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Abstract. We prove a generalization of Gabrielov’s rank theorem for families
of rings of power series which we call W-temperate. Examples include the
family of complex analytic functions and of Eisenstein series. Then the rank
theorem for Eisenstein series allows us to give new proofs of the following two
results of W. Pawłucki:
I) The non regular locus of a complex or real analytic map is an analytic set.
II) The set of semianalytic or Nash points of a subanalytic set X is a subanalytic
set, whose complement has codimension two in X.

Algebra is the offer made by the devil to the mathematician. The
devil says: “I will give you this powerful machine, it will answer
any question you like. All you need to do is give me your soul:
give up geometry and you will have this marvellous machine."

Sir Michael Atiyah, (Collected works. Vol. 6.
Oxford Science Publications, 2004).

1. Introduction

This article contains two sets of results concerning rank Theorems in commutative
algebra and their application to analytic and subanalytic geometry.

We start by proving a rank Theorem for general families of rings which we call
W-temperate, see Theorem 1.1, generalizing the classical Gabrielov’s rank Theorem
[Ga73, BCR21] (see the latter reference for a historical overview on the Theorem and
its importance). These are families of Weierstrass rings (K{{x1, . . . , xr}})r∈N, that
is, families of rings of power series satisfying the Weierstrass division theorem, see
Definition 2.1, where K is any uncountable algebraically closed field of characteristic
zero, which satisfies three axioms: closure under local blowing-down, closure under
restriction to generically hyperplane sections and temperateness, a closure under
evaluation by algebraic elements type condition, see Definition 2.2. Examples
include the family of germs of complex-analytic functions, algebraic power series,
and Eisenstein power series; the latter allow us to obtain rank Theorems for families
of morphisms. In particular, we obtain a new proof of Gabrielov’s rank Theorem,
which greatly simplifies and shortens our previous work [BCR21].

As an application of the rank Theorem for W-temperate families, we provide
new proofs of two fundamental results of analytic and subanalytic geometry due
to Pawłucki [Pa90, Pa92]: I) the non-regular (in the sense of Gabrielov) locus of a
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complex or real-analytic map Φ : M −→ N is a proper analytic subset of M , see
Theorem 1.3 and II) the set of semianalytic or Nash points of a subanalytic set X is
a subanalytic set, whose complement has dimension has dimension 6 dim(X)− 2,
see Theorem 1.4. In spite of being considered as fundamental results of subanalytic
geometry, the original proofs of these results are considered to be very hard, as noted
by Łojasiewicz: “Sans doute, parmi les faits établis en géométrie sous-analytique
le théorème de Pawłucki [result II] est le plus difficile à prouver (la démonstration
compte environ soixante dix pages!)", [Lo93, Page 1591].

Our first set of results concerns rank Theorems. Let K be an algebraically
closed field. We consider families of rings of power series (K{{x1, . . . , xr}})r∈N
which we call Weierstrass temperate, see Definitions 2.1 and 2.2; note that the
completion of K{{x1, . . . , xr}} is KJx1, . . . , xrK, see Proposition 2.8 i). Given a ring
homeomorphism:

ϕ : K{{x}} −→ K{{u}}
where x = (x1, . . . , xn) and u = (u1, . . . , um), we say that ϕ is a morphism of
W-temperate power series if ϕ(f) = f(ϕ(x)) for every f ∈ K{{x}}, see Definition
2.3. We denote by ϕ̂ its extension to the ring of formal power series. We define:

(1)

the Generic rank: r(ϕ) := rankFrac(K{{u}})(Jac(ϕ)),

the Formal rank: rF (ϕ) := dim
(
KJxK

Ker(ϕ̂)

)
,

and the temperate rank: rT (ϕ) := dim
(
K{{x}}
Ker(ϕ)

)
,

of ϕ, where Jac(ϕ) stands for the matrix [∂uiϕ(xj)]i,j . Our first main result is:

Theorem 1.1 (W-temperate rank Theorem). Let ϕ : K{{x}} −→ K{{u}} be a
morphism of rings of W-temperate power series. Then

r(ϕ) = rF (ϕ) =⇒ r(ϕ) = rF (ϕ) = rT (ϕ).

This result generalizes the original rank Theorem of Gabrielov [Ga73], which
concerns the case that K{{x}} stands for the family of complex analytic function
germs. As noted before, we rely on [BCR21] for a presentation of the importance
and consequences of the Theorem to local analytic geometry and commutative
algebra. In spite of Gabrielov’s rank Theorem being considered a fundamental result
in local analytic geometry, its original proof is considered to be very difficult, cf.
[Iz89, Page 1]. Recently, we have provided an alternative proof of Gabrielov’s rank
Theorem [BCR21], by developing geometric-formal techniques inspired by works of
Gabrielov [Ga73] and Tougeron [To90]. One of the difficulties involved in the proof
is the intricate interplay between algebraic geometry and complex analysis. Our new
result simplifies the proof by addressing this difficulty. Indeed, the proof of Theorem
1.1 follows from algebraic geometry methods; complex analysis is only used in order
to show that complex analytic functions form a W-temperate family, see §§ 3.2. As
a mater of fact, we systematically generalize the arguments introduced in [BCR21]
to their most general context, which demand us to introduce new commutative
algebra arguments. It seems likely that the discussion of rank Theorems for non
W-temperate families will demand a complete different strategy. In order to motivate
this discussion, we provide a family of local rings of interest to function theory and
tame geometry (that is, families of quasianalytic Denjoy-Carleman functions and
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families of C∞-definable functions over an o-minimal and polynomially bounded
structure) where the rank Theorem does not hold, see §§1.1.

Remark 1.2. Theorem 1.1 can be seen a "dual" of the Artin approximation Theorem.
More precisely, let ϕ be such that r(ϕ) = rF (ϕ). Then,

∀F (x) ∈ KJxK, such that F (ϕ(x)) = 0,

∀c ∈ N,∃Fc(x) ∈ K{{x}}, Fc(ϕ(x)) = 0 and F (x)− Fc(x) ∈ (x)c.
where ϕ(x) = (ϕ(x1), . . . , ϕ(xn)). Indeed, the ideals Ker(ϕ) and Ker(ϕ̂) are prime
ideals of K{{x}} and KJxK respectively, and the equality rF (ϕ) = rT (ϕ) is equivalent
to the equality of the heights of these two ideals. Since K{{x}} is Noetherian (see
Proposition 2.8 i)), the height of Ker(ϕ)KJxK equals the height of Ker(ϕ). Now, by
Artin Approximation Theorem, see Corollary 2.11, Ker(ϕ)KJxK is again a prime ideal,
so the equality rF (ϕ) = rT (ϕ) is equivalent to the equality Ker(ϕ)KJxK = Ker(ϕ̂). It
is well known that, since K{{x}} is Noetherian, Ker(ϕ)KJxK is the closure of Ker(ϕ)
in KJxK for the (x)-adic topology, and we conclude easily.

Our second set of results concerns two fundamental results of analytic and
subanalytic geometry. Let K = C or R, and consider a K-analytic map Φ : M −→ N
between K-analytic manifoldsM and N . Given a ∈M , we denote by Φa the germ of
the morphism at a point a ∈M , and by Φ∗a : OΦ(a) −→ Oa the associated morphism
of local rings, where Oa stands for the ring of analytic function germs at a. For
each a ∈M , we set ra(Φ) := r(Φ∗a) and rFa (Φ) := rF (Φ∗a). Consider:

R(Φ,M) = {a ∈M ; ra(Φ) = rFa (Φ)},
which is called the set of regular (in the sense of Gabrielov) points of Φ. By combining
Theorem 1.1 applied to Eisenstein power series, see §3.3, with the uniformization
Theorem, see e.g. [BM88, Th 0.1], we prove the following result:

Theorem 1.3 (Pawłucki Theorem I, [Pa92]). Let Φ : M 7−→ N be an analytic map
between connected manifolds. Then M rR(Φ,M) is a proper analytic subset of M .

We now specialize our presentation to K = R, and we refer to §§5.2 and §§5.6
for all the details of the following discussion. Let X ⊂ M be a subanalytic set.
Given a point a ∈ M , we denote by Xa the germ set of X at a. We say that an
equidimensional subanalytic set X is a Nash set at a ∈M (which might not belong
to X) if there exists a germ Ya of semi-analytic set at a such that Xa ⊂ Ya and
dim(Xa) = dim(Ya). More generally, a subanalytic set X ⊂ M of dimension d is
Nash at a point a ∈ M , if X is a union of equidimensional Nash sets Σ(k), where
k = 0, . . . , d. We consider the sets:

N (X) := {a ∈M | Xa is the germ of a Nash set}
SA(X) := {a ∈M | Xa is the germ of a semianalytic set}.

It is trivially true that M rX ⊂ SA(X) ⊂ N (X). But in general, SA(X) 6= N (X),
see example 5.25 below. Now, by combining Theorem 1.3 with the uniformization
Theorem, see e.g. [BM88, Th 0.1], we prove the following result:

Theorem 1.4 (Pawłucki Theorem II, [Pa90]). Let X be a subanalytic set of a real
analytic manifold M . Then

i) The sets N (X) and SA(X) are subanalytic.



4 A. BELOTTO DA SILVA, O. CURMI, AND G. ROND

ii) dim(M rN (X)) 6 dim(M r SA(X)) 6 dim(X)− 2.
In particular, if dim(X) 6 1, then N (X) = SA(X) = M .

Remark 1.5. The case of dim(X) 6 1 was originally proved by Lojasiewicz [Lo65]
and an alternative proof is given in [BM88, Theorem 6.1].

The original proof of Theorem 1.4 given in [Pa90] is an intricate construction
between geometrical, algebraic, and analytic arguments, which we do not fully
understand. Pawłucki then deduces Theorem 1.3 from Theorem 1.4 in [Pa92]. Our
proof of these results relies heavily on algebraic arguments, namely on Theorem 1.1
and the use of Eisenstein power series, see §§3.3 instead of geometric and analytic
arguments as in [Pa90]. We develop new commutative algebra methods, in particular
concerning power series with coefficients in a UFD, which are of independent interest,
see e.g. Theorem 3.7. Our use of geometric techniques is essentially reduced the
extension Lemma 6.1 together with the use of the Uniformization Theorem of
Hironaka [H73]; the former has been inspired from the work of Pawłucki [Pa90,
Lemme 6.3], while the later is not used in [Pa90, Pa92].

We would like to thank Edward Bierstone for bringing the topic of this paper to
our attention and for useful discussions. This work was supported by the CNRS
project IEA00496 PLES. The first author is supported by the project IDEX UP
ANR-18-IDEX-0001.

1.1. On rank Theorems for nonW-temperate families. We start by providing
examples of a families of local rings where the rank Theorem does not hold. We
consider an example given in [BB22, Example 1.8], which is based on a construction
due to Nazarov, Sodin and Volberg [NSV04, § 5.3]. We refer the reader to [BB22,
§3] for a detailed presentation of quasianalytic classes, and we follow its notation.
Consider quasianalytic Denjoy-Carleman classes QM which satisfies two properties:

1) There is a function g ∈ QM ([0, 1)) which admits no extension to a function
in QM ′((−δ, 1)), for all δ > 0 and all quasianalytic Denjoy-Carleman class
QM ′ (these classes exist by [NSV04, § 5.3]);

2) The shifted class QM(p) , where M (p)
k := Mpk, is a quasianalytic Denjoy-

Carleman class for every p ∈ N.
For example, the class QM given by the sequence M = (Mk)k∈N, where Mk =
(log(log k))k, satisfies both conditions.

Let Φ : (−1, 1) −→ R2 denote the QM -morphism Φ(u) = (u2, g(u2)), and let
ϕ = Φ∗ denote its pull-back at 0. Note that r(ϕ) = rF (ϕ) since G(x) = x2 − ĝ(x1)
is a formal power series such that ϕ̂(G) = ĝ(u2) − ĝ(u2) ≡ 0. Now, suppose by
contradiction that there exists a function germ h ∈ QM (−ε, ε), for some ε < 1, such
that ϕ(h) = h ◦ ϕ(u) ≡ 0. We remark that ĥ(t, ĝ(t)) ≡ 0 since

0 ≡ ϕ̂(ĥ) = ĥ(u2, ĝ(u2)),

so we conclude that the equation h(x1, x2) = 0 admits a formal solution x2 = ĝ(x1).
By [BBB17, Theorem 1.1], apart from shrinking ε, there exists a function f ∈
QM(p)(−ε, ε), for some p ∈ N, such that h(x1, f(x1)) ≡ 0 and f̂ = ĝ. Since QM(p)

is quasianalytic by condition 2) and contains QM , we conclude that f|[0,ε) = g|[0,ε).
This implies that g admits an extension in the shifted quasianalytic class QM(p) ,
contradicting condition 1). We conclude Theorem 1.1 does not hold for these classes.
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We can also consider the o-minimal structure RQM given by expansion of the real
field by restricted functions of class QM satisfying conditions 1) and 2) above, cf.
[RSW03], and the quasianalytic class Q of C∞ functions that are locally definable in
RQM . By [BBC18, Theorem1.6], any function h ∈ Q((−1, 1)) belongs to a shifted
Denjoy-Carleman class QM(p) , for some positive integer p. We conclude that the
morphism Φ defined above shows that the rank Theorem can not hold for Q.

Remark 1.6. Every quasianalytic class which properly contains the analytic func-
tions does not satisfy the Weierstrass preparation property [PR13].

Finally, let us note that Theorem 1.1 holds for at least one family of rings which
is not Weierstrass. For instance, if we set K{{x1, . . . , xn}} = K[x1, . . . , xn](x1,...,xn)
for any integer n, then for any morphism ϕ : K{{x}} −→ K{{u}}, we have

r(ϕ) = rF (ϕ) = dim (K{{x}}/Ker(ϕ))

essentially by Chevalley’s constructible set Theorem. But the rings of rational
functions are not Henselian local rings, so they do not form a Weierstrass family, c.f.
Proposition 2.8 i) below.

2. Weierstrass Temperate families

2.1. W-Temperate families. Let K be a field of characteristic zero. For every
n ∈ N, we denote by (x1, . . . , xn) indeterminacies; we will use the compact notation
x = (x1, . . . , xn) and x′ = (x1, . . . , xn−1) whenever there is no risk of confusion on
n. We start by recalling the notion of Weierstrass family introduced in [DL80]:

Definition 2.1. A Weierstrass family (over K), or just a W-family, of rings is a
family (K{{x1, . . . , xn}})n∈N of K-algebras such that,

i) For every n,
K[x] ⊂ K{{x}} ⊂ KJxK.

ii) For every n and m, denoting x = (x1, . . . , xn) and y = (y1, . . . , ym):

K{{x,y}} ∩ KJxK = K{{x}}.

iii) For any permutation σ of {1, . . . , n}, and any f ∈ K{{x}},

f(xσ(1), . . . , xσ(n)) ∈ K{{x}}.

iv) If f ∈ K{{x}} with f(0) 6= 0, then f is a unit in K{{x}}.
v) The family is closed by Weierstrass division. More precisely, let F ∈ K{{x}}

be such that F (0, xn) = xdnu(xn) where u(0) 6= 0. For every G ∈ K{{x}},

G = FQ+R,

where Q ∈ K{{x}} and R ∈ K{{x′}}[xn+1], degxn(R) < d, are unique.

A W-family satisfies several extra well-known properties which we recall in §§2.3
below; in what follows we use these properties. Let us now provide the definition of
W-temperate family:

Definition 2.2. Let K be an uncountable algebraically closed field of characteristic
zero. A Weierstrass temperate family (over K), or just a W-temperate family, of
rings is a Weierstrass family (K{{x1, . . . , xn}})n∈N over K satisfying the following
three properties:



6 A. BELOTTO DA SILVA, O. CURMI, AND G. ROND

i) Closure by local blowings-down: For every f ∈ KJxK, n > 1, we have

f(x′, x1xn) ∈ K{{x}} =⇒ f(x) ∈ K{{x}}.

ii) Closure by generic hyperplane sections: Let F ∈ KJxK rK{{x}}. Set

W := {λ ∈ K | F (x′, λx1) ∈ K{{x′}}} .

Then the set K rW is uncountable.
iii) Temperateness: Let x = (x1, x2) and α ∈ N∗. Consider

γ(t) ∈ K{{t}} and P (x, z) =
∑
k∈N

xk1pk(x2, z) ∈ KJxK[z],

where γ(t) is finite over K[t] and pk(x2, z) ∈ K[x2, z] is such that degx2(pk) 6
αk for every k ∈ N. Let γ′ be a conjugate of γ:

P (x, γ(x2)) ∈ K{{x}} =⇒ P (x, γ′(x2)) ∈ K{{x}}.

Note that properties ii) and iii) are used only once in the paper, see §§4.2 and
the proof of Theorem 4.19 respectively.

2.2. W-Temperate morphisms and ranks. We start by proving a detailed
definition of the morphisms we consider:

Definition 2.3. Let ϕ : K{{x}} −→ K{{u}} be a morphism of local rings. We call
ϕ a morphism of rings of W-temperate power series if there exist W-temperate
power series ϕ1(u), . . . , ϕn(u) ∈ (u)K{{u}} such that

∀f(x) ∈ K{{x}}, ϕ(f) = f(ϕ1(u), . . . , ϕn(u)).

For such a morphism, we have introduced in the introduction three notions of
ranks: generic, formal and temperate, see (1). Note that the generic and formal
ranks can be introduced, in an obvious way, for general morphisms of power series
rings ψ : KJxK −→ KJuK. Let us start by showing that these ranks are well-defined:

Lemma 2.4. Let ϕ : K{{x}} −→ K{{u}} be a morphism of W-temperate power
series. Then r(ϕ), rF (ϕ) and rT (ϕ) are natural numbers such that:

r(ϕ) 6 rF (ϕ) 6 rT (ϕ).

Proof. It is straightforward that r(ϕ) is well-defined; rF (ϕ) and rT (ϕ) are well-
defined since KJxK

/
Ker(ϕ̂) and K{{x}}

/
Ker(ϕ) are Noetherian local rings. Next,

consider a general morphism of power series ring ψ : KJxK −→ KJuK and set
r = r(ψ). Apart from re-ordering the coordinates, we may assume that the matrix
[∂uiϕ(xj)]i6m,j6r has rank r. Therefore, if we set R := KJx1, . . . , xrK, ψ|R is injective
by [Ga73, Lemma 4.2] (whose proof remains valid over any characteristic zero field
K). Thus r = dim(R) 6 dim

(
KJxK

/
Ker(ψ)

)
. This proves the first inequality.

Finally, by Artin approximation Theorem 2.10, Ker(ϕ)KJxK is a prime ideal, and by
[Mat89, Theorem 9.4] the height of Ker(ϕ)KJxK is less than or equal to the height
of Ker(ϕ̂). We conclude that rF (ϕ) 6 rT (ϕ). �

Remark 2.5. The proof of the above Lemma also shows the result for a general
morphism of power series rings ψ : KJxK −→ KJuK, that is, its generic and formal
ranks are well defined and:

r(ψ) 6 rF (ψ).



ON RANK THEOREMS AND THE NASH POINTS OF SUBANALYTIC SETS 7

Definition 2.6. Let ϕ : K{{x}} −→ K{{u}} be a morphism of W-temperate power
series. We say that ϕ is regular (in the sense of Gabrielov) if r(ϕ) = rF (ϕ).

We finish this subsection by useful results about the ranks of a morphism of
W-temperate power series, which is a W-temperate version of [BCR21, Prop. 2.2]:

Proposition 2.7 (cf. [BCR21, Prop.2.2]). Let ϕ : K{{x}} −→ K{{u}} be a mor-
phism of W-temperate power series. The ranks r(ϕ), rF (ϕ) and rT (ϕ) are preserved
if we compose ϕ with:

(1) a morphism σ : K{{u1, . . . , um}} −→ K{{u′1, . . . , u′s}} such that r(σ) = m,
(2) an injective finite morphism τ : K{{x′1, . . . , x′n}} −→ K{{x1, . . . , xn}},
(3) an injective finite morphism τ : K{{x′1, . . . , x′t}} −→ K{{x}}

/
Ker(ϕ).

Proof. We start by proving (1). Note that it is straightforward from linear algebra
that r(σ ◦ϕ) = r(ϕ). In order to prove the other two equalities, it is enough to prove
that σ and σ̂ are injective morphisms of local rings. This follows from Lemma 2.4,
since m = r(σ) 6 rF (σ) 6 rT (σ) 6 dimK{{u1, . . . , um}} = m.

We now prove that rT (ϕ) = rT (ϕ ◦ τ) under the hypothesis given in (2) and
(3). Indeed, we have Ker(ϕ ◦ τ) = Ker(ϕ) ∩ K{{x′}} because τ is injective. Since
K{{u}} is an integral domain, Ker(ϕ) and Ker(ϕ ◦ τ) are prime ideals. Thus, by
the Going-Down theorem for integral extensions [Mat89, Theorem 9.4ii], we have
that ht(Ker(ϕ ◦ τ)) 6 ht(Ker(ϕ)), thus rT (ϕ) 6 rT (ϕ ◦ τ). On the other hand, we
have the equality rT (ϕ) = rT (ϕ◦ τ) because ht(Ker(ϕ◦ τ)) = ht(Ker(ϕ)) by [Mat89,
Theorem 9.3].

We now prove that rF (ϕ) = rF (ϕ ◦ τ) under the hypothesis given in (2). Indeed,
since τ is finite, τ̂ is also finite by the Weierstrass division Theorem (see for instance
[BCR21, Cor. 1.10] for this claim). Moreover, we have

dim(KJx′K)− ht(Ker τ̂) = dim(KJxK) = n

since finite morphisms preserve the dimension and τ is injective. But ht(Ker(τ̂)) = 0
if and only if Ker(τ̂) = (0) because K{{x′}} is an integral domain. Thus, τ̂ is
injective and rF (ϕ ◦ τ) = rF (ϕ).

Now we prove that rF (ϕ) = rF (ϕ ◦ τ) under the hypothesis given in (3). We
denote by τ̂ ′ the morphism induced by τ̂ :

KJx′1, . . . , x′tK
/̂
τ−1(Ker(ϕ̂)) −→ KJxK

/
Ker(ϕ̂).

As in the previous case, since τ is finite, τ̂ is also finite, therefore τ̂ ′ is finite.
Moreover, by definition, τ̂ ′ is injective. Thus, by Theorem [Mat89, Theorem 9.3],
we have rF (ϕ ◦ τ) = rF (ϕ).

We now turn to the proof of r(ϕ) = r(ϕ ◦ τ). We start by (2). Let Jϕ and Jτ
denote the Jacobian matrices of ϕ and τ . Then we have Jϕ◦τ = Jϕ · ϕ(Jτ ); note
that it is enough to prove that the hypothesis imply that r(τ) = n in order to
conclude by standard linear algebra. Indeed, since τ is finite and injective, for every
i ∈ {1, . . . , n}, there is a monic polynomial Pi(x′, xi) ∈ K{{x′}}[xi] such that

Pi(τ1(x′), . . . , τn(x′), xi) = 0 and ∂Pi
∂xi

(τ1(x′), . . . , τn(x′), xi) 6= 0.

Therefore, for every i and j, we have
n∑
`=1

∂Pi
∂x′`

(τ(x), xi)
∂τ`(x)
∂xj

=

 −
∂Pi
∂xi

if i = j

0 if i 6= j
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Thus [
∂Pi
∂x′1

· · · ∂Pi
∂x′n

]
· Jτ = −∂Pi

∂xi
· ei

where ei is the vector whose coordinates are zero except the i-th one which is equal
to 1. In particular Jτ is generically a matrix of maximal rank, that is r(τ) = n, so
r(ϕ) = r(ϕ ◦ τ) by standard linear algebra. This proves (2).

Finally, let us finish the proof of (3). By adding the x′i to the xj , we can assume
that x′i = xi for i 6 t. By assumption, for every i ∈ {1, . . . , n}, there is a monic
polynomial Pi(x′, xi) ∈ K{{x′}}[xi] such that

Pi(τ1(x), . . . , τn(x), xi) = fi(x) ∈ Ker(ϕ) and ∂Pi
∂xi

(τ1(x′), . . . , τn(x′), xi) /∈ Ker(ϕ).

Thus [
∂Pi
∂x′1

· · · ∂Pi
∂x′n

]
· Jτ = −∂Pi

∂xi
· ei +

[
∂fi
∂x1

(x) · · · ∂fi
∂xn

(x)
]

Since fi ∈ Ker(ϕ), we have fi(ϕ(u)) = 0. By differentiation we obtain

∀j = 1, . . . ,m,
n∑
k=1

∂fi
∂xk

(ϕ(u))∂ϕk(u)
∂uj

= 0,

that is, [
∂fi
∂x1

(ϕ(u)) · · · ∂fi
∂xn

(ϕ(u))
]
· Jϕ = 0.

This proves that the generic rank of Jϕ◦τ = Jϕ · ϕ(Jτ ) is the rank of Jϕ. �

2.3. Properties of Weierstrass families. We now recall several useful properties
of W-families which are either proved in [DL80, Ro09] (see precise references in the
proof), or which follow easily from classical results:

Proposition 2.8. Let (K{{x1, . . . , xn}})n∈N be a Weierstrass family. Then the
following properties are satisfied:

i) For every n, K{{x}} is a Henselian, Noetherien, UFD regular local ring
whose maximal ideal is generated by (x1, . . . , xn), and completion is KJxK.

ii) For f ∈ K{{t,x}} and any g ∈ (x)K{{x}}, f(g,x) ∈ K{{x}}.
iii) For every f ∈ KJxK, and any q ∈ N∗, we have

f(x′, xqn) ∈ K{{x}} =⇒ f(x) ∈ K{{x}}.
iv) For every n and k 6 n,

K{{x}} ∩ (xk)KJxK = (xk)K{{x}}.
v) Weierstrass preparation Theorem: Let f ∈ K{{x}} be such that f(0, . . . , 0, xn) 6=

0 has order d in xn. Then there exists a unit U and a Weierstrass polynomial
P = xdn + a1(x′)xd−1

n + · · ·+ ad(x′) such that
f(x) = U(x) · (xdn + a1(x′)xd−1

n + · · ·+ ad(x′)).
vi) Noether Normalization: Let A = K{{x}}

/
I where I is an ideal of K{{x}}.

Then, apart from a linear change of indeterminates x1, . . . , xn, there exists
an integer r > 0 such that the canonical morphism

K{{x1, . . . , xr}} −→ K{{x1, . . . , xn}}
/
I

is finite. Moreover, since the dimension does not change under finite mor-
phisms, if dim

(
K{{x}}

/
I
)

= r, then ht(I) = n− r.
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Proof. Properties i), ii), iv) are given in [DL80, Remark 1.3]; property iii) is given in
[Ro09, Lemme 5.13]. To prove property v), it is enough to consider the Weierstrass
division of xdn by f(x). Finally, it is classical that property vi) follows from the
Weierstrass division Theorem, see e.g. [dJPf00, 3.319]. �

We add to this list of properties the following two Theorems:

Theorem 2.9 ([PR12, Theorem 5.5]). A W-temperate family of rings satisfies the
Abhyankar-Jung Theorem. More precisely, let P (x, Z) ∈ K{{x}}[Z] be a monic
polynomial in Z. Assume that

DiscZ(P ) = xαu(x)

where u(x) ∈ K{{x}} satisfies u(0) 6= 0. Then there is q ∈ N∗ such that the roots of
P belong to K{{x1/q

1 , . . . , x
1/q
n }}.

The next result motivates the introduction of the notion of W-families in [DL80].

Theorem 2.10 ([DL80, Theorem 1.1]). A W-temperate family of rings satisfies
the Artin Approximation Theorem: let F = (F1, . . . , Fp) ∈ K〈x〉[y]p with y =
(y1, . . . , ym), and let ĝ(x) = (ĝ1(x), . . . , ĝm(x)) ∈ KJxKm be a formal power series
solution:

F (x, ĝ(x)) = 0.
Let c ∈ N. Then there is an algebraic solution g(c)(x) = (g(c)

1 (x), . . . , g(c)
m (x)) ∈

K〈x〉m:
F (x, g(c)(x)) = 0

with g(c)
i (x)− ĝi(x) ∈ (x)c for every i.

In what follows, we will use the following well known corollaries of the above
result (and we provide their proofs for the sake of completeness).

Corollary 2.11. Let ϕ : K{{x}} −→ K{{u}} be a morphism of Weierstrass power
series. Then Ker(ϕ)KJxK is a prime ideal.

Proof. The following is a well-known argument. Let f̂ , ĝ ∈ KJxK be such that
f̂ ĝ ∈ Ker(ϕ)KJxK. That is, there exist f1, . . . , fs ∈ Ker(ϕ) and ĥ1, . . . , ĥs ∈ KJxK
such that

f̂ ĝ −
s∑
i=1

fiĥi = 0.

By Artin approximation Theorem applied to ys+1ys+2−
∑s
i=1 fiyi, for every c ∈ N∗,

there exist f (c), g(c), h(c)
1 , . . . , h(c)

s ∈ K{{x}} such that

f (c)g(c) −
s∑
i=1

fih
(c)
i = 0

and f̂ − f (c), ĝ − g(c) ∈ (x)c. Since Ker(ϕ) is a prime ideal, then f (c) or g(c) is
in Ker(ϕ). Apart from replacing f by g, we may assume that f (c) ∈ Ker(ϕ) for
infinitely many c. Therefore, f is the limit of elements of Ker(ϕ), that is, f belongs
to the closure of Ker(ϕ) in KJxK for the (x)-topology. But, by [Mat89, Theorem
8.11], this closure is exactly Ker(ϕ)KJxK, so f ∈ Ker(ϕ)KJxK. This proves that
Ker(ϕ)KJxK is a prime ideal. �



10 A. BELOTTO DA SILVA, O. CURMI, AND G. ROND

Corollary 2.12. Suppose that P and Q are monic polynomials in y, P ∈ KJxK[y]
and Q ∈ K{{x}}[y], that are not coprime in KJx, yK. Then P and Q admits a
common W-factor R ∈ K{{x}}[y].
Proof. By hypothesis, there is a non unit R ∈ KJx, yK that divides P and Q in
KJx, yK. Since P is monic in y, then R(0, y) 6= 0, so R equals a unit times a monic
polynomial by Weierstrass preparation for formal power series. By replacing R by
this monic polynomial we may assume that R is monic in y. So we have RS = Q
where S ∈ KJxK[y] is monic in y. We write

R =
d∑
i=0

ri(x)yi, S =
e∑
i=0

si(x)yi and Q =
d+e∑
i=0

qi(x)yi.

The equality RS = Q is equivalent to the system of equations
min{`,d}∑

k=max{0,`−e}

rk(x)s`−k(x)− q`(x) = 0 for ` = 0, . . . , d+ e.

By Artin approximation Theorem 2.10, for any c ∈ N, this system of equations has
a solution (r′i(x), s′j(x)) ∈ K{{x}}d+e+2 and that coincide with (ri(x), si(x)) up to
(x)c. We set R′(x, y) =

∑d
i=0 r

′
i(x)yi. Since K{{x}} is a UFD by Proposition 2.8 i),

Q has finitely many monic factors of degree d in y that we denote by R1, . . . , Rs.
Let us choose c ∈ N large enough to insure that Ri −Rj /∈ (x)c when i 6= j. Since
R′ equals one of the Ri, necessarily R′ = R. This proves that R ∈ K{{x}}[y], so P
has a temperate monic factor. �

3. Examples of W-temperate families

3.1. Algebraic power series. When K is a field, we denote by K〈x1, . . . , xn〉 the
subring of KJx1, . . . , xnK of formal power series that are algebraic over K[x1, . . . , xn].
We have the following proposition:
Proposition 3.1. Let K be an uncountable algebraically closed field of characteristic
zero. The family of algebraic power series rings (K〈x1, . . . , xn〉)n is a minimal W-
temperate family, that is, it is contained in every other W-temperate family.
Proof. Let (K{{x1, . . . , xn}})n be a arbitrary W-temperate family. Since K{{x}} is
a Henselian local ring containing K[x](x), and since K〈x〉 is the Henselization of
K[x](x), we have K〈x〉 ⊂ K{{x}} by the universal property of the Henselization.

Next, let us prove that (K〈x1, . . . , xn〉)n is a W-temperate family. The first four
axioms of Definition 2.1 are classical, while the fifth axiom has been proved by Lafon
in [La65], see also [Ro18b]. So, let us check that Definition 2.2 is verified. Once
again, axiom i) is straightforward, and we consider:
Axiom ii) of Definition 2.2: We prove the contrapositive of the axiom, that is,
let F ∈ KJxK be such that

W := {λ ∈ K | F (x′, λx1) ∈ K〈x′〉}
is uncountable and let us prove that F ∈ K〈x′〉. Let us denote by K0 the algebraic
closure of the field extension of Q generated by the coefficients of F . Since F has
a countable number of coefficients, K0 is a countable field. Let λ ∈ W r K0; in
particular λ is transcendental over K0. By assumption on W , we have
(2) a0(x′)F (x′, λx1)d + a1(x′)F (x′, λx1)d−1 + · · ·+ ad(x′) = 0



ON RANK THEOREMS AND THE NASH POINTS OF SUBANALYTIC SETS 11

where the ai(x′) ∈ K[x′]. Let us denote by (a) the vector whose entries are the
coefficients of the ai(x′). Then (2) is satisfied if and only if (a) satisfies a (countable)
system of linear equations (S) whose coefficients are in K0(λ) (determined by the
vanishing of the coefficients of each monomial x′α for α ∈ Nn−1). And (S) is
equivalent to a finite system of linear equations (S ′) with coefficients in K0(λ). And
this system has a nonzero solution in K if and only if it has a nonzero solution in
K0(λ), and this solution yields non trivial polynomials ãi(x′) ∈ K0(λ)[x′] such that

ã0(x′)F (x′, λx1) + ã1(x′)F (x′, λx1)d−1 + · · ·+ ãd(x′) = 0.
By multiplying by some polynomial in K0[λ] we may assume that the ãi(x′) belong
to K0[x′][λ], thus we write ãi = ãi(x′, λ). By dividing by a large enough power of
xn − λx1, we may assume that one of them is not divisible by xn − λx1. Therefore
not all the ãi(x′, xn/x1) are zero, and
a0(x′, xn/x1)F (x′, xn/x1)+a1(x′, xn/x1)F (x′, xn/x1)d−1 + · · ·+ad(x′, xn/x1) = 0,
whence F (x) ∈ K〈x〉. This proves the result.
Axiom iii) of Definition 2.2: We follow the notation of axiom iii). For each
pk(x2, z), we consider its Euclidean division by the minimal polynomial Γ of γ:

pk(x2, z) = Γ(x2, z) · qk(x2, z) + rk(x2, z)
where degz(rk) < d = degz(Γ). By Lemma 3.2, there is a ∈ N such that
degx2(rk(x2, z)) 6 ak for every k.

Note that pk(x2, γ
′(x2)) = rk(x2, γ

′(x2)) for every root γ′(x2) of Γ, so we may
consider the auxiliary function:

Q(x1, x2, z) =
∑
k∈N

xk1rk(x2, z) =
d−1∑
k=0

qk(x)zk

where qi(x) ∈ K[x2]Jx1K, and note that P (x, γ′(x2)) = Q(x, γ′(x2)) for every
root γ′(x2) of Γ. Since degx2(rk(x2, z)) 6 ak for every k, we may write qk(x) =
q̂k(x1, x1x2, . . . , x1x

a
2) for some formal power series q̂k(x1, y1, . . . , ya) ∈ KJx1,yK.

Now, there exist formal power series ĝi, for i = 1, . . . , a, and k̂ such that:

Q(x, γ(t)) =
d−1∑
k=0

q̂k(x1,y)zk+
a∑
i=1

(yi − x1x
i
2)ĝi(x,y, t, z) + (z − γ(t))k̂(x,y, t, z).

By the nested approximation Theorem for linear equations (see [CPR19, Theorem
3.1]) this equation has a non trivial nested algebraic solution

(q̃k(x1,y), g̃i(x,y, t, z)), k̃(x,y, t, z)) ∈ K〈x1,y〉d ×K〈x,y, t, z〉a+1.

In particular Q̃ := q̃0(x1, x1x2, . . . , x1x
a
2) + · · ·+ q̃d−1(x1, x1x2, . . . , x1x

a
2)zd−1 is an

algebraic power series satisfiying
Q̃(x, γ(x2)) = Q(x, γ(x2)).

Moreover we have Q̃ =
∑
k∈N x

k
1 r̃k(x2, z) where the r̃k(x2, z) ∈ K[x2, z] with

degz(r̃k) 6 d − 1 and degx2(r̃k) 6 ak. So, since for every k, rk(x2, γ(x2)) =
r̃k(x2, γ(x2)), we have r̃k = rk since the degree of the minimal polynomial of γ(x2)
over K[x2] is d. In particular we have

P (x, γ′(x2)) = Q(x, γ(x2)) = Q̃(x, γ′(x2)) ∈ K〈x1, x2〉
for every root γ′(x2) of Γ. This ends the proof. �
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Lemma 3.2. Let Γ(x, z) ∈ K[x, z] be a monic polynomial in z of degree e. Let
p(x, z) ∈ K[x, z] with degz(p) 6 d, where d > e− 1. Consider the division of p by Γ:

p(x, z) = Γ(x, z)q(x, z) + r(x, z)

with degz(r) < e. Then degx(r) 6 degx(p) + (d− e+ 1) degx(Γ).

Proof. The proof is made by induction on d > e−1. If d = e−1, it is clear. Assume
that the result is proved for polynomials of degree d− 1 where d > e. We can write

p(x, z) = Γ(x, r)× be(x) + b̃(x, z)

where pe(x) is the coefficient of ze in p(x, z), and degz(p̃) < degz(b). Therefore
degx(p̃) 6 degx(p) + degx(Γ). Since p and p̃ have the same remainder r by the
division by Γ(x, z), we apply the inductive assumption to see that

degx(r) 6 degx(p̃) + (d− e) degx(Γ) 6 degx(p) + (d− e+ 1) degx(Γ),

finishing the proof. �

3.2. Convergent complex power series. In our previous work [BCR21], we gave
a proof of Gabrielov’s rank Theorem for the family of rings of complex convergent
power series (C{x1, . . . , xn})n. In fact this family is also a W-temperate family.
Indeed every property of Definition 2.1 is classical. Property i) and ii) of Definition
2.2 are well-known; they are respectively given in [BCR21, Lemma 2.6] and [AM70,
p. 31]. Finally property 2.2 iii) has been essentially proven at the end of the proof
of [BCR21, Theorem 5.18] and is based on [BCR21, Lemma 5.36]. We now recall
the idea of the proof, starting by the statement of the later Lemma:

Lemma 3.3 ([BCR21, Lemma 5.36]). Let C ⊂ Cn be an irreducible algebraic curve,
and D1, D2 be two compact subsets of C, such that the interior of D1 is nonempty.
Then

∃M > 0,∀P ∈ C[z1, . . . , zn], ‖P‖D2 6M
deg(P )‖P‖D1 ,

where ‖P‖D denotes max
z∈D
|P (z)|.

We now follow the notation of axiom iii). Denote by Γ ∈ K[t, z] the minimal
polynomial of γ and let γ′ ∈ KJtK be a conjugate root; note that γ and γ′ ∈ K{{t}}
since they are algebraic. Consider the curve C ⊂ K2

t,z given by Γ[t, z] = 0, and let
π : K2

t,z −→ Kt be the projection π(t, z) = t. Since γ and γ′ ∈ K{{t}}, there exists
a compact disc D0 ⊂ Kt centered at the origin such that, γ and γ′ are analytic
function for t ∈ D0. Denote by D and D′ ⊂ C the graphs of γ and γ′ over D0
respectively. Now, recall that P (x, γ(x2)) ∈ K{{x1, x2}}, where:

P (x, z) =
∑
k∈N

xk1pk(x2, z)

and pk(x2, z) are polynomials such that degx2(pk) 6 αk for some α ∈ N. In
particular this implies that there exists A and B > 0 such that:

‖pk(x2, γ(x2))‖D0 = ‖pk(x2, z)‖D 6 ABk k!, ∀k ∈ N

so that, by Lemma 3.3, we conclude that:

‖pk(x2, γ
′(x2))‖D0 = ‖pk(x2, z)‖D′ 6Mαk‖pk(x2, z)‖D 6 A (MαB)k k!, ∀k ∈ N

which implies that P (x, γ′(x2)) ∈ K{{x1, x2}} as we wanted to prove.
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3.3. Eisenstein power series. Let O be a UFD, and let K be an algebraic closure
of its fraction field. The ring of Eisenstein series over O is the filtered limit of rings:⋃

c∈K

⋃
f∈Or{0}

Of Jx1, . . . , xnK[c]

where Of denotes the localization of O with respect to the multiplicative family
{1, f, f2, . . . , }.

Remark 3.4. In our proofs of Theorems 1.3 and 1.4, we will use of Eisenstein
power series in the proof of Lemma 5.18 below, in the following way. Given a
closed polydisc D ⊂ Cn, denote by O(D) the ring of analytic functions defined in a
neighborhood of D, and note that it is an UFD by [Da74]. We then consider the
Eisenstein power series given by O = O(D).

The main result of this subsection is the following:

Proposition 3.5. If O is a UFD containing an uncountable characteristic zero
field k, the ring of Eisenstein series is a W-temperate family over K.

Proof. Axioms i) ii) iii) iv) of Definition 2.1 are easily verified.

Axiom v) of Definition 2.1: consider F and G ∈ Of JxK[c] as in the statement of
Axiom v). We have F (0, xn) = xdnu(xn). If we multiply f by u(0), we may assume
that u(xn) is a unit in Of [c]JxnK. Let L be the fraction field of Of [c]. By the
Weierstrass division theorem for power series in LJxK, G = QF +R where Q ∈ LJxK
and R ∈ LJx′K[xn] and degxn(R) < d. We claim that the coefficients of Q and R are
also in Of [c]. Indeed, fix the following order on the monomials: We have xα < xβ if

(α1 + · · ·+αn−1 +(d+1)αn, α1, . . . , αn) <lex (β1 + · · ·+βn−1 +(d+1)βn, β1, . . . , βn)

where <lex denotes the lexicographic order. In particular the nonzero monomial of
least order in the expansion of F is Cxdn where C is a unit in Of [c]. For a series
H ∈ LJxK we denote by in(H) the monomial of least weight in the expansion of H.

We now consider an inductive way to construct the unique coefficients Q and
R. We start by setting G(0) = G, Q(0) = 0 and R(0) = 0. Fix k > 0, and
assume that Q(`) and R(`) have been constructed for every ` 6 k in such a way
that G(`) = G− FQ(`) −R(`) satisfies ord(G`+1) > ord(G`). We consider the two
following cases:

i) If in(G(k)) is divisible by xdn, we set R(k+1) := R(k) and Q(k+1) := Q(k) +
in(G(k))

/
in(F ).

ii) If in(G(k)) is not divisible by xdn, we set R(k+1) := R(k) + in(G(k)) and
Q(k+1) := Q(k).

By the formal Weierstrass division Theorem, this process converges as G(k) −→ 0,
Q(k) −→ Q and R(k) −→ R when k −→ ∞. But we see that we do not need to
introduce elements of L that does not belong to Of [c] because the coefficient of
initial term of F is a unit in Of [c]. This proves the claim.

Axiom i) of Definition 2.2: This property is easily verified.

Axiom ii) of Definition 2.2: The property follows from the following Lemma,
which is stronger version of the axiom valid for Eisenstein power series:
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Lemma 3.6. In the conditions of the statement of Proposition 3.5, consider F ∈
KJxK and assume that F /∈ K{{x}}. Then the following set is countable

W := {λ ∈ k | F (x′, λx1) ∈ K{{x′}}} .

Proof. We start by a general claim. Let P (x1, x2) ∈ O[x1, x2] be a homogeneous
polynomial. Write

P =
d∑
k=0

pkx
d−k
1 xk2 ,

so that P (x1, λx1) =
(∑

k pkλ
k
)
xd1. Let g ∈ O, g 6= 0; we claim that if gcd(pk, k =

0, . . . , d) = 1, then gcd
(∑

k pkλ
k, g
)
6= 1 for at most finitely many λ ∈ k. Indeed,

assume that gcd
(∑

k pkλ
k, g
)
6= 1 for infinitely many λ ∈ k. Since g has finitely

many factors, this implies that g has an irreducible factor h such that, for infinitely
many λ ∈ k, h divides

∑
k pkλ

k. Hence the polynomial Q(T ) :=
∑
k pkT

k ∈
Frac(O

/
(h))[T ] has infinitely many roots in k, which is possible only if h divides

all the pk since Frac(O
/
(h)) is an infinite field (it is a field containing k). This

contradicts the hypothesis, proving the Claim.
Now, we prove the contrapositive of the Lemma, that is, consider an element

F ∈ KJxK such that
W := {λ ∈ k | F (x′, λx1) ∈ K{{x′}}}

is uncountable, and let us prove that F ∈ K{{x}}. Let L be the fraction field of
O. Since F has countably many coefficients, the field extension of L generated by
the coefficients of F is a L-vector space of countable dimension. Let (ck)k∈N be a
L-basis of this vector space, so

F (x) =
∑
k∈N

ckFk(x)

where the Fk(x) are in LJxK and, for each α ∈ Nn, the coefficient of xα is zero in
all but finitely many Fk(x). Moreover, we can write

Fk(x) =
∑

α∈Nn−2

(∑
d∈N

Pk,α,d(x1, xn)
gk,a,d

)
xa2

2 · · ·x
αn−2
n−1

where the Pk,α,d ∈ O[x1, xn] are homogeneous polynomials of degree d, and gk,α,d is
coprime with the gcd of the coefficients of Pk,α,d. Now gcd(Pk,α,d(1, λ), gk,α,d) = 1
for λ ∈ Ek,α,d where Ek,α,d ⊂ W is cofinite by the Claim. Thus the complement
of the set E := ∩k,α,dEk,α,d in k is at most countable. Therefore E ∩ W 6= 0
if k is uncountable. Hence, by choosing λ ∈ E ∩W , there is f ∈ O such that
Fk(x′, λx1) ∈ Of Jx′K for every k. Then we see that for every k, α and d, gk,α,d
divides a power of f , whence F (x) ∈ Of JxK. �

Axiom iii) of Definition 2.2: The proof of this result is based on the following
Galois-type result whose proof we postpone to §§§3.3.1

Theorem 3.7. Let A be a UFD, L be its fraction field and c be in an algebraic
closure of L and be separable over L. Let Γ in A[t, z] be irreducible. Assume that Γ
splits as a polynomial with coefficients in A[c]JtK and let the γi(t) ∈ A[c]JtK denote
the roots of Γ. Then there is f ∈ A such that, for every Q ∈ L[t, z]:

Q(t, γ1) ∈ A[c]JtK =⇒ Q(t, γ2) ∈ Af [c]JtK.
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We now follow the notation of axiom iii). By the definition of Eisenstein power
series and the assumption, we know that P (x, γ(x2)) ∈ Og[c]Jx1, x2K for some g ∈ O
and some c ∈ K; note that c is separable over K since K is of characteristic zero.
Moreover, by assumption:

P (x, z) =
∑
k∈N

xk1pk(x2, z)

where pk(x2, z) are polynomials such that degx2 is bounded by a liner function in k.
Since P (x, γ(x2)) ∈ Og[c]Jx1, x2K, we conclude that pk(x2, γ(x2)) ∈ Og[c]Jx2K. Let
γ′ be a conjugate root of γ. By Theorem 3.7 applied to A = Og, there is f ∈ O such
that, for every k ∈ N, pk(x2, γ

′(x2)) ∈ Ofg[c]Jx2K. Thus P (x, γ′(x2)) ∈ Ofg[c]JxK,
proving that the axiom is verified. �

Remark 3.8. The following example shows that we really need f in the statement of
Theorem 3.7. Let f ∈ A irreducible and let Γ(t, z) = z2− (1 + ft). So γ1 =

√
1 + ft

and γ2 = −
√

1 + ft. For Q = 1
f (1− z), we have

Q(γ1) = 1
f

(
1−

√
1 + ft

)
∈ AJtK, Q(γ2) = 1

f

(
1 +

√
1 + ft

)
∈ Af JtK rAJtK.

3.3.1. Algebraic power series with coefficients in a UFD and proof of Theorem 3.7.
In this subsubsection, we provide a proof of Theorem 3.7, and we collect results
concerning algebraic power series which are of independent interest. We start with
a simple Lemma:

Lemma 3.9. Let Γ(t, z) ∈ A[t, z] be a polynomial with coefficients in an integral
domain A. Let us write Γ = a0(t)zd + · · ·+ ad(t). Assume that Γ(t, z) has a root in
A[t] of degree D. Then D 6 maxi{degt(ai(t))}.

Proof. After changing the indices we may assume that a0(t) 6= 0. Let F (t) ∈ A[t]
with degt(F (t)) = D and assume that D > maxi{degt(ai(t))}. Then for i > 0:

degt(ai(t)F (t)d−i) 6 max
j
{degt(aj(t))}+ (d− i)D < dD 6 degt(a0(t)F (t)d).

Therefore Γ(t, F (t)) 6= 0. �

The next Lemma shows that the coefficients of an algebraic infinite series over
an UFD satisfies strong relations:

Lemma 3.10. Let A be a UFD, c in an algebraic closure of Frac(A) be finite and
separable over A. Let P be a representative family of primes of A (i.e. each principal
prime ideal of A is generated by a unique element of P) and F (t) ∈ A[c]JtK rA[c, t]
be algebraic over A[t]. Then the following set is finite

{g ∈ P | F (t) ∈ A[c, t] + (g)A[c]JtK} .

Proof. We start by showing that we can reduce the Lemma to the case that F (t) ∈
AJtK rA[t], that is, F is independent of c. Indeed let e denote the degree of c over
A. Then F (t) can be written in a unique way as

F (t) = F0(t) + F1(t)c + · · ·+ Fe−1(t)ce−1

where the Fi(t) belong to AJtK. We denote by c2, . . . , ce the distinct conjugates of
c over A. The power series F (j)(t) = F0(t) + F1(t)cj + · · ·+ Fe−1(t)ce−1

j for j = 2,
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. . . , e are the conjugates of F (t) over AJtK, therefore they are also algebraic over
A[t]. We have 

F (t)
F (2)(t)

...
F (e)(t)

 =


1 c c2 · · · ce−1

1 c2 c22 · · · ce−1
2

...
...

...
. . .

...
1 ce c2e · · · ce−1

e

 ·

F0(t)
F1(t)
...

Fe−1(t)


The Vandermonde matrix is invertible, its entries are algebraic over A, thus the
entries of its inverse are algebraic over A. Therefore the Fi(t) ∈ AJtK are algebraic
over A[t]. Thus, it is enough to prove the lemma for the Fi(t); we may therefore
assume that F (t) ∈ AJtK.

Write F (t) =
∑
k∈N Fkt

k with Fk ∈ A for every k. Let g ∈ A and N ∈ N∗. We
have that F (t) is equal to a polynomial of degree 6 N in t modulo gAJtK if and
only if

∀k > N, Fk ∈ (g).
Therefore for distinct g1, . . . , gs ∈ P and because A is a UFD, F (t) is equal to a
polynomial of degree 6 N in t modulo every giAJtK if and only if

∀k > N, Fk ∈ (g1 · · · gs).

Since F (t) /∈ A[t], we conclude that there does not exist an infinite subset GN ⊂
P such that for every g ∈ GN , F (t) is equal to a polynomial of degree 6 N
in t modulo gAJtK. In particular, if we assume by contradiction that the set
{g ∈ P | F (t) ∈ A[t] + (g)AJtK} is not finite, then there exists a sequence (gn) of
distinct primes in P, such that F (t) is equal to a polynomial of degree Nn modulo
gnAJtK where the sequence (Nn)n is increasing and tends to infinity. In what follows,
we show that the existence of this sequence would contradict Lemma 3.9.

Indeed, since F (t) is algebraic, we may consider Γ(t, z) := a0(t)zd + · · ·+ ad(t) ∈
A[t, z] a polynomial such that Γ(t, F (t)) = 0 and a0(t) 6= 0. Denote by Fn(t) (resp.
Γn(t, z)) the image of F (t) in A/(gn)JtK (resp. of Γ(t, z) in A/(gn)[t, z]). We have
degt(Fn(t)) = Nn and Γn(t, Fn(t)) = 0. For n ∈ N large enough we have that
Γn(t, z) 6= 0 and degz(Γn(t, z)) = d, because any given a ∈ A has finitely many
prime divisors. We conclude from Lemma 3.9 that Nn 6 maxi{degt(ai(t))} for
every n sufficiently big, yielding a contradiction. �

Remark 3.11. Recall that, in general, an irreducible polynomial Γ(z) with coeffi-
cients in a UFD may be reducible modulo infinitely many primes of A. One classical
example is given by Γ(z) = z4 + 1 that is irreducible over Z[z] but reducible modulo
every prime number p. In contrast, Lemma 3.10 guarantees that for an irreducible
polynomial Γ(t, z) ∈ A[t, z], the set

{g ∈ P | Γ(t, z) is reducible modulo (g)}

is finite, provided that Γ has a root in A[c]JtK rA[c][t].

Before proving Theorem 3.7, recall that given a UFD A and f ∈ A, f 6= 0, the
the localization Af is also a UFD; we will use this observation implicitly below. We
recall that this claim follows from the fact that a UFD is a Krull domain in which
every prime ideal of height 1 is principal. Since A is a UFD, it is a Krull domain so
Af is also a Krull domain. Because the localization morphism A −→ Af induces an
isomorphism between the primes of Af and the primes of A avoiding f , every prime
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ideal of Af of height 1 is necessarily principal. We are now ready to prove our main
result about algebraic power series with coefficients in a UFD:

Proof of Theorem 3.7. We start by showing that we may suppose that Γ is monic.
We write

Γ = p0z
d + p1z

d−1 + · · ·+ pd.

We have pd−1
0 Γ(t, z) = R(t, p0z) where

R(t, z) = T d + p1T
d−1 + p2p0T

d−2 + · · ·+ pdp
d−1
0 .

We have R(t, p0γi) = 0 for i = 1, 2. If we set γ′i = p0γi, and we prove the statement
of the Theorem for the γ′i then we also deduce the statement of the Theorem for the
γi, since Q(t, p−1

0 z) ∈ L[t, z] if and only if Q ∈ L[t, z]; therefore, we suppose that Γ
is monic in z.

Let us first treat the case that c ∈ L. By replacing A by Ag for some well chosen
g ∈ A, we can assume that c ∈ A. We claim that there exists f ∈ A such that

(3) ∀P ∈ A[t, z],∀g ∈ A, P (t, γ1) ∈ gAJtK =⇒ P (t, γ2) ∈ gAf JtK.

Note that the Theorem then follows from the Claim. Indeed, if Q ∈ L[t, z] then
there exists g ∈ A such that P = g Q ∈ A[t, z]. In particular, Q(t, γ1(t)) ∈ AJtK
implies that P (t, γ1(t)) ∈ gAJtK, so the Claim implies that P (t, z) ∈ gAf JtK and,
therefore, Q ∈ Af JtK. In order to prove the Claim, we start by noting that, since A
is a UFD, it is enough to prove the Claim for every irreducible element g of A. By
replacing P by its remainder under its Euclidean division by Γ, furthermore, we
may assume that degz(P ) < d. So let’s consider the set

G := {g ∈ A prime | ∃P, P (t, γ1) ∈ gAJtK, P (t, z) /∈ gA[t, z] and degz(P ) < d},

and let’s prove that it is finite (up to multiplication by a unit). Indeed, note that if
P (t, γ1) ∈ gAJtK and P (t, z) /∈ gA[t, z], we have that Γ is not irreducible A/g[t, z],
where R denote the image of a polynomial R ∈ AJtK[z] in A/gJtK[z]. Thus∏

i∈Eg

(z − γi) ∈ A/g[t, z]

for some Eg ( {1, . . . , d}. For E ( {1, . . . , d}, we set ΓE :=
∏
i∈E(z − γi).

Now assume by contradiction that G is infinite. In this case, there is E (
{1, . . . , d} such that ΓE ∈ A/g[t, z] for infinitely many primes g. But the coefficients
of ΓE are in AJtK, and at least one of them is not in A[t] because Γ is irreducible in
A[t, z]. Since the γi are algebraic over A[t], the coefficients of QE are also algebraic
over A[t]. We therefore obtain a contradiction with Lemma 3.10, and conclude that
G is finite. We may therefore define

f =
∏
g∈G

g.

Note that the Claim is verified with this choice of f for every irreducible g by
construction. Thus the Claim is proved, finishing the case that c ∈ L.

Now we assume that c /∈ L. Since c is algebraic, we may write a0c
e + a1c

e−1 +
· · · + ae = 0 where ai ∈ A for every i = 0, . . . , e. By replacing A by Aa0 we may
assume that c is finite over A (of degree e). For every i we can write in a unique way

(4) γi = γi,0 + γi,1c + · · ·+ γi,e−1c
e−1
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where the γi,j belong to AJtK and are algebraic over A[t]. For Q ∈ L[t, z] we can
expand in a unique way

Q(t, z0 + z1c + · · ·+ ze−1c
e−1) =

e−1∑
k=0

Qk(t, z0, . . . , ze−1)ck

where the Qk belong to L[t, z0, . . . , ze−1]. For i 6= 1, γi is obtained from γ1 expanded
as in (4) by replacing the γ1,j by its conjugates γi,j . Following the same logic as of
the first case, we are reduced to proving the claim that there is f ∈ A such that for
every P ∈ A[t, z0, . . . , ze−1] and every g ∈ A,

P (t, γ1,0, . . . , γ1,e−1) ∈ gAJtK =⇒ P (t, γ2,0, . . . , γ2,e−1) ∈ gAf JtK.

By the primitive element Theorem (that we can apply since L[t] −→ L〈t〉 is
separable), we have that

L(t, γi,0, . . . , γi,e−1) = L

(
t,

e−1∑
k=0

λkγi,k

)

for every (λk)k in a Zariski open dense subset Vi of Le. Therefore we may choose
(λk)k ∈ ∩di=1Vi and assume that for every i = 1, . . . , d

L(t, γi,0, . . . , γi,e−1) = L

(
t,

e−1∑
k=0

λkγi,k

)
.

Thus there is Γi,k ∈ L(t)[U ] such that

(5) γi,k = Γi,k

(
t,

e−1∑
k=0

λkγi,k

)
.

By replacing the γi,k by their conjugates γi′,k in (5) we see that we can choose the
Γi,k to be independent of i. From now we denote Γi,k by Γk, and

∑e−1
k=0 λkγi,k by

δi. By the claim made in the first case where we assumed that c ∈ L, there exists
f ∈ A such that

∀P ′ ∈ A[t, z],∀g ∈ A, P ′(t, δ1) ∈ gAJtK =⇒ P ′(t, δ2) ∈ gAf JtK.

Now, let P ∈ A[t, z0, . . . , ze−1] and g ∈ A such that

P (t, γ1,0, . . . , γ1,e−1) ∈ gAf JtK.

Let D(t) ∈ A[t] be a common denominator of the Γk, that is, a polynomial such
that D(t)Γk ∈ A[t, U ] for every k. Then there is an integer `, depending on P , such
that

R(t, z) := D(t)`P (t,Γ0(t, z), . . . ,Γe−1(t, z)) ∈ A[t, z].

By assumption R(t, δ1) ∈ gAJtK, whence R(t, δ2) ∈ gAf JtK. We can write D(t) =
f0t

d0 × u(t) where f0 ∈ A and u(t) ∈ Af0 [t] satisfies u(0) = 1. This shows that
P (t, γ2,0, . . . , γ2,e−1) ∈ gAff0JtK proving the Claim, and the Theorem is proven. �
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4. Proof of W-temperate rank Theorem

4.1. Reduction of Theorem 1.1 to Theorem 4.1. We start by proving by
contradiction that the following result implies Theorem 1.1:

Theorem 4.1. Let ϕ : K{{x, y}} −→ K{{u}} be a morphism of rings of W-temperate
power series such that

i) The kernel of ϕ is generated by one Weierstrass polynomial P ∈ KJxK[y].
ii) r(ϕ) = rF (ϕ) = n.

Then P ∈ K{{x}}[y].

Reduction of Theorem 1.1 to Theorem 4.1. We follow closely [BCR21, page 1347].
Assume that Theorem 1.1 does not hold, that is, there exists a morphism of rings
of W-temperate power series ϕ : K{{x}} −→ K{{u}}, where x = (x1, . . . , xn) and
u = (u1, . . . , um), such that r(ϕ) = rF (ϕ) > 1, but rF (ϕ) < rT (ϕ). Consider
the induced injective morphism K{{x}}

/
Ker(ϕ) −→ K{{u}} and, by the Noether

normalization given in Proposition 5.16 vi), there exists a finite injective morphism
τ : K {{x̃}} −→ K{{x}}

/
Ker(ϕ). By Proposition 2.7, we can replace ϕ by ϕ ◦ τ , that

is, we may assume that ϕ is injective.
Next, since rF (ϕ) < rT (ϕ) = m, we know that Ker(ϕ̂) 6= (0). Now, suppose

that Ker(ϕ̂) is not principal or, equivalently, that its height is at least 2. By the
normalization theorem for formal power series, after a linear change of coordinates,
the canonical morphism

π : KJx1, . . . , xr(ϕ)K −→
KJxK

Ker(ϕ̂)
is finite and injective. Thus, the ideal p := Ker(ϕ̂) ∩KJx1, . . . , xr(ϕ)+1K is a nonzero
height one prime ideal. Because KJx1, . . . , xr(ϕ)+1K is a unique factorization domain,
p is a principal ideal (see [Mat89, Theorem 20.1] for example). After a linear change
of coordinates, we may assume that p is generated by a Weierstrass polynomial
P ∈ KJx1, . . . , xr(ϕ)K[xr(ϕ)+1].

Now, denote by ϕ′ the restriction of ϕ to K{{x1, . . . , xr(ϕ)+1}}. By definition
P is a generator of Ker(ϕ̂′), thus rF (ϕ′) = r(ϕ) + 1 − 1 = r(ϕ) = rF (ϕ). Since
ϕ is injective, ϕ′ is injective and P does not belong to K{{x1, . . . , xr(ϕ)}}[xr(ϕ)+1].
Moreover, since π is finite, we can use again Proposition 2.7, to see that

r(ϕ′) = r(ϕ̂′) = r(ϕ̂) = r(ϕ).
Therefore we have r(ϕ′) = rF (ϕ′) = m− 1, contradicting Theorem 4.1. �

4.2. Reduction to the low-dimensional case. We now prove by contradiction
that the following result implies Theorem 4.1:

Theorem 4.2. Let ϕ : K{{x1, x2, y}} −→ K{{u1, u2}} be a morphism of rings of
W-temperate power series such that

i) ϕ(x1) = u1 and ϕ(x2) = u1u2,
ii) Ker(ϕ̂) is generated by one Weierstrass polynomial P ∈ KJxK[y].

Then P ∈ K{{x}}[y].

Reduction of Theorem 4.1 to Theorem 4.2. We follow closely [BCR21, 3rd Reduc-
tion]. Assume that there is a morphism ϕ satisfying the hypothesis of Theorem 4.1
but where P /∈ K{{x}}[y].
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(1) First, after a linear change of coordinates in u we may assume that
ϕ(x1)(u1, 0, . . . , 0) 6= 0. Thus, the morphism σ ◦ ϕ, where σ is given by

σ(u1) = u1 and σ(ui) = u1ui ∀i > 1
satisfies the hypotheses of Theorem 4.1 and its kernel is generated by P , by Propo-
sition 2.7. Thus we may assume that ϕ(x1) = ue1 ×U(u) where U(u) is a unit. And
by replacing x1 by 1

U(0)x1 we may further assume that U(0) = 1.

(2) We define the morphism τ by
τ(x1) = xe1 and τ(xi) = xi ∀i > 1.

Let V (u) ∈ KJuK be a power series such that V (u)e = U(u). Such a power series
exists since U(0) = 1 and, by the Implicit Function Theorem cf. Proposition 2.8 i),
V (u) ∈ K{{u}}. We define the morphism ψ by

ψ(x1) = u1V (u) and ψ(xi) = ϕ(xi) ∀i > 1.

Then ψ ◦ τ = ϕ and P (xe1, x2, . . . , xn, y) ∈ Ker(ψ̂). Since P (xe1, x2, . . . , xn, y) is
a Weierstrass polynomial in y, Ker(ψ̂) is generated by a Weierstrass polynomial
Q that divides P . Thus P is the product of Q with the distinct polynomials
Q(ξx1, x2, . . . , xn, y) where ξ runs over the e-th roots of unity. Therefore, if Q ∈
K{{x}}[y], P ∈ K{{x}}[y] which contradicts the hypothesis. Thus, ψ satisfies the
hypothesis of Theorem 4.1 but Ker(ψ̂) is generated by a Weierstrass polynomial
that is not in K{{x}}[y]. By Proposition 2.7, we may replace ϕ by ψ and assume
that ψ(x1) = x1 by composing ψ by the inverse of the temperate automorphism
that sends u1 onto u1V (u).
(3) Now we have ϕ(x1) = u1 and we perform “Gabrielov’s trick", cf. [BCR21,
Example 3.5]. We denote by ϕi(u) the image of xi by ϕ. We consider the temperate
automorphism χ defined by

χ(x1) = x1 and χ(xi) = xi − ϕi(x1, 0, . . . , 0) ∀i > 1.
If we replace ϕ by ϕ ◦ χ we may assume that every nonzero monomial of ϕ(xi)
is divisible by one of the ui for i > 1. Then by replacing ϕ by σ ◦ ϕ, where σ is
defined above, we may assume that ϕ(xi) = uai1 gi(u) where ai > 0, gi(0) = 0 and
gi(0, x2, . . . , xn) 6= 0, for i > 1. Moreover, by composing with the morphism

xi 7−→ x

∏
k 6=i

ak

i

for i > 1, we may assume that ai = a is independent of i. Finally, by replacing x1
by xa+1

1 we may assume that ϕ(x1) = ua+1
1 . Composing ϕ with these morphisms

does not change the ranks, by Proposition 2.7.
(4) Now we set, for λ = (λ2, . . . , λn) ∈ Kn−1 r {0}, hλ = x1 −

∑n
i=2 λixi. We have

ϕ(hλ) = ua1gλ(u)
where gλ(u) = u1 −

∑n
i=2 λigi(u) ∈ K{{u}}. By the implicit function Theorem,

there exists a unique nonzero ξλ(u2, . . . , un) ∈ K{{u}} such that ξλ(0) = 0 and
gλ(ξλ(x2, . . . , xn), x2, . . . , xn) = 0.

Let M(u) be a nonzero minor of the Jacobian matrix of ϕ that is of maximal rank.
Then assume that M(u) is divisible by hλ(u) for every λ ∈ Λ, where Λ cannot be
written as a finite union of sets included in proper affine subsets of Kn−1. Thus,
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because KJuK is a UFD, there is a finite number of subsets Λk ⊂ Kn−1, k = 1, . . . ,
N , whose union equals Λ, and such that for every λ, λ′ ∈ Λk, hλ and hλ′ are equal
up to multiplication by a unit. Thus, by the assumption on Λ, there is k such that
Λk contains n vectors of Kn−1, denoted by λ(1), . . . , λ(n) such that the vectors
λ(i) − λ(1) are K-linearly independent. Therefore, there are units Ui(u), for i = 2,
. . . , n, such that

u1 − (g) · λ(i) = Ui(u)(u1 − (g) · λ(1)) ∀i = 2, . . . , n

where (g) denote the vector whose entries are the gi(u). This implies that the
(g)·(λ(i)−λ(1)) are divisible by hλ(1) . But the λ(i)−λ(1) being K-linearly independent,
every gi(λ) is divisible by hλ(1) , thus u1 is divisible by hλ(1) , which implies that
ξλ(1) = 0 contradicting the assumption. Therefore, there is a finite union of proper
affine subspaces of Kn−1, denoted by Λ, such that M(u) is not divisible by hλ for
every λ ∈ Kn−1 r Λ. In particular Kn−1 r Λ is uncountable.

After a linear change of coordinates, we may assume that K × {0}n−2 is not
included in Λ, in particular (K × {0}n−2) ∩ Λ is finite. For any (λ, 0, . . . , 0) ∈
(K × {0}n−2) r Λ the morphism

ψλ : KJx1, . . . , xnK[y]
(x1 − λx2) −→ KJu1, . . . , unK[y]

(u1 − λg2(u))

is of rank r(ϕλ) = n− 1. Then if n > 3, by Bertini’s Theorem [BCR21, Theorem
3.4], and by Definition 2.1 ii) (note that this is the only point of the paper where we
use Definition 2.1 ii)), the polynomial P remains irreducible and not in K{{x}}[y] in

KJx1, . . . , xnK[y]
(x1 − λx2) ' KJx2, . . . , xnK[y]

when λ belongs toW ⊂ K that is uncountable. Therefore we can choose (λ, 0, . . . , 0) ∈
(W×{0}n−2)rΛ, and this allows us replace n by n−1 in Theorem 4.1. By repeating
this process, we construct an example of a morphism ϕ with n = 2 satisfying Theo-
rem 4.2 (i) such that Ker(ϕ̂) is generated by a Weierstrass polynomial that is not
K{{x}}[y]; note that we must stop the reduction at n = 2, because Bertini’s Theorem
does not hold for n < 3, cf. [BCR21, Remark 3.6(3)]. Moreover, by repeating the
argument given in part (2) if necessary, we may assume that ϕ(x1) = u1, and ϕ(x2)
has the form ua1g(u) with g(0) = 0 and g(0, u2) 6= 0.

By composing ϕ with the morphism σ defined in (1), we can assume that
g(u) = ub2U(u) for some unit U(u). Now let σ′ be the morphism defined by
σ′(u1) = ub1 and σ′(u2) = u1u

a+1
2 . Then, we have

σ′ ◦ ϕ(x1) = ub1 and σ′ ◦ ϕ(x2) = (u1u2)b(a+1)V (u)

for some unit V (u). Therefore, as done in (2), we can assume that

ϕ(x1) = u1 and ϕ(x2) = u1u2.

Hence, we have constructed a morphism ϕ that satisfies the hypothesis of Theorem
4.2, but Ker(ϕ̂) is generated by Weierstrass polynomial in y that is not in K{{x}}[y],
contradicting Theorem 4.2. �

The rest of this section is devoted to the proof of Theorem 4.2, given in §§4.7.
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4.3. Newton-Puiseux-Eisenstein Theorem. In [BCR21, Section 5], we pro-
vided a framework allowing us to obtain a good factorization of a polynomial in
CJxK[y]. We recall here the main definitions and adapt the main results to the more
general context of polynomials in KJxK[y].

Consider the ring of power series KJxK where x = (x1, . . . , xn) and denote by
K((x)) its field of fractions. We denote by ν the (x)-adic valuation on KJxK. The
valuation ν extends to K((x)) by defining ν(f/g) = ν(f)−ν(g) for every f , g ∈ KJxK,
g 6= 0. Denote Vν the valuation ring of ν in K((x)), and V̂ν its completion with
respect to ν. Let us now recall the notion of homogeneous element:

Definition 4.3 (Homogeneous elements). Let ω = p/e ∈ Q>0. We say that
Γ ∈ K[x, z] is ω-weighted homogeneous if Γ(xe1, · · · , xen, zp) is homogeneous.

A homogeneous element γ is an element of an algebraic closure of K(x), satisfying
a relation of the form Γ(x, γ) = 0 for some ω-weighted homogeneous polynomial
Γ(x, z), where ω ∈ Q>0. Furthermore, if Γ(x, z) is monic in z, we say that γ is an
integral homogeneous element. In this case, ω is called the degree of γ.

Given an integral homogeneous element γ of degree ω, there exists an extension
of the valuation ν, still denoted by ν, to the field K(x)[γ], defined by

ν

(
d−1∑
k=0

ak(x)γk
)

= min{ν(ak) + kω}.

where d is the degree of the field extension K(x) −→ K(x)[γ]. We denote Vν,γ the
valuation ring of ν in K(x)[γ], and V̂ν,γ its completion with respect to ν.

Definition 4.4 (Projective rings and temperate projective rings). Let h ∈ K[x]
be a homogeneous polynomial. Denote by Ph((x)) the ring of elements A for which
there is k0 ∈ Z, α, β ∈ N and ak(x) homogeneous polynomials in K[x] for k > k0
such that:

A =
∑
k>k0

ak(x)
hαk+β , where ν(ak)− (αk + β)ν(h) = k, ∀ k > k0

We denote by PhJxK the subring of Ph((x)) of elements A such that k0 belongs to
Z>0, and we denote by Ph{{x}} the subring of PhJxK of elements A such that∑

k>k0

ak(x) ∈ K{{x}}.

When γ is an integral homogeneous element, we denote by PhJx, γK the subring of
V̂ν,γ , whose elements ξ are of the form:

ξ =
d−1∑
k=0

Ak(x)γk, where Ak ∈ Ph((x)) and ν(Ak(x)γk) > 0, k = 0, . . . , d− 1.

Remark 4.5. Lemma 4.15 below shows that if A ∈ PhJxK, the fact that A ∈ Ph{{x}}
is independent of the presentation of A, that is, Ph{{x}} is well-defined. This
observation greatly simplifies [BCR21, Prop 5.13], which relied in complex analysis.

The next two results have been proven (in greater generality) in [Ro17], but we
refer the reader to [BCR21] where the statement is given when K = C, but whose
proof remains valid in the case of a general characteristic zero field.
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Theorem 4.6 (Newton-Puiseux-Eisenstein, cf. [BCR21, Th 5.8]). Let K be a
characteristic zero field and let P (x, y) ∈ KJxK[y] be a monic polynomial. There
exists an integral homogeneous element γ, and a homogeneous polynomial h(x), such
that P (x, y) factors as a product of degree 1 monic polynomials in y with coefficients
in PhJx, γK.

The following result is a convenient reformulation of Theorem 4.6:

Corollary 4.7 (Newton-Puiseux-Eisenstein factorization, cf. [BCR21, Cor 5.9]).
Let K be a characteristic zero field and let P ∈ KJxK[y] be a monic polynomial.
Then, there is a homogenous polynomial h and integral homogenous elements γi,j,
such that P can be written as

(6) P (x, y) =
s∏
i=1

Qi, and Qi =
ri∏
j=1

(y − ξi(x, γi,j))

where
(i) the Qi ∈ PhJxK[y] are irreducible in V̂ν [y],
(ii) for every i, there are Ai,k(x) ∈ Ph((x)), for 0 6 k 6 ki such that

ξi(x, γi,j) =
ki∑
k=0

Ai,k(x)γki,j ∈ PhJx, γi,jK

(iii) for every i, the γi,j are distinct conjugates of an homogeneous element γi,
that is, roots of its minimal polynomial Γi over K(x).

4.4. Blowings-up and the geometric setting. In what follows, we use algebraic-
geometry methods concerning blowings-up σ : N ′ −→ N , where N will stand for
some affine space over K (the precise meaning of this statement will be clarified
in this subsection). Nevertheless, and in contrast to usual algebraic and analytic
geometry, we do not have access ,as far as we know, to a theory of varieties and
sheaves valid for W-temperate families. We do not have the ambition to develop
such a general theory in here, but rather to introduce the minimal set of definitions
which are necessary for this work. In particular, we will greatly exploit the fact that
we only need to work over K{{x}}, where x = (x1, x2) stands for two indeterminates,
in order to avoid a more technical discussion.

Let us start by fixing a set of indeterminate x = (x1, . . . , xn), and a W-temperate
ring K{{x}}. In what follows, we will often need to change indeterminate:

Definition 4.8 (Temperate automorphism). Let ϕ be a K-automorphism of the
ring of power series KJxK. We say that ϕ is temperate if ϕ(K{{x}}) ⊂ K{{x}}.

Lemma 4.9. A K-automorphism ϕ given by series ϕ(xi) ∈ KJxK is temperate if
and only if for every i we have ϕ(xi) ∈ K{{x}}. In this case ϕ−1 is also temperate.
In particular, when ϕ is temperate, we have ϕ(K{{x}}) = K{{x}}.

Proof. The condition is necessary by definition, and sufficient from the fact that
K{{x}} is stable by composition. Now ϕ−1 is also temperate since K{{x}} satisfies
the implicit function Theorem, cf. Proposition 2.8 i). �

It follows directly from this lemma that any K-linear automorphism in x is
a temperate automorphism. We are ready to introduce the notion of temperate
coordinate systems:
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Definition 4.10 (Temperate coordinates). Let K{{x}} be a temperate ring. A
system of parameters x̃ of the ring KJxK is said to be temperate if x̃ is obtained
from x by a temperate K-automorphism. A system of parameters x̂ of KJxK which
is not temperate will be called formal.

We will denote by O the intrinsic ring of temperate power series associated
to K{{x}} up to temperate automorphisms, that is, O denotes K{{x}}, for some
temperate coordinate system x, and is isomorphic to K{{x̃}} for any temperate
coordinate system x̃.

We now specialize to the case that n = 2. Let K{{x1, x2}} be a temperate ring
and N0 = Â2

K be the affine scheme associated to the complete local ring KJx1, x2K.
We denote by O0 and Ô0 the rings of temperate and formal power series at 0. We
consider the formal blowing-up of the origin:

σ : (N1, E1) −→ (N0, 0)

where σ−1(0) = E is called the exceptional divisor. Given any closed point b ∈ E, we
can localize σ to b in order to obtain a morphism between local rings σ∗b : Ô0 −→ Ôb,
where Ôb stands for the local ring of formal power series at b. Now, apart from a
K-linear change of indeterminacy in x (which is a temperate change of coordinates),
we may suppose that b is the origin of the x1-chart of the blowing-up, that is, there
exists a system of parameters v = (v1, v2) of Ôb such that σ∗b : KJxK −→ KJvK is
given by

(x1, x2) 7−→ (v1, v1v2).
We note that the ideal of E is the ideal generated by v1 in this chart.

Definition 4.11. Following the above construction, we say that v = (v1, v2) is a
system of temperate coordinates at b. In particular σ∗b induces a morphism:

σ∗b : K{{x}} −→ K{{v}}.

The next lemma shows that this definition is consistent with temperate changes
of coordinates, allowing us to write:

σ∗b : O0 −→ Ob.

Lemma 4.12. Let x̃ = (x̃1, x̃2) be a different system of temperate coordinates at
0, that is, there exists a temperate authomorphism ϕ : K{{x̃}} −→ K{{x}}. Suppose
that there exists a system of parameters ṽ = (ṽ1, ṽ2) of Ôb such that:

(x̃1, x̃2) 7−→ (ṽ1, ṽ1ṽ2).

Then ṽ is a system of temperate coordinates, that is, there exists a temperate
automorphism ψ : K{{ṽ}} −→ K{{v}}.

Proof. Let ϕ(x̃1) = ϕ1(x1, x2) and ϕ(x̃2) = ϕ2(x1, x2). From the assumption

(7) ṽ1 = ϕ1(v1, v1v2), ṽ2 = ϕ2(v1, v1v2)
ϕ1(v1, v1v2) ,

and from usual formal algebraic geometry, we know that (7) defines an authomor-
phism of Ôb. Let us show that this automorphism is temperate. We consider the
Taylor expansion of ϕ1 and ϕ2 in order to get:

ϕ1(v1, v1v2) = v1 (a1,1 + a1,2v2 + v1Φ1) , ϕ2(v1, v1v2) = v1 (a2,1 + a2,2v2 + v1Φ2)
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where the K-matrix A = [ai,j ] is invertible and Φ1 and Φ2 are temperate functions
by Proposition 2.8 iv). Therefore:

ṽ2 = a2,1 + a2,2v2 + v1Φ2

a1,1 + a1,2v2 + v1Φ1

and we conclude that a1,1 6= 0 and a2,1 = 0. The result is now immediate from the
implicit function Theorem, cf. Proposition 2.8 i). �

In what follows, we will consider sequences of point blowings-up

(Nr, Fr)
σr // · · · σ2 // (N1, F1) σ1 // (N0, 0) = (Â2

K, 0)

and it will be convenient to fix notation. We set σ = σ1 ◦ · · · ◦ σr and, for every
j ∈ {1, . . . , r}, Fj is a simple normal crossing divisor that can be decomposed as

Fj = F
(1)
j ∪ F (2)

j ∪ · · · ∪ F (j)
j

where F (k)
j is the strict transform of F (k)

j−1 (when k < j) and F (j)
j is the exceptional

divisor of σj . Now, fixed a temperate ring O = K{{x1, x2}} at 0, the formal
morphism σ can be localized at every point b ∈ Fr in order to generate a morphism
between temperate rings, that is, there are system of parameters v = (v1, v2) of Ôb

such that σ∗b : K{{x}} −→ K{{v}} is well-defined and can be written σ∗b : O0 −→ Ob.

Remark 4.13. If b ∈ F (1)
r then, from usual combinatorial considerations about

blowings-up, we may further suppose that σ∗b : K{{x}} −→ K{{v}} is given by:
(x1, x2) 7−→ (v1v

c
2, v1v

c+1
2 )

for some natural number 0 6 c 6 r.

4.5. Blowings-up and Projective rings. We present in this subsection different
results about the behavior of projective series and temperate projective series under
blowing-up, which will be most useful in the sequel.

Definition 4.14. Let A ∈ PhJxK and σ : (Nr, Fr) −→ (N0, 0) a sequence of point
blowings-up. We say that A extends at a point b ∈ Fr if Ab := σ∗b(A) belongs to
Ôb. Furthermore, we say that A extends temperately if Ab ∈ Ob, where we recall
that Ob stands for the ring of W-temperate functions at b.

The next Lemma is a generalization of [BCR21, Proposition 5.13 and Lemma
5.14] for W-temperate rings. Note that the proof given in [BCR21] relies in complex
analysis, cf. [BCR21, §§5.3], and does not adapt in a trivial way to W-temperate
rings, so we provide a new commutative algebra argument:

Lemma 4.15 (cf. [BCR21, Proposition 5.13 and Lemma 5.14]). Let A ∈ PhJxK
and let σ : (Nr, Fr) −→ (N0, 0) be a sequence of point blowings-up. Let b ∈ F (1)

r be
such that A extends at b (that is the case for instance when b does not belong to the
strict transform of h = 0 or the in the intersection with F (j)

r for some j > 1). Then
A ∈ Ph{{x}} if and only if Ab ∈ Ob. In particular, Ph{{x}} ∩ KJxK = K{{x}}.

Proof. Let A ∈ PhJxK and fix a point b ∈ F (1)
r . By definition 4.4 and the local

expressions of blowings-up given in Remark 4.13, we can write:

A =
∑
k>k0

ak(x)
h(x)αk+β , and Ab =

∑
k>k0

(v1v
c
2)k ak(1, v2)

h(1, v2)αk+β .
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Denote by d the degree of h, and consider:

Ã =
∑
k>k0

ak(x), and Ãb = σ∗b(Ã) =
∑
k>k0

(v1v
c
2)(αk+β)d+kak(1, v2).

Let us define the following auxiliary function:

B(w) :=
∑
k>k0

(w1w
c
2)kak(1, w2) ∈ KJwK.

Now, writing h(1, v2) = vm2 g(v2), where g is a unit and m ∈ N, we have:

Ãb(v) = (v1v
c
2)βdB(vα+1

1 vcαd2 , v2)

B(w) = wmβ2 g(w2)βAb(w1w
mα
2 g(w2)α, w2).

Since being temperate is closed by division by a coordinate, ramification and local
blowing-down (see Proposition 2.8 iii), iv) and Definition 2.2), and Ab ∈ KJvK by
hypothesis, we conclude that

Ãb(v) ∈ K{{v}} ⇐⇒ B(w) ∈ K{{w}} ⇐⇒ Ab(v) ∈ K{{v}},
finishing the proof. �

We conclude this subsection with a useful characterization of projective series
which are not formal power series:

Lemma 4.16. Let A ∈ PhJxK rKJxK and consider a point blowing-up σ centered
at the origin. There exists a point b ∈ σ−1(0) such that Ab = σ∗b(A) is not a power
series, that is, σ∗b(A) /∈ Ôb.

Proof. Let A ∈ PhJxK rKJxK; from definition 4.4 we may write

A =
∑
k∈N

ak(x)
bk(x)

where the ak and bk are homogeneous polynomials in K[x] such that deg(ak) −
deg(bk) = k and gcd(ak, bk) = 1. By hypothesis, there exists k0 such that bk0(x)
is not a constant polynomial. Apart from a K-linear change of coordinates in x,
we may furthermore suppose that bk0(1, 0) = 0. It follows that after the local
blowing-up σ : (x1, x2) 7−→ (v2, v1v2) we obtain

σ∗b(A) =
∑
k∈N

vk1
ak(1, v2)
bk(1, v2) ,

this expression has a pole in the term k0, and we conclude easily. �

4.6. Extension along the exceptional divisor. We introduce the notion of
Laurent series with support in a strongly convex cone, and we refer the reader to
[AI09] for extra details.

Definition 4.17. Let ω ∈ (R>0)n be a vector whose coordinates are Q-linearly
independent. This vector defines a total order on the set of monomials by setting

xα � xβ if α · ω 6 β · ω.
Let Σ be a strongly rational cone. We say that Σ is ω-positive if s · ω > 0 for every
s ∈ Σr {0}; under this hypothesis, Σ∩Zn and Σ∩ 1

qZ
n for q ∈ N∗ are well-ordered

for �, and (R>0)⊂Σ because ω ∈ (R>0)n.
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Assume that Σ is ω-positive strongly rational cone. We denote by KJΣK (resp.
KJΣ ∩ 1

qZ
nK for q ∈ N∗) the set of Laurent series with support in Σ ∩ Zn (resp.

with support in Σ ∩ 1
qZ

n). Since Σ ∩ Zn and Σ ∩ 1
qZ

n are well-ordered for �, they
are rings containing respectively KJxK and KJx1/qK. These rings are commutative
integral domains, and we denote by K((Σ)) and K((Σ∩ 1

qZ
n)) their respective fraction

fields.

The next result is a generalization of [BCR21, Theorem 5.16] for W-temperate
rings. Once again, the proof given in [BCR21] relies in complex analysis, cf. [BCR21,
§§5.4], so we can not adapt it in a trivial way to W-temperate ring. Instead, we
provide a new commutative algebra argument, which greatly simplifies the proof:

Theorem 4.18 (cf. [BCR21, Theorem 5.16]). Let P ∈ KJxK[y] be a monic reduced
polynomial, and let Q be an irreducible factor of P in some PhJxK[y] for a convenient
h ∈ K[x] as in Corollary 4.7. Let σ : (Nr, Fr) −→ (N0, 0) be a sequence of point
blowings-up such that σ∗(∆P ) is everywhere monomial, that is, at any point b there
exist (non necessarily temperate) coordinates v̂ such that

σ∗(∆P ) = v̂α × unit .

Then Q extends at every point b′ ∈ F (1)
r .

Proof. Let b ∈ F (1)
r . From Remark 4.13, there are coordinates v̂ = (v̂1, v̂2) centered

at b′ and c ∈ N such that
(x1, x2) = (v̂1v̂

c
2, v̂1v̂

c+1
2 ).

Let A be a coefficient of Q. By definition 4.4, and by writing h(1, v̂2) = v̂m2 g(v̂2)
where g is a unit and m ∈ N, we have

(8) A =
∑
k∈N

ak(x)
h(x)αk+β so that Ab = v̂−mβ2

∑
k∈N

v̂k1 v̂
k(c−mα)
2

ak(1, v̂2)
g(1, v̂2)αk+β .

Note that the series v̂mβ2 Ab has support in a translation of the strongly convex cone
Σ generated by the vectors (0, 1) and (1,min{0, c−mα}), thus Ab belongs to K((Σ)).
We conclude that Qb = σ∗b(Q) is a factor of Pb = σ∗b(P ) in K((Σ))[y].

Now, by the Abhyankar-Jung Theorem for formal power series, the roots of Pb

can be written as Puiseux power series in KJv̂1/q
1 , v̂

1/q
2 K ⊂ KJΣ ∩ 1

qZ
2K for some

q ∈ N∗. Since K((Σ ∩ 1
qZ

n)) is a field, we conclude that Qb splits in K((Σ ∩ 1
qZ

n))[y]
and its roots are in KJv̂1/q

1 , v̂
1/q
2 K. By (8), we conclude that Qb ∈ KJv̂K. �

We are ready to prove the main result of this subsection, which generalizes
[BCR21, Theorem 5.18] for W-temperate rings. We highlight that this is the only
point where Definition 2.1 iii) intervenes:

Theorem 4.19 (cf. [BCR21, Theorem 5.18]). Let P ∈ KJx1, x2K[y] be a monic
reduced polynomial, and h be a homogeneous polynomial for which Theorem 4.6 is
satisfied. Let σ : (Nr, Fr) −→ (N0, 0) be a sequence of point blowings-up. Suppose:

• At every point b ∈ F (1)
r , the pulled-back discriminant σ∗b(∆P ) is monomial;

• There exists b0 ∈ F (1)
r such that Pb0 = σ∗b0

(P ) admits a factor in Ob0 .
Then P admits a non-constant factor Q ∈ Ph{{x}}[y], such that either P/Q is
constant, or σ∗b(P/Q) admits no non-constant temperate factor for all b ∈ F (1)

r .
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Proof. Consider the factorization P =
∏s
i=1Qi given in Corollary 4.7, where the Qi

belong to some PhJxK[y]. It follows from Remark 4.13 that there exists temperate
coordinates v = (v1, v2) centered at b0 such that σ∗b0

is locally given by (x1, x2) 7→
(v1v

c
2, v1v

c+1
2 ), so that we get:

Pb0 =
s∏
i=1

σ∗b0
(Qi)

where the σ∗b0
(Qi) ∈ KJvK[y] have formal power series coefficients according to

Theorem 4.18. Moreover, since KJxK is a UFD, for some i0, σ∗b0
(Qi0) has a common

factor with a polynomial in K{{v}}[y]. Therefore, by Corollary 2.12, σ∗b0
(Qi0) has a

non trivial divisor R ∈ K{{v}}[y] that is monic in y.
We claim that σ∗b0

(Qi0) has its coefficients in K{{v}}. Note that the Theorem
immediately follows from the Claim applied to every polynomial Qi having a
temperate factor at some point of F (1)

r . Let us prove the Claim. For simplicity
we denote Qi0 by Q, and σ∗b0

(Qi0) by Qb0 . Now, we may suppose without loss
of generality that the discriminant of P is monomial in respect to the temperate
coordinate system (v1, v2). Indeed, up to making a blowing-up with center b0, we
may suppose that the discriminant of P is monomial in respect to the temperate
coordinate system (v1, v2) by considering, for example, the point c0 = F

(1)
r+1∩F

(r+1)
r+1 ;

we note that if we show that σ∗c0
(Q) is W-temperate, then so is Qb0 by Def. 2.2 i).

At the one hand, we may apply Abhyankhar-Jung Theorem for formal power series
in order to show that Qb0 splits in KJv1/qK for some q ∈ N, that is Qb0 =

∏
(y−ψj)

where ψj ∈ KJv1/qK. Furthermore, we may apply the temperate Abhyankhar-Jung
Theorem 2.9 to the temperate factor of Qb0 , in order to conclude that one of these
roots is temperate, say, ψ1 ∈ K{{v1/q}}. At the other hand, by Theorem 4.6, the
roots of Q belong to a ring PhJx, γ1K, where γ1 is an integral homogeneous element.
Let Γ(x, z) ∈ K[x, z] be the irreducible ω-weighted homogeneous polynomial having
γ1 as a root (see Definition 4.3) and that is monic in z. By Corollary 4.7, the
roots of Q are given by ξ(x, γ) where γ runs over the roots of Γ(x, z), that is,
Q =

∏
(y − ξ(x, γ′)) where the product is taken over every root γ′ of Γ. In what

follows, we perform a detailed study on how roots of Q in PhJx, γ1K[y] transform by
the blowing-up in order to compare them to the temperate root of Qb0 in KJv1/qK.

We start by describing how the roots γ′ of Γ transform by σ. Consider

Γ(x, z) = zd +
d∑
i=1

fi(x)zd−i

where the fi(x) are homogeneous polynomials of degree ωi. Since K is algebraically
closed, we may suppose that ω > 0 (otherwise Q is a degree one polynomial, and the
Claim is trivial), that is, Γ(x, z) is a Weierstrass polynomial in z. We write ω = p/e
with gcd(p, e) = 1, and we note that fi = 0 if e does not divide i. Furthermore,
because Γ is irreducible, fd 6= 0, hence, e divides d. We have

Γ(v1v
c
2, v1v

c+1
2 , vω1 z) = zd +

d∑
i=1

fi(v1v
c
2, v1v

c+1
2 )(vω1 z)d−i

= vdω1

zd +
d/e∑
j=1

vcpj2 fej(1, v2)zd−ej

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and we set

Γ(v2, z) = zd +
d/e∑
j=1

vcpj2 fej(1, v2)zd−ej ∈ K[v2, z
e] ⊂ K[v2, z].

Note that γ̃ is a root of σ∗(Γ) = Γ(v1v
c
2, v1v

c+1
2 , z) if and only if γ̃ = vω1 γ where

γ is a root of Γ(v2, z). Now, let us remark that Γ is irreducible in K[v2, z
e].

Indeed, if Γ = Γ1Γ2 where Γi ∈ K[v2, z
e] have positive degree `i in ze, we set

Γ′i(v1, v2, z
e) := v`ieω1 Γi for i = 1, 2. Then we would have

Γ(x, z) = Γ1

(
xc+1

1
yc

,
x2

x1
,

xcp2

x
(c+1)p
1

ze

)
Γ2

(
xc+1

1
yc

,
x2

x1
,

xcp2

x
(c+1)p
1

ze

)
contradicting the irreducibility of Γ(x, z). In particular, this implies that the
irreducible factors of Γ(v2, z) are conjugates up to multiplication of z by a e-th root
of unity. This means that we may write

Γ(v2, z) =
∏

Γη(v2, z)

where η runs through a subgroup H of the group of the e-th root of unity and the
Γη(v2, z) are irreducible (monic in z) polynomials, such that

Γη(v2, z) = Γ1(v2, ηz).

It follows that we may parametrize all roots of Γ by γi,η for 1 = 1, . . . , d/e′
and η ∈ H, where e′ = |H| and γi,η = η · γi,1. We may index the roots of Γ,
therefore, by γi,η in such a way that σ∗b0

(γi,η) = γ̃i,η = vω1 γi,η are the roots of
σ∗(Γ) = Γ(v1v

c
2, v1v

c+1
2 , z). We fix the convention that σ∗b0

(γ1)
/
vω1 = γ1,1 and, more

generally, that σ∗b0
(γi)
/
vω1 = γi,1 are all the roots of Γ1. Next, by Newton-Puiseux

Theorem, we can write the roots of Γ(v2, z) as Puiseux series in K〈v1/q
2 〉, even if it

means replacing q by a larger integer.
Now, we use the normal form given by Definition 4.4, in order to write

ξ(x, γi,η) =
d−1∑
j=0

Aj(x)γji,η with Aj(x) =
∑
k>kj

ak,j(x)
hαjk+βj (x)

where the ak,j(x) are homogeneous polynomials. Since there are only finitely many
j, apart from multiplying the numerators and the denominators of the coefficients
of Aj(x) by a power of h(x), we may assume that the αj (resp. the βj) are all
independent of j and equal to some integer α (resp. β). Note that

σ∗b0
(ξ(x, γi,η)) =

d−1∑
j=0

σ∗b0
(Aj(x))γ̃ji,η =

d−1∑
j=0

γji,η
∑
k>kj

vk+ωj
1 vck2

ak,j(1, v2)
hαk+β(1, v2)

=
∑
k∈ 1

eN

vk1
h(1, v2)αk+β bk(v2, γi,η)

(9)

where bk ∈ K[v2, z] with degz(bk) 6 d − 1. We remark that degv2(bk) is bounded
by a linear function in k because, for each j, degx(ak,j(x)) is bounded by a linear
function in k.

We note that we can write h(1, v2) = vm2 g(v2) for some unit g(v2), and some
m ∈ N. Therefore, as already shown in the proof of Theorem 4.18, the series
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vmβ2 (Aj)b are Laurent series with support in the strongly convex cone Σ generated
by the vectors (0, 1) and (1,min{0, c−mα}. Therefore, if we identify the γi,η with
their expansions as Puiseux series of K〈v1/q

1 〉, we have that

vmβ2 σb0(ξ(x, γi,η)) ∈ K
s

Σ ∩ 1
eq

Z2
{
.

Since K{{v}} ⊂ KJΣ ∩ 1
eqZ

2K ⊂ K((Σ ∩ 1
eqZ

2)), and K((Σ ∩ 1
eqZ

2))[y] is a UFD, we
conclude that the set of roots σ∗b0

(ξ(x, γi,η)) and ψj of Qb0 must coincide when
we expand the γi,η as Puiseux series. From now, the γi,η ∈ K〈v

1/q
2 〉. We set

ψi,η = σ∗b0
(ξ(x, γi,η)); note that ψi,η ∈ KJv1/e

1 , v
1/q
2 K for every i and η and, apart

from re-indexing, we have ψ1,1 ∈ K{{v1/e
1 , v

1/q
2 }}.

Next, note that for every e-th root of unity η, there exists a e-th root of unity η̃
such that η̃p = η since gcd(e, p) = 1, so that:

ψ1,η(v1/e
1 , v2) = σ̂∗b0

(ξ(x, η γ1)) =
d−1∑
j=0

(η γ1)j
∑
k>kj

vk+ωj
1 vck2

ak,j(1, v2)
hαk+β(1, v2)

=
d−1∑
j=0

γj1
∑
k>kj

(η̃ v1/e
1 )ek+pjvck2

ak,j(1, v2)
hαk+β(1, v2) = ψ1,1(η̃ v1/e

1 , v2),

so that ψ1,η ∈ K{{v1/e
1 , v2}} for every e-th root of unity η. More generally, this

argument shows that:

∀i, ψi,1 ∈ K{{v1/e
1 , v2}} =⇒ ψi,η ∈ K{{v1/e

1 , v2}},
for every η ∈ H. We are, therefore, reduced to show that ψi,1 = σ∗b0

(ξ(x, γi)) ∈
K{{v1/e

1 , v
1/q
2 }} for all i = 1, . . . , d/e′, where we recall that the γi are the roots of

the irreducible polynomial Γ1. Now, we introduce the auxiliary function

(10) B(w, z) :=
∑
k∈ 1

eN

wek1 bk(wq2, z) ∈ KJw1, w
q
2K[z].

where degw2(bk) is bounded by a linear function in k. Since ψ1,1(v) ∈ K{{v1/e
1 , v2}},

(9) and (10) imply that

B(w, γ1(w2)) = wβmq2 g(wq2)β · ψ1,1(we1w
qmα
2 g(wq2)α, wq2) ∈ K{{w1, w

q
2}}.

Moreover, because B(w, z) ∈ KJw1, w
q
2K[z] and B(w1, ζw2, γ1(ζw2)) ∈ K{{w1, w

q
2}},

we have that B(w, γ1(ζw2)) ∈ K{{w1, w
q
2}} for every q-th root of unity ζ. We

remark that Γ1(wq2, z) may factor as a product of monic polynomials that are
conjugated under the action of a subgroup G of the q-th roots of unity. Thus, the set
{γ1(ζw2) | ζ ∈ G} contains exactly one root of every factor of Γ1(wq2, z). Therefore,
by definition 2.2 iii) (and we highlight that this is the only point of the paper where
Definition 2.2 iii) intervenes), we conclude that:

B(w, γi(w2)) ∈ K{{w1, w2}}
for every γi which is a root of Γ1. Now, note that:

B(w, γi(w2)) = wβmq2 g(wq2)β · ψi,1(we1w
qmα
2 g(wq2)α, wq2) ∈ K{{w1, w2}}

for every i = 1, . . . , d/e′. Since we also know that ψi,1 ∈ KJv1/e
1 , v

1/q
2 K, we conclude

from the fact that being temperate is closed under division, ramification and local
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blowings-up, see Proposition 2.8 iii), iv) and Definition 2.2 i), that ψi,1(v) ∈
K{{v1/e

1 , v2}}, finishing the proof. �

4.7. Proof of Theorem 4.2. Let P be a Weierstrass polynomial in y as in the
statement of Theorem 4.2. Since Ker(ϕ̂) is a prime ideal, P is irreducible, so it is
a reduced polynomial. In particular the discriminant of P is a formal curve ∆(P ).
By resolution of singularities, there exists a sequence of point blowings-up

(Nr, Fr)
σr // · · · σ2 // (N1, F1) σ1 // (N0, 0) = (Â2

K, 0)

such that the discriminant of Pb = σ∗b(P ) is everywhere monomial; we set σ =
σ1 ◦ · · · ◦σr. Apart from blowing-up the origin once, we can always suppose that the
sequence of blowings-up has at least one blowing-up, that is, r > 1. In particular,
the blowing-up σ1 : (N1, F1) −→ (N0, 0) is always defined. Now, there exists a
point b ∈ F1 and a temperate coordinate system v = (v1, v2) where (σ1)∗b is given
by (x1, x2) = (v1, v1v2). It follows from the expressions of ϕ and P given in the
statement of Theorem 4.2, that:

(σb)∗1(P ) = P (v1, v1v2, y), ϕ̃(v1, v2) = (v1, v2, ψ(v)),

are such that ϕ̃ ◦ σ = ϕ; moreover, since P ∈ Ker(ϕ), (σb)∗1(P ) is divisible by
y − ψ(v1, v2) ∈ K{{v}}[y] and, therefore, admits a temperate factor. We conclude
that there exists a point b0 ∈ Fr where Pb0 = σ∗b0

(P ) admits a temperate factor. In
order to finish the proof, it is enough to prove the following result:

Proposition 4.20 (cf. [BCR21, Proposition 4.6]). Let P ∈ KJxK[y], and let
σ : (Nr, Fr) −→ (N0, 0) be a sequence of point blowings-up such that the discriminant
of P ◦ σ is everywhere monomial. Let b ∈ F

(k)
r be such that Pb = σ∗b(P ) has a

temperate factor. Then P has a non-constant temperate factor.

Proof. We prove this result by induction on the lexicographical order on (r, k). First,
suppose that (r, k) = (r, 1) with r > 1. By Theorem 4.19, there is a non-constant
factor Q ∈ Ph{{x}}[y] of P . Without loss of generality, we may suppose that Q is
the monic factor of P in Ph{{x}}[y] of maximal degree. Note that Q extends at
every point of F (r)

1 by Theorem 4.18, and furthermore, Q extends temperately by
Lemma 4.15. If r = 1, then we conclude from Lemma 4.16 that Q ∈ KJxK[y], so
that Q ∈ K{{x}}[y] since KJxK ∩ Ph{{x}} = K{{x}} by Lemma 4.15.

If r > 1, let a1, . . . , aj be the points of F (1)
1 that are centres of subsequent

blowings-up, and denote Pi := (σ1)∗ai(P ). Denote σ′ := σ2 ◦ · · · ◦ σr. By the
induction hypothesis, for every i, Pi has a temperate factor. Indeed, denoting by bi
the point of F (1)

r which is sent to ai by σ′, we get that σ∗bi(Q) is a temperate factor
of σ′∗bi(Pi) = σ∗bi(P ), obtained after only r − 1 blowings-up.

Now, denote by qi the monic temperate factor of Pi of maximal degree. Then
σ′
∗
bi(qi) is a temperate factor of (σ′)∗bi(Pi) such that (σ′)∗bi(Pi/qi) has no non-

constant temperate factor, otherwise by induction hypothesis, Pi/qi would have a
non-constant temperate factor. Next, note that, by Theorem 4.19, σ∗bi(Q) is also
a temperate factor of σ∗bi(P ) such that σ∗bi(P/Q) has no non-constant temperate
factor. We conclude that σ′∗bi(qi) = σ∗bi(Q), hence qi coincides with (σ1)∗ai(Q),
which therefore admits a temperate extension at ai. Moreover at every point b′

of F (1)
1 r {a1, . . . , aj}, (σ1)∗b′(Q) is temperate, since it coincides with σ∗b′(Q). We
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conclude now, exactly as in the case r = 1, that lemma 4.16 implies that Q is a
temperate factor of P .

Finally, suppose that (r, k) is such that k > 1, and denote by a ∈ F
(j)
k−1 the

center of σk, for some j 6 k − 1. Denote Pa := (σ1 ◦ · · · ◦ σk−1)∗a (P ). Then by
the induction hypothesis, Pa has a non-constant temperate factor. Therefore, by
denoting σ′ := σk ◦ · · · ◦ σr, at every point b′ ∈ (σ′)−1(a), the polynomial (σ′)∗b′(Pa)
has a temperate factor. In particular, if b′ ∈ (σ′)−1(a) ∩ F (j)

r , we get that σ∗b′(P )
has a temperate factor at a point of F (j)

r with j < k, and we conclude by induction.
�

5. Application: Regularity of analytic maps and Nash points

5.1. Analytic set and spaces. Let K = R or C and fix an analytic manifold M .

Definition 5.1 (Real-analytic set). A subset X of M is analytic if each point of
M admits a neighborhood U and an analytic function f ∈ O(U) such that:

X ∩ U = {a ∈ U ; f(a) = 0}.

We say that X is an analytic set generated by global sections in O(M) if we can
take U = M .

Definition 5.2 (cf. [GuRo65, Ch. V, Def 6]). A (coherent) K-analytic space is a
locally ringed space (X,OX), where:

(1) X is a Hausdorff topological space and OX is a coherent sheaf of functions,
(2) at each point a of X there is a neighborhood U such that (U,OX |U ) is

isomorphic to a ringed space (Y,OY ) where Y is an analytic subset of an
open set V ⊂ Kn and OY is its sheaf of analytic functions. That is, there
exist K-analytic functions (f1, . . . , fd) ∈ O(V ) such that:

Y = {a ∈ V ; fk(a) = 0, k = 1 . . . , d} and OY = OV /(f1, . . . , fd).

A subspace of (X,OX) is an analytic space (Z,OZ) such that Z ⊂ X and the
inclusion i : Z −→ X is an injection that is, an injective map such that i∗ : OX −→
OZ is surjective.

If K = R, then it is not true that every R-analytic set X admits the structure
of a R-analytic space, as illustrated by examples of Cartan, see e.g. [Na66, Ch.
V, §3]. In contrast, if K = C, then every C-analytic set X admits the structure
of C-analytic space, essentially by a Theorem of Oka, see e.g. [Ho88, Ch. VII,
Th 7.1.5]. We refer to [GuRo65, page 155] for a definition of irreducible complex
analytic subspace X ⊂M , and we recall that if X is irreducible then it is not the
union of two proper complex analytic sets Y,Z ⊂ M , that is, if X = Y ∪ Z then
either Y = X or Z = X.

Remark 5.3. Note that if X ⊂ Ω ⊂ Cn is an irreducible complex analytic set
generated by global sections in a connected open set Ω, then the ring O(X) is an
integral domain.

5.2. Semianalytic and Subanalytic sets. We follow the presentation of [BM88].
Fix a real analytic manifold M .
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Definition 5.4 (Semianalytic set). A subset X of M is semianalytic if each point
of M admits a neighborhood U and analytic functions fi ∈ O(U) and gi,j ∈ O(U)
for i = 1, . . . , p and j = 1, . . . , q such that:

X ∩ U =
p⋃
i=1
{a ∈ U ; fi(a) = 0, gi,j(a) > 0, 1, . . . , q}.

Definition 5.5 (Subanalytic set). A subset X of M is subanalytic if each point
of M admits a neighborhood U such that X ∩ U is the projection of a relatively
compact semi-analytic set.

The following is an important general example of subanalytic set:

Example 5.6. Let ϕ : N −→M be a proper analytic map. The image X = ϕ(N)
is a subanalytic set of M . Indeed, note that the graph Γ(ϕ) ⊂M ×N is a closed
analytic set and that the set X is the projection of Γ(ϕ) onto M , that is, the image
of Γ(ϕ) by the projection π : M ×N −→M . It is now enough to remark that since
ϕ is proper, given a relatively compact set U ⊂M , the intersection π−1(U) ∩ Γ(ϕ)
is relatively compact.

Definition 5.7. A subset X of Rn is finitely subanalytic if its image under the map

πn : x ∈ Rn 7−→

(
x1√

1 + ‖x‖2
, . . . ,

xn√
1 + ‖x‖2

)
∈ Rn

is subanalytic.

Remark 5.8. Because πn is a semialgebraic diffeomorphism, every finitely sub-
analytic subset of Rn is subanalytic, but the converse is not true in general: for
instance

X = {(t, sin(t)) | t ∈ R}
is subanalytic but not finitely subanalytic.

Let X be a subanalytic set. We say that X is smooth (of dimension d) at a
point a ∈ X if there exists a neighborhood U of a where X ∩ U is an analytic sub-
manifold (of dimension d). The dimension of X is defined as the highest dimension
of its smooth points, c.f. [BM88, Remark 3.5]. Given a subanalytic (respectively,
semianalytic) set X and a number k ∈ N, the set of all smooth points of X of
dimension k, which we denote by X(k), is subanalytic [Ta81], [BM88, Theorem 7.2]
(respectively, semianalytic [BM88, Remark 7.3]). The set of pure dimension k of
X is the set Σ(k) = X(k) ∩X, which is subanalytic. If there exists d ∈ N such that
X = Σ(d), we say that X has pure dimension d. Note that X = ∪dk=0Σ(k), where d
is the dimension of X.

Example 5.9. Let M = R3 endowed with coordinate system (x, y, z), and consider
the Whitney umbrella X = {x2 − zy2 = 0} ⊂ R3. Then:

Σ(2) = {x2 − zy2 = 0 and z > 0}, Σ(1) = {x = y = 0, and z 6 0}.

Note that their intersection is non-empty.

We now recall a classical result about subanalytic sets due to Hironaka [H73]; we
follow the presentation of [BM88, Theorem 0.1]:
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Theorem 5.10 (Uniformization Theorem I). Let X ⊂M be a closed subanalytic
set of dimension d. There exists an analytic manifold N of dimension d and a
proper analytic map ϕ : N −→M such that ϕ(N) = X.

In what follows, we use the following variant of the above result:
Theorem 5.11 (Uniformization Theorem II). Let X ⊂M be a closed subanalytic
set of dimension d. There exists d+ 1 analytic manifolds Nk, where k = 0, . . . , d,
where the dimension of Nk is equal to k, and d+ 1 proper and generically immersive
analytic maps πk : Nk −→M such that πk(Nk) = Σ(k).
Proof. It is enough to prove the result when X is an equidimensional subanalytic
set, that is, when X = Σ(d). Let ϕ : N −→ M be the proper analytic map given
by Theorem 5.10 such that ϕ(N) = X. We note that N = ∪ι∈INι where each Nι
is a connected manifold and I is an index set. Denote by ϕι := ϕ|Nι : Nι −→ M .
Note that the generic rank of ϕ is constant along connected components of N , and
denote by rι the generic rank associated to each ϕι. Let J ⊂ I be the subindex set
of ι ∈ I such that rι = d; since ϕ(N) = X is of dimension d, we conclude that J 6= ∅
and that rι < d for every ι ∈ I r J . We consider the manifold Nd = ∪ι∈JNι and
the associated proper analytic morphism ϕd : Nd −→M , which we claim to satisfy
all properties of the Theorem.

Indeed, we start by noting that X r ϕd(Nd) is a subanalytic set of dimension
smaller than d and, therefore, the closure of ϕd(Nd) is equal to X. Since ϕ is proper
and continuous, we conclude that ϕd(Nd) = X. It is now enough to prove that
the mapping is generically immersive. This easily follows from the fact that ϕ is
generically of the same rank as the dimension of Nd. �

We finish this section with a sufficient condition for a subanalytic to be analytic:
Lemma 5.12 ([Pa92, Lemma 3]). Let X ⊂M be a subanalytic set which is a union
of countably many analytic subsets. Then X is an analytic set.
Proof. We claim that if X is a subanalytic set contained in a union of countably
many analytic subsets (Yk)k∈N, then it is locally contained in a union of a finite
number of the analytic sets (Yk)k∈N. Note that the lemma easily follows from the
claim. Since X = ∪Σ(k), where Σ(k) is a subanalytic equidimensional set, it is
enough to prove the claim in the case that X is an equidimensional set. By the
uniformization Theorem 5.11 there exists a proper analytic map ϕ : N −→M such
that ϕ(N) = X and ϕ is generically of rank d = dim(X); the later condition implies
that ϕ−1(X) is subanalytic set of N whose interior is dense in N . Let us fix a ∈ X;
since ϕ is proper, the fiber ϕ−1(a) has a finite number of connected components
T1, . . . , Tr; denote by U1, . . . , Ur connected open neighborhoods of the Tk. Now,
given an analytic subset Y ⊂ M , its pre-image Z = ϕ−1(Y ) is analytic in N . It
follows that for each k = 1, . . . , r, either Z ∩ Uk = Uk, or Z ∩ Uk is a closed set
with empty interior in Uk. Since X is contained in countable many analytic sets,
and the union of countable many closed sets with empty interior has empty interior
by Baire’s Theorem, we conclude that for each k = 1, . . . , r, there is an analytic set
Yk ⊂ X such that ϕ−1(Yk) ∩ Uk = Uk. We conclude easily. �

5.3. Regular locus of analytic maps. Let K = R or C. Consider an analytic
map Φ : Ω ⊂ Km −→ Kn where Ω is an open set. The set of regular points of Φ is
given by:

R(Ω) = {a ∈ Ω; ra(Φ) = rFa (Φ)}.
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We recall that Gabrielov’s rank Theorem [Ga71, BCR21] states that:

r(Φa) = rF (Φa) =⇒ r(Φa) = rF (Φa) = rA(Φa).

In particular, the set R(Ω) is open. As a matter of fact it also contains a non-empty
analytic-Zariski set:

Lemma 5.13. Let Φ : Ω ⊂ Km −→ Kn be an analytic map. Then the set

R(Φ) := {a ∈ Ω | Φa is regular }

contains a set of the form Ω r Z where Z is a proper analytic set of Ω generated by
global equations in O(Ω).

Proof. It is enough to prove the Lemma in the case that Ω is connected. Let r be
the generic rank of Φ and denote by Z the set of points a ∈ Ω where the rank of
Φ is smaller than r. Note that F is a proper analytic subset generated by global
equations in O(Ω); indeed, it is the zero set of the r-minors of the Jacobian of Φ. It
is now enough to note that Φ is regular at every point of Ω r Z by the constant
rank Theorem. �

We now recall a result that relates the regular locus of complex and real analytic
morphisms due to Milman [Mi78], but which we state as in [Pa92]:

Lemma 5.14 ([Pa92, Lemma 4]). Let Φ : Ω ⊂ Cm −→ Cn be a complex analytic
map and denote by ΦR its real-analytic counterpart. Then R(Φ,Ω) = R(ΦR,Ω).

Proof. The inclusion R(Φ,Ω) ⊂ R(ΦR,Ω) is immediate. In order to prove the other
inclusion, suppose that ΦR is regular at a and denote by r = ra(ΦR). Since ΦR

is the real-analytic counterpart of Φ, r = 2s where s = ra(Φ). The result is now
immediate from [Mi78, Theorem 2]. �

5.4. Family of morphisms.

Definition 5.15. Consider two analytic maps Φ : Ω ⊂ Km −→ Kn and ϕ : Λ ⊂
Kl −→ Ω, where Ω is a connected open set and one of the following holds:

(1) Λ = Ω and ϕ is the identity;
(2) Λ is a connected open set and ϕ is an analytic map;
(3) Λ ⊂ Ω is an analytic subspace of Ω such that O(Λ) is an integral domain,

and ϕ is its inclusion.
An admissible family of analytic germs (associated to Φ and ϕ) is the analytic map

Ψ : Λ× (Km, 0) −→ (Kn, 0)

given by Ψ(a,u) = Φ(ϕ(a) + u)− Φ(ϕ(a)). We denote by Ψa : (Km, 0) −→ (Kn, 0)
the associated germ at a; in particular Ψa = Φa − Φ(ϕ(a)).

Lemma 5.16. Given an admissible family of analytic germs:
(1) The generic rank is constant along Λ, that is,

∀a, b ∈ Λ, r(Ψa) = r(Ψb).

(2) The map a ∈ Λ 7−→ rA(Ψ∗a) ∈ N is upper semi-continuous for the Euclidean
topology.

(3) The ring of global sections O(Λ) is an integral domain.
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Proof. Condition (1) and (3) are straightforward. In order to prove (2), let f1, . . . ,
fs be generators of Ker(Φ∗ϕ(a)) and U be an open neighborhood of ϕ(a) such that
the fi are well defined on U . Let V be a connected neighborhood of a contained
in ϕ−1(U). Since Φ is analytic, apart from shrinking U and V , we have that
fi ◦ Φ ◦ ϕb ≡ 0, for all b ∈ V . We conclude easily. �

Now fix an admissible family of analytic map germs

Ψ : Λ× (Km, 0) −→ (Kn, 0).

and let L denote the fractions field of the ring O(Λ) of analytic functions on Λ.
Note that Ψ induces a morphism of power series rings:

Ψ∗L : LJxK −→ LJuK

where x = (x1, . . . , xn), u = (u1, . . . , um) and

Ψ∗L(xi) =
∑

γ∈Nmr0
Fi,γuγ , Fi,γ = 1

γ!
∂|γ|

∂wγ
(xi ◦ Φ) ◦ ϕ ∈ O(Λ).

where w = (w1, . . . , wm) are globally defined coordinate systems over Ω. Note that
Fi,0 = 0 for every i = 1, . . . , n, which guarantees that Ψ∗L is well-defined.

Now let r = r(Ψ∗L). Thus any (r + 1) × (r + 1) minor of the Jacobian matrix
of Φ∗L is zero, therefore r(Ψa) 6 r for every a ∈ Λ. On the other hand, there is a
r× r minor of the Jacobian matrix of Φ∗L, denoted by M , that is not identicaly zero.
So, for a generic a ∈ Λ, we have M(a) 6= 0 and r(Ψa) = r. Therefore, by Lemma
5.16(1), we have that:

r(Ψ∗L) = r(Ψa), ∀a ∈ Λ.
We now turn to the problem of relating the formal rank of Ψ at a point a ∈ Λ with
the formal rank of Ψ∗L:

Proposition 5.17. Let Ψ : Λ × (Km, 0) −→ (Kn, 0) be an admissible family of
analytic map germs. If there is a ∈ Λ such that r(Ψa) = rF (Ψa), then:

(11) r(Ψ∗L) = rF (Ψ∗L).

In particular, the set

R(Ψ,Λ) := {a ∈ Λ | Ψa is regular }

is either empty or contains a set of the form Λ rW where W is a countable union
of proper analytic subsets of Λ generated by global equations in O(Λ).

The proof of this Proposition is based on an extension result, namely Lemma
6.1 below, whose proof is strongly inspired by an argument of Pawłucki cf. [Pa90,
Lemme 6.3]. We postpone the proof to §6. Condition (11) is the deepest statement
of the above Proposition which, together with Theorem 1.1, allows us to prove the
following crucial technical result:

Lemma 5.18. Let Ψ : Λ× (Km, 0) −→ (Kn, 0) be an admissible family of analytic
germs where Λ is a connected open set of Kl (that is, we consider cases (1) and
(2) of Definition 5.15). Then either R(Ψ,Λ) = ∅ or, for every a ∈ Λ, there
exists an open neighborhood Ua ⊂ Λa and a proper analytic set Z ⊂ Ua such that
R(Ψ, Ua) ⊃ Ua r Z.
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Proof. Let L denote the fraction field of O(Λ). Note that Ψ yields a morphism
Ψ∗L : LJxK −→ LJuK and that r(Ψ∗L) = r(Ψa) for any a ∈ Λ. Now, suppose that;
R(Ψ,Λ) 6= ∅ so that Proposition 5.17 yields:

r(Ψ∗L) = rF (Ψ∗L).

We now first prove the Lemma in the case that K = C. Let a ∈ Λ be fixed and
consider a sufficiently small closed polydisc Da ⊂ Λ centered at a. Let O(Da) denote
the ring of analytic functions defined in a neighborhood of Da; note that this ring is
a UFD by [Da74]. Let K denote the algebraic closure of the fraction field of O(Da)
and recall that the family of Eisenstein rings (K{{v1, . . . , vn}})n∈N, defined in §3.3,
is temperate by Proposition 3.5. We note that the restriction of Ψ to Da, yields
a temperate morphism Ψ∗K : K{{x}} −→ K{{u}}. It is clear that r(Ψ∗K) = r(Ψ∗L),
and since the restriction from Λ to Da yields an injective morphism from O(Λ) into
O(Da), we conclude that:

r(Ψ∗K) = rF (Ψ∗K).

so that we may apply Theorem 1.1 in order to get

r(Ψ∗K) = rT (Ψ∗K) =: r.

Now, up to a K-linear change of coordinates, applying Remark 2.8 vi), the morphism
K{{x1, . . . , xr}} −→ K{{x}}

/
Ker(Ψ∗K) is finite, which means that there are non-zero

Weierstrass polynomials

Qi(x1, . . . , xr, xr+i) ∈ K{{x1, . . . , xr}}[xr+i] for i = 1, . . . , n− r,

such that Ψ∗K(Qi) ≡ 0. By the definition of K{{x}} and the primitive element
theorem, there exists f ∈ O(Da) and c ∈ K of degree d such that Qi ∈ O(Da)f JxK[c],
that is

Qi =
d−1∑
j=0

Qi,jc
j , Qi,j ∈ O(Da)f JxK.

Note that Ψ∗K(c) = c and {1, c, . . . , cd−1} are linearly independent overO(Da). Hence,
up to replacing Qi by Qi,0, which is monic, we can choose the Qi in O(Da)f JxK.

Let Ua ⊂ Da be any open neighborhood of a. We set Z = {b ∈ Ua; f(b) = 0}.
Note that Qi yields a power series Qi,b ∈ CJxK at each b ∈ Ua r Z and that
Ψ∗b(Qi,b) ≡ 0, for every i = 1, . . . , n− r. We conclude that r(Ψ∗b) = rF (Ψ∗b) for every
b ∈ Ua r Z as we wanted to prove.

Now let us consider the case that K = R. Denote by ΛC a complex open
neighborhood of Λ such that ΛC ∩ Rl = Λ, over which Ψ admits an holomorphic
extension:

ΨC : ΛC × (Cm, 0) −→ (Cn, 0).

By the first part of the proof, for each a ∈ ΛC, there exists a neighborhood UC
a and

a complex analytic set ZC ⊂ UC
a such that R(Ψ, Ua) ⊃ UarZ. We fix a point a ∈ Λ

and we consider the neighborhood Ua = UC
a ∩Rl and the intersection Z := ZC ∩Ua.

It is now enough to note that Z is a proper real-analytic subset of Ua, finishing the
proof. �
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5.5. Proof of Theorem 1.3. We start by a well-known result, which follows from
the geometrical statement of Proposition 5.17:

Proposition 5.19 (cf. [Pa92, Prop. 1]). Let Φ : Ω ⊂ Km −→ Kn be an analytic
map where Ω is open. Then Ω rR(Φ,Ω) is a union of countably many analytic
subsets.

Proof. Let us first argue the case that K = C, in which case every complex analytic
set is a complex analytic space. By Proposition 5.17 applied to each connected
component of Ω, X := Ω r R(Φ,Ω) is included in the union of countably many
analytic subsets

⋃∞
i=0 Yi of Ω. We may assume that the Yi are irreducible (in Ω)

by replacing each Yi by its irreducible components, and we change the family {Yi}i
according to the following rule:

(R) For a given i0, if there is countably many irreducible analytic subspaces Yi0,k
of Ω of dimension < dim(Yi0) such that X ∩ Yi0 ⊂

⋃∞
k=0 Yi0,k, we replace

the family {Yi}i∈N by {Yi}i6=i0 ∪ {Yi0,k}k∈N.
By repeating this rule countably many times, we can assume that the family {Yi}i∈N
is minimal in respect to (R) and contains X. Now assume by contradiction that
X 6=

⋃
i∈N Yi. This means that there is i0 ∈ N such that Yi0 6⊂ X but Yi0 ∩X 6= ∅.

By Proposition 5.17 applied to Yi0 (cf. Remark 5.3 and Definition 5.15(3)) we have
that Yi0 ∩X is included in a countable number of proper analytic subsets {Yi0,k}k∈N
of Yi0 that are of dimension < dim(Yi0). Since Yi0 is an analytic subspace of Ω, we
conclude that each Yi0,k is analytic subspace of Ω, which contradicts the minimality
of the family {Yi}i∈N in respect to (R).

If K = R, the result follows from considering a complexification of Φ, and noting
that the set of regular points is non-empty by Lemma 5.13. �

We are now ready to prove the following result:

Theorem 5.20 (Pawłucki Theorem I [Pa92]). Let Φ : Ω ⊂ Km 7−→ Kn be an
analytic map where Ω is open. Then Ω rR(Φ,Ω) is a proper analytic subset of Ω.

Proof. By Lemma 5.14 and Corollary 5.19, it is enough to consider the case where
K = R. Furthermore, from Lemma 5.12 and Proposition 5.19, it is enough to
show that R(Φ,Ω) is a subanalytic set of Ω. Note that being subanalytic is a local
property, so we may suppose that Ω is a subanalytic open set.

We claim that for every closed subanalytic setX ⊂ Ω, the intersectionX∩R(Φ,Ω)
is subanalytic in Ω. The result then follows from the Claim applied to X = Ω. We
prove the claim by induction on the dimension of X.

When dim(X) = 0, the result immediate. Assume the Claim is proved for
d − 1 > 0 and let X be a subanalytic subset of Ω of dimension d. Consider its
equidimensional part Σ(d) and let E = X r Σ(d), which is a closed subanalytic set
of dimension < d. By induction E ∩ R(Φ,Ω) is a subanalytic subset of Ω. It is,
therefore, enough to prove the claim when X = Σ(d) is an equidimensional set.

By Corollary 5.11, there exists a proper and generically immersive analytic
morphism ϕ : N −→ X such that ϕ(N) = X. Now fix a point a ∈ Λ and
a connected open neighborhood Λa of a. We consider the family of admissible
morphism:

Ψ : Λa × (Rm, 0) −→ (Rn, 0)
(a′,u) 7−→ Φ(ϕ(a′) + u)− Φ(ϕ(a′))
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By Lemma 5.18, apart from shrinking Λa, we conclude that either ϕ(Λa) ⊂ Ω r
R(Φ,Ω) or there exists a analytic proper set Za ⊂ Λa such that ϕ(ΛarZa) ⊂ R(Φ,Ω).
Note that, since a ∈ N was arbitrary and both of these properties are open, they
hold globally over each different connected component of N . We conclude that there
exist two closed subanalytic subsets Y and Z of X, such that: Y is of dimension d
and Y ⊂ ΩrR(Φ,Ω); and Z is of dimension < d and X r (Y ∪Z) ⊂ R(Φ,Ω). The
result now follows from induction applied over Z. �

Remark 5.21. Theorem 5.20 is a local version of Theorem 1.3, which easily follows
from it.

5.6. The Nash and the Semianalytic locus. Given a subanalytic set X ⊂
M and a point a ∈ M , we will denote by Xa the germ set of X at a, that is,
the equivalence relation induced by considering the intersection U ∩X for every
neighborhood U of a.

Definition 5.22 (Nash points). Let X ⊂M be a subanalytic set of pure dimension
d. We say that X is a Nash set at a ∈M (which might not belong to X) if there
exists a germ Ya of semi-analytic set at a such that Xa ⊂ Ya and dim(Xa) = dim(Ya).
More generally, a subanalytic set X ⊂M of dimension d is Nash at a point a ∈M ,
if Σ(k)

a is Nash for each k = 0, . . . , d. We consider the set:
N (X) := {a ∈M | Xa is the germ of a Nash set}

We say that X is a Nash set if it is Nash at every point, that is, if N (X) = M .

It is clear that every semi-analytic set is Nash subanalytic. A more general
example is given by the following Lemma:

Lemma 5.23. Let ϕ : N −→ M be a proper and regular analytic map, that
is, at every point a ∈ N , ra(ϕ) = rFa (ϕ) = rAa (ϕ). Suppose that X = ϕ(N) is
equidimensional of dimension d. Then X is Nash subanalytic.

Proof. Indeed, fix a point b ∈ X. Consider a relatively compact neighborhood V of
b, and note that ϕ−1(V ) = U is a relatively compact open set of N . Now, for each
point a ∈ U , it follows from the regularity of the mapping that there exists an open
neighborhood Ua of a and a semi-analytic set Ya ⊂M of dimension at most d such
that ϕ(Ua) ⊂ Ya. From the relative compactness of U , it follows that there exists a
semi-analytic set Y of dimension at most d (given as the union of a finite number of
sets Ya) such that ϕ(U) ⊂ Y , finishing the proof. �

Indeed, we may generalize the above idea to provide a description of the Nash
locus in terms of the regular points of a morphism:

Lemma 5.24. Let ϕ : N −→M be a proper generically immersive analytic mor-
phism such that ϕ(N) = X is a closed equidimensional set. Then

X rN (X) = ϕ(N rR(ϕ,N)).

Proof. First, let us show thatXrN (X) ⊂ ϕ(NrR(ϕ,N)) by proving the associated
inclusion of their complements. Fix a point b ∈ X r ϕ(N rR(ϕ,N)). This means
that ϕ is regular on the pre-image of ϕ−1(b). Since being regular is an open
property, there exists a neighborhood U of ϕ−1(b) such that ϕ|U is everywhere
regular. Moreover, since ϕ is proper and continuous, there exists a neighborhood V
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of b such that ϕ−1(V ) ⊂ U . By Lemma 5.23 applied to X ∩ V , we conclude that
b ∈ N (X) as desired.

Now, let us prove that ϕ(N rR(ϕ,N)) ⊂ X rN (X) by proving the associated
inclusion of their complements. Fix a point b ∈ N (X) and let Yb be the germ
of a semi-analytic set of dimension d which contains Xb; let V be a subanalytic
and relatively compact neighborhood of b where Yb admits a representative Y
defined in V such that X ∩ V ⊂ Y . Let U = ϕ−1(V ), which is a relatively compact
neighborhood of ϕ−1(b). It follows that ϕ(U) ⊂ Y , which implies that ϕ is regular
at every point a ∈ U ; in particular, at every point a ∈ ϕ−1(b). We conclude that
b /∈ ϕ(N rR(ϕ,N)), finishing the proof. �

We now consider the following set:
SA(X) := {a ∈M | Xa is the germ of a semianalytic set}.

It is trivially true that M r X ⊂ SA(X) and SA(X) ⊂ N (X). But in general,
SA(X) 6= N (X) as is illustrated by the following examples:

Example 5.25.
i) Consider a subanalytic two dimensional set S in R3 such that the germ

at the origin S0 is not semianalytic (for instance, the image of a compact
set through the Osgood mapping [Os1916] provides such a surface). We
consider X := R3 r S; X is subanalytic and of pure dimension 3, thus it is
Nash subanalytic since X ⊂ R3. But the germ X0 is not semianalytic. Note
that 0 /∈ X.

ii) We may modify the example as follows: we set
X := R4 r (R3 × {0}) ∪ (S × {0} × {0}).

Then X is equidimensional of dimension 4, and N (X) = R4, but X0 is not
semianalytic. Note that 0 ∈ X.

Remark 5.26. We recall that the closure of a semianalytic (respectively, a subana-
lytic) set is semianalytic (respectively, subanalytic) set of the same dimension. It
follows that N (X) = N (X) for every subanalytic set X ⊂M . In contrast, we can
only conclude from this argument that SA(X) ⊂ SA(X), c.f. example 5.25(i).

5.7. Proof of Theorem 1.4. We start by proving the following Corollary of the
uniformization Theorem 5.11 and Theorem 1.3.

Proposition 5.27. Let X be a subanalytic set of a real analytic manifold M . Then
i) The set N (X) is subanalytic.
ii) dim(M rN (X)) 6 dim(X)− 2.

In particular, if dim(X) 6 1, then N (X) = M .

Proof. By remark 5.26, we may suppose without loss of generality that X is a
closed subanalytic set. First consider the equidimensional case X = Σ(d). Denote
by ϕ : N −→ M the proper generically immersive analytic morphism given by
Corollary 5.11, where N is of dimension d and ϕ(N) = X. In particular r(ϕ) = d.
By Theorem 5.20, N rR(ϕ,N) is a proper analytic subset of N . It follows from
Lemma 5.24 that X r N (X) is a subanalytic set of codimension at least 1. It
remains to prove that it has codimension 2.

Denote by F the set of points in N where ϕ does not have maximal rank. Note
that F is analytic (it is given by the zero locus of the Jacobean ideal of ϕ) so,
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apart from applying resolution of singularities, we may suppose that F is a simple
normal crossing divisor in N . Now, note that N r F ⊂ R(ϕ,N) since ϕ|NrF is a
local submersion. It follows that N rR(ϕ,N) ⊂ F . So, it is enough to prove that
the image ϕ(E rR(ϕ,N)) has dimension at most d − 2 for every irreducible (in
particular connected) component E ⊂ F . Fix such an E and consider the morphism
ϕE = ϕ|E : E −→M . Let r denote the generic rank of ϕE and note that r 6 d− 1
since E has dimension d−1. If r < d−1, then ϕ(E) is a subanalytic set of dimension
at most d− 2 and the result is clear. So we may suppose that r = d− 1.

Fix a point a ∈ E and consider a local coordinate system (u, v) = (u, v1, . . . , vd−1)
of N centered at a and defined in an open neighborhood U of a, such that E ∩ U =
(u = 0). From the rank condition over ϕE , and the inverse function Theorem,
there exists a coordinate system (x, y, z) = (x1, . . . , xd−1, y, zd+1, . . . , zn) centered
at ϕ(a) = b such that:

ϕ∗(xi) = vi, i = 1, . . . , d− 1.

Now, apart from an analytic change of coordinates in the target and a permutation
of y and the zk, we may further suppose that there exists a positive integer a such
that:

ϕ∗(y) = uagd(u, v)
ϕ∗(zk) = uagk(u, v), k = d+ 1, . . . , n

where gd(0, v) 6≡ 0. In particular, the set of points of E ∩ U where gd(0, v) 6= 0 is
an open dense set E′ of E ∩ U . We claim that at every point of E′, ϕ is a regular
mapping; this claim implies that R(ϕ,N)∩E ∩U is a proper analytic set of E and,
therefore, ϕ(E rR(ϕ,N)) has dimension at most d− 2. We turn to the proof of
the Claim: suppose that a is a point in E′. Apart from shrinking U and making a
change of coordinates in the source and target, we may further suppose that:

ϕ∗(y) = ua,

and we consider the following functions defined in the target:

Pk(x, y, z) =
a∏
i=1

(zk − ygk(x, ξiy1/a)), k = d+ 1, . . . , n

where ξ is a primitive a-root of the unit. By construction, it is clear that Pk ◦ϕ|U ≡ 0
for every k = d+ 1, . . . , d. We conclude that ra(ϕ) = rAa (ϕ) = d proving the claim
and finishing the proof of the Theorem in the case of an equidimensional subanalytic
set X.

We now consider a general closed subanalytic set X. Consider the morphisms
from Corollary 5.11 ϕk : Nk −→ M , for k = 0, . . . , d − 1. From the previous
argument applied to each set Σ(k), we conclude that M rN (Σ(k)) is a subanalytic
set of dimension at most k − 2. It follows from the definition of N (X) that:

N (X) = ∩dk=0N (Σ(k))

which is a subanalytic set. Furthermore, its complement is equal to the union of the
complements of N (Σ(k)), and therefore is a subanalytic set of dimension at most
d− 2, finishing the proof. �

We are now ready to complete the proof of Theorem 1.4, following an argument
from [BM87]. We start with two Lemmas:
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Lemma 5.28. Let X be a subanalytic set of dimension d. Then
SA(X) = SA(X rX(d)) ∩ SA(X(d)).

Proof. Note that SA(X rX(d)) ∩ SA(X(d)) ⊂ SA(X) is trivial. In order to prove
the other inclusion, let a ∈ SA(X); in particular Xa is a semi-analytic germ. Let U
be a sufficiently small neighborhood of a where Xa is realizable by X ∩ U , which
is semi-analytic. We recall that if Y is semi-analytic, the n Y (d) is a semi-analytic
set, see e.g. [BM88, Remark 7.3], so we conclude that X(d) ∩U is semi-analytic and
a ∈ SA(X(d)). Since (X rX(d))∩U = X ∩U r (X(d) ∩U), we conclude easily. �

Lemma 5.29 (c.f. [BM87, p. 200]). Let X be a closed subanalytic set of equidi-
mension d and let Y = X rX(d). Then:

SA(X(d)) = SA(Y ) ∩N (X(d)).

Proof. Clearly we have SA(X(d)) ⊂ N (X(d)). Moreover, if a ∈ SA(X(d)), then
X

(d)
a is semianalytic, so its closure, which is Xa, is semianalytic and Xa rX

(d)
a is

semianalytic. Thus SA(X(d)) ⊂ SA(Y ) ∩N (X(d)).
In order to prove the other inclusion, let a ∈ SA(Y ) ∩N (X(d)). Since the result

is local, apart from replacing M by a sufficiently small neighborhood of a, we may
suppose that Y is semianalytic and that there exists a closed analytic set Z of
dimension d such that X(d) ⊂ Z; we conclude that X ⊂ Z. Let Sing(Z) denote
the singular points of Z. It follows that X r (Y ∪ Sing(Z)) is open and closed in
Z r (Y ∪ Sing(Z)) and, thus, X r (Y ∪ Sing(Z)) is semi-analytic. Since the closure
of this set is equal to X, we conclude that X is semianalytic, and we conclude by
Lemma 5.28. �

Proof of Theorem 1.4. Because of Proposition 5.27, it only remains to show that
SA(X) is a subanalytic set whose complement is of dimension at most d− 2. We
prove this result by induction on the dimension of X; the case that d = 0 being
trivial. So, fix a subanalytic set X of dimension d and consider the set E = XrX(d),
which is a subanalytic set of dimension at most d− 1. By Lemmas 5.28 and 5.29 we
get:

SA(X) = SA(E) ∩ SA(X(d)) = SA(E) ∩ SA(X(d) rX(d)) ∩N (X(d)).

By induction applied to E and X(d)rX(d), and by Proposition 5.27 applied to X(d),
we conclude that SA(X) is a subanalytic set whose complement has dimension
smaller or equal to d− 2. �

We finish this section by proving the following corollary:

Corollary 5.30. Let X ⊂ Rn be a finitely subanalytic set. Then N (X) and SA(X)
are finitely subanalytic.

Proof. Let us denote by π the map

x ∈ Rn 7−→

(
x1√

1 + ‖x‖2
, . . . ,

xn√
1 + ‖x‖2

)
∈ Rn.

By hypothesis the image Y = π(X) is a subanalytic set. By Theorem 1.4 N (Y ) is
subanalytic. Furthermore, since π is a semialgebraic diffeomorphism, we conclude
that π(N (X)) = N (Y ) ∩ π(Rn), which proves that π(N (X)) is finitely subanalytic.

The proof that SA(X) is finitely subanalytic is identical. �
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6. Proof of Proposition 5.17

6.1. Extension Lemma. The goal of this subsection is to prove the following:

Lemma 6.1 (Extension Lemma). Let Ψ : Λ× (Km, 0) −→ (Kn, 0) be an admissible
family of analytic map germs (see Definition 5.15) and let L be the field of fractions
of O(Λ). Let (x, y) be a coordinate system of (Kn, 0) where y is a distinguished
variable. Let U be an open and connected subset of Λ and suppose that there exists
a polynomial in y

f(x, y) = yd + a1(a,x)yd−1 + · · ·+ ad(a,x)

such that
i) ai(a,x) ∈ O(U)JxK, i = 1, . . . , d;
ii) ai(·, 0) ≡ 0 on U , i = 1, . . . , d;
iii) for all a ∈ U , f(a,x, y) is a generator of Ker(Ψ̂∗a).

Let us write ai(a,x) =
∑
β∈Nn−1 ai,β(a)xβ. Then, for every i and β, there is a

proper global analytic subset Zi,β ( Λ such that ai,β extends on Λ r Zi,β as an
analytic function ai,β ∈ L. Moreover if we set

f := yd +
∑

β∈Nn−1

a1,β(a)xβyd−1 + · · ·+
∑

β∈Nn−1

ad,β(a)xβ ∈ LJxK[y]

then f(x, y) ∈ Ker(Ψ∗L).

The proof of this result is strongly inspired by the proof of [Pa90, Lemme 6.3],
and is based on Chevalley’s Lemma:

Proposition 6.2 (Chevalley’s Lemma). [Ch43, Lemma 7] Let k be a field. Let
ϕ : kJxK −→ kJuK be a morphism of formal power series rings. Then there exists a
function λ : N −→ N such that

∀k ∈ N, ϕ−1((u)λ(k)) ⊂ (x)k + Ker(ϕ).

The smallest function satisfying this property is called the Chevalley’s function of ϕ,
and is denoted by λϕ.

We start by fixing notation and by proving a Corollary of Chevalley’s Lemma.
Let k be a field and ϕ : kJxK −→ kJuK be a morphism of formal power series rings.
We set x′ := (x1, . . . , xn−1). Let us consider the images of the xi by ϕ:

ϕi =
∑
α∈Nm

ϕi,αuα

where the ϕi,α ∈ k. Let

(12) F (x) := xdn +A1(x′)xd−1
n + · · ·+Ad(x′)

where the Ai are universal power series

(13) Ai :=
∑

β∈Nn−1

Ai,βx′β

and the Ai,β are new indeterminates. Then we can expand

F (ϕ1, . . . , ϕm) =
∑
γ∈Nm

Fγuγ
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where
Fγ =

∑
i,β

Mγ,i,βAi,β +Bγ

with Mγ,i,β and Bγ polynomials in the ϕj,α.
Let R be a ring. Then the system of linear equations

(S∞) ∀γ ∈ Nm, Fγ(Ai,β) = 0
has a solution (ai,β) ∈ RN if and only if Ker(ϕ) contains a non zero Weierstrass
polynomial

(14) f = xdn + a1(x′)xd−1
n + · · ·+ ad(x′), where ai(x′) =

∑
β∈Nn−1

ai,βx′β .

Let us consider the systems of linear equations
(Sk) ∀γ ∈ Nm, |γ| < k, Fγ(Ai,β) = 0
where k runs over N. We have

Corollary 6.3 (Approximation). Let k be a field. Assume that f , given as in
(14), is a generator of Ker(ϕ). Then (ai,β) is the unique solution of (S∞) in kN.
Moreover, there is a function µ : N −→ N such that, for all k ∈ N, all solutions
(ãi,β) ∈ kN of (Sµ(k)) satisfies

∀β ∈ Nn, |β| 6 k =⇒ ãi,β = ai,β .

Proof. Let (ãi,β) be a solution of (S∞). Then

f̃ := xdn +
∑

β∈Nn−1

ã1,βxβxd−1
n + · · ·+

∑
β∈Nn−1

ãd,βxβ ∈ Ker(ϕ).

Since f is a generator of Ker(ϕ), there is g ∈ kJxK such that f̃ = fg. Since f and f̃
are Weierstrass polynomials, by the uniqueness of the decomposition of a series as a
product of a Weierstrass polynomials with a unit, we have that g = 1 and f̃ = f .
This shows that (ai,β) is the unique solution of (S∞). Next, for k ∈ N we set

µ(k) = λ
(
(d+ 1)d(k + 1)

)
where λ is given in Proposition 6.2. Consider a solution (ãi,β) ∈ kN of (Sµ(k)). Set

f̃ := xdn + ã1(x′)xd−1
n + · · ·+ ãd(x′), where ãi :=

∑
β∈Nn−1

ãi,βxβ , i = 1, . . . , d.

Since ϕ(f̃) ∈ (u)µ(k), by Proposition 6.2, f̃ ∈ (x)(d+1)d(k+d+1) + Ker(ϕ). Therefore

f̃ = fg +
d∑
i=1

(ãi − ai)xd−in

for some g, where
d∑
i=1

(ãi − ai)xd−in ∈ Ker(ϕ) + (x)(d+1)d(k+d+1).

Thus we can write

(15)
d∑
i=1

(ãi − ai)xd−in = fh+ ε
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where ε ∈ (x)(d+1)d(k+d+1). We denote by ν the monomial valuation defined by

ν

(∑
α∈Nn

gαx
α

)
:= min{(d+ 1)(α1 + · · ·+ αn−1) + αn | gα 6= 0}.

For a power series g, we denote by in(g) its initial term in respect to this monomial
valuation. We remark that, for any g, (d+ 1) ord(g) > ν(g) > ord(g).
Note that in(f) = xdn. But, in (15), we see that the initial term of the left hand side
is not divisible by xdn. Therefore ν

(∑d
i=1(ãi − ai)xd−in

)
> ν(ε). Therefore

(d+ 1) ord
(

d∑
i=1

(ãi − ai)xd−in

)
> ord(ε).

Thus, there is a i0 such that
ord((ãi0 − ai0)xd−i0n ) > (d+ 1)d−1(k + d+ 1).

In particular ãi0 − ai0 ∈ (x)(d+1)d−1(k+d+1)−(d−i0) ⊂ (x)k+1. On the other hand we
have that

∑
i 6=i0(ãi − ai)xd−in ∈ Ker(ϕ) + (x)(d+1)d−1(k+d+1). The result is proved

by induction on the number of terms in the sum. �

We are now ready to turn to the proof of the main result of this subsection:

Proof of the Extension Lemma 6.1. We consider, for each a ∈ U , the following
system of linear equations
(S∞(a)) ∀γ ∈ Nm, Fγ(a)(Ai,β) = 0
where F,Ai are as in equations (12) and (13), respectively. Set Ψk = πk ◦Ψ where
πk : Kn −→ K is the projection to the k-entry, and note that all of its derivatives
∂|γ|

∂uγ Ψk(·, 0) are globally defined morphisms over Λ. Now consider:

F (Ψ∗1,a, . . . ,Ψ∗n,a) =
∑
γ∈Nm

Fγ(a) uγ

where a ∈ Λ, and

Fγ(a) =
d∑
i=1

∑
β∈Nn−1, β6γ

Mγ,i,β(a)Ai,β +Bγ(a)

with Mγ,i,β(a) and Bγ(a) polynomials in the derivatives of Ψ∗a. In particular, note
that Mγ,i,β(a) and Bγ(a) belong to O(Λ).

As before, for any k ∈ N, we consider the finite system of linear equations:
(Sk(a)) ∀γ ∈ Nm, |γ| < k, Fγ(a)(Ai,β) = 0.
Let sk denote the number of indexes γ such that |γ| < k. The system (Sk(a)) can
be written as

M (k)(a) ·A(k) +B(k)(a) = 0
where M (k)(a) is the (sk × dsk)-matrix with entries Mγ,i,β(a), A(k) is the (dsk × 1)-
column with entries Ai,β , and B(k)(a) is the (sk × 1)-column with entries Bγ(a).
We denote by M (k)

i,β (a) the column of M (k)(a) corresponding to Ai,β , that is:

M (k)(a) ·A(k) =
d∑
i=1

∑
|β|<k

M
(k)
i,β (a)Ai,β
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Let us fix i0 ∈ {1, . . . , d} and β0 ∈ Nn−1 and let us prove that there exists ai0,β0 ∈ L
whose restriction to U is equal to ai0,β0 . For every k ∈ N with k > |β0|, let us denote
by t(k)

0 (a) the dimension of the K-vector space T (k)
0 (a) generated by the M (k)

i,β (a) for
(i, β) 6= (i0, β0). There is an analytic proper subset D(k) of Λ such that for every
a ∈ Λ rD

(k)
0 , t(k)

0 (a) is maximal; denote by t(k)
0 this maximal value.

We now fix a ∈ U r
⋃
k>|β|D

(k)
0 and consider µa the Chevalley function of

Corollary 6.3 associated to f(a, x). We now fix k = |β0|+ 1 and we set ` = µa(k).
To simplify the notation, set t(`)0 = t0, and consider K-linearly independent vectors
M

(`)
i1,β1

(a), M (`)
i2,β2

(a), . . . , M (`)
it0 ,βt0

(a) which generate T (`)
0 (a).

Claim 6.4. There exists a neighborhood Ua of a such that M (`)
i0,β0

(b) does not belong
to the vector space generated by T (`)

0 (b) for every b ∈ Ua.

Proof. Indeed, from the definition of T (`)
0 (a) the equalityM (`)(a) ·A(`) +B(`)(a) = 0

can be re-written as:

Ai0,β0M
(`)
i0,β0

(a) +
t0∑
j=1

(Aij ,βj + Lj)M (`)
ij ,βj

(a) +B(`)(a) = 0.

where the Lj are K-linear combinations of the terms Ai,β with (i, β) 6= (ij , βj)
for j = 0, . . . , t0. We recall that, by Corollary 6.3, there exists a unique entry
ai0,β0 = Ai0,β0 for which the above system admits a solution. It is now immediate
that M (`)

i0,β0
(a) /∈ T (`)

0 (a) (otherwise, for each choice of Ai0,β0 , it would be possible to
compensate the terms Ai,β with (i, β) 6= (i0, β0) in order to get a different solution).
We conclude easily from the analyticity of the vectors M (`)

i,β . �

Now, by analyticity of the entries M (`)
i,β , there is a proper analytic subset E0 of Λ

such that, for every b ∈ ΛrE0, the vectors M (`)
ij ,βj

(b), for 0 6 j 6 t0, are K-linearly
independent. Moreover, since t0 = maxc{t(`)0 (c)}, these vectors form a basis of the
vector space generated by all the M (`)

i,β (b). Therefore, for a given (i, β) 6= (ij , βj) for
j = 0, . . . , t0 and for a given b ∈ Λ rE0, the equation

∑t0
j=0M

(`)
ij ,βj

(b)Xj = Mi,β(b)
has a unique solution X = (X0, . . . , Xt0) ∈ K. Let us denote by M0(b) the
s` × (t0 + 1)-matrix with columns M (`)

ij ,βj
(b) for j = 0, . . . , t0. By Cramer’s rule, the

Xi have the form gi(b)/∆0(b) where gi(b) is a minor of a matrix whose entries are
some of the entries of the M (`)

ij ,βj
(b) and of Mi,β(b), and ∆0(b) is the determinant of

a (t0 + 1)-square sub-matrix N0(b) of M0(b). Therefore, there is a proper analytic
subset E1 of Λ, such that for every b′ ∈ Λ r E1, ∆0(b′) 6= 0. In particular the
system (S`(b)), for b ∈ Λ r (E0 ∪ E1), can be rewritten as

t0∑
j=0

M
(`)
ij ,βj

(b)(Aij ,βj + Lij ,βj (b)) +B(`)(b) = 0

where the Lij ,βj (b) are linear forms in the Ai,β for (i, β) 6= (ij , βj) for j = 0, . . . , t0,
with analytic coefficients. We claim that Li0,β0(b) ≡ 0. Indeed, by Claim 6.4, note
that for every c ∈ Ua r

⋃
k>|β|D

(k)
0 we have that M (`)

i0,β0
(c) does not belong to the

t0-vector space T (`)
0 (c), implying that Li0,β0(c) is equal to zero in an open set; by
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analyticity Li0,β0 ≡ 0. In particular the system (S`(b)), for b ∈ Λ r (E0 ∪ E1), can
be rewritten as:

M
(`)
i0,β0

(b)Ai0,β0 +
t0∑
j=1

M
(`)
ij ,βj

(b)(Aij ,βj + Lij ,βj (b)) +B(`)(b) = 0.

It now follows from Cramer’s rule that there exists a solution ai0,β0(b) of the
truncated system which can be expressed as a division Q0(b)/∆0(b), where Q0(b)
depends on the entries of M (`)

ij ,βj
(b) for j = 1, . . . , t0} and B(`)(b). We now remark

that Claim 6.4 implies that ai0,β0(b) = ai0,β0(b) for every b ∈ Uar (D0 ∪Z0), which
implies that they are equal over U r Z0. We conclude that ai0,β0 can be extended
as a holomorphic function on Λ r Z0 that belongs to L. Since the choice of (i0, β0)
was arbitrary, this proves the Lemma. �

6.2. Proof of Proposition 5.17. Let Φ : Ω −→ Kn and ϕ : Λ −→ Ω be the two
morphisms from the definition of admissible family 5.15, and recall that Ψ(a,u) =
Φ(ϕ(a) + u)−Φ(ϕ(a)). Let a ∈ R(Ψ,Λ) and set r := r(Ψa) = rF (Ψa); in particular,
r = r(Φϕ(a)) = rF (Φϕ(a)). It follows from Gabrielov’s rank Theorem (or the rank
Theorem 1.1) that rA(Φϕ(a)) = r.

Apart from a translation in x, we may suppose that Φ(ϕ(a)) = 0. Let (Z, 0)
be the germ of analytic set defined by Ker(Φ∗ϕ(a)) and note that r = dim(Z, 0).
Apart from a linear change of coordinates in x, we may assume that the projection
π : (Z, 0) −→ (Kr, 0) on the first r coordinates is finite. In particular, each function
xi, for i > r, is finite over the ring of convergent power series K{x1, . . . , xr}. That is,
by the Weierstrass preparation theorem, there exist non zero Weierstrass polynomials

Pi(x1, . . . , xr, xr+i) ∈ K{x1, . . . , xr}[xr+i], for i = 1, . . . , n− r,

belonging to Ker(Φ∗ϕ(a)). By replacing each Pi by one of its irreducible factors we
may assume that the Pi are irreducible Weierstrass polynomials at 0.

We claim that, apart from changing the choice of point a ∈ R(Ψ,Λ) and re-
centering the coordinate system x accordingly, there exists a neighborhood U of a
such that Pi are well-defined and irreducible at every point in Φ(ϕ(U)). Indeed, let
V be an open neighborhood of 0 in Kn on which the Pi are well-defined, and U be
an open connected neighborhood of a such that Φ(ϕ(U)) ⊂ V . Apart from shrinking
U and V , we may suppose that Pi ∈ Ker(Φ∗ϕ(b)) for every b ∈ U ; in particular,
U ⊂ R(Ψ,Λ). Now, recall that being not irreducible is an open property for the
Euclidean topology, thus the property of being irreducible is a closed property. If
one of Pi is not irreducible at a point Φ(ϕ(b)), for some b ∈ U , we may replace
a by b, Pi by one of its irreducible factors at this point, and we shrink U and V
accordingly. Since the degree of the Pi is a positive integer, this process should end
in a finite number of steps, proving the claim.

Fix s = 1, . . . , n − r, set x(s) = (x1, . . . , xr, xr+s), Φ(s) := (Φ1, . . . ,Φr,Φr+s),
and denote by Ψ(s) = (Ψ1, . . . ,Ψr,Ψr+s) the family associated to Φ(s) and ϕ. Note
that U ⊂ R(Ψ(s),Λ) by construction. Moreover Ker(Ψ(s)

a

∗
) is generated by Ps since

Ps is irreducible and Ker(Ψ(s)
a

∗
) is a height one prime ideal of K{x(s)}. We set:

fs(b,x(s)) := Pi

(
Φ(s)(ϕ(b)) + x(s)

)
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for every b ∈ U , which can be written as:

fs(b,x(s)) = yd + a1(b,x′)yd−1 + ·+ ad(b,x′)

where y = xr+s and x′ = (x1, . . . , xr). First, note that ai(b,x′) ∈ O(U)Jx′K since
Φ ◦ ϕ is an analytic map defined on U and Pi is well defined in Φ(ϕ(U)). Second,
note that fs(b,x(s)) ∈ Ker(Ψ(s)

b

∗
) for every b ∈ U since Ψ(s)

b

∗
(fi) = Ps ◦ Φ(s)

ϕ(b) ≡ 0,

and that fs(b,x(s)) generates Ker(Ψ(s)
b

∗
) since Pi is irreducible. Third, note that

fi(b, 0, y) = yk(b)U(b, y) for some 1 6 k(b) 6 d and U(b, y) is a monic polynomial
in y coprime with y. By Hensel Lemma (see [Gro67, 18.5.13]), this implies that
fi(b,x′, y) is the product of two monic polynomials of degree k(b) and d − k(b)
respectively. From the fact that Pi is irreducible and k(b) > 0 at every point b ∈ U ,
we conclude that k(b) = d, that is, fs(b, 0, y) = yd. These three observations show
that fs satisfies all hypothesis of Lemma 6.1, so that it can be extended as a power
series fs(x(s)) of LJxK, where L is the fraction field of O(Λ), such that Ψ∗L(fs) = 0.
We conclude that rF (Ψ∗L) 6 r, and since r(Ψ∗L) = r, we get that r(Ψ) = rF (Ψ∗L),
finishing the proof.
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