, we have:

Ap(v) = (0105) B0 o5, v)

B(w) = wy" g(w2)? Ag (wiwg(w2)*, wy).
Since being temperate is closed by division by a coordinate, ramification and local
blowing-down (see Proposition and Definition [2.2)), and A, € K[v] by
hypothesis, we conclude that

Ap(v) € K{{v}} = B(w) e K{{w}} = Au(v) € K{v}},

finishing the proof. (]

We conclude this subsection with a useful characterization of projective series
which are not formal power series:

Lemma 4.16. Let A € P,[x] \ K[x] and consider a point blowing-up o centered
at the origin. There exists a point b € o=1(0) such that Ay = o(A) is not a power

series, that is, oy (A) ¢ Op.
Proof. Let A € Pp[x] ~\ K[x]; from definition 4.4 we may write
ak(x)

A =

> br (x)
where the a and b; are homogeneous polynomials in K[x] such that deg(ax) —
deg(br) = k and ged(ag, br) = 1. By hypothesis, there exists ko such that by, (x)
is not a constant polynomial. Apart from a K-linear change of coordinates in x,

we may furthermore suppose that by, (1,0) = 0. It follows that after the local
blowing-up o : (z1,22) — (vs, v1v2) We obtain

>t
1bk 1 1)2

keN

this expression has a pole in the term kg, and we conclude easily. ([l

4.6. Extension along the exceptional divisor. We introduce the notion of
Laurent series with support in a strongly convex cone, and we refer the reader to
[ATI09] for extra details.

Definition 4.17. Let w € (R5o)™ be a vector whose coordinates are Q-linearly
independent. This vector defines a total order on the set of monomials by setting

x*<xPifa-w<p-w.

Let ¥ be a strongly rational cone. We say that X is w-positive if s -w > 0 for every
s € ¥\ {0}; under this hypothesis, ¥ N Z"™ and ¥ N %Z” for ¢ € N* are well-ordered
for <, and (R>)“X because w € (Rsg)™.
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Assume that ¥ is w-positive strongly rational cone. We denote by K[X] (resp.
K[Zn éZ"]] for ¢ € N*) the set of Laurent series with support in ¥ N Z"™ (resp.
with support in 3N 1Z"). Since XN Z" and ¥ N Z" are well-ordered for <, they
are rings containing respectively KC[x] and K[x'/9]. These rings are commutative
integral domains, and we denote by (X)) and (XN %Z" ) their respective fraction
fields.

The next result is a generalization of [BCR21] Theorem 5.16] for W-temperate
rings. Once again, the proof given in [BCR21] relies in complex analysis, cf. [BCR21
§85.4], so we can not adapt it in a trivial way to W-temperate ring. Instead, we
provide a new commutative algebra argument, which greatly simplifies the proof:

Theorem 4.18 (cf. [BCR2I) Theorem 5.16]). Let P € K[x][y] be a monic reduced
polynomial, and let Q be an irreducible factor of P in some P, [x][y] for a convenient
h € K[x] as in Corollary[{.%} Let o : (N,, F,) — (No,0) be a sequence of point
blowings-up such that c*(Ap) is everywhere monomial, that is, at any point b there
exist (non necessarily temperate) coordinates Vv such that

o*(Ap) =V* X unit.
Then Q extends at every point b’ € Fr(l).

Proof. Let b € FY. From Remark , there are coordinates Vv = (v1, U2) centered
at b’ and ¢ € N such that

(21, 22) = (0105, 0105 1).

Let A be a coefficient of ). By definition and by writing h(1,72) = 05g(v2)
where g is a unit and m € N, we have

ak ) —mp Ak;/\k(c ma) ak(l UQ)
®) A=) grgeRss Sothat A =%"") 7] (L, 5) k5
keN keN

Note that the series Uy" P Ay has support in a translation of the strongly convex cone
¥ generated by the vectors (0, 1) and (1, min{0, c —ma}), thus Ay belongs to K(X)).
We conclude that Qp = o (Q) is a factor of Py, = o(P) in K(X))[y].

Now, by the Abhyankar-Jung Theorem for formal power series, the roots of Py

can be written as Puiseux power series in K[[vl/q Al/q]] C K[EZnN 1Zz]] for some
q € N*. Since K(X N 1Z”)) is a field, we conclude that Qp splits in IC((E N ;Z"))[ ]

and its roots are in Kﬂvl/q ﬁé/q]]. By (8), we conclude that Q, € K[V]. O

We are ready to prove the main result of this subsection, which generalizes
[BCR21), Theorem 5.18] for W-temperate rings. We highlight that this is the only
point where Definition intervenes:

Theorem 4.19 (cf. [BCR21, Theorem 5.18]). Let P € K[xz1,x2][y] be a monic
reduced polynomial, and h be a homogeneous polynomial for which Theorem[].0 is
satisfied. Let o : (N, F.) — (No,0) be a sequence of point blowings-up. Suppose:
o At every point b € Fr(l), the pulled-back discriminant of;(Ap) is monomial;
e There exists by € Fr(l) such that Py, = of (P) admits a factor in Oy, .
Then P admits a non-constant factor Q € Pr{{x}}[y], such that either P/Q s
constant, or o, (P/Q) admits no non-constant temperate factor for all b € Y.
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Proof. Consider the factorization P = []’_, Q; given in Corollary where the Q;
belong to some Pp,[x][y]. It follows from Remark that there exists temperate
coordinates v = (v1,v2) centered at bg such that oy is locally given by (z1,z2) —

(v105, v105Th), so that we get:
S
Py, = HUZO(QO
i=1

where the of (Q;) € K[v][y] have formal power series coefficients according to
Theorem Moreover, since K[x] is a UFD, for some ig, o (Q;,) has a common
factor with a polynomial in K{{v}}[y]. Therefore, by Corollary a4, (Qiy) has a
non trivial divisor R € K{v}}[y] that is monic in y.

We claim that o (Q;,) has its coefficients in K{{v}}. Note that the Theorem
immediately follows from the Claim applied to every polynomial @); having a
temperate factor at some point of Fﬁl). Let us prove the Claim. For simplicity
we denote Q;, by @, and o} (Qi,) by Qp,- Now, we may suppose without loss
of generality that the discriminant of P is monomial in respect to the temperate
coordinate system (v, v2). Indeed, up to making a blowing-up with center by, we
may suppose that the discriminant of P is monomial in respect to the temperate
coordinate system (v1, v2) by considering, for example, the point ¢y = Ffi)l N FT(TTI);
we note that if we show that o7 (Q) is W-temperate, then so is Qp, by Def.

At the one hand, we may apply Abhyankhar-Jung Theorem for formal power series
in order to show that Qp, splits in K[v/4] for some ¢ € N, that is Qp, = [[(y — ;)
where 9, € K[v!/9]. Furthermore, we may apply the temperate Abhyankhar-Jung
Theorem @ to the temperate factor of Qp,, in order to conclude that one of these
roots is temperate, say, 11 € K{{v!/9}}. At the other hand, by Theorem the
roots of @ belong to a ring P, [x,71], where 7 is an integral homogeneous element.
Let I'(x, z) € K[x, 2] be the irreducible w-weighted homogeneous polynomial having
~v1 as a root (see Definition and that is monic in z. By Corollary the
roots of @ are given by £(x,7) where v runs over the roots of I'(x, z), that is,
Q = [I(y — £&(x,7")) where the product is taken over every root 7 of I'. In what
follows, we perform a detailed study on how roots of @ in Pp[x,v1][y] transform by
the blowing-up in order to compare them to the temperate root of Qp, in K[v/4].

We start by describing how the roots v’ of I' transform by o. Consider

d
I(x,z) = 2% 4+ Z fi(x)zd*i
i=1

where the f;(x) are homogeneous polynomials of degree wi. Since K is algebraically
closed, we may suppose that w > 0 (otherwise @) is a degree one polynomial, and the
Claim is trivial), that is, T'(x, z) is a Weierstrass polynomial in z. We write w = p/e
with ged(p,e) = 1, and we note that f; = 0 if e does not divide i. Furthermore,
because T is irreducible, fg # 0, hence, e divides d. We have

d
T(vrvg, 0105, 07 2) = 24+ fi(orvs, vivsth) (v 2)
i=1

d/e

= [ 2%+ Z VP foi(1,09) 2%
=1



ON RANK THEOREMS AND THE NASH POINTS OF SUBANALYTIC SETS 29

and we set
d/e

T(vg,2) = 2% + ngpjfej(l,vg)zdfej € Klve, 2°] C K[ve, 2].

j=1
Note that 7 is a root of ¢*(T') = I'(v1v§, v105T, 2) if and only if ¥ = v¢7 where
7 is a root of T'(vg,z). Now, let us remark that T is irreducible in K[vg, 2¢].
Indeed, if T = TI';T'y where I'; € K[vg, 2¢] have positive degree ¢; in 2¢, we set
I (v1,v2,2°) 1= vf”wﬁ- for i = 1, 2. Then we would have

+1 1
[(x,2)=T gt mQ 7y 2¢ | T il Q vy’ 2
’ 1 ye ’ (('+1)p 2 e ) 1 m((‘+1)p

contradicting the irreducibility of T'(x,z). In particular, this implies that the
irreducible factors of I'(vg, z) are conjugates up to multiplication of z by a e-th root
of unity. This means that we may write

’U2, HF V2, 2

where 1 runs through a subgroup H of the group of the e-th root of unity and the
') (ve, 2) are irreducible (monic in z) polynomials, such that

fn(UQa z) =T1(v2,12).
It follows that we may parametrize all roots of I' by Fiy for 1. = 1,...,d/¢
and n € H, where ¢ = |H| and %, , = n-7%,;. We may index the roots of T,
therefore, by v, in such a way that o (vi,) = %i, = v{7,, are the roots of
o*(T) = T'(v1v§,v1051, 2). We fix the convention that o3, (71)/vid =7, and, more

generally, that og ('Yi)/v‘l*’ =7, are all the roots of T';. Next, by Newton-Puiseux

Theorem, we can write the roots of T'(va, z) as Puiseux series in K(v;/q>, even if it
means replacing ¢ by a larger integer.
Now, we use the normal form given by Definition 4] in order to write

ag.;(x
(%, i) ZAJ ’anWIthA( x) = ]le;ziéj()x)
k>k;
where the ay, ;(x) are homogeneous polynomials. Since there are only finitely many
7, apart from multiplying the numerators and the denominators of the coefficients
of A;(x) by a power of h(x), we may assume that the o, (resp. the ;) are all
independent of j and equal to some integer (resp. B). Note that

_ k+wj, ck ak](l U2)
Ubo X 7“7 Zabo 71777 - 27177 Z Y1 (2: hak+ﬂ(17v2)

k>k;

(9) K

— Y1

- Z h 1 UQ)ak+Bb (/U27’Yz 7])

kel
where by, € K[vg, 2] with deg,(bx) < d — 1. We remark that deg,, (bx) is bounded
by a linear function in k because, for each j, deg, (ax,;(x)) is bounded by a linear
function in k.
We note that we can write h(1,v2) = v5g(v2) for some unit g(vs), and some

m € N. Therefore, as already shown in the proof of Theorem [£.I8] the series
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vy A (A;)p are Laurent series with support in the strongly convex cone ¥ generated
by the vectors (0,1) and (1, min{0,c — ma}. Therefore, if we identify the 7, , with

their expansions as Puiseux series of IC (v} / 7). we have that
m 1
0" o, (E(%,7im)) € K |[z N qu2]] .

Since K{v}} Cc K[EN Zz]} CK(Zn ZQ)) and £(XZ N e—quQ)) [y] is a UFD, we
conclude that the set of roots Ubo(ﬁ(x Yim)) and ©; of Qp, must coincide when
we expand the 7, , as Puiseux series. From now, the 7, , € IC<U2/ 7). We set
Vi = 04, (&(x,7i,,)); note that v, , € IC[[Ul/e
from re-indexing, we have ¢ ; € K{{vl/e Q/q}}.

Next, note that for every e-th root of unity 7, there exists a e-th root of unity 7
such that 777 = 7 since ged(e, p) = 1, so that:

’UQ/ 7] for every i and 1 and, apart

d—1

1/e ~x — N\ k4+wji e ak,‘(L/UQ)
Y10/ v2) = 0, (E(x, M) = Z(n%)j Z o jvzkm

J=0 k>k;
S ~ 1/5 ekerj ck ak,](l UZ) - ~
2::0 g U2 fak BT, ug) Vb Lo va),

so that v, € IC{{U1 “ vo}} for every e-th root of unity 1. More generally, this
argument shows that:

Vi, ia € K/ v} = vy € Ko 0},
for every n € H. We are, therefore, reduced to show that ;1 = o (£(x,7:)) €

K{{vl/e é/q}} foralli =1,...,d/e/, where we recall that the 7, are the roots of
the irreducible polynomial T:. Now, we introduce the auxiliary function

(10) Z wkby (wl, 2) € Klwi, wi][2].
kelN

where degw (bx) is bounded by a linear function in k. Since ¢11(v) € K{{vi/e, va }},
@D and ((10) imply that
B(w, 7, (ws2)) = wy ™ g(w)? - g1 (wiwd ™ g(wd)*, wg) € Kf{wr, wi}}.

Moreover, because B(w, z) € K[wy, wi][z] and B(wy, (wa, 7, (Cws)) € K{w1,wd}},
we have that B(w,7,(Cws)) € K{{w1,wi}} for every g-th root of unity . We
remark that T';(wi,z) may factor as a product of monic polynomials that are
conjugated under the action of a subgroup G of the ¢g-th roots of unity. Thus, the set
{7, (Cws) | ¢ € G} contains exactly one root of every factor of 'y (w3, z). Therefore,
by definition iii)| (and we highlight that this is the only point of the paper where
Definition intervenes), we conclude that:

B(w,7;(w2)) € K{{w, w2 }}
for every 7, which is a root of T'y. Now, note that:

B(w,7;(ws)) = wy ™ g(w)” - i1 (wiwd™ g(w§)™, wh) € Kf{wr, wa}}
1/6

for every i =1,...,d/e’. Since we also know that v, 1 € K[v; ;/q]], we conclude
from the fact that being temperate is closed under division, ramiﬁcation and local
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blowings-up, see Proposition and Definition that 1, 1(v) €
/C{{vi/e, va }}, finishing the proof. O

4.7. Proof of Theorem Let P be a Weierstrass polynomial in y as in the
statement of Theorem Since Ker(p) is a prime ideal, P is irreducible, so it is
a reduced polynomial. In particular the discriminant of P is a formal curve A(P).
By resolution of singularities, there exists a sequence of point blowings-up

(Np, ) =2 oo =T (N, Fy) = (No, 0) = (A2, 0)

such that the discriminant of P, = of(P) is everywhere monomial; we set o =
o10---00,. Apart from blowing-up the origin once, we can always suppose that the
sequence of blowings-up has at least one blowing-up, that is, » > 1. In particular,
the blowing-up o1 : (N1, F1) — (N, 0) is always defined. Now, there exists a
point b € F} and a temperate coordinate system v = (v1,v2) where (1)} is given
by (x1,z2) = (v1,v1v2). It follows from the expressions of ¢ and P given in the
statement of Theorem that:

(UB)I(P) = P<v1’vlv27y)a &(01,1}2) = (U17U2’¢(V))7

are such that @ o o = ¢; moreover, since P € Ker(y), (0p)5(P) is divisible by
y — P(v1,v2) € K{v}}y] and, therefore, admits a temperate factor. We conclude
that there exists a point by € F}. where Py, = of (P) admits a temperate factor. In
order to finish the proof, it is enough to prove the following result:

Proposition 4.20 (cf. [BCR21l Proposition 4.6]). Let P € K[x]ly], and let
o : (N, F.) — (No,0) be a sequence of point blowings-up such that the discriminant

of P oo is everywhere monomial. Let b € Fr(k) be such that Py, = o(P) has a
temperate factor. Then P has a non-constant temperate factor.

Proof. We prove this result by induction on the lexicographical order on (r, k). First,
suppose that (r, k) = (r,1) with » > 1. By Theorem there is a non-constant
factor @Q € Pp{{x}}[y] of P. Without loss of generality, we may suppose that @ is
the monic factor of P in Pp{{x}}[y] of maximal degree. Note that @ extends at
every point of Fl(r) by Theorem ﬁl and furthermore, @) extends temperately by
Lemma If » = 1, then we conclude from Lemma that Q € K[x][y], so
that Q € K{{x}}[y] since K[x] NPr{{x}} = K{{x}} by Lemma

If » > 1, let a;,...,a; be the points of Fl(l) that are centres of subsequent
blowings-up, and denote P; := (01); (P). Denote 0’ := 05 0---00,. By the
induction hypothesis, for every i, P; has a temperate factor. Indeed, denoting by b;

the point of Fﬁl) which is sent to a; by o/, we get that Tp, (Q) is a temperate factor
of o'y, (P;) = o (P), obtained after only  — 1 blowings-up.

Now, denote by ¢; the monic temperate factor of P; of maximal degree. Then
0’5.(¢;) is a temperate factor of (¢/); (P;) such that (¢'); (P;/q;) has no non-
constant temperate factor, otherwise by induction hypothesis, P;/g; would have a
non-constant temperate factor. Next, note that, by Theorem 05, (Q) is also
a temperate factor of oy (P) such that of (P/Q) has no non-constant temperate
factor. We conclude that o’y (¢;) = op.(Q), hence ¢; coincides with (o1);,(Q),
which therefore admits a temperate extension at a;. Moreover at every point b’
of Fl(l) ~A{ar, ., 05), (01)5(Q) is temperate, since it coincides with o}, (Q). We
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conclude now, exactly as in the case r = 1, that lemma [£.16] implies that Q is a
temperate factor of P.

Finally, suppose that (r, k) is such that & > 1, and denote by a € F,gi)l the
center of oy, for some j < k — 1. Denote Py := (01 0---00k_1), (P). Then by
the induction hypothesis, P, has a non-constant temperate factor. Therefore, by
denoting ¢’ := o 0+ 00,, at every point b’ € (¢/)7!(a), the polynomial (¢’), (P,)
has a temperate factor. In particular, if b’ € (¢/)~1(a) N FY | we get that o (P)
has a temperate factor at a point of F,gj ) with j < k, and we conclude by induction.

([

5. APPLICATION: REGULARITY OF ANALYTIC MAPS AND NASH POINTS

5.1. Analytic set and spaces. Let K =R or C and fix an analytic manifold M.

Definition 5.1 (Real-analytic set). A subset X of M is analytic if each point of
M admits a neighborhood U and an analytic function f € O(U) such that:

XNU=A{aeU, f(a) =0}.

We say that X is an analytic set generated by global sections in O(M) if we can
take U = M.

Definition 5.2 (cf. [GuRo65, Ch. V, Def 6]). A (coherent) K-analytic space is a
locally ringed space (X, Ox), where:

(1) X is a Hausdorff topological space and Oy is a coherent sheaf of functions,

(2) at each point a of X there is a neighborhood U such that (U,Ox|y) is
isomorphic to a ringed space (Y, Oy) where Y is an analytic subset of an
open set V' C K™ and Oy is its sheaf of analytic functions. That is, there
exist K-analytic functions (fi,..., fs) € O(V) such that:

Y:{aEV,fk(a)zo,kzl,d} and OY:OV/(fla"'afd)'

A subspace of (X,0x) is an analytic space (Z,Oz) such that Z C X and the
inclusion ¢ : Z — X is an injection that is, an injective map such that ¢* : Ox —
Oy is surjective.

If K = R, then it is not true that every R-analytic set X admits the structure
of a R-analytic space, as illustrated by examples of Cartan, see e.g. [Na66, Ch.
V, §3]. In contrast, if K = C, then every C-analytic set X admits the structure
of C-analytic space, essentially by a Theorem of Oka, see e.g. [Ho88, Ch. VII,
Th 7.1.5]. We refer to [GuRo65, page 155] for a definition of érreducible complex
analytic subspace X C M, and we recall that if X is irreducible then it is not the
union of two proper complex analytic sets Y, Z C M, that is, if X =Y U Z then
either Y = X or Z = X.

Remark 5.3. Note that if X C 2 C C” is an irreducible complex analytic set
generated by global sections in a connected open set 2, then the ring O(X) is an
integral domain.

5.2. Semianalytic and Subanalytic sets. We follow the presentation of [BMSS].
Fix a real analytic manifold M.
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Definition 5.4 (Semianalytic set). A subset X of M is semianalytic if each point
of M admits a neighborhood U and analytic functions f; € O(U) and g, ; € O(U)
fori=1,...,pand j =1, ..., g such that:

P
XU =|J{aeU; fi(a) =0, gi j(a) >0, 1,....q}.
i=1
Definition 5.5 (Subanalytic set). A subset X of M is subanalytic if each point
of M admits a neighborhood U such that X N U is the projection of a relatively
compact semi-analytic set.

The following is an important general example of subanalytic set:

Example 5.6. Let ¢ : N — M be a proper analytic map. The image X = ¢(N)
is a subanalytic set of M. Indeed, note that the graph I'(¢) C M x N is a closed
analytic set and that the set X is the projection of T'(¢) onto M, that is, the image
of T'(¢) by the projection 7 : M x N — M. It is now enough to remark that since
¢ is proper, given a relatively compact set U C M, the intersection 7=1(U) N T'(y)
is relatively compact.

Definition 5.7. A subset X of R™ is finitely subanalytic if its image under the map

WnIXERnl—><

T Tn
e eR"
V1t z|? v1+|ﬂP>

is subanalytic.

Remark 5.8. Because m, is a semialgebraic diffeomorphism, every finitely sub-
analytic subset of R" is subanalytic, but the converse is not true in general: for
instance

X = {(t,sin(t)) | t € R}

is subanalytic but not finitely subanalytic.

Let X be a subanalytic set. We say that X is smooth (of dimension d) at a
point a € X if there exists a neighborhood U of a where X N U is an analytic sub-
manifold (of dimension d). The dimension of X is defined as the highest dimension
of its smooth points, c.f. [BM88, Remark 3.5]. Given a subanalytic (respectively,
semianalytic) set X and a number k € N, the set of all smooth points of X of
dimension k, which we denote by X )| is subanalytic [Ta81], [BM88, Theorem 7.2
(respectively, semianalytic [BM88, Remark 7.3]). The set of pure dimension k of
X is the set () = X(®) 0 X which is subanalytic. If there exists d € N such that
X = %@ we say that X has pure dimension d. Note that X = U{_ () where d
is the dimension of X.

Example 5.9. Let M = R? endowed with coordinate system (z,y, z), and consider
the Whitney umbrella X = {z? — zy? = 0} C R3. Then:

2@ =22~z =0and 2 >0}, 2P ={r=y=0, and z < 0}.
Note that their intersection is non-empty.

We now recall a classical result about subanalytic sets due to Hironaka [H73]; we
follow the presentation of [BM88, Theorem 0.1]:
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Theorem 5.10 (Uniformization Theorem I). Let X C M be a closed subanalytic
set of dimension d. There exists an analytic manifold N of dimension d and a
proper analytic map ¢ : N — M such that o(N) = X.

In what follows, we use the following variant of the above result:

Theorem 5.11 (Uniformization Theorem II). Let X C M be a closed subanalytic
set of dimension d. There exists d + 1 analytic manifolds Ny, where k =0,...,d,
where the dimension of Ny is equal to k, and d+ 1 proper and generically immersive
analytic maps my, : Ny, — M such that mp(Ny) = 25,

Proof. 1t is enough to prove the result when X is an equidimensional subanalytic
set, that is, when X = (@, Let ¢ : N — M be the proper analytic map given
by Theorem such that ¢(N) = X. We note that N = U, N, where each N,
is a connected manifold and I is an index set. Denote by ¢, := ¢|n, : N, — M.
Note that the generic rank of ¢ is constant along connected components of N, and
denote by r, the generic rank associated to each ¢,. Let J C I be the subindex set
of ¢« € T such that r, = d; since ¢(N) = X is of dimension d, we conclude that J # 0
and that r, < d for every ¢ € I ~ J. We consider the manifold Ny = U,c;N, and
the associated proper analytic morphism ¢4 : Ny — M, which we claim to satisfy
all properties of the Theorem.

Indeed, we start by noting that X ~\ ¢q4(Ng) is a subanalytic set of dimension
smaller than d and, therefore, the closure of p4(Ny) is equal to X. Since ¢ is proper
and continuous, we conclude that ¢4(Ny) = X. It is now enough to prove that
the mapping is generically immersive. This easily follows from the fact that ¢ is
generically of the same rank as the dimension of Ny. O

We finish this section with a sufficient condition for a subanalytic to be analytic:

Lemma 5.12 ([Pa92 Lemma 3]). Let X C M be a subanalytic set which is a union
of countably many analytic subsets. Then X is an analytic set.

Proof. We claim that if X is a subanalytic set contained in a union of countably
many analytic subsets (Y)ren, then it is locally contained in a union of a finite
number of the analytic sets (Y;)ren. Note that the lemma easily follows from the
claim. Since X = UX®) where ©(*) is a subanalytic equidimensional set, it is
enough to prove the claim in the case that X is an equidimensional set. By the
uniformization Theorem there exists a proper analytic map ¢ : N — M such
that (V) = X and ¢ is generically of rank d = dim(X); the later condition implies
that o ~1(X) is subanalytic set of N whose interior is dense in N. Let us fix a € X;
since ¢ is proper, the fiber ¢ ~1(a) has a finite number of connected components
Ti,...,T; denote by Uy, ..., U, connected open neighborhoods of the Tj;. Now,
given an analytic subset Y C M, its pre-image Z = ¢~ 1(Y) is analytic in N. It
follows that for each k = 1, ..., r, either ZNU, = Uy, or Z N Uy is a closed set
with empty interior in Ug. Since X is contained in countable many analytic sets,
and the union of countable many closed sets with empty interior has empty interior
by Baire’s Theorem, we conclude that for each k = 1,...,r, there is an analytic set
Y:, C X such that ¢~ 1(Y3) N Uy = Uy. We conclude easily. O

5.3. Regular locus of analytic maps. Let K = R or C. Consider an analytic
map ¢ :  C K™ — K" where (2 is an open set. The set of regular points of ® is
given by:

R(Q) = {a € Q; 1a(®) =17 (P)}.
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We recall that Gabrielov’s rank Theorem [Ga71l, BCR21] states that:
1(®g) =17 (®y) = 1(®,) =17 (®,) = rH(D,).

In particular, the set R(f2) is open. As a matter of fact it also contains a non-empty
analytic-Zariski set:

Lemma 5.13. Let @ : Q) C K™ — K" be an analytic map. Then the set
R(®) :={a e Q| P, is reqular }

contains a set of the form Q. Z where Z is a proper analytic set of Q) generated by
global equations in O().

Proof. 1t is enough to prove the Lemma in the case that {2 is connected. Let r be
the generic rank of ® and denote by Z the set of points a € 2 where the rank of
® is smaller than r. Note that F' is a proper analytic subset generated by global
equations in O(Q); indeed, it is the zero set of the r-minors of the Jacobian of ®. It
is now enough to note that ® is regular at every point of {2 \ Z by the constant
rank Theorem. O

We now recall a result that relates the regular locus of complex and real analytic
morphisms due to Milman [Mi78], but which we state as in [Pa92]:

Lemma 5.14 ([Pa92, Lemma 4]). Let & : Q C C™ — C" be a complex analytic
map and denote by ®® its real-analytic counterpart. Then R(®,Q) = R(®F, Q).

Proof. The inclusion R(®, Q) C R(®%, Q) is immediate. In order to prove the other
inclusion, suppose that ®® is regular at a and denote by r = rq(®%). Since ®F
is the real-analytic counterpart of ®, r = 2s where s = rq(®). The result is now
immediate from [Mi78, Theorem 2]. |

5.4. Family of morphisms.
Definition 5.15. Consider two analytic maps ® :  C K™ — K" and ¢ : A C
K! — Q, where Q is a connected open set and one of the following holds:
(1) A= and ¢ is the identity;
(2) A is a connected open set and ¢ is an analytic map;
(3) A C Q is an analytic subspace of Q such that O(A) is an integral domain,
and ¢ is its inclusion.
An admissible family of analytic germs (associated to ® and ¢) is the analytic map
P:Ax (K™0) — (K*0)
given by ¥(a,u) = ®(p(a) + u) — ®(p(a)). We denote by ¥, : (K™, 0) — (K™, 0)
the associated germ at a; in particular ¥, = ®, — ®(p(a)).
Lemma 5.16. Given an admissible family of analytic germs:

(1) The generic rank is constant along A, that is,
Va,b € A, r(Ty) =1r(Tp).

(2) The map a € A — rA(U%) € N is upper semi-continuous for the Buclidean

topology.
(8) The ring of global sections O(A) is an integral domain.
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Proof. Condition (1) and (3) are straightforward. In order to prove (2), let fi, ...,
[fs be generators of Ker(®7 ) and U be an open neighborhood of ¢(a) such that
the f; are well defined on U. Let V be a connected neighborhood of a contained
in o~ 1(U). Since @ is analytic, apart from shrinking U and V, we have that
fio®Popy =0, for all b € V. We conclude easily. |

Now fix an admissible family of analytic map germs
T:Ax (K™ 0)— (K*0).

and let £ denote the fractions field of the ring O(A) of analytic functions on A.
Note that ¥ induces a morphism of power series rings:

U7 L[x] — L[u]

where x = (21,...,2,), 0= (u1,...,Uy,) and
. 1 9l
U7 () = Z Fa, F,= ?W(.’El o®)op e O(A).
yeEN™T N0
where w = (w1, ..., w,,) are globally defined coordinate systems over 2. Note that
F;0 =0 for every ¢ = 1,...,n, which guarantees that U7 is well-defined.

Now let = r(¥7}). Thus any (r + 1) x (r + 1) minor of the Jacobian matrix
of ®7} is zero, therefore r(¥,) < r for every a € A. On the other hand, there is a
r X r minor of the Jacobian matrix of ®7, denoted by M, that is not identicaly zero.
So, for a generic a € A, we have M(a) # 0 and r(¥,) = r. Therefore, by Lemma
1), we have that:

r(U7) =1(¥,), VaeA.
We now turn to the problem of relating the formal rank of ¥ at a point a € A with
the formal rank of U7:

Proposition 5.17. Let ¥ : A x (K™,0) — (K™,0) be an admissible family of
analytic map germs. If there is a € A such that (V) =17 (¥,), then:

(11) r(Wg) =17 (97).
In particular, the set
R(U,A) :={aeA| Y, is reqular }

is either empty or contains a set of the form A W where W is a countable union
of proper analytic subsets of A generated by global equations in O(A).

The proof of this Proposition is based on an extension result, namely Lemma
below, whose proof is strongly inspired by an argument of Pawlucki cf. [Pa90,
Lemme 6.3]. We postpone the proof to Condition is the deepest statement
of the above Proposition which, together with Theorem allows us to prove the
following crucial technical result:

Lemma 5.18. Let U : A x (K™, 0) — (K",0) be an admissible family of analytic
germs where A is a connected open set of K! (that is, we consider cases (1) and
(2) of Definition [5.15). Then either R(¥,A) = O or, for every a € A, there
exists an open neighborhood Uy, C Ay and a proper analytic set Z C U, such that
R(¥,Uy) DU\ Z.
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Proof. Let £ denote the fraction field of O(A). Note that ¥ yields a morphism
0% ¢ L[x] — L[u] and that r(¥}) = r(¥,) for any a € A. Now, suppose that;
R(¥,A) # 0 so that Proposition yields:

(W) =17 (7).

We now first prove the Lemma in the case that K = C. Let a € A be fixed and
consider a sufficiently small closed polydisc Dy C A centered at a. Let O(D,) denote
the ring of analytic functions defined in a neighborhood of Dg; note that this ring is
a UFD by [Da74]. Let K denote the algebraic closure of the fraction field of O(D,)
and recall that the family of Eisenstein rings (K{{v1,...,v,}})nen, defined in
is temperate by Proposition We note that the restriction of ¥ to Dy, yields
a temperate morphism ¥k : K{x}} — K{{u}}. It is clear that r(¥}) = r(¥}),
and since the restriction from A to D, yields an injective morphism from O(A) into
O(D,), we conclude that:

(W) =17 (¥g).
so that we may apply Theorem [T.1]in order to get
r(U5) =17 (Ug) =:r.

Now, up to a K-linear change of coordinates, applying Remark the morphism
K{{zy,...,z.}} — /C{{X}}/Ker(\p;%) is finite, which means that there are non-zero
Weierstrass polynomials

Qi(xr, ..y Ty ryy) € K{, ..o 2 PHrrgs] fori=1,...,n — 1,

such that ¥ (Q;) = 0. By the definition of K{{x}} and the primitive element
theorem, there exists f € O(D,) and ¢ € K of degree d such that Q; € O(Dy) f[x][c],
that is

d—1
Qi = ZQi,jcju Qi,; € O(Da)s[x]-
7=0

Note that U5 (¢) = cand {1,¢,..., "1} are linearly independent over O(D,). Hence,
up to replacing Q; by @, which is monic, we can choose the Q; in O(D,) f[x].

Let Uy C D, be any open neighborhood of a. We set Z = {b € U,; f(b) = 0}.
Note that Q; yields a power series Q;p € C[x] at each b € U, ~ Z and that
U (Qip) =0, for every i = 1,...,n—r. We conclude that r(¥}) = 17 (U}) for every
b € Uy \ Z as we wanted to prove.

Now let us consider the case that K = R. Denote by A® a complex open
neighborhood of A such that A© NR! = A, over which ¥ admits an holomorphic
extension:

TC AT X (€™, 0) — (C™,0).

By the first part of the proof, for each a € A®, there exists a neighborhood US and
a complex analytic set Z€ C US such that R(¥,U,) D Uy~ Z. We fix a point a € A
and we consider the neighborhood U, = US NR! and the intersection Z := Z€ N U,,.
It is now enough to note that Z is a proper real-analytic subset of U,, finishing the
proof. [
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5.5. Proof of Theorem We start by a well-known result, which follows from
the geometrical statement of Proposition [5.17

Proposition 5.19 (cf. [Pa92, Prop. 1]). Let @ : Q@ C K™ — K" be an analytic
map where Q is open. Then Q@ ~ R(P,) is a union of countably many analytic
subsets.

Proof. Let us first argue the case that K = C, in which case every complex analytic
set is a complex analytic space. By Proposition [5.17] applied to each connected
component of Q; X := Q \ R(P,0) is included in the union of countably many
analytic subsets | J;=,Y; of Q. We may assume that the Y; are irreducible (in )
by replacing each Y; by its irreducible components, and we change the family {Y;};
according to the following rule:

(R) For a given iy, if there is countably many irreducible analytic subspaces Y;;
of © of dimension < dim(Y;,) such that X NY;, C U;io Y, .k, we replace
the family {Vi}tien by {Yi}izi, U {Yigk tren-

By repeating this rule countably many times, we can assume that the family {Y;};en
is minimal in respect to (R) and contains X. Now assume by contradiction that
X #£ UieN Y;. This means that there is ig € N such that Y;, ¢ X but ¥;, N X # 0.
By Proposition applied to Y;, (cf. Remark [5.3] and Definition 3)) we have
that ¥;, N X is included in a countable number of proper analytic subsets {Y;, i tren
of Y;, that are of dimension < dim(Y;,). Since Y;, is an analytic subspace of €, we
conclude that each Y, ;. is analytic subspace of €, which contradicts the minimality
of the family {Y;}ien in respect to (R).

If K = R, the result follows from considering a complexification of ®, and noting
that the set of regular points is non-empty by Lemma [5.13 O

We are now ready to prove the following result:

Theorem 5.20 (Pawlucki Theorem I [Pa92]). Let ® : Q@ C K™ —— K" be an
analytic map where  is open. Then Q ~\ R(P, Q) is a proper analytic subset of Q.

Proof. By Lemma [5.14] and Corollary it is enough to consider the case where
K = R. Furthermore, from Lemma and Proposition [5.19] it is enough to
show that R(®, () is a subanalytic set of 2. Note that being subanalytic is a local
property, so we may suppose that €2 is a subanalytic open set.

We claim that for every closed subanalytic set X C €, the intersection X "R (P, )
is subanalytic in Q. The result then follows from the Claim applied to X = Q. We
prove the claim by induction on the dimension of X.

When dim(X) = 0, the result immediate. Assume the Claim is proved for
d—1 > 0 and let X be a subanalytic subset of 2 of dimension d. Consider its
equidimensional part (¥ and let F = X \ X(d) which is a closed subanalytic set
of dimension < d. By induction E NR(P,Q) is a subanalytic subset of Q. Tt is,
therefore, enough to prove the claim when X = X(9) is an equidimensional set.

By Corollary there exists a proper and generically immersive analytic
morphism ¢ : N — X such that ¢(N) = X. Now fix a point a € A and
a connected open neighborhood A, of a. We consider the family of admissible
morphism:

Ui Ag x (R™,0) —s R",0)
@, u > (p(a’) +u) — P(p(a))
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By Lemma apart from shrinking A,, we conclude that either p(Ay) C Q ~
R(®, ) or there exists a analytic proper set Zq, C A4 such that p(Aq\Zy) C R(P, ).
Note that, since a € N was arbitrary and both of these properties are open, they
hold globally over each different connected component of N. We conclude that there
exist two closed subanalytic subsets Y and Z of X, such that: Y is of dimension d
and Y C QN R(P,Q); and Z is of dimension < d and X \ (YU Z) C R(P,). The
result now follows from induction applied over Z. (I

Remark 5.21. Theorem is a local version of Theorem which easily follows
from it.

5.6. The Nash and the Semianalytic locus. Given a subanalytic set X C
M and a point a € M, we will denote by X, the germ set of X at a, that is,
the equivalence relation induced by considering the intersection U N X for every
neighborhood U of a.

Definition 5.22 (Nash points). Let X C M be a subanalytic set of pure dimension
d. We say that X is a Nash set at a € M (which might not belong to X) if there
exists a germ Y, of semi-analytic set at a such that X, C Y, and dim(X,) = dim(Yj).
More generally, a subanalytic set X C M of dimension d is Nash at a point a € M,

if Egk) is Nash for each k£ =0, ..., d. We consider the set:
N(X):={a€ M| X, is the germ of a Nash set}
We say that X is a Nash set if it is Nash at every point, that is, if N(X) = M.

It is clear that every semi-analytic set is Nash subanalytic. A more general
example is given by the following Lemma:

Lemma 5.23. Let ¢ : N — M be a proper and regular analytic map, that
is, at every point a € N, r4(¢) = r7(¢) = r(¢). Suppose that X = o(N) is
equidimensional of dimension d. Then X is Nash subanalytic.

Proof. Indeed, fix a point b € X. Consider a relatively compact neighborhood V' of
b, and note that p~1(V) = U is a relatively compact open set of N. Now, for each
point a € U, it follows from the regularity of the mapping that there exists an open
neighborhood U, of a and a semi-analytic set Y, C M of dimension at most d such
that ¢(Uy) C Y,. From the relative compactness of U, it follows that there exists a
semi-analytic set Y of dimension at most d (given as the union of a finite number of
sets Yy ) such that ¢(U) C Y, finishing the proof. O

Indeed, we may generalize the above idea to provide a description of the Nash
locus in terms of the regular points of a morphism:

Lemma 5.24. Let ¢ : N — M be a proper generically immersive analytic mor-
phism such that o(N) = X is a closed equidimensional set. Then

X NN(X)=@(N\R(p,N)).

Proof. First, let us show that X~ N(X) C ¢(N~R(p, N)) by proving the associated
inclusion of their complements. Fix a point b € X ~\ (N \ R(p, N)). This means
that ¢ is regular on the pre-image of ¢ ~!(b). Since being regular is an open
property, there exists a neighborhood U of ¢~1(b) such that ¢|y is everywhere
regular. Moreover, since ¢ is proper and continuous, there exists a neighborhood V'
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of b such that ¢=*(V) C U. By Lemma applied to X NV, we conclude that
b € N(X) as desired.

Now, let us prove that (N \ R(p, N)) C X ~ N (X) by proving the associated
inclusion of their complements. Fix a point b € A(X) and let Y, be the germ
of a semi-analytic set of dimension d which contains Xp; let V' be a subanalytic
and relatively compact neighborhood of b where Y, admits a representative Y
defined in V such that X NV C Y. Let U = ¢~ *(V), which is a relatively compact
neighborhood of »~1(b). It follows that ¢(U) C Y, which implies that ¢ is regular
at every point a € U ; in particular, at every point a € p~1(b). We conclude that
b ¢ o(N ~ R(p, N)), finishing the proof. O

We now consider the following set:
SA(X) :={a € M | X, is the germ of a semianalytic set}.

It is trivially true that M ~ X C SA(X) and SA(X) C N(X). But in general,
SA(X) # N(X) as is illustrated by the following examples:

Example 5.25.

i) Consider a subanalytic two dimensional set S in R® such that the germ
at the origin Sy is not semianalytic (for instance, the image of a compact
set through the Osgood mapping [0s1916] provides such a surface). We
consider X :=R3 \ S; X is subanalytic and of pure dimension 3, thus it is
Nash subanalytic since X C R3. But the germ X is not semianalytic. Note
that 0 ¢ X.

ii) We may modify the example as follows: we set

X :=R* (R* x {0}) U (S x {0} x {0}).

Then X is equidimensional of dimension 4, and NV (X) = R*, but X is not
semianalytic. Note that 0 € X.

Remark 5.26. We recall that the closure of a semianalytic (respectively, a subana-
lytic) set is semianalytic (respectively, subanalytic) set of the same dimension. It

follows that N (X) = M (X) for every subanalytic set X C M. In contrast, we can
only conclude from this argument that SA(X) C SA(X), c.f. example i).

5.7. Proof of Theorem We start by proving the following Corollary of the
uniformization Theorem [5.11] and Theorem

Proposition 5.27. Let X be a subanalytic set of a real analytic manifold M. Then
i) The set N(X) is subanalytic.
ii) dim(M ~ N (X)) < dim(X) — 2.

In particular, if dim(X) < 1, then N(X) = M.

Proof. By remark we may suppose without loss of generality that X is a
closed subanalytic set. First consider the equidimensional case X = %(?). Denote
by ¢ : N — M the proper generically immersive analytic morphism given by
Corollary where N is of dimension d and ¢(N) = X. In particular r(y) = d.
By Theorem N\ R(p, N) is a proper analytic subset of N. It follows from
Lemma that X ~\ M (X) is a subanalytic set of codimension at least 1. It
remains to prove that it has codimension 2.

Denote by F' the set of points in IV where ¢ does not have maximal rank. Note
that F' is analytic (it is given by the zero locus of the Jacobean ideal of ¢) so,
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apart from applying resolution of singularities, we may suppose that F' is a simple
normal crossing divisor in N. Now, note that N N\ F' C R(p, N) since ¢|nF is a
local submersion. It follows that N \ R(¢, N) C F. So, it is enough to prove that
the image @(E ~\ R(p, N)) has dimension at most d — 2 for every irreducible (in
particular connected) component E C F. Fix such an E and consider the morphism
vE = ¢|lg : E — M. Let r denote the generic rank of g and note that r < d — 1
since E has dimension d—1. If r < d—1, then ¢(F) is a subanalytic set of dimension
at most d — 2 and the result is clear. So we may suppose that r = d — 1.

Fix a point a € E and consider a local coordinate system (u,v) = (u,v1,...,04-1)
of N centered at a and defined in an open neighborhood U of a, such that ENU =
(v = 0). From the rank condition over ¢g, and the inverse function Theorem,
there exists a coordinate system (z,y,2) = (1,...,Td—1,Y, Zd+1, - - -, 2n) centered
at p(a) = b such that:

e () =v;, i=1,...,d—1.

Now, apart from an analytic change of coordinates in the target and a permutation
of y and the zj, we may further suppose that there exists a positive integer a such
that:

¢ (y) = u’ga(u,v)

©*(zk) = ugr(u,v), k=d+1,...,n

where ¢4(0,v) #Z 0. In particular, the set of points of ENU where g4(0,v) # 0 is
an open dense set E' of ENU. We claim that at every point of E’, ¢ is a regular
mapping; this claim implies that R(p, N) N ENU is a proper analytic set of F and,
therefore, o(E ~\ R(p, N)) has dimension at most d — 2. We turn to the proof of
the Claim: suppose that a is a point in E’. Apart from shrinking U and making a
change of coordinates in the source and target, we may further suppose that:
¢ (y) = u,
and we consider the following functions defined in the target:
a
Pk(x7y7z):H(zk_ygk(xagiyl/a))v k:d+1vvn

i=1
where ¢ is a primitive a-root of the unit. By construction, it is clear that Pyop|y =0
for every k =d +1,...,d. We conclude that r4(¢) = r{(¢) = d proving the claim
and finishing the proof of the Theorem in the case of an equidimensional subanalytic
set X.

We now consider a general closed subanalytic set X. Consider the morphisms
from Corollary wg : N — M, for k = 0,...,d — 1. From the previous
argument applied to each set ©(*) we conclude that M ~ N (E(k)) is a subanalytic
set of dimension at most k& — 2. It follows from the definition of N'(X) that:

N(X) = NN (5W)

which is a subanalytic set. Furthermore, its complement is equal to the union of the
complements of N(£()), and therefore is a subanalytic set of dimension at most
d — 2, finishing the proof. O

We are now ready to complete the proof of Theorem [T.4] following an argument
from [BMS&7]. We start with two Lemmas:



42 A. BELOTTO DA SILVA, O. CURMI, AND G. ROND

Lemma 5.28. Let X be a subanalytic set of dimension d. Then
SA(X) =SAX ~ XD)nSAXD).

Proof. Note that SA(X ~ X )N SAX®) c SA(X) is trivial. In order to prove
the other inclusion, let a € SA(X); in particular X, is a semi-analytic germ. Let U
be a sufficiently small neighborhood of a where X, is realizable by X N U, which
is semi-analytic. We recall that if Y is semi-analytic, the n Y% is a semi-analytic
set, see e.g. [BM88, Remark 7.3], so we conclude that X (4 N U is semi-analytic and
a € SAX®). Since (X ~X)NU =XNU~(XDNU), we conclude easily. [

Lemma 5.29 (c.f. [BM87, p. 200]). Let X be a closed subanalytic set of equidi-
mension d and let Y = X ~ XD, Then:

SAXD) = SAY)NN(X@D).

Proof. Clearly we have SA(X@) c N(X@). Moreover, if a € SA(X(®), then
Xc(ld) is semianalytic, so its closure, which is X, is semianalytic and X, ~ Xéd) is
semianalytic. Thus SA(X @) c SAY) NN (X(D).

In order to prove the other inclusion, let a € SAY) NN (X (). Since the result
is local, apart from replacing M by a sufficiently small neighborhood of a, we may
suppose that Y is semianalytic and that there exists a closed analytic set Z of
dimension d such that X(¥ C Z; we conclude that X C Z. Let Sing(Z) denote
the singular points of Z. It follows that X \ (Y U Sing(Z)) is open and closed in
Z ~ (Y USing(Z)) and, thus, X ~ (Y USing(Z)) is semi-analytic. Since the closure
of this set is equal to X, we conclude that X is semianalytic, and we conclude by
Lemma O

Proof of Theorem[1.]l Because of Proposition it only remains to show that
SA(X) is a subanalytic set whose complement is of dimension at most d — 2. We
prove this result by induction on the dimension of X; the case that d = 0 being
trivial. So, fix a subanalytic set X of dimension d and consider the set £ = X ~ X (4,
which is a subanalytic set of dimension at most d — 1. By Lemmas and we
get:

SAX) = SAE)NSAX D) = SAE) N SAX@ ~ XDy N(X(D),

By induction applied to E and X ()~ X (9 and by Proposition applied to X (@)
we conclude that SA(X) is a subanalytic set whose complement has dimension
smaller or equal to d — 2. (I

We finish this section by proving the following corollary:

Corollary 5.30. Let X C R™ be a finitely subanalytic set. Then N (X) and SA(X)
are finitely subanalytic.

Proof. Let us denote by 7 the map

ER" —> al o eR"
X e .
V1t |z V1t |z|?
By hypothesis the image Y = 7(X) is a subanalytic set. By Theorem [L4N(Y) is
subanalytic. Furthermore, since 7 is a semialgebraic diffeomorphism, we conclude
that 7(N(X)) = N(Y) N w(R™), which proves that 7(A (X)) is finitely subanalytic.
The proof that SA(X) is finitely subanalytic is identical. a
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6. PROOF OF PROPOSITION [5.17]
6.1. Extension Lemma. The goal of this subsection is to prove the following:

Lemma 6.1 (Extension Lemma). Let ¥ : A x (K™,0) — (K", 0) be an admissible
family of analytic map germs (see Deﬁm’tz’on and let L be the field of fractions
of O(A). Let (x,y) be a coordinate system of (K™, 0) where y is a distinguished
variable. Let U be an open and connected subset of A and suppose that there exists
a polynomial in y
f(X7 y) = yd + al(aa X)yd_l +e ad(a7 X)
such that
i) ai(a,x) € O(U)[x], i =1,...,d;

ii) a;(,0)=0o0nU,i=1,...,d;

iit) for alla € U, f(a,x,y) is a generator of Ker(U%).
Let us write a;(a,X) = Y 3enn1 ai,p(a)x”. Then, for every i and B, there is a
proper global analytic subset Z; 3 C A such that a; g extends on A\ Z; g as an
analytic function a; g € L. Moreover if we set

Fo=yl+ Z 6175(a)xﬁyd_1 4+ 4 Z Ed,ﬁ(ﬂ)xﬁ € L[x][y]
BeNn—l BGN"71
then f(x,y) € Ker(07%).

The proof of this result is strongly inspired by the proof of [Pa90, Lemme 6.3],
and is based on Chevalley’s Lemma:

Proposition 6.2 (Chevalley’s Lemma). [Ch43| Lemma 7] Let k be a field. Let
¢ : k[x] — k[u] be a morphism of formal power series rings. Then there exists a
function A : N — N such that

Vi e N, o ((u)*®) ¢ (x)* + Ker(p).

The smallest function satisfying this property is called the Chevalley’s function of ¢,
and is denoted by A,.

We start by fixing notation and by proving a Corollary of Chevalley’s Lemma.
Let k be a field and ¢ : k[x] — k[u] be a morphism of formal power series rings.

We set x" := (z1,...,2,—1). Let us consider the images of the x; by ¢:
WYi = Z (pi,aua
aeN™

where the ¢; o € k. Let

(12) F(z):=a2% + A (x)zdt + - + A4(x)
where the A; are universal power series
(13) Al = Z Ai’gxlﬁ

Benn—1

and the A; g are new indeterminates. Then we can expand

F(o1,. . 0m) = Z Fu
~EN™
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where
Fy = Z M,igAip+ By
i, 3

with M, ; 3 and B, polynomials in the ¢; .
Let R be a ring. Then the system of linear equations
(Se0) VyeN™ F,(Aip)=0
has a solution (a;5) € RY if and only if Ker(p) contains a non zero Weierstrass
polynomial
(14) f=a%+a(x)xd "+ ... 4 ay(x'), where a;(x') = Z ai’gxlﬁ.
BEN"_l
Let us consider the systems of linear equations
(Sk) V’)/ € Nm7 |7‘ < ka F’y(Ai,ﬁ) =0
where k runs over N. We have

Corollary 6.3 (Approximation). Let k be a field. Assume that f, given as in

(T4), is a generator of Ker(yp). Then (a; ) is the unique solution of (Sx) in k™.
Moreover, there is a function p : N — N such that, for all k € N, all solutions

(as,8) € kN of (Su)) satisfies
Vﬁ € Nn’ |ﬁ| <k :>ai,5 = a;p.

Proof. Let (a;3) be a solution of (Suf). Then

fi=ad+ Z Ay pxPard=t 4t Z a4,5x" € Ker(p).
Beanl BeNn—l

Since f is a generator of Ker(y), there is g € k[x] such that f: fg. Since f and f
are Weierstrass polynomials, by the uniqueness of the decomposition of a series as a
product of a Weierstrass polynomials with a unit, we have that g = 1 and f: f.
This shows that (a; ) is the unique solution of ([Sx). Next, for k € N we set

p(k) = A ((d+ 1)k +1))
where A is given in Proposition Consider a solution (a; 3) € k™ of (S,x)). Set

Jemaf +m et b 4, where Gi= Y0 G i=1d
ﬁeNn—l

Since p(f) € ()" by Proposition f € ()@t (+d+1) | Ker(gp). Therefore
d
f=rfg+> (@ —a)ai™
i=1

for some g, where

d
N (@ — ai)ad~t € Ker(ip) + () (4D (),
i=1
Thus we can write
d
(15) Z(?il — ai)xi_i = fh +¢€
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where ¢ € (x)(@D*(k+d+1)  We denote by v the monomial valuation defined by

v ( Z gaxa> =min{(d+ 1)(a1 + -+ an-1) + @, | go # 0}.

aeNn

For a power series g, we denote by in(g) its initial term in respect to this monomial
valuation. We remark that, for any g, (d + 1) ord(g) > v(g) > ord(g).
Note that in(f) = 2. But, in (1F]), we see that the initial term of the left hand side

is not divisible by z¢. Therefore v (Zle(ﬁi - ai)zd’l) > v(e). Therefore

n

d

(d+1)ord (Z(&g - ai)xZ_i> > ord(e).

i=1
Thus, there is a ig such that
ord((a@i, — aiy)zl) > (d+ 1)k +d+1).
In particular G;, — a;, € (x)(@+D* " (k+d+1)=(d=i0) = (x)k+1, On the other hand we
have that 3, ; (@ — a;)z " € Ker(p) + (x) (@D (k+d+1)  The result is proved
by induction on the number of terms in the sum. ([

We are now ready to turn to the proof of the main result of this subsection:

Proof of the Extension Lemma[6.1. We consider, for each a € U, the following
system of linear equations

(Soo(@)) vy e N, Fy(a)(Aip) =0

where F, A; are as in equations and , respectively. Set Uy = 7, o ¥ where

7 : K" — K is the projection to the k-entry, and note that all of its derivatives

ikl
ou”

U (+,0) are globally defined morphisms over A. Now consider:
F(qJT,aa ] ‘I’Z,a) = Z F"/(a) u’Y
yEN™
where a € A, and

d
Ea)= > Myis@)Ais+By(a)

i=1 BeN"—1, By
with M, ; g(a) and B,(a) polynomials in the derivatives of ¥%. In particular, note
that M, ; 3(a) and B, (a) belong to O(A).
As before, for any k € N, we consider the finite system of linear equations:
(Sk(a)) Vy eNT |y <k, Fy(a)(Aig) =0.

Let sy, denote the number of indexes «y such that |y| < k. The system can
be written as

M®(a)- AW + B®(a) =0
where M (*)(a) is the (sj, x dsj)-matrix with entries M, ; g(a), A®) is the (dsg x 1)-
column with entries A4; 5, and B*)(a) is the (s; x 1)-column with entries B, (a).
We denote by Mi(‘?(a) the column of M*)(a) corresponding to A; s, that is:

d
M® () A" =3 3" M (a) A 5
i=1|6|<k
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Let us fix ig € {1,...,d} and By € N"~! and let us prove that there exists @;, g, € £
whose restriction to U is equal to a;, g,. For every k € N with k& > |5y|, let us denote

by t(k)( ) the dimension of the K-vector space To(k) (a) generated by the M Z.(”E) (a) for
(i,8) # (io, Bo). There is an analytic proper subset D) of A such that for every
ae AN D(k) (k)(a) is maximal; denote by ték) this maximal value.

We now fix a € U ~\ Uk>‘ 8 D ) and consider tq the Chevalley function of
Corollary [6.3] associated to f(a,z). We now fix k = |By| + 1 and we set £ = pq(k).
To simplify the notation, set téi) =19, and consider K-linearly independent vectors

¢ ¢ ¢ . ¢
Mi(l,)ﬁl( ), MZ(2 )ﬁQ( )s - Mi(to)ﬁto (a) which generate TO( )(a).

Claim 6.4. There exists a neighborhood U, of a such that Mi(f7)ﬂo(b) does not belong
to the vector space generated by T ( ) for every b € U,.

Proof. Indeed, from the definition of TO( )(a) the equality M© (a)- A® + BO)(a) =0
can be re-written as:
to

14
Ai(”ﬁo 207,30 Z i B T L; Mi(j?ﬂj (a) + B(l)(a) =0.

where the L; are K-linear combinations of the terms A, g with (¢,5) # (i;,5;)
for j = 0,...,tg. We recall that, by Corollary there exists a unique entry

Qi By = Alo, 8, for which the above system admits a solution. It is now immediate
that Ml( (@) & Tég)(a) (otherwise, for each choice of A;, g,, it would be possible to
compensate the terms A; g with (4, 8) # (40, So) in order to get a different solution).

We conclude easily from the analyticity of the vectors M, i(%). O

Now, by analyticity of the entries M i(eﬂ)’ there is a proper analytic subset Ey of A
such that, for every b € A \ Ey, the vectors M i(f)ﬁj (b), for 0 < j < tp, are K-linearly

independent. Moreover, since ty = maxc{t(()e)(c)}, these vectors form a basis of the
vector space generated by all the Ml(g(b) Therefore, for a given (i, 5) # (i, 3;) for
j=0,...,to and for a given b € A \ Ey, the equation ZEOZO MY (b)X M, 5(b)
has a unique solution X = (Xo,...,Xs,) € K. Let us denote by My(b) the
se X (to + 1)-matrix with columns Mi(f,)ﬂj(b) for j =0,...,to. By Cramer’s rule, the
X, have the form g¢;(b)/A(b) where g;(b) is a minor of a matrix whose entries are
some of the entries of the Mi(f,)@j (b) and of M; g(b), and Ag(b) is the determinant of
a (to + 1)-square sub-matrix Ny(b) of My(b). Therefore, there is a proper analytic
subset E; of A, such that for every b’ € A\ Eq, Ag(b’) # 0. In particular the
system (S¢(b)), for b € A\ (Ey U E), can be rewritten as

to

S MO, (0)(Aiy 5, + Liy 5, (8)) + BO(6) = 0
j=0

where the L;; g, (b) are linear forms in the A; g for (i, 3) # (ij, 3;) for j =0, ..., to,
with analytic coefficients. We claim that L;, g,(b) = 0. Indeed, by Claim note
that for every ¢ € Ua \ Uy ) Dék) we have that Mi(f’)ﬁo (¢) does not belong to the

to-vector space Téé)(c), implying that L;, g,(c) is equal to zero in an open set; by
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analyticity L;, g, = 0. In particular the system (S¢(b)), for b € A\ (Ep U E4), can
be rewritten as:

A0

to
o280 (0) i, D7 M [l (0) (A, + Liy 5, (6) + BO(6) = 0,
j=1
It now follows from Cramer’s rule that there exists a solution @;,g,(b) of the
truncated system which can be expressed as a division Qg (b)/Aq(b), where Qo(b)
depends on the entries of Mi(f’)ﬁj (b) for j =1,...,t0} and B®)(b). We now remark
that Claim [6.4]implies that @;, g,(b) = ai,,s,(b) for every b € Uy \ (Do U Zp), which
implies that they are equal over U \ Z,. We conclude that a;, g, can be extended
as a holomorphic function on A \ Zj that belongs to £. Since the choice of (ig, 8o)
was arbitrary, this proves the Lemma. ]

6.2. Proof of Proposition Let ®: Q — K" and ¢ : A — Q be the two
morphisms from the definition of admissible family and recall that ¥(a,u) =
®(p(a) +u) — (p(a)). Let a € R(V,A) and set r := 1(¥,) = r7 (¥,); in particular,
7 =1(Py(a)) =17 (Py(a))- It follows from Gabrielov’s rank Theorem (or the rank
Theorem [1.1)) that r4(®,(q)) = -

Apart from a translation in x, we may suppose that ®(¢(a)) = 0. Let (Z,0)
be the germ of analytic set defined by Ker(®7, ) and note that r = dim(Z,0).
Apart from a linear change of coordinates in x, we may assume that the projection
7:(Z,0) — (K",0) on the first 7 coordinates is finite. In particular, each function
x;, for i > r, is finite over the ring of convergent power series K{x1,...,x,}. That is,
by the Weierstrass preparation theorem, there exist non zero Weierstrass polynomials

Pi(x1,... @, 2pri) € K{x1,. .., 20 Hapgq], fori=1,...,n—r,

belonging to Ker((b:;( a)). By replacing each P; by one of its irreducible factors we
may assume that the P; are irreducible Weierstrass polynomials at 0.

We claim that, apart from changing the choice of point a € R(¥,A) and re-
centering the coordinate system x accordingly, there exists a neighborhood U of a
such that P; are well-defined and irreducible at every point in ®(¢(U)). Indeed, let
V' be an open neighborhood of 0 in K™ on which the P; are well-defined, and U be
an open connected neighborhood of a such that ®(¢(U)) C V. Apart from shrinking
U and V, we may suppose that P; € Ker(@fp(b)) for every b € U; in particular,
U C R(¥,A). Now, recall that being not irreducible is an open property for the
Euclidean topology, thus the property of being irreducible is a closed property. If
one of P; is not irreducible at a point ®(p(b)), for some b € U, we may replace
a by b, P; by one of its irreducible factors at this point, and we shrink U and V'
accordingly. Since the degree of the P; is a positive integer, this process should end
in a finite number of steps, proving the claim.

Fix s =1, ...,n—7, set x®) = (21,..., 2., 2,44), PO 1= (®y,..., D, ®,,),
and denote by ¥(*) = (¥y,..., ¥, ¥, ) the family associated to ®(*) and ¢. Note
that U € R(¥(), A) by construction. Moreover Ker(\I/gs)*) is generated by Py since

Py is irreducible and Ker(\IJ&S)*) is a height one prime ideal of K{x(*)}. We set:

Fulb.x) = P (#9p(0) + 1)
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for every b € U, which can be written as:
Fo(0,x)) =y 4+ a1 (b, x" )yt + - + aq(b,x')

where y = z,4s and X’ = (x1,...,2,). First, note that a;(b,x") € O(U)[x'] since
® o ¢ is an analytic map defined on U and P; is well defined in ®(¢(U)). Second,
note that f,(b,x(*)) Ker(\I/Ef) ) for every b € U since \IJEf) (fi) = Pso (IDE;([,) =0,

and that f,(b,x(*)) generates Ker(\IJE’S)*) since P; is irreducible. Third, note that
£:(6,0,) = y*®U (b, y) for some 1 < k(b) < d and U(b,y) is a monic polynomial
in y coprime with y. By Hensel Lemma (see [Gro67, 18.5.13]), this implies that
fi(b,x',y) is the product of two monic polynomials of degree k(b) and d — k(b)
respectively. From the fact that P; is irreducible and k(b) > 0 at every point b € U,
we conclude that k(b) = d, that is, fs(b,0,5) = y¢. These three observations show
that fs satisfies all hypothesis of Lemma [6.1] so that it can be extended as a power

series f(x(*)) of L[x], where £ is the fraction field of O(A), such that W% (f,) = 0.
We conclude that 7 (¥%) < r, and since r(¥%) = 7, we get that (V) = r7 (¥%),
finishing the proof.
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