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ABSTRACT. We study the algebraic closure of K((z)), the field of power series
in several indeterminates over an algebraically closed characteristic zero field.
We show that an element algebraic over K((x)) can be expressed as a Puiseux
series such that the convex hull of its support is essentially a polyhedral rational
cone. One of the main tools for proving this is the Abhyankar-Jung Theorem.
Then we prove a positive characteristic analogue of this result by replacing the
use of the Abhyankar-Jung Theorem by the compacity of the set of orders on
7.

Finally we apply these results to obtain a bound on the gaps in the expansions
of Laurent series algebraic over the field of power series of any characteristic.

CONTENTS

(L. Introduction
[2. Orders and algebraically closed fields containing K((z))|

[2.1.  The space of orders on R>q"|

12.2. The space Ord,, as a compact topological space]
[2.3.  Algebraically closed fields containing K((x))|
13._Proof of Theorem 1.3

4. _Proof of Theorem 1.4

4.1.  Preliminary results|

4.2. A generalization of Dickson’s Lemmal

4.3, Proot of Theorem[1.4]

4.4. Some examples|

b. The positive characteristic case|

b.1.  Algebraically closed fields in positive characteristic|

[5.2.  Positive analogue of 7(£) in positive characteristic

6. Prootfs of Theorems |1.3] and [1.4]in positive characteristic|

7. Gaps in the expansion ot algebraic Laurent series|

[References|

O O O N

10
11
14
14
17
19
21
23
26
30
33
34
37

2010 Mathematics Subject Classification. 05E40, 06A05, 11J81, 12J99, 13F25, 14B05, 32B10.
Key words and phrases. power series rings, support of a Laurent series, algebraic closure,

orders on a lattice, Dickson’s Lemma, Henselian valued fields.

This work has been partially supported by ECOS Project M14MO03, and by PAPIIT-IN108216.
The third author is deeply grateful to the UMI LASOL of CNRS where this project has been

carried out.



2 FUENSANTA AROCA, JULIE DECAUP, AND GUILLAUME ROND

1. INTRODUCTION

When K is an algebraically closed field of characteristic zero and z = (z1, ..., z,)
is a vector of n indeterminates, we denote by K((x)) the field of formal power series
in n indeterminates. The problem we investigate here is the determination of the
algebraic closure of K((z)). When n = 1 it is well known that the elements that are
algebraic over K((«)) can be expressed as Puiseux series, i.e. as formal sums of the
form Z,;“;ko apz®/? for some positive integer g.

When n > 2 the question remains open in general, and this case is the first step
in order to understand what is the algebraic closure of fields of generalized power
series. A classical result of McDonald [MDO95] asserts that the elements that are
algebraic over K((z)) can be expressed as Puiseux series with support in the trans-
lation of a strongly convex rational cone. However the converse is wrong: a Puiseux
series with support in the translation of a strongly convex rational cone is not al-
gebraic over K((z)) in general.

So a natural problem is characterizing the elements that are algebraic over K((z))
among the Puiseux series with support in the translation of a strongly convex ra-
tional cone. Without loss of generality, when K is a characteristic zero field, we can
restrict to the Laurent series (with integer exponents) with such a support (see for
instance the introduction of [AR19]).

Here we investigate characterizations in terms of the support of the series. In-
deed, such characterizations have already been studied for series in one indetermi-
nate that are algebraic over the ring of polynomials. For these algebraic series in
one indeterminate this problem is important and is related to several fields such
as tropical geometry, number theory, and combinatorics (see [AB12], [HM17], and
[AM-K31] for example). For such a series f(z1) algebraic over K[z;], one can ex-
press all the coeflicients of f(x1) in terms of a finite number of data: the coefficients
of the minimal polynomial of f(x) and the first coefficients of f(x1) up to an order
N (see [FS98| and [HM17]). This order N is determined by the discriminant of the
minimal polynomial of f(x1). However, these expressions, which are explicit, are
usually difficult to handle (let us mention the work [HM] that recently extends such
expressions in the multivariable case). Another approach is based on the fact that
an algebraic series is D-finite, that is, a solution of a linear differential equation
with polynomial coefficients. From this point of view the coefficients of f(x;) sat-
isfy a linear recurrence with polynomial coefficients (see [St80] for instance). But
once again it is still a difficult problem to handle such recurrences (see [AB12] for
a presentation of the problem).

In fact our problem is much more subtle than the case of a series algebraic over
K[z]. Indeed a Laurent series £ algebraic over K((z)) will be determined by its min-
imal polynomial. But the coefficients of this minimal polynomial are formal power
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series in several indeterminates. Therefore the support of £ depends on infinitely
many coefficients in K.

A first natural question is to find obstructions for the algebraicity of a Laurent
series with support in the translation of a strongly convex rational cone in terms
of the shape of the support. For instance could there be an algebraic series in 3
indeterminates for which the convex hull of its support is a right circular cone?
A natural problem is to find how far from a strongly convex rational cone is the
support of an algebraic series.

In [AR19] we began to investigate this kind of question. One of our results is
that an algebraic series cannot have too many gaps in its expansion (see [AR19]
Theorem 6.4] for a precise statement). In order to prove this result we proved a
technical result asserting that, for a given algebraic series £ with support in the
translation of a strongly convex rational cone, there exists a hyperplane H C R™
such that Supp(£) N H is infinite and one of the half-spaces delimited by H contains
only a finite number of elements of Supp(§).

In fact, the set 7(£) of normal vectors to such hyperplanes H has been defined as
being the boundary of some strongly convex (open) cone. But nothing more has
been proved about this cone 7(£). In particular we do not know if it is rational or
even polyhedral.

The first aim of this paper is to prove that this cone is a strongly convex rational
cone. Then we relate the support of such an algebraic series £ to the dual of the
cone 7(£). The same questions can be asked for a positive characteristic field. We
will discuss the positive characteristic case, showing the differences with the char-
acteristic zero case.

Let us present our main results in more details. We begin by two definitions:

Definition 1.1. A (generalized) series £ (with support in Q™ and coefficients in a
field K) is a formal sum § = > con a2®, where 2 1= 27" - -2, and the {, € K.
Its support is the set

Supp(¢) == {a € Q" | & # 0}
Such a series is called a Laurent series (resp. Laurent Puiseuz series) if Supp(€) C
Z"™ (resp. Supp(§) C %Z” for some k € N*).

Definition 1.2. Let £ be a series with support in Q™ and coefficients in a field K.
We set

7€) :={w € R>¢" | Ik € R, Supp({) N{u e R" |u-w <k} =0}.

Our first main result is the following:
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Theorem 1.3. Let £ be a Laurent series whose support is included in a translation
of a strongly convex cone containing R>o™ and with coefficients in a field K of
any characteristic. Assume that £ is algebraic over K(x)). Then the set 7(§) is a
strongly convex rational cone.

Our second main result relies on the support of a Laurent series that is algebraic
over K((x)) to the cone 7(&):

Theorem 1.4. Let & be a Laurent series whose support is included in a translation
of a strongly convex cone containing R>o" and with coefficients in a field K of

any characteristic. Assume that £ is algebraic over K((x)). We have the following
properties (here T(€)Y denotes the dual of 7(€) - see Definition[2.1]):

i) There exist a finite set C C Z", a Laurent polynomial p(x), and a power
series f(x) € K[[z]] such that

Supp(§ + p(z) + f(x)) € C+7(8)".

i) The triplet (C,p(z), f(x)) satisfying i) is not necessarily unique. But:

a) There is a triplet (C1,p1(x), f1(x)) satisfying i) such that for every (n—
1)-dimensional (unbounded) face F of Conv(Cy + 7(£)V), the cardinal
of

Supp(§ + p1(x) + fr(z)) NF
is infinite,

b) There is a triplet (Ca,pa2(z), fo(x)) satisfying i) such that every one
dimensional face o of T(§)V, there is a one dimensional unbounded
face of Conv(Cs +71(€)V) of the form v+ o, for some v € C, such that
the cardinal of

Supp(§ + p2(x) + f2(2)) N (v +0)
is infinite.
iii) If o C 7(€)Y is a convex cone (not necessarily polyhedral) containing R>o"

for which there exist a Laurent polynomial p'(x), a power series f'(x) €
K[[z]], and a finite set C' such that

Supp(§ +p'(x) + f'(z)) € C" + 0,
then o = 7(§)V.
We will see in Example that, in general, the set C satisfying i) cannot be
chosen to be one single point. We will also see in Example that there is no

minimal, maximal or canonical C satisfying i).

We will begin to treat the characteristic zero case because this case is simpler
than the positive characteristic case, and because we feel that in this way the paper
is easier to read. In this case the proof of Theorem is essentially based on two
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tools: the compacity of the space of orders on R>¢", and the construction, for every
order < on Q", of an algebraically closed field SX containing K((z)). This result
of compacity is due to Ewald and Ishida [EIO6] (see also [Tel8]) and is a purely
topological result. It will allow us to have a decomposition of R>¢" into a union
of finitely many rational strongly convex cones having the following property: for
each order =, the roots of the minimal polynomial of ¢ in SX have support in one
of these cones. -

The construction of the algebraically closed fields S¥ has been proved in [AR19)
(see Theorem and is based on systematic constructions of algebraically closed
valued fields due to Rayner [Ra68].

The proof of Theorem is more involved and requires the introduction of new
cones. These are denoted by 70(&), 74(£), 71(§) and 71 (§). The definitions of 74(&)
and 7 (&) are purely algebraic (they are defined in terms of the fields S), and the
definitions of 74(§) and 7 (&) are ”geometric” (that is, they are defined in terms of
the support of ).

We prove that the set 7(§) is the closure of 7(£). Then, we prove that 7 (§) and
71(€) are equal and that 7(§) is almost equal to 79(&) (see Proposition - in
particular they have the same closure). The main important property of 74(§) and
71(€) is that these two sets are open sets (see Proposition [4.7)). Then, we will prove
that the boundary of 7(§) does not intersect 71 (&) (this comes from the openness
of 79(€) and 71 (&), see Corollary [4.8)). In particular, the vectors in the boundary of
7(&) will correspond to ”faces” of the support of . The main tool used to prove
the existence of the finite set C' of Theorem is a generalization of Dickson’s
Lemma that we prove here (see Corollary .

In the following part we investigate the positive characteristic case, which is very
different from the zero characteristic case. Before giving the proofs of Theorems
[1-3] and [T-4] in the positive characteristic case, we will investigate how the elements
of an algebraic closure of K((z)) can be described in this case. Indeed, in positive
characteristic, the roots of polynomials with coefficients in the field of power series
are not series with support in a lattice in general. But these roots can be expressed
as series with support in a strongly convex cone with rational exponents whose
denominators are not necessarily bounded (see the work [Sal7] where this analogue
of MacDonald’s Theorem is proved). First we show that the analogue of Theorem
is no longer true for such series (see Example . This example shows that the
problem is that the support of a root can have accumulation points, and therefore
we need to take into account that its support is well-ordered for the considered
order. This is the main difference with the characteristic zero case.

Therefore we begin by extending the result of Saavedra by constructing algebraically
closed fields, each of them depending on a given order on R>(", that contain K((x))
(see Theorem [5.5). Then we introduce a new cone analogous to 7(§), but whose
definition is more natural in that the support of such a £ is not included in a lattice
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in general. This allows us to prove that this cone is rational (see Theorem [5.11]).
Then we give an analogue of Theorem in the positive characteristic case for se-
ries whose support is not in a lattice (see Theorem . The conclusion is weaker
than the one of Theorem but we show that there is no possibility for a stronger
version for algebraic series with accumulation points in their support (see Example
5.15]).

Then we give the proofs of Theorems and in the positive characteristic
case (that are satisfied only for power series with integer exponents) by explaining
the differences with the zero characteristic case. Finally we use this to give a bound
on the gaps in the expansion of a Laurent series algebraic over K((x)):

Theorem 1.5. Let & be a Laurent series whose support is included in a translation
of a strongly convex cone containing R>o™ and with coefficients in a field K of
any characteristic. Assume that & is algebraic over K((x)) and § ¢ K[[x]](). Let
w=(w1,...,wy) € Int(7(§)). We expand & as
= ka(i)
ieN
where

i) for everyl € ' := Zwy + - - - + Zwy, & is a (finite) sum of monomials of the
form cx® with w-a =1,
ii) the sequence k(i) is a strictly increasing sequence of elements of T,
iii) for every integer i, i) # 0.

Then there exists a constant K > 0 such that

k(i+1) )
— < .
=6 <K VieN

Let us mention that Theorem [1.3| has been announced in [ADR].

2. ORDERS AND ALGEBRAICALLY CLOSED FIELDS CONTAINING K((x))

In this section we introduce the tools needed for the proof of Theorem

2.1. The space of orders on R>".

Definition 2.1. Let us recall that a cone 7 C R™ is a subset of R™ such that for
everyt € Tand A > 0, At € 7. A cone 7 C R" is polyhedral if it has the form

T:{)\lu1+~-~+)\sus|)\1,...,)\SZO}

for some given vectors uq, ..., us € R™. A cone is said to be a rational cone if it is
polyhedral, and the u; can be chosen in Z".

A cone is strongly convez if it does not contain any non trivial linear subspace.

In practice, as almost all the cones that we consider in this paper are polyhedral
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cones, the term cone will always refer to polyhedral cones (unless stated otherwise).
The dual oV of a cone o is the cone given by

oV i={veR"|v-u>0,foralu€ o}

where u-v stands for the dot product (uz,...,un) - (v1,...,0y) 1= U1+ -+ UpVy.

Remark 2.2. Let € be a series and w € 7(£). Then Supp(§) C v+ (w)" for some
v € Z". Indeed it is enough to choose v such that Supp(§) N{u € R" | u - w <
7w} =0.

Definition 2.3. A preorder on an abelian group G is a binary relation < such that
i) Vu,v € G, u 2 v or v = u,
ii) Yu,v,w € G, u =2 v and v < w implies u < w,
iil) Yu,v,w € G, v < v implies u + w < v + w,
The set of preorders on G is denoted by ZR(G). The set of orders on G is a subset
of ZR(G) denoted by Ord(G).

Theorem-Definition 2.4. By [Ro86l Theorem 2.5] for every <€ ZR(Q") there
exist an integer s > 0 and orthogonal vectors uy, ..., us € R™ such that

Vu,v € Q" u v <= (u-up,...,u Us) <jex (V- UL,...,V " Ug).

For such a preorder we set =<:=<(,, . u,)- Such a preorder extends in an obvious
way to a preorder on R™ and the preorders of this form are called continuous
preorders.

Definition 2.5. Let A C R™ and =< be a continuous preorder on R™. We say that
A is <-positive if
Vae A, 0=<a.

Definition 2.6. Let <€ Ord,, and A C R™. We say that A is <-well-ordered if A
is well-ordered with respect to <.

Definition 2.7. The set of continuous orders < such that R>¢"™ is =-positive is
denoted by Ord,,, and they will be simply called orders on Rx(".

In the rest of the paper all the orders that we consider will be exclusively orders on
R>¢". For simplicity we shall call them simply orders.

Definition 2.8. Given two preorders <7 and =<5, one says that <, refines <y if

Vu,v € R", u <9 v = u =<1 v.
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Remark 2.9. Let (uq,...,us) be non zero vectors of R™. Using Theorem-Definition
[2-4]it is easy to check that for a preorder <, < refines <(y, ., if and only if there

exist vectors usi1, ..., ust such that 2=<(y, . )

Lemma 2.10. Letw € R and o be a strongly convex cone with w € Int(a"). Then
o is X-positive for every order = refining <.

Proof. If w € Int(c"), we have that s-w > 0 for every s € o\ {0}. By Theorem-
Deﬁnition@, every = refining <, is equal to <(,, ., ... »,) for some vectors v;. Thus
o is =<-positive. O

The next easy lemma will be used several times:

Lemma 2.11. [ARI9l Lemma 2.4] Let o1 and o be two cones and v1 and v2 be
vectors of R™. Let us assume that o1 N oy is full dimensional. Then there exists a
vector v € Z™ such that

(v14+01)N(y2+02) Cy+o1Nos.

Finally we give the following result, which will be used in the proof of Theorem
(this is a generalization of [AR19, Corollary 3.10]):

Lemma 2.12. Let oy, ..., on be strongly convex cones and let w € R™\ {Q}. The
following properties are equivalent:

i) We have w € Int (vazl aQ’).
ii) For every order <€ Ord(Q") refining <, there is an index i such that o;
1§ X-positive.

Proof. Let us prove that i) implies ii). Let w € Int (Uf\il O'l-v>. We are going to show
>J_

that for every non zero vector vy, ..., vp_1 € <w>J- such that v; € (w,v1,... Y Uj—1)7,

there is an integer ¢ such that o; is <(44,,...,v,_,)-Positive. Indeed, by Theorem-
Definition every preorder =X refining <, is of the form <, ., . v, ,) for such
vectors vy, ..., v,—1. Therefore ii) is satisfied. So from now on we fix such a set of
vectors vy, ..., Up—1.

By Lemma [2.10} if w € Int(o}’) for some 4, then o; is <-positive for every =<-refining

<w- In particular it is <(., 4, .. -positive. Otherwise let F; be the set of indices

Un—1)

i such that w € ;. If w were in the boundary of UiGE1 o}, then w would belong
to some o; for i ¢ E; because w € Int <U1AL1 0;’). Thus w € Int (U,c g, 07)-

Since w € Int (U;ep, 0), there is Ay > 0 such that w + A\jor € Int (U;ep, 0).
Then two cases may occur:

(1) Assume w + Aoy € Int(o}) for some i € Ey. Because i € Ey, for s € o; \ {0},
either w-s > 0, or w-s = 0. In this last case we have v1-s > 0 since (w+Av1)-s >0
and A\; > 0. Therefore o; is =-positive for every order = refining <, ,,) (In
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particular it is <(y, 4, ,....v,_,)-POsitive).

(2) If w+ Movy ¢ Int(s)) for every i € E1, we denote by Ey the set of i € E
such that w+ Ajv; € 6. As before we necessarily have w + Ajv; € Int (UieE2 0';/).
Therefore there is Ay > 0 such that w + Ajv1 + Aavg € Int (UieE2 aiv). Once again,
if w+ Mo + Avy € Int(o)) for some i € Es, o; is <-positive for every order
= refining <y 4, 0,)- Otherwise we repeat the same process until one of the two
situations occur:

a) there is j < n — 1 such that w + X\jv1 + -+ + \ju; € Int(o}) for some i.
Then we can prove in the same way as (1) that o; is <-positive for every
= refining <, 4,,...0;) (hence it is <(, 4, .. v, _,)-Positive).

b) there is no such an index j. Thus we end with w+Ajv1+- - -+ ,—10,—1 that
belongs to (at least) one o). Therefore the cone o; is Z(w,v1,...,0n_1)-POSItIVE,
because w € 0, W+ Mv1 €0, ..., W+ M1+ + Ap_1Un—1 € 7).

This proves that i) implies i)). Now we prove the converse. Assume that for every
order <€ Ord(Q") refining <, there is an index ¢ such that o; is <-positive.

Let v be a vector with ||v|| = 1. By assumption there is an index ¢ such that o; is
<(w,w)-Positive. Let s1, ..., s; be generators of o; that we assume to be of norm
equal to 1. Reordering the s;, there is an integer k£ > 0 such that s; -w > 0 for
every j < k, and s; -w = 0 for every j > k, because o; is <, ,)-positive. Take

min; Si-w
A > 0. When k£ > 1 assume moreover that M

that w + Av € 0. Indeed, if j < k we have

> ). Then we claim

minj<g{s; - w}

9 > 0.

@+ M) 85 =w-s;+ M- s; 2w 55— Aol 2

If j > k we have
(wWH+Av)-s;=Av-5;>0
since o; is <, )-positive. This implies that w + Av € o). Since this is true for

every v, we have w € Int (vazl al-v). O

Corollary 2.13. Letw € R>¢" and let 01, ..., on be strongly convex cones which
are <, -positive. Assume that for every order <€ Ord,, refining <, there is an
index © such that o; is <-positive. Then there is a neighborhood V of w such that,
for every w' € V and every <'e€ Ord,, refining <., there is an index i such that o;
18 ='-positive.

Proof. We have w € Int (Uivzl a) ) by the previous lemma. Therefore, the previous
lemma shows that we can choose V' = Int (Uf\il o/ ) O
2.2. The space Ord,, as a compact topological space. One main tool for the
proof of Theorem [I.3]is the fact that the set of orders Ord,, is a topological compact

space for a well chosen topology. This topology has been introduced by Ewald and
Ishida [EI0O6].
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Definition 2.14. [EI0O6][Tel8] The set ZR(Q") is endowed with a topology for
which the sets

U, = {=€ ZR(Q") such that ¢ is < -positive}

form a basis of open sets where ¢ runs over the full dimensional strongly convex

rational cones.
Remark 2.15. With this definition we have Ord,, = Ug_,» N Ord(Q").
We have the following result:

Theorem 2.16. [EIO6] The space ZR(Q™) is compact and Ord(Q™) is closed in
ZR(Q™). Moreover every U, is compact. Therefore Ord,, is compact.

This allows us to prove the following result:

Lemma 2.17. Let oy, ..., on be rational cones such that Ord,, C UkN:1 Uy, . Then
N
Rzon - U O’,\C/.
k=1

Proof. Let w € R>¢". Let <€ Ord,, refining <,,. Such a < exists by [AR19] Lemma
3.18]. Then =€ U,, for some k. Since < refines <,,, we have that oy, is <,-positive.
This means that w € o). This proves that Rso"  Up_, o). O

2.3. Algebraically closed fields containing K((z)). Let n be a positive integer
and <€ Ord,,.
For a field K of characteristic zero we denote by S§ the following set

1
{f series | 3k € N*, v € Z", o0 < -positive rational cone, Supp(§) C (y+ o) N kZ”} .
We have the following result:

Theorem 2.18. [AR19, Theorem 4.5] Assume that K is an algebraically closed
field of characteristic zero. The set SE is an algebraically closed field containing

K(().-

The following lemma will be used several times:

Lemma 2.19. Let £ be a Laurent series with coefficients in a field K. Assume that
Supp(§) C v+ o where v € Z™ and o is a rational cone. Let w € o¥. Then, for
every t € R, the set

{u-w|u e Supp(€)} N]—o0,1]

s finite.
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Proof. We can make a translation and assume that v = 0. Since o is a rational

cone, by Gordan’s Lemma, there exist vectors vy, ..., vy € 0 NZ"™ such that c NZ"
is generated as a semigroup by vy, ..., vy. Since w € ¢V, we have v; - w > 0 for
every i.

By assumption we have o = {Zf:l nv; | n; € N}. Therefore the set {u-w | u €
Supp(£)} is included in the semigroup generated by vy - w, ..., vy - w. Since this
semigroup is finitely generated, the sets {u-w | u € Supp(§)}N]—o0, t] are finite. O

3. PROOF OF THEOREM [L.3|

Lemma 3.1. Let £ be a Laurent series whose support is included in a translation of
a strongly convex cone o containing R>¢" and with coefficients in a characteristic
zero field K, and let P € K[[z]][T] be a monic polynomial of degree d with P(§) = 0.
Let 09 C Rxo™ be a strongly convex rational cone such that there are d distinct

series &1, ..., &4, belonging to SE for some <€ Ord,,, with support in v + oy for
some y € Z", with P(&§;) =0 fori=1,...,d.
Then

Int(og) N7(€) # 0 = a5 C 7(§).
Proof. Consider a non zero vector w € Int(cy) N 7(¢). By Remark

Supp(§) C v+ (w)”
for some v € Z™. By Lemma [2.11| we have

Supp(§) C 7' +o N (w)”

V' is <,-positive, there exists an order <€ Ord,,

for some ' € Z". Since o N (w)
refining <,, such that o N (w)" is <'-positive (see for example [ART9, Lemma 3.8]).
Thus ¢ is a root of P in S%,.

On the other hand, w is in the interior of oy, thus og is <’-positive by Lemmam
Hence the &; belong to S%,. In particular the &; are the roots of P in SX, because
P has at most d roots in a given field. Therefore £ = §; for some i. Hence there is

some v € Z" such that
Supp(¢) C 4" + oo.

Therefore for every w’ € o we have
Supp(§) N{u e R" |u-w' <~"-w' =1} = 0.
Hence oy C (). O

Corollary 3.2. Let & be a Laurent series with support in a translation of a strongly
convex cone o containing R>o" and with coefficients in a characteristic zero field
K, and let P € K[[z]][T] be a monic polynomial of degree d with P(§) = 0. Let
or CR>0", k=1,...,N, be strongly convez rational cones satisfying the following
properties:
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N

: Vv

1) U O = Rzon,
k=1

ii) for every k there are d series E%k), R C(lk)

, belonging to SE for some <€
Ord,,, with support in i + oy for some vy, € Z", with P(«fl(k)) =0 for
i=1,...,d.

Then, after renumbering the oy, there is an integer | < N such that
l
(€)= al-
k=1

Proof. By Lemma we can renumber the o such that o) C 7(€) for k <[ and
l

Int(o) N7(§) = 0 for every k > I. So we have U ol C1(8).
k=1
Now, suppose that this inclusion is strict: there is an element w € 7(£) such that
1

w ¢ U o). By Hahn-Banach Theorem there is a hyperplane H separating w and

k=1
l

the convex closed set U o) in the following sense: one open half space delimited by

k=1
l l

H, denoted by O, contains w and U o) C R™\O. Since U o) is full dimensional,

k=1 k=1
l

the convex envelop C of w and U oy is full dimensional:
k=1

l
C:_{)\w+(1)\)v|v€ UUZ,IEAZO}-

k=1
Thus C N O contains an open ball B.
But 7(&) is convex because for every w, v’ € R", k, [ € R:

{weR" |u- (w+w)<k+l}C{ueR" |u-w<k}U{ueR"|u-w <}
Thus C C 7(€) and B C 7(&). Then B intersects one o, for i > [ because B C O
N

and we have assumed U o =Rso". But because B is open, BNInt(a}") # 0, and
k=1
this is a contradiction because B C 7(£) and 7(£) NInt(o}’) = () for ¢ > I. Therefore
1

the inclusion is not strict and U oy =7(8). O
k=1

Proposition 3.3. Let £ be a Laurent series whose support is included in a trans-
lation of a strongly convexr cone o containing R>o" and with coefficients in a char-
acteristic zero field K, and let P € K[[z]][T] be a monic polynomial of degree d with
P(§) = 0. Then there exist strongly convex rational cones oy, containing R>o™,
k=1,...,N, satisfying the following properties:
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N
i) Ord, C Up_ Uy, and | J o) =Rxo",
k=1

ii) for every k there are d series E%k), ce ((f)

, belonging to SE for some <€
Ord,,, with support in i + o for some vy, € Z", with P(«fl(k)) =0 for
i=1,...,d.

Proof. By Theorem for every <€ Ord,,, there exist y< € Z", a =-positive
rational strongly convex cone o<, such that the roots of P(T) in SX have support
in v< 4+ 0<. By replacing o< by o< +R>(" we can assume that the}j contain the
first orthant. Every cone o< + Rx>o™ is strongly convex because o< and R>(" are

=-positive.
In particular we have Ord,, C (J4U,.. Hence, by Theorem we can extract
from this family of cones o<, a finite number of cones, denoted by o1, ..., on,
such that Ord,, = Ug.,» C U, Us -, Therefore, by Lemma we have that
N
R>o"™ C U o). But, since the o<, contain R>o", we have
k=1
N
R>Qn = U O']\C/
k=1

On the other hand this family satisfies the following property:
V <€ Ord,,,3y< €Z", Ike{1,...,N},

M such that the roots of P in S§ have support in y< + 0.

Assume that the same integer k € {1,..., N} satisfies the previous property for
two orders < and <’€ Ord,. That is, the roots of P in 8% (resp. in S%,) have
support in y< + oy (resp. in < 4+ ox). Then the roots of Pin S¥, are clements
of SX, and, because P has only d roots in S, the roots of P in SE_, coincide with
its roots in S¥. Therefore we may assume that the element =< of does depend

only on k. O

Proof of Theorem[I.3 By Proposition[3.3] there exist strongly convex rational cones
o1, ..., oy satisfying i) and ii) of Corollary Therefore, by Corollary we
have that (&) is a strongly convex rational cone. This proves Theorem O

Remark 3.4. For a formal power series f € K[[z]] we denote by NP(f) its Newton
polyhedron. Let p be a vertex of NP(f). The set of vectors v € R™ such that
p+ Av € NP(f) for some A € R>g is a rational strongly convex cone. Such a cone
is called the cone of the Newton polyhedron of f associated with the vertex p. We
have the following generalization of Abhyankar-Jung Theorem that provides in an
effective way some cones satisfying Corollary

Theorem 3.5 (Abhyankar-Jung Theorem). [GP00, Théoréme 3][Ar04, Theorem
7.1][PR12, Theorem 6.2]
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Let K be a characteristic zero field. Let P(Z) € K[[z]][Z] be a monic polynomial
and let A be its discriminant. Let NP(A) denote the Newton polyhedron of A.
Then the set of cones of NP(A) satisfies the properties of Corollary .

Therefore, if £ is integral over K[[z]], that is P(T) is a monic polynomial in T
we may replace the use of Corollary (thus Proposition and thus Theorem

2.16]) by Theorem
4. PROOF OF THEOREM [[4]
4.1. Preliminary results.

Definition 4.1. For a Laurent series £ we set

76(6) = {w € R>o" \ {0} | # (Supp(§) N{u € R™ | u-w < k}) < 00,Vk € R},

71(§) = {w € Rxo" \ {0} | # (Supp(§) N{u € R” [ u-w < k}) = 00, Vk € R}.
We have the following lemma:

Lemma 4.2. Let & be a Laurent series with support in a translation of a strongly

convex cone containing R>o". We have 74(€) C 7(§) C 74(§).

Proof. We have 74(€) C 7(£) by definition.

Let w € 7(£). Then by Lemma [2.2] Supp(¢) C v+ (w)" for some ~ € Z".

On the other hand, by hypothesis, Supp(€) is included in 4/ 4+ o where 7/ € Z™ and
o is a strongly convex cone such that R>¢™ C o. Thus, by Lemma Supp(§) is
included in a translation of the strongly convex cone o N (w)V.

We have w € (w)V" € (6N {(w)¥)", and (o N (w)¥)" is full dimensional. Thus there
exists a sequence (wy )y, of vectors in Int ((o N <w>v)v) that converges to w.

We have to prove that the wy belong to 74(£). For u € (o N {w)¥) \ {0}, we have
u-wg # 0 because wy, € Int ((o N (w)")"). This shows that o N (w)" N {w)* = {0}.
Therefore, because Supp(¢) is included in a translation of o N (w)Y, for all k& we
have:

wi € {w' €R™ | # (Supp(§) N{u € R™ |u-w' < k}) < 0o,Vk € R}.

Moreover, because w € 7(§) C R>¢" and R>¢" C o, we have R>" = (R>¢")" C
o N {w)Y. Therefore the wy are in R>(", and they are non zero for k large enough
because (wy)r converges to w which is non zero. This shows that wy, € 7(§) for k

large enough, therefore w € 74(&). O
Corollary 4.3. Under the hypothesis of Theorem[1.]), we have
7(§) = 10()-

Proof. By Lemma we have 7}(§) C 7(§) C 74(§). Since 7(£) is closed (it is a
rational cone, thus a polyhedral cone, by Theorem we have 7(§) = 7)(£§). O
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Definition 4.4. In the rest of this section we consider the following setting: &
is a Laurent series with support included in the translation of a strongly convex
rational cone, and ¢ is algebraic over K[[z]] where K is a characteristic zero field. We
denote by P € K[[z]][T] the minimal polynomial of { and, for any order <€ Ord,,
¢3,...,€5 denote the roots of P(T) in SX. We set

70(8) := {w € R>0"\{0} | for all < that refines <, 3 such that { = 525},

() = {w € Rug"\{0} | € # €7, for all < that refines <, Vi=1,.. .,d} :

Remark 4.5. These sets were introduced in [AR19], but only for w € R5¢". In this
case it was proved that 70(§)NRs" = 75(§)NRs" and 71 (§)NR<o" = 71 (§)NR- "
(see [AR19, Lemmas 5.8, 5.11]). Taking into account all the w € R>¢™ changes the
situation. In particular we do not have 75(&) = 74(€) in general (see Example [4.11)).

Proposition 4.6. We have 11(§) = 71(§) and 75(§) C 70(&).

Proof. The proof of the equality 71 (£) = 71 (&) is exactly the proof of [AR19, Lemma
5.11]. Let us prove 7}(§) C 10(§). Let w € 7(§), in particular:

(2) # (Supp(§) N{u e R" |u-w < k}) < o0, Vk € R,

and let us consider an order < that refines <,,.

Let (u;); be a sequence of elements of Supp(§) such that u; = u;y; for every [ € N.
Then u; >, w41, that is u; - w > w41 - w, for every I € N. Therefore by 7 this
sequence contains only finitely many distinct terms. Therefore u; 1 = u; for [ large
enough because < is an order. This shows that Supp(¢) is =<-well-ordered. Thus
by [AR19, Corollary 4.6] £ is an element of SX. This shows that w € 79(¢). O

Proposition 4.7. The sets 79(§) and 11(§) are open subsets of R>q".

Proof. Let us consider the cones o} given by Proposition In particular, for
every w € R>(", the set of orders <€ Ord,, refining <, is included in U/ivzl Uyy .
For every w € R>¢", we set T, := {o1,...,0n}. Therefore we have proved that:
For every w € R>(", there exists a finite set 7T, of strongly convex cones rational
cones such that, for any order <€ Ord,, refining <., there is o € T, such that the
roots of P in S¥ have support in a translation of .

Moreover, let us choose T to be minimal among the sets of cones having this
property. Then Corollary implies that, for every w’ € R>¢™ close enough to w,
and for any order <’e Ord,, refining <., there is o € T, such that the roots of P
in S, have support in a translation of ¢. Since 7, is minimal with this property,
for e;ery w’ close enough to w, for every order <’€ Ord,, refining <, and for every
i=1,...,d, there is an order =€ Ord,, refining <, such that ff, = ff for some j;.
If w € 179(&) then & is equal to some ff for every order <€ Ord,, refining <,. Thus,
for every w’ € R>(" close enough to w and every order <’€ Ord,, refining <,
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&= fjj/ for some j. Thus w’ € 19(§). This proves that 79(£) is open in R>o™.

If w e 71(€) then &€ # £ for every i and for every order <€ Ord,, refining <.
Thus, for w’ € R>(" close enough to w and every order =’€ Ord,, refining <.,
E# fjj/ for every j. Hence w’ € 71(§) and 71 (§) is open. O

Corollary 4.8. We have

(&) N (€)= 0.

Proof. The sets 19(§) and 7 (§) are disjoint and open in R>¢™. Thus 79(§) N7 (€) =
(). This proves the corollary because 7(§) C 10(§) and 7 (£) = 71(£) by Proposition
4.6l ]

Lemma 4.9. We have

70(&) = 10(§) NRx0" = 70(§).

Proof. The set 70(€) is open. Therefore every w € 79(§) N (R>¢"\Rxo"™) can be
approximated by elements of 79(£) NRso". Hence

70(§) NR>o™ = 70(§)-

By [AR19] Lemma 5.8] 7(§) NRs"™ = 70(&) NRso™. We have that 7)(§) is convex
(the proof is exactly the same as the proof of [AR19] Lemma 5.9]). Thus we have

76(6) NR>0™ = 79(¢)
by [Bo53l Prop. 16 - Cor. 1; I1.2.6]. Hence

76(§) = 15(§) NR50™ = 10(§) NRs™ = 10(§).

Corollary 4.10. For every f € K((x))* we have
To(§+ f) =70(8), m(§+ f) =7(E), 7€+ ) =7(E),

70(f&) = 70(8), T1(f&) = 711(§), 7(fE) = 7(S).

Proof. We begin by proving these equalities for f € K[[z]]*. The minimal polyno-
mial of £ + f is Q(T) := P(T — f). Thus, for a given <€ Ord,, the roots of Q(T)
in SE are 515 +f.. fj + f. This shows that
0§+ f) =10(8), €+ f)=71().

Lemma [4.9]and Corollary [4.3]imply that 7(¢ + f) = ().

Now, the polynomial R(T) := fP(T/f) vanishes at f¢. On the other hand if R(T)
is a polynomial with R(f¢) = 0, then R(fT) is a polynomial vanishing at &. This
shows that P(T) divides R(fT). Thus, the minimal polynomial of f¢ has degree d
and divides R(T), thus it is of the form éR(T) = f?dP(T/f) for some ¢ € K[[z]]*.
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Therefore, for a given <€ Ord,, the roots of R(T) in S are fE5, ..., f€F. This
shows that, as before, that

70(f) = 10(£), T(fE) = 71(8), 76(fE) = 75(S).
Now let f = g/h, where g, h € K[[z]]*. Then we have

Te (&) = Te(9€) = Ta(hg/h&) = Ta(g/hk)

by the previous case (here e denotes indistinctively 0, 1 or 0).

Moreover, again by the previous cases, we have

To(§) = Te(h€) = Te(hE + g) = Te(§ + g/h).

This proves the corollary. O

Ezample 4.11. We can see on a basic example that (¢ + f) # 73(£) in general:
let n =2 and fix { = >, oyt and f =1 — & Then 7§(£) = Rso x Rxo but
74(€ + f) = Rso?. This also shows that 79(£) # 74(€) in general.

4.2. A generalization of Dickson’s Lemma. We will prove here a strengthened
version of Lemma that we will need in the proof of Theorem [I.3] For this we
need the following lemma:

Lemma 4.12. Let U and V be two vectors of indeterminates, and I and J be ideals
of K[U, V] such that I is generated by binomials and J by monomials. Then there
exists a monomial ideal J' of K[U] such that

(J+DnK[U]=J +InK[U].

Proof. We will use the idea of the proof of [ES96, Corollary 1.3]. We consider the
right-lexicographic order on the set of monomials in U and V' and fix a Grobner basis
B of I with respect to this order. To compute such a basis we begin with binomials
generating I and follow Buchberger’s Algorithm. The reader may consult [CLOQT7,
Definition 4, p. 83 and Theorem 2 p. 90] for details about this algorithm and the
notion of S-polynomial. It is straightforward to see that the elements produced step
by step in this algorithm are still binomials (this is in fact the content of [ES96
Proposition 1.1]). In particular I NK[U] is generated by binomials.

Now we wish to determine a Grébner basis of J+ 1. As a set of generators of 1+ J,
we take the Grobner basis B of I formed of binomials and we add the monomials
generating J. Following Buchberger’s Algorithm we may produce new elements
which are not in B in the following cases:

e We consider the S-polynomial of two binomials in B, and we take the
remainder of the division of this S-polynomial by a monomial: in this case
this remainder is either the S-polynomial that is in B, or a monomial.

e We consider the S-polynomial of two monomials. This S-polynomial it is
always 0.
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e We consider the S-polynomial of one binomial of B and one monomial. It
is a monomial, and the remainder of its division by a binomial is always a

monomial.

Therefore we see that the Grobner basis of I+.J obtained by Buchberger’s Algorithm
consists of B along with a finite number of monomials. Thus (J + I) N K[U] is
generated by the elements of B that do not depend on V' (i.e. the generators of
I'NK[U]) and a finite number of monomials (defining a monomial ideal J").

O
Corollary 4.13 (Dickson’s Lemma). Let o1, ..., oy be convez rational cones such
that o := ﬂ?zl o; is a full dimensional convex rational cone. Let v1, ..., v, € Z".

Then there exists a finite set C C Z™ such that
k
ﬂ(vj +0,)NZ"=C+onNZ".
j=1

Proof. Up to a translation we may assume that v; € o N Z" for every j because o
is full dimensional. Let uq, ..., us be integer coordinate vectors generating o NZ".
Then the ring R, of polynomials in z1, ..., z, with support in ¢ NZ" is isomorphic
to K[Uy,...,Us]/I for some binomial ideal I. This is well known and this can be
described as follows (for instance see [CLS11l Proposition 1.1.9] for details):

for any linear relation L := {}_7_, A\;u; = 0} with \; € Z we consider the binomial

BL:= [ vM- [ vi™.
|12 >0 i X <0
Then [ is the ideal generated by the By for L running over the Z-linear relations
between the u;. Moreover, for v € o N Z", the isomorphism R, — K[U]/I sends
27 onto U™ where o, € Z%, is defined by v = >77_, a, ju;.
Because 0 = ﬂ?zl 0j, we have Ry C R, for every j and R, = ﬂle Rg,. For every
J we consider the ideal 279 R, of Ry, generated by x7. Since R, = ﬂle R, we

have
k k
(2" Ry, = ()@ R, N R,).
j=1 j=1
Let us fix an index j. As for R,, the ring R, of polynomials in w1, ..., , with

support in o; NZ" is isomorphic to a ring of polynomials modulo a binomial ideal.
Moreover we can consider the generators uy, ..., us of o and add vectors vy, ..., v,
such that o; is generated by the u; and v;. Then R, is isomorphic to K[U, V]/I;
where U = (Uy,...,Us) and V = (V4,...,V,) are vectors of indeterminates, and
I; is a binomial ideal such that I; N K[U] = I. This isomorphism sends the prin-
cipal monomial ideal 27/ R, onto a principal monomial ideal J; in K[U, V]/I;. By
Lemma [£.12] we have

(Ji+L)NK[U] = J; +1
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for some monomial ideal J; of K[U]. Thus 2% R, N R, is isomorphic to JiK[U]/I.
Therefore we have

k k
()27 Ro, ~ () JIK[U]/I.
j=1 j=1

This is a monomial ideal in the indeterminates U; by [ES96, Corollary 1.6]. By
Noetherianity this monomial ideal is generated by finitely many monomials:

For every i we have U = 27 for some 7, € 0 NZ". Set C = {+},...,7.}. Then

we have

(vj+o;)NZ"=C+onNZ"

k
=1

J
(]

4.3. Proof of Theorem By [Od88, Proposition 1.3], because 7(£)V is a
strongly convex rational cone, for each non zero face o C 7(£)V, there is a vec-
tor u, in the boundary of 7(£) such that

o= (u)* Nr(&)".

In fact, we can freely choose u, in the relative interior of o+ N7(£), where o+ N7(€)
is a face of dimension n — dim(c) of 7(£). Thus, when o is a face of dimension one,
ot N7(€) is a cone of dimension n — 1 in the hyperplane o+ which is defined by one

equation with integer coordinates. Therefore we can choose uy, = (Up1,- -, Uon)
such that
(3) dimg(Que1 + -+ + Quypn) =n — 1.

For a non zero face o of 7(£)V and t € R, we set
Hy(t):={ueR" |u-u, =t}, Hy() " = {u € R" | u-u, >t}.
We have
T(§)" = N H,(0)*.

o non zero face of T(£)V

The vectors u,, are in the boundary of 7}(¢) because 7(£) = 74(€) by Corollary
Hence by Corollary we have u, ¢ 71 (£) for any i. Thus for every non zero face
o of 7(£)V we have u, € 7)(§) or uy € R>o"\(75(&) UT{(€)). We will reduce to the
situation where none of the u, are in 74(&):

Let o be a non zero face of 7(§)Y for which u, € 7}(£). By Proposition
75(§) N Rso™ is open. Thus, because u, is in the boundary of 74(£), we have
Uy € R>0™\Rs0". In particular at least one of the coordinates of u, is zero, hence
{(us )t contains at least one line generated by one vector with integer coordinates.
Therefore there exists f,(r) € K[[z]] with support in (u,)~ NR>(" and such that

# {Supp(€ + fo () N (ug)™ NR>o"} = +o0.
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Moreover we can do this simultaneously for every non zero face o of 7(£)¥ such
that u, € 79(€), hence there exists f(z) € K[[z]] such that for every such face o:

(4) # {Supp(€ + f(2)) N (ug)™ NRx"} = +o0.

By Corollary (&) = 7(6+ f(x)). But uy & 75(£+ f(z)) by ({@). Therefore, we
replace £ with £ + f(z). This does not change 7(£), but this allows to us to assume
that u, € R>o"\(79(§) UT{(§)). Therefore we may assume that none of the u, is

in 5 (¢).

The next step is to prove that for every non zero face o of 7(£)V, there exist a
Laurent polynomial p,(z) and a real number ¢, such that

(5)  Supp(¢ + po(z)) C Ho(to)t and # (Supp(§ + po(z)) N Hy(ts)) = +00.

For this we do the following. First, because u, ¢ 7}(§) U 71 (£), the following set is
non empty and bounded from above :

E, ={teR|#Supp§)N{ueR"|u-u, <t}) <oo}.

Let us set t, := sup E,. By Lemma t, = max FE, and is satisfied.
Then, modulo a finite number of monomials and a formal power series f(x) €
K[[z]], the support of £ is included in ﬂ H,(t,)"™ NZ". More-

o non zero face of 7(§)V
over each H,(t,) contains infinitely many monomials of ¢, i.e there is a Laurent

polynomial p(z) such that
Supp(§ +p(z)) C n Ho(t;)" NZ"

o non zero face of 7(£)V
and # (Supp(€ + p(z)) N Hy(t,)) = +o0 Vo
For every o non zero face of we have H, (t,)" = v, + H,(0)* for any v, € H,(t,).
But, since Hy(t,) NZ" # (), we may fix v, € Z". By Corollary [4.13] there is a finite
set C C Z" such that
N H,(t,)tNZ" = C+ N H,(0)TNZ" = C+7(£)VNZ™.
o non zero face of (&)Y o non zero face of 7(£)V

This proves i).

e Because the sum of two convex sets is a convex set, we have
Conv(C + 7(£)Y) = Conv(C) + 7(&)Y

is an unbounded convex polytope.

Because 7(£)" is the convex hull of its one-dimensional faces, Conv(C'+7(£)V) is the
convex hull of the union of all the sets of the form v+ o, where v € C and o is one
dimensional face of 7(§)V. Let ¢ be such a one dimensional face of 7(£)¥. We have
that Supp(¢+p(z)) C Conv(C+7(€)Y) C Hi(ty). But H} (t,)NQ™ is a one dimen-
sional Q-vector space by (3)). Moreover, by (), Hy(t,) N Supp(¢ + p(z)) is infinite.
Therefore H,(t,) N Conv(C 4 7(£)V) is a one dimensional face of Conv(C) + (&)Y
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of the form v 4 ¢ for some v € C', and this face contains infinitely many elements
of Supp(¢ + p(x)). This proves ii) b) with (Cy, pa(), f2(z)) = (C, p(z), f(x)).

e Now we remark that we also have

Supp(€ + p()) C ﬂ Ho(ta)Jr nz".
o (n—1)-dim. face of 7(§)V
Again by Lemma [4.13] there is a finite set C; C Z" such that
N Hy(t,)t NZ" = Cy + 7(£)V nZ™.
o (n—1)-dim. face of 7(§)V

Moreover the (n — 1)-dimensional faces of Conv(C; + 7(£)Y) are all of the form
H, (to)NConv(C'+7(£)Y). Indeed the convex hull of (), H, (to)TNZ™is (N, Ho (to)*
because the H,(t,) are affine hyperplanes defined over Z. This proves ii) a).

e Assume now that there are C’ € R™ and a convex (non necessarily polyhedral)
cone o C 7(£)V such that

Supp(§ +p'(z) + f'(z)) €+ + 0o

for some Laurent polynomial p’(z) and some formal power series f'(z) € K[[z]].
Then by definition of 7(£) we have

o’ c ().
Therefore o = 7(£)V. This proves ii).

4.4. Some examples.

Ezample 4.14. Let E := {(z,y) € Ry>g xR |y > —x — \/z} and let { be a Laurent
series whose support is Z2 N E as follows:

FIGURE 1.
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Then 7(£)V is the set
{(z,y) e Rs>g xR |y > —z}.

Thus, 7(£) is a not a polyhedral cone. Therefore ¢ is not algebraic over K((z, y)).
Moreover 71 (&) is the rational cone generated by (1,0) and (1,1). So 74(§) is not
open. In this case R>¢" = 7(§) U ().

Ezxample 4.15. We consider the set
E:={(z,y) € Ryo xR |y >In(z+ 1)}

We rotate it by an angle of —7/4 and denote this set by I'. We denote a Laurent
series whose support is I' N Z2 by ¢ (see Figure .

FIGURE 2.

Then 7(£)Y is the cone generated by (1,—1) and (0,1), so it is rational, but £ is
not algebraic as Theorem ii) is not satisfied.

Moreover 7(§) is generated by (0,1) and (1,1). Thus the vector (1,1) is in the
boundary of 7(§) but here (1,1) € 75(£). Thus 75(€) is closed.

Ezample 4.16. Let o be the cone generated by the vectors (1,0), (0,1) and (1,—1).
Then the series & := Y 72 (zy~!)* has support in o and it is straightforward to
see that 0 = 7(£)V. Let N € Z and set py(z,y) = chvzo (when N > 0) or
pn(x,y) = ZQ:N (when N < 0). Let Cx denote the point (N,—N). Then we
have

Supp(§ — pn(z,y)) C Cn +o.

This shows that there is no canonical choice for Cy in Theorem i), neither a
minimal or maximal Cp.
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Ezample 4.17. Let C be the set {(1,0,0), (0,1,0),(0,0,1)}, and let o be the cone
generated by the vectors (1,0, 0), (0,1,0), (0,0,1), (1,—1,1), (—1,1,1), and (1,1, —1).
We can construct a Laurent series &, algebraic over K[[z,y, z]], with support in
Conv(C) + o, such that all the unbounded faces of Conv(C) + ¢ contain infinitely
many monomials of £ as follows:
We fix an algebraic series G(T') not in K(7'). We remark that, for a, b, ¢ € Z, the
series G(x%’2%) is algebraic over K(x,¥, 2), and it is a formal sum of monomials
of the form z¥%y**z*¢ with & € N. Thus its support is included in the half line
generated by the vector (a, b, ¢).
Then we set

E=G(x) +Gy) + 2G(2) + 2G <:ryz) + 2G (Z’;—Z) + (z +y)G (%) .
Then ¢ is algebraic over K((«,y, 2)), its support is Conv(C) + o and all the un-
bounded faces of Conv(C) + o contain infinitely many monomials of £ (see Figure
. Therefore 7(£)Y = 0. Moreover we can see that there is no v € R™ such that
Supp(§) C v+ o and every face of ¥ + o contains infinitely many monomials of &,
even after removing monomials of ¢ belonging to Rzog. Indeed, if it were the case,
the four unbounded 1-dimensional faces of Conv(C) 4 o that are not included in
Rzo?’ would intersect at one point and this is clearly not the case. Thus we cannot
assume that the finite set C' of Theorem i) is a single point.

FIGURE 3.

5. THE POSITIVE CHARACTERISTIC CASE

In the positive characteristic case, the roots of polynomials with coefficients in
K((x)), with x = (21,...,2,), are not Laurent Puiseux series in general. This was
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first noticed by Chevalley in [Ch51] for the case n = 1: he showed that the solutions
of the equation

TP — 2P — gt =0
cannot been expressed as Puiseux series. Then Abhyankar noticed that for such

a polynomial, the roots can be expressed as series with support in Q with the
additional property that their support is well-ordered. Here such a root can be

o

Sy
T 7.

k=1

The determination of the algebraic closure of K((x1)) for n = 1, when K is a positive

written as

characteristic field, was finally achieved recently (see [Ke01], [KelT]).
For n > 2, this problem has recently been investigated by Saavedra [Sal7]. He
generalized Macdonald’s Theorem to the positive characteristic case as follows:

Theorem 5.1. [Sal7, Theorem 5.3] Let K be an algebraically closed field of char-
acteristic p > 0. Let w € Rs" be a vector whose coordinates are Q-linearly inde-
pendent. The set

Sclf = {f series | Ik e N* v €Z", 0 a <, -positive rational cone,

1
Supp(§) C (v + o) NUen kTolZ" and Supp(§) is <, -well-ordered}
is an algebraically closed field.

It is a natural question to extend the problem of the shape of the support of an
element of S that is algebraic over K((x)). Firstly we can remark that Theorem
[L.4)is no longer true in this situation:

1

FEzample 5.2. Let K be a field of characteristic p > 0. Set f = Z '~ %% . The series
k=1

00 17%
f is algebraic over K[t] because f? —tP~1f —tP~1 = 0. Thus g := Z (a:) is
Y
k=1

o0
algebraic over K[z, y]. We set £ = Z(mg)k. Because £ = lfig’ £ is rational over
k=1

the field extension of K(x,y) by g. Hence £ is algebraic over K|z, y].

We see that all the monomials of (zg)* are of the form 2*~'y! for | € Qx¢. Therefore
the support of £ is included in the cone o generated by (2,—1) and (0,1) (see
Figure . Moreover the support of (2g)* contains a sequence of points converging
to (2k,—k). But (2k,—k) does not belong to the support of & since (1,—1) does
not belong to the support of g. Hence 7(£) = ¢V is generated by (0,1) and (1, 2).
But Theorem ii) does not hold in this case: there is no hyperplane H) =
{(x,y) € R? | 2 +2y = A} containing infinitely many elements of Supp(¢) such that
Hy :={(z,y) € R? | z + 2y < A} contains only finitely many elements of Supp().
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< x

FIGURE 4.

Here 7((¢) = {0}. This shows that Lemma[4.2]is not valid for series with exponents
in Q™ that are algebraic over K((z)), for a positive characteristic field K.

We can also remark that a positive characteristic version of Theorem could
not be proved in the same way as in characteristic zero since Lemma[3.1]is no longer
true in positive characteristic. The following example is given in [Sal7]:

Example 5.3. [SalT, Example 3] Set P(T) = TP — 2P~'T — 2P~ 1y3 over a field K
of characteristic p > 0. Set

w1 = (1,\/5), Wy = (1,?).

The roots of P in SEQ have support in a translation of RZOQ since these roots are

1

o0

1—1 3
Zx P yet +ex, c€Fp.
k=1

But the roots of P in Sffl have support in the cone o generated by (1,0) and
(—1,3), and the face generated by (—1,3) contains infinitely many exponents of
each of these roots. Indeed these roots are

o0
.k o k
fE 2Py fex, c €T,
k=1

Let ¢ be one root of P in SX . So 7(£) = ¢". Set 0 := Rx¢”. Then
w:=(2,1) € 7(§) NInt(oy).

But oy is not included in 7(§) since (4,1) is not in 7(§). Thus Lemma is not
valid in positive characteristic, even if here £ is a Laurent series.
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Nevertheless we can extend some of the previous results, proved in characteristic
zero, to the positive characteristic case. The main problems are as follows:
First, because Theorem [2.18|is not true in positive characteristic, we need an ana-
logue of this theorem in positive characteristic. For this we prove an extension of
Theorem [5.1] analogous to Theorem [2 This is based on the notion of field-family
introduced by Rayner [Ra68] that gives a method of construction of Henselian val-
ued fields which are close to be algebraically closed.
Then we introduce a natural analogue of the cone 7(£) in the positive characteristic
case. We prove that this cone is rational and we relate it to the support of £ (see

Theorem and [5.13)).

5.1. Algebraically closed fields in positive characteristic. We give here a
positive characteristic version of SE:

Definition 5.4. We fix an order <€ Ord,, and a field K of positive characteristic
p > 0. We set

SE = {§ series | 3k € N* v € Z", 0 a =<-positive rational cone, such that
<1
Supp(§) C (y+o)N U k—plZ", and V <'€ Ord,, N U,, Supp(¢) is =" -well-ordered } .

We have the following analogue of Theorem [2.18|in positive characteristic:

Theorem 5.5. Let <€ Ord,,. If K is an algebraically closed field of positive char-
acteristic p > 0, the set SE is an algebraically closed field containing K((x)).

In order to prove this theorem we will use the notion of field-family introduced
by Rayner:

Definition 5.6. [Ra68] A family F of subsets of an ordered abelian group (G, <)
is said to be a field-family with respect to G if we have the following.

(1) Every element of F is a well-ordered subset of G.
(2) The elements of the members of F generate G as an abelian group.

(3) V(A,B) e F2,AUB € F.

(4) VAe Fand BC A,B € F.

(5) V(A,y) e Fx G, v+ A€ F.

(6) VA e FN{d e G| = 0}, the semigroup generated by A belongs to F.

Theorem 5.7. [Ra68, Theorem 2] If F is a field-family with respect to G then the
set

> aga?|{glag #£0} € F

geG

is a Henselian valued field.
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For <€ Ord,, we set

F< = {A C Q" |3k eN"ve€Z" o a = -positive rational cone, such that
R
AC(yv+o)N U k—plZ", and V =<'€ Ord,, NU,,, Ais =<' -well-ordered } .
1=0

Proposition 5.8. The set F< is a field-family with respect to (Q™, <).

Proof. It is straightforward to verify that F< satisfies the five first items of Defini-
tion Therefore we only prove (6) here. The proof is done by induction on n.
In fact we will prove a slightly stronger statement: we will prove by induction on
n, that for A € FxnN{d € Q" | § = 0}, there exists a <-positive rational cone o
such that

<1
A — "
( >Ccrﬁl:LJ1kpl

for some k € N* (here (A) denotes the semigroup generated by A) and A is <'-
well-ordered for every <’e Ord,, N\, .
Let us consider an element A € FxN{d € Q" | d = 0}. So

<1
A nl | -—=z"
C (y+o0) ZL:JO o

for some k € N*,~v € Z"™ and o a =<-positive rational cone.

If n = 1, we may assume that < is the usual order < on Q and 0 = Q. Therefore
we may assume that v = 0 as A C Q. In this case Ord; No = {<}. Since A is
<-positive and <-well-ordered, (A) C Qx¢ is also <-well-ordered by [Ne49, Theo-
rem 3.4, p. 206]. This settles the case n = 1.

So from now on, assume that n > 1 and that the result is satisfied for n — 1.

We know that there exist non zero vectors (uq,...,us) € (R™)® and (q1,...,¢-) €
(Q™)" such that <=<(y,,  4.) and o = (q1,...,qr).

Assume first that v = 0. Then A C ¢’ = (y,q1,...,qr) and ¢’ is a =<-positive
rational cone. Hence the semigroup generated by A is included in ¢/ N Ufio kip,Z”.
Moreover, for every ='€ Ord, NU,,, A is <'-well-ordered. Indeed this is true for
every <’€ Ord,, NU, and o'’ C oV. Therefore, since for every <’€ Ord,, NU, the
set A is <X'-positive, by [Ne49, Theorem 3.4, p. 206] the semigroup generated by A
is <’-well-ordered.

Now assume that v < 0. By replacing ¢ by the cone generated by ¢ and —~,
we may assume that 0 € v + 0. We define a := min(A \ {0}) and we set
H := {u € R" such that v -u; = a-u;}

and

H" :={u € R" such that u-u; > a-u;}.
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Since A C {6 € Q™ | § = 0}, we know that a > 0. Hence a-u; > 0 because
==<
Case 1: If a - u; > 0 we set

u11-~~7us)'

o :={ | X€Rsp,u€ HNo}.

It is a <-positive cone such that (y+o)NH' C o’ and o/ N (u1)* = {0} (see [Sal7,
Lemma 3.8]). Therefore A C (y+0)NH™T C ¢’. Then the semigroup generated by
A is included in o/ N5, %}),Z”. Since 0 € v + o, we have that ¢ C v+ o C o’.
Hence ¢’ C ¢V, and therefore, for every <’€ Ord,, NU,, A is <’-well-ordered and
=<’-positive. This implies (by [Ne49, Theorem 3.4, p. 206]) that the semigroup
generated by A is =’-well-ordered for every =’'€ Ord,, NU,.

Case 2: Assume that a-u; = 0. We denote the set AN H by B, and we set a1 :=
min(A \ B). Since A C {6 € Q" | § = 0} and a; ¢ H, we have a1 - u; > 0. By Case
1, there exists a rational <-positive cone o; containing o such that ((4\ B)) C o1,
and ((A\ B)) is <X’-well-ordered for every =<'€ Ord,, "U,, .

Now we consider B C H. Here H = (u1)~ is isomorphic to R"~! under a R-linear
map . Since u; € Q™ we may assume that ¢ is defined by a matrix with integral
entries. In particular p(H NZ") C Z"~ 1.

For <’ Ord,, we define < € Ord,,_; by:

Vu,v e R" L u= v = o (u) < ¢ ().
On the other hand, for <’€ Ord,,_;, we define 3’ € Ord,, as follows:

A < Ao

~1
v>\1,)\2 eR,vy,v9 € H, ()\1U1+U1)j (/\2U1+1}2) = { or A; = Ay and SD('Ul) j, QD(UQ)

It is straightforward to check that for all *’€ Ord,,_1, 3' ==

We denote by 7 := ¢(c N H). Now let <’€ Ord,—; be such that 7 is <’-positive.
Let u € 0. We can write u = Auy + v where v € H, that is v - u; = 0. Because o
is <-positive, we have A = —Lzu-u; > 0. If A > 0, we have u;/Q. If A =0, then

llull?
u=wv € HNo. Therefore p(v) =’ 0. This proves that 3/ € U,. Therefore the map
</ 3/ sends UzNOrd,_1 on U, NOrd,. On the other hand, it is straightforward
to see that <'— E’ sends U, N Ord,, on Uz N Ord,,_1.
By Lemma [2.11] there exists y1 € H such that B C v + 0N H. We set 5 := ¢(71).
Therefore we have
p(B)C (F+a)NUZy 2
p(B)yc{6eQt|5=0}
7 is <-positive

Moreover, we have 2/ € Ord,, No for every <’e Ord,,_; N&. Therefore, because B
is =’-well-ordered for every ='€ Ord,, NU,, we have that ¢(B) is <’-well-ordered
for every <’€ Ord, NUz. Hence, by the inductive assumption, (p(B)) C oo N
U %I),Z"’H for some =-positive rational cone oy, and k € N. Moreover (¢(B))
is <’-well-ordered for every =<’€ Ord,_1 N&. Let ¢ be a common denominator of
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the entries of the matrix of ¢ ~!. Then we have
- _ Sl
(B) = ¢ ' ({p(B) C ¢ Hoo) N |J =72
= akp
and ¢~ 1(0g), is <-positive.
Now let <'€ Ord, Uy1(p)- Then = € Ord, Uy, Thus (p(B)) is = -well-

ordered, and (B) is < -well-ordered. But (B) C H, therefore <’ and < coincide
on (B). This shows that (B) is <’'-well-ordered.
We have (4) = (((A\ B)) U (B)). Thus we have

oo 1 N
(A) C (01 4+ 02)N g WZ

for some k € N*, where o3 := p~1(0p).

Because Uy, 40, = Uy, NU,,, ((A\ B)) U (B) is <’-well-ordered for every ='e
Ord,, MUy, +o,. Therefore (A) is =<’-well-ordered for every <'€ Ord,, \Uy,+5, by
[Ne49, Theorem 3.4, p. 206]. This concludes the proof. O

Proof of Theorem[5.5. By Propositionand Theorem the set SE is a Henselian
valued field.
Assume that SE is not algebraically closed. Then, by [Ra68, Lemma 4] there exists
a € 8% such that T? — T — a is irreducible in SX[T]. Let us write

a=a’+a”

where Supp(a™) C {b € Q" | b < 0} and Supp(a™) C {b € Q" | b = 0}. Because
the map b — b? is an additive map, if £ is a root of T? —T —at and £~ is root of
TP —T—a~, then €T +£™ is aroot of T? —T —a. We will prove that T? — T —a™* and
TP —T —a~ admit a root in SX contradicting the fact that TP —T — a is irreducible.

Since SE is a Henselian valued field,

O :={¢ € 8% | Vb € Supp(£),b = 0}
is a Henselian local ring with maximal ideal

m = {{ € SK | Vb € Supp(£),b > 0} .

The polynomial TP — T — a* € O[T] has a root modulo m since K is algebraically
closed (here O /m = K). Moreover the derivative of this polynomial is -1. Thus this
polynomial satisfies Hensel’s Lemma and admits a root £T in SE.

In order to prove that TP — T — a~ has a root in SE, we follow the proofs of
[Ra68, Theorem 3], and [Sal7, Theorem 5.3]. We write a™ = >_ q. agz? and we

define . 1
&=y <Z (a;q)“) 29

qeQn \i=1
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We can verify that £~ is well defined: for a given ¢ € Supp(a~), the sequence (p'q);
is strongly decreasing for the order < since ¢ < 0. Therefore Ay =0 for ¢ large

enough because Supp(a~) is <-well-ordered. Hence the sum ) .2, (a;q) " s in
fact a finite sum.

Exactly as done in the proof of [Sal7, Theorem 5.3], there exist a <-positive cone
o and vy € Z" such that

_ 1
Supp(& )C(’YﬂLU)mlL:JOkT)lZa

and for every order =’'€ Ord,, N\U,, Supp(§~) is =’-well-ordered. Thus £~ € SE.
Moreover an easy computation shows that £~ is a root of T? — T —a~. This proves
the theorem. ]

5.2. Positive analogue of 7(£) in positive characteristic. By Theorem [2.18]
for a Laurent series £ algebraic over K((«)) where K is a field of characteristic zero,
the cone 7(€) is the set of vectors w € R>(" such that Supp(§) is included in a
translation of <,-positive cone. But, in positive characteristic, Examples and
show that the condition for the support of the series to be well-ordered for a
given order is a crucial condition. Therefore we define the following cone, which
agrees with 7(€) for a Laurent series £, and we will prove its rationality:

Definition 5.9. Let £ be a series with support in Q™. We set
7(&) = {w € Rxo" | 3o C (W)Y, v € Z", Supp(§) Cy + o and
vV <€ Ord,, NU,, Supp(§) is =< -well-ordered} .

Lemma 5.10. For a Laurent series & whose support is included in a translation of

a strongly convex rational cone o, we have (&) = 7(£).

Proof. Directly from the definitions we have 7(£) C 7().

Now let w € 7(£). By Lemma[2.11] there is v € Z" such that Supp(§) C y+on{w)".
Since £ is a Laurent series, Supp(§) is <-well-ordered for every <€ Ord,, "\U,. This
means that w € 7(£), and the lemma is proved. O

Then we have the following analogue of Theorem in positive characteristic:

Theorem 5.11. Let & € SE be algebraic over K((x)), where K is a positive charac-
teristic field and <€ Ord,,. Then 7(§) is a strongly convex rational cone.

Proof. Let P be the minimal polynomial of £, and let d denote its degree. By
Theorem for every order <’ Ord,, there are an element y< € Z", and a <’-
positive strongly convex rational cone o</ such that the roots of P can be expanded
as series in S, with support in y</ + o</. We may replace o</ by o< + Rx>"
and assume that o</ contains the first orthant for every <’. Moreover for every
=<"e Ord,, NU, _,, the supports of these roots are <"-well-ordered.
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In particular we have Ord, C Ug.,» C UsU,,. Hence, by Theorem , we
can extract from this family of cones o<, a finite number of cones, denoted by o1,

.., on, such that Ord,, C Ufcvzl L{gjk. Therefore, by Lemma we have that
N N

R>o™ C U o). Because the o, contain R>(", we have R>o" = U o). Moreover

k=1 k=1
these cones satisfy the following properties:

i) for every k there are d Laurent Puiseux series with support in v + oy, for
some v € Z", denoted by fgk)7 e C(lk) with P(ffk)) =0fori=1,...,d,
ii) for every k, every =’€ Ord, NU,, and every ¢ = 1,...,d, Supp(fz(k)) is
=<’-well-ordered.
Thus Lemma given below implies (exactly as for Corollary that, after
renumbering the oy, there is an integer [ < N such that

l
76 =l
k=1
Therefore 7(§) is a strongly convex rational cone. (I

Lemma 5.12. Let & be a series belonging to S, for some <'€ Ord,, and whose
support is included in a translation of a strongly_ convex cone o containing R>q".
Let P € K[[z]][T] be a monic polynomial of degree d with P(§) =0. Let o9 C R>o"
be a strongly conver rational cone such that

i) there are d distinct series with rational exponents whose support is in v+ og
for some v € Z", denoted by &1, ..., Eq with P(&;) =0 fori=1,...,d,
ii) Supp(§;) is ='-well-ordered for every ='€ Ord,, NU,,.
Then
Int(og ) NT(€) # 0 = of CT(£).

Proof. Consider a non zero vector w € Int(ay) N7(£). Since w € 7(€), there are
keN, vy € Z", and o a <,-positive rational cone, such that

(o] 1 N
Supp(§) C (0 + ) mlL:JOkT?lZ ;

and V <€ Ord,, NU,, Supp(§) is <-well-ordered. Since o is <,-positive and strongly
convex, there exists an order <€ Ord,, refining <, such that o is <-positive (see
[AR19, Lemma 3.8]). Therefore Supp(§) is <-well-ordered. Thus £ is a root of P
in S¥ since Supp(¢) is <-well-ordered.

On the other hand, w is in the interior of oy, so oy is <-positive by Lemma m
Therefore, because the supports of the & are <-well-ordered, ii) implies that the &;
are the roots of P in SX. Thus ¢ = ¢; for some i. Hence there is some 7" € Z"
such that -

Supp(§) € 7" + o0
and Supp(§) is <’-well-ordered for every order <’€ Ord,, NU,,.
Now let w’ € oy. We have ¢ C (w')". Hence w’ € 7(£). This proves the lemma. [
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Now we are able to prove the following analogue of Theorem [1.4]i) and iii):

Theorem 5.13. Let & € SE/ for some <'€ Ord,, that is algebraic over K((z)).
i) There exists vy € Z™ such that

Supp(&) C v+ 7(£)Y

and for every <€ Ord,, NUzg), Supp(§) is =-well-ordered.
ii) Let o be a cone such that

Supp(§) Cv+o

for some 7, and such that for every <€ Ord, NUyv, Supp(§) is <-well-
ordered. Then 7(§)V C o.

Proof. Let P be the minimal polynomial of £ and let d be its degree. As shown in
the proof of Theorem there exist strongly convex rational cones o containing
R>o", k=1,...,1, satisfying the following properties:

o o~ 1

i) 7€) = Upzr o

ii) for every k there are d Laurent Puiseux series with support in v, + oy, for

® W with (€M) =0 fori=1,....d,
(k)

i

some v € Z™, denoted by &

iii) for every k, every =’€ Ord, NU,, and every i = 1,...,d, Supp(&; ") is
=<’-well-ordered.

Let k € {1,...,1} and let w € Int(g)). Since o)/ C 7(§), there is a rational strongly

convex cone o C (w)Y and v € Z" such that

Supp(§) Cv+o

and Supp(§) is <-well-ordered for every <€ Ord,, NU,. Let <p€ Ord,, such that
o is Xp-positive and =< refines <,,. Such a < exists by [AR19, Lemma 3.8]. By
definition, & € SEO.
On the other hand, P has d distinct roots whose supports are in v + oy for some
Ve € Z™ and are =-well-ordered for every <€ Ord,, \U,,. By Lemma [2.10] o is
<p-positive. Therefore these d roots are in SEO, hence one of them is equal to &.
This shows that Supp(€) C i + oy, for every k. Therefore, by Lemma there
is v € Z™ such that

Supp(€) C v +7(§)"
because 7(£)V = ﬂﬁczl O
Moreover, for <€ Uz)v, there is w € 7(£) such that < refines <,. Hence, by
definition of 7(§), Supp(§) is <-well-ordered. This proves i).
Now let o as in ii). Let w € o". By the assumption on o, w € 7(¢). Therefore
oY C 7(§) and 7(¢)¥ C 0. This proves ii). O

Remark 5.14. Let us consider the algebraic series £ of Example In this case
7(¢) is the dual of the cone generated by (0,1) and (1,—1). Therefore we have

7(§) & (&)
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Ezample 5.15. Still in Example [5.2] the series ¢ satisfies Theorem [1.4]ii) a) and b)
by replacing 7(§) with 7(£): we only need to remove the constant term of &, and
add a series in y, in order to obtain a series whose support is (0,1) + 7(£)V, and
both faces of (0,1) + 7(£)V contain infinitely many exponents of this series.

Now consider the series £’ = £+ f (x%y%) where f(t) =Y 7, 77 asin Example
(each element of the support of £’ is given by a black dot in Figure [3)).

FIGURE 5.

Then &' is algebraic over K((z)). We remark that Supp(¢’) contains the sequence

Ly (11

272 2077 2pk ) ) pen
Here 7(¢') = 7(€). For w = (1,—1) (which is in the boundary of 7(£')) and s € R,
we define

H(s):={zeR"|z-w=s}, H(s)={z e R" |z -w < s}.

Then we see that, for s < 1, the sets Supp(§) N H~(s) and Supp(¢') N H(s) are
finite. But Supp(¢’) N H~(1) is infinite (H~ (1) is the grey area in Figure [5).
Therefore the series £ does not satisfy Theorem i) b), even by replacing 7(&)
with 7(£) in this statement.

6. PROOFS OF THEOREMS [L.3] AND [[.4] IN POSITIVE CHARACTERISTIC

In this section we explain why Theorem and remain valid in positive
characteristic (for £ a power series with integer exponents).



34 FUENSANTA AROCA, JULIE DECAUP, AND GUILLAUME ROND

Proposition 6.1. Let w € R>" and P € K[[z]][T]. There exists a finite set T, of
strongly convez rational cones such that:

i) for any order <€ Ord,, refining <, there is 0 € T, o being =<-positive,
such that the roots of P in 8% have support in a translation of o,

ii) for every o € T, and ' € (;V, the supports of the roots of P in SX are
='-well-ordered for every <'€ Ord,, refining <. . -

Moreover for a given w € R>o™ and a given finite set of cones T, satisfying the
former property, for every w" close enough to w, we can choose T, = T,,.

Proof. By Theorem for every <€ Ord,, there is a cone o< such that the roots
of P in S have support in a translation of o<, and for every w’ € ¥, the supports
of the roots of P in S¥ are <'-well-ordered, for every <’'€ Ord, reﬁ_ning <ur-

Then Ord,, = 5€Or;” Uy . Thus, by Theorem [2.16} there exists a finite set of

orders <1,..., =<y such that Ord,, = UZ]\;l U, . Therefore (as shown in the proof
of Proposition the set 7, = {0<,,...,0<, } satisfies the desired property.
And the last claim follows from Corollary [2.13] a

Now let & be a Laurent series (that is, with integer exponents) whose support
is included in a translation of a strongly convex cone containing R>" and with
coefficients in a positive characteristic field K. Assume that & is algebraic over
K((z)). Then Theorem remains valid. The proof given in characteristic zero
is no longer valid by using the definition of S¥ given in Definition H because
Lemma does not hold anymore in positive_characteristic (see Example .
But Theorem comes form Theorem [5.11] and Lemma
Moreover Theorem also remains valid. Indeed, we can also define 74(&), 71 (),
74(€) and 71 (&) for such a £. Proposition is still valid. Moreover we can prove
that 79(¢) and 71(£) are open, exactly as in the zero characteristic case, by using
Proposition [6.1] Therefore Corollary and Lemma remain valid in positive
characteristic.

7. GAPS IN THE EXPANSION OF ALGEBRAIC LAURENT SERIES

The aim of this part is to prove Theorem [T.5]

Proof of Theorem[I.5. First we can multiply £ by a monomial and assume that
kE(0) > 0. This does not affect neither the hypothesis, neither the conclusion of
Theorem [L5

By Theorem there exist a finite set C' C Z", a Laurent polynomial p(z), and a
power series f(z) € K[[z]] such that Supp(¢ + p(x) + f(z)) € C+7(£)Y. Moreover,
for every one dimensional face o of 7(£)V, there exists v, € C such that the set
Yo + o is a one dimensional face of Conv(C + 7(£)Y), and

(6) #(Supp(€ + p(x) + f(2)) N (1o + 7)) = oo.
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From now on we replace £ by £ 4+ p(z) allowing us to assume that p(z) = 0. This
does not change the hypothesis, nor the conclusion of the theorem.

If 7(€)Y = Rxo", then Supp(§) C v + N" for some v € Z by Theorem This
means that & = 27 f(x) where f(z) € K[[z]], hence { € K[[z]]), contradicting
the hypothesis. Therefore, by assumption, R>¢" € 7(§)¥ and 7(¢) € R>o". In
particular 7(£)V has a one dimensional face o that is not included in one of the
coordinate axis. Let w’ € o NInt(7(€)) such that dimg(Qw] +- -+ Quw,) =n—1.
Since o is not included in one of the coordinate axis, we have w’ € Ry".

Let g be a Laurent series with support in C'+ 7(£)Y. Because w’ € 7(£), by Lemma
[2:19] for every ¢ € R, the set

{u-w' | u e Supp(g)} N]—o0,1
is finite. Therefore, if we write g = > .7 ga®,
Vo (9) = min{a - w' | go # 0}

is well defined. The function v, is a monomial valuation. For such a Laurent series
g we denote by in,(g) the initial term of ¢ for the valuation v, that is:

in, (g) :== Z gax®.
a€Z", a-w'=v,(g)

Since ¢ is algebraic over K[[z]], £+ f(x) also, and there exist an integer d and formal
power series ag, . .., aq € K[[z]] such that

aq(€+ f(@)?+ -+ a1+ f(2)) +ao = 0.
Thus

—~
EN|
~

Zinw/ (a;) ing/ (€ + f(x))' =0

ieE

where
E={ie{0,...,n} / vw(ai(é + f(x))") = mjinl/w'(aj(f + f@)))}

For a given ¢ > 0, the set {& € N | a - w’ = t} is finite because w’ € Rsq.
Therefore, since the a; are in K[[z]], the in,/(a;) are polynomials.
We set b; := in,(a;) € K[z] for every ¢ and & := in,(§ + f(x)). We have
D b =o.
icE
Now, for every Laurent series g with support in C + 7(£)V, because w € Int(7(£)),
we can expand g as g = ng(i) where
ieN
i) for every l € ' = Zwy + - - - + Zwy,, ¢; is a sum of finitely many monomials
of the form cx® with w-a =1,
ii) the sequence k(7) is a strictly increasing sequence of elements of T,
iii) for every integer i, gi(;) # 0.
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Therefore we consider the following corresponding expansions:
§= kal(i), ing (§) = Zam(i)v §' = foqg(i)-
ieN ieN ieN
We claim that it is enough to show the existence of a constant K > 0 such that

VieN, ky(i+1) < Kka(i).

Indeed, assume that such a constant exists. Because Supp(in,,(§)) C Supp(§), for
every ¢ € N, there is an integer n(i) € N such that ka(i) = k1(n(é)). Let us fix
i € N large enough for insuring that k1(i) > k2(0). For such a i, we denote by j
the largest integer such that ko(j) < kq1(i). Therefore we have

ka(§) < k1(d) < k1(i+1) < ka(j + 1),

Thus
ki(i+1)  ko(§+1)
) S k() SN

This proves the claim.

Now we remark that, for a given ¢ € R, the set of monomials in the expansion
of f of the form cx®, with a-w’ = t, is finite because w’ € R+(". Therefore in,, (&)
and ¢ = in, (€ + f(x)) differ only by a finite number of monomials. Therefore
there is constant Ko > 0 such that

Vi € N, k?g(?, + 1) < ngg(i)
if and only if there is a constant K3 > 0 such that
VieN, ks(i+1) < Ksks(i).

Therefore we only need to prove that the theorem is valid for £’

Let N € N and set &™) = Dien gy Weset P(T) = 3 .cp b;Tt, d =
deg(P(T)) and let v be the maximum of the v, (x®) where a runs over the expo-
nents of the b;. Then we have P(é’(N)) # 0 for N large enough. We have

PEY) _ PEY) - PE) N Ny y
g/(N)_g/: 5/(N)_£/ .EZEbi<§(N) Jrf(N) §++£>

Because the valuation of the right side term is positive, the valuation of P(¢’ (N))

is greater than the valuation of &’ ) _ &'. However the maximal valuation of the
monomials of P({’(N)) is v+ dk3(N). Since the valuation of ¢’ — f’(N) is ks(N +1)
we have that

k3(N +1) <v+dk3(N) < (v + d)ks(N).

This proves the result. O

Remark 7.1. Let us mention that this result was already known for power series of
K[[z]] algebraic over K[z] (see [Sc33| Hilfssatz 5]).
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Remark 7.2. This result can be strengthened in characteristic zero in the sense that
the differences k(i + 1) — k() are uniformly bounded (see [ARI9l Theorem 6.4]).
However this statement is sharp in positive characteristic. For instance the series

-3 (2)

is a root of the polynomial 7?7 — T + % over a field of characteristic p > 0.
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