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A PROOF OF A. GABRIELOV’S RANK THEOREM
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Asstract. — This article contains a complete proof of Gabrielov’s rank theorem, a fundamental
result in the study of analytic map germs. Inspired by the works of Gabrielov and Tougeron,
we develop formal-geometric techniques which clarify the difficult parts of the original proof.
These techniques are of independent interest, and we illustrate this by adding a new (very
short) proof of the Abhyankar-Jung theorem. We include, furthermore, new extensions of the
rank theorem (concerning the Zariski main theorem and elimination theory) to commutative
algebra.

Résume (Théoréme du rang de Gabrielov). — Cet article contient une preuve complete du
théoréme du rang de Gabrielov, un résultat fondamental en géométrie analytique locale. Nous
appuyant sur les travaux de Gabrielov et Tougeron, nous développons des techniques de géo-
métrie formelle qui clarifient les parties difficiles de la preuve originale. Ces techniques ont un
intérét intrinseque, comme l'illustre par exemple une nouvelle preuve tres courte du théoréme
d’Abhyankar-Jung présentée ici. Nous donnons aussi de nouvelles extensions du théoréme du
rang en algébre commutative (liées au théoréme principal de Zariski et & la théorie de I’élimi-
nation).
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1. INnTRODUCTION

This article contains a complete and self-contained proof of Gabrielov’s rank theo-
rem, a fundamental result in the study of analytic map germs. Let us briefly present
its context and the theorem.

Let ¢ : (K", 0) — (K™, 0) be an analytic map germ of generic rank r over the field K
of real or complex numbers, that is, the image of ¢ is generically a submanifold of K™
of dimension r. When ¢ is algebraic, by a theorem of Chevalley [Che43] (in the com-
plex case) and Tarski [Tar48] (in the real case), the image of ¢ is a constructible
set, that is, a set defined by polynomial equalities and inequalities. In particular the
Zariski closure of the image has dimension r. If ¢ is complex analytic and proper,
Remmert proved that the image of ¢ is always analytic [Rem57]. In the case of an
analytic map germ, however, the image is very far from being analytic. For instance,
Osgood gave in [Osgl6] an example for which the dimension of the smallest germ of
analytic set containing the image is greater than r and, subsequently, Abhyankar gen-
eralized this example in a systematic way, see [Abh64]. In this context Grothendieck,
in [Gro61], asked if the dimension of the smallest germ of analytic set containing the
image (the analytic rank) is equal to the dimension of the smallest germ of formal
set containing the image (the formal rank). Gabrielov answered negatively to this
question [Gab71], and provided a sufficient condition for the answer to be positive
[Gab73]. Roughly speaking, the result is the following (see Theorems 1.2 and 1.4 for
a precise formulation):

GABRIELOV'S RANK THEOREM. — For a K-analytic map ¢ : (K™,0) — (K™,0), if the
generic rank of ¢ equals its formal rank, then it also equals its analytic rank.

Gabrielov’s rank theorem is a fundamental result because it provides a simple
criteria for reqular maps, that is, maps whose three ranks coincide at every point
of their sources. On the one hand, regular analytic maps constitute an important
subclass of analytic maps, which share basic properties with (Nash) algebraic maps.
For example, the images of regular proper real-analytic mappings form an interesting
subclass of closed subanalytic sets, whose study goes back to works of Bierstone,
Milman and Schwartz [BM82, BS83]; see also [BM87a, BM87b, Paw90, Paw92, BM00,
ABMOS8]. On the other hand, non-regular analytic maps are at the source of several
pathological examples in complex and real-analytic geometry, e.g. [Osgl6, Abh64,
Gab71, Paw89, BP18, BB19].

Nevertheless, the original proof of Gabrielov is considered very difficult, cf. [Izu89,
p.1]. For example, in the 70’s and 80’s, several authors studied analytic map germs
via more elementary techniques, avoiding Gabrielov’s rank theorem [MT76, EH77,
Mal77, BZ79, CM82, Izu86, Izu89], sometimes re-proving weaker versions of it. In the
application to calculus of variations [Tam81] Gabrielov’s rank theorem is cited but
the author prefer adding further arguments in order to use a Frobenius type result of
Malgrange [Mal77] instead, and the situation is similar in an application to foliation
theory [CM82], cf. [CCD13]. Moreover, some specialists believe that the proof contains
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ideas which would lead to the development of important new techniques concerning
formal power series. In [Tou90], Tougeron proposed a new proof of Gabrielov’s rank
theorem which, unfortunately, is still considered very difficult (and contains some
unclear passages to us, which we point out in the body of the paper).

The first and main goal of this paper is to present a complete proof of Gabrielov’s
rank theorem. We have been strongly influenced by the original papers of Gabrielov
[Gab73] and Tougeron [Tou90], but we do not fully understand either one of their
proofs. We provide, therefore, several new arguments. The initial part of the proof,
given in Section 2 and 3, follows closely the same strategy as the one of [GabT73],
and we provided extra arguments whenever we felt it was necessary (see for example
Section 3.3). The second (and harder) part of the proof requires the development of
several ideas and techniques inspired from [Gab73, Tou90], and our strategy deviates
from theirs. It includes a new proof structure (cf. the induction procedure given in
Proposition 4.6), and the development of formal-geometric techniques such as pro-
jective rings, a Newton-Puiseux-FEisenstein theorem, formal approximation of factors,
in between others (see Section 4 and 5). Some of these techniques are of indepen-
dent interest, and we illustrate this by including a new (very short) proof of the
Abhyankar-Jung theorem in Section 7.

Then, we provide new extensions of Gabrielov’s rank theorem. The first extension,
Theorem 1.7(IT) and Corollary 1.9, can be seen as an analogue of Zariski main theorem
[Zard8, Zar50] for morphisms of analytic algebras. The second, Theorem 1.7(III),
is a result concerning elimination theory of analytic equations. These extensions are
expressed in a purely algebraic way, in contrast to Gabrielov’s rank theorem. Moreover
they are equivalent to Gabrielov’s rank theorem, in the sense that Gabrielov’s rank
theorem can be easily deduced from any of these extensions. The third extension,
Theorem 1.15, characterizes polynomials with convergent power series coefficients in
terms of the support of their solutions. We also include a discussion on strongly
injective morphisms, see Theorem 1.6, and on the relationship of Gabrielov’s rank
theorem with the Weierstrass preparation theorem, showing that Gabrielov’s rank
theorem is a generalization of the Weierstrass preparation theorem for convergent
power series. Further details are given in Section 1.2.

Given the history of the rank theorem, we have made an extra effort to make
the paper as self-contained as possible. We rely only on well-known results of
commutative algebra, complex geometry and analysis which can either be found in
books (e.g. resolution of singularities, Artin approximation) or admit simple proofs
(e.g. Abhyankar-Moh reduction theorem [AMT70]). All other necessary results have
been revisited.

1.1. GABRIELOV'S RANK THEOREM. Let K denote the field of real or complex num-
bers. We denote by ¢ = (z1,...,2,) and w = (ug,...,Un) two vectors of indeter-
minates. In general single indeterminates will be denoted by normal letters as x, vy,
u... and vectors of indeterminates will be denoted by bold letters as =, y, w...
The ring of convergent (resp. formal) power series in n indeterminates over K will be
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denoted by K{x} (resp. K[x]). A morphism of convergent power series rings is a ring
morphism of the form

¢: K{z} — K{u}
f(@) — o(f) = f(d1(u), ... dn(u)),
where the ¢;(u) € K{u} for i =1, ..., n, do not depend on f. Note that ¢ induces
an analytic map germ between smooth analytic space germs, that is:
¢* (K™ 0) — (K",0)
ur— o(u) = (1(u), ... dn(u)),

where ¢® is the geometrical counter-part of ¢. We are ready to provide a precise
notion of ranks:

Derinrrion 1.1 (Ranks: the smooth case). — Let ¢ : K{z} — K{u} be a morphism
of convergent power series rings, and denote by ¢ : K[x] — K[u] its extension to the
completion. We define

the generic rank: 1(¢) := rankpyac(k{u})(Jac(o)),
the formal rank: 17 (¢) := dimg (K[[az}]/Ker(@) =n- h‘c(Ker(@)7
and the analytic rank: 1 (¢) := dimg (K{z}/Ker(¢)) = n — ht(Ker(¢)),

of ¢, where Jac(¢®) denotes the Jacobian matrix associated to ¢, rankpyac(kfu}) (M)
denotes the rank of the matrix M over the field of fractions of K{u}, and dimg(A)
denotes the Krull dimension of the ring A.

We can interpret geometrically the three ranks of ¢ via its geometrical counterpart
¢* : (K™, 0) — (K”,0) as follows: for every sufficiently small open set U C K™
containing the origin, the image ¢*(U) is a subset of K™ which contains the origin.
Then 1(¢) is exactly this dimension of (¢*(U),0) for U small enough, r7 (¢) is the
dimension of the formal Zariski closure of (¢%(U),0) in (K",0) for U small enough,
and 1 (¢) is the dimension of the analytic Zariski closure of (¢%(U),0) in (K",0)
for U small enough. This intuitively justifies the following well known inequality:

(1) 1(9) <17(6) <17(6) (see e.g. [Lzuso)).

Gabrielov’s rank theorem provides a simple criteria to show that all of the ranks are
equal:

Tueorem 1.2 (Gabrielov’s rank theorem: the smooth case). For a morphism of
convergent power series rings ¢ : K{x} — K{u}:
1(¢) =17(¢) = 17(9) =r7(9).
We are now interested in investigating singular spaces. Just as in [Izu89], the
essential case to consider is the complex-analytic one, and we specialize our study

to K = C (see Remark 1.5(3) below for a discussion on the real-analytic case).
An analytic C-algebra A is a local ring of the form A = C{x}/I, where I is an
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ideal of C{x}. A morphism of C-analytic algebras is a morphism ¢ : A — B, where

= C{z}/I, B=C{u}/J, and ¢ is induced by a morphism of convergent power
series rings C{z} — C{u}. We denote by ¢ : A — B the map induced by ¢ between
the completions of A and B. It is called the completion morphism of ¢.

Note that the definitions of the formal and analytic ranks of ¢ easily extend to a
morphism of C-analytic algebras ¢ : A — B. The generic rank, nevertheless, does not
extend in a trivial way because we can not define the Jacobian in the singular context.
In order to define the generic rank, note that a morphism of reduced C-analytic
algebras ¢ : A — B also induces a morphism between (not necessarily smooth)
analytic space germs ¢® : (Y,b) — (X, a) so that A = Ox , and B = Oy, where
Ox q and Oy, denote the local rings of analytic function germs at a and b respectively
(more precisely, if A = C{x}/I, where I is a radical ideal, we denote by a the origin
of C™ and (X, a) is the germ of the analytic set defined by the vanishing of generators
of I in a neighborhood of a). We suppose that B is an integral domain, which is
equivalent to (Y, b) being irreducible and reduced. We define the generic rank of ¢°
as (see [Izu89)):

(%) = inf{sup{rank(@aM) | M C-submanifold of U} | U neigh. of b in Y'}.

It coincides with the generic rank (given by definition 1.1) of ¢% restricted to
Y ~ Sing(Y"). This is well defined since Y \ Sing(Y") is dense in Y.

Derinition 1.3 (Ranks: the general case). — Let ¢ : A — B be a morphism of reduced
C-analytic algebras, where B is an integral domain, and denote by ¢ : A — B its
extension to the completion. We define

the generic rank: (o) :=r(¢?),
the formal rank: 17 (¢) := dim(A/Ker(¢)) = dim(A) — ht(Ker()),
and the analytic rank: () := dim (A4/Ker(¢)) = dim(A) — ht(Ker(¢))

of ¢. We recall that dim(A) = dim(A) when A is a Noetherian local ring (cf. [Mat89,
Th. 13.9] for example).

We note that the inequalities (1) are again valid in this context. We are ready to
formulate the general version of Gabrielov’s rank theorem:

Tueorem 1.4 (Gabrielov’s rank theorem). — Let ¢ : A — B be a C-analytic mor-
phism, where B is an integral domain.

r(¢) =r7(¢) = 17 (¢) =1r7(9).

Remark 1.5 (On the hypothesis of Theorem 1.4)

(1) (The complex-analytic case) The Theorem holds true if B is reduced (that is,
free of nilpotent elements) instead of an integral domain. This can be deduced from
Theorem 1.4 (see, e.g. [Gab73, Prop. 5.6] or [Izu86, 1.3 & 1.4]).

(2) The proof of Theorem 1.4 reduces to Theorem 1.2 by resolution of singularities
in the target and by the normalization theorem in the source (see Lemma 2.3).
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(3) (The real-analytic case) Given a real-analytic morphism ¢ : A — B where A
and B are reduced, there exists a well-defined complexification ¢€ : A — BC where
A® = A®C and B® = B®C are reduced by [Izu86, Lem. 5.1]. Following [Izu86, §5] or
[[zu89, §1], we can define the ranks of ¢ as the ranks of ¢C. It is now straightforward
to prove that Gabrielov’s rank theorem holds whenever B is reduced.

This statement, nevertheless, hides a subtle point in working in the real case which
can be illustrated via the integral domain B = R{zy, 22}/ (2? + 23). Indeed, if we de-
note by (Y, b) the (real) geometrical counterpart of B, note that Sing(Y) =Y. It fol-
lows that the generic rank, as defined above, is intrinsically complex and does not co-
incide with the generic dimension of the image Z = ¢*(Y"). Here, we may consider the
extra hypothesis that B is a real-closed integral domain (that is, B = R{x}/I, where I
is a real-closed prime ideal). This condition guarantees that the generic rank coincides
with the generic dimension of the image Z = ¢*(Y'); in particular Sing(Y) # Y.

In the rest of the paper, we focus on the essential case K = C.

1.2. APPLICATIONS AND VARIATIONS

1.2.1. Strongly injective morphisms. The problem raised by Grothendieck has
been generalized to the following problem: given a morphism of C-analytic algebras
¢ : A — B, when does gg(le\) N B = ¢(A) hold true? If the equality is verified, we say
that ¢ is strongly injective. This terminology was introduced by Abhyankar and van
der Put [AvdP70] who were the first ones to investigate this question. In particular
they proved that ¢ is always strongly injective when A is a ring of convergent power
series in two variables over any valued field.

Without this assumption on the dimension, the equality g’g(}l\) NB = ¢(A) does not
hold in general (see Example 1.16 and (4)). In this work, we provide a simple proof
of the following characterization:

Tueorem 1.6 ([Gab73, Th.5.5], [Izu89, Th. 1], cf. [EHT7]). — Let ¢ : A — B be a
morphism of analytic C-algebras, where B is an integral domain. Then

r(¢) =17 (¢) =17 (¢p) <= ¢ is strongly injective.

The direct implication of this theorem has first been proved by Gabrielov [GabT73,
Th.5.5]. Eakin and Harris [EH77] also gave a proof of this implication (avoiding
Gabrielov’s theorem 1.4), in the case where A and B are rings of convergent power
series. They also proved the reverse implication in the same situation. Finally Izumi
[Izu89] gave a proof of the equivalence (avoiding Gabrielov’s theorem 1.4) in the
general case. In Section 6.1 we present a proof of this result, relying on Theorem 1.4
and [EH77].

1.2.2. Variations of Gabrieloy’s rank theorem. — We prove that Gabrielov’s rank the-
orem admits three alternative formulations, which are of independent interest:
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Tueorewm 1.7 (Variations of Gabrielov’s rank theorem). The following statements
hold true:

(I) Let ¢ : A — B be a C-analytic morphism, where B is an integral domain.

r(¢) =17 (9) = 17 (¢) =1r7(¢).

(IT) Let ¢ : A — B be a strongly injective morphism of analytic C-algebras, where B
is an integral domain. If f € B is integral over A then f is integral over A.

(ITT) Let f € C{a,t}, where t is a single indeterminate. Assume that there is a
non-zero g € Cla,t], such that fg € Clx][t]. Then there is a non-zero h € C{x,t}
such that fh € C{x}[t].

(IV) Let f € C{x, 2z}, where z is a single indeterminate and n > 2. Set

A:=CJz] and B:= M
(x1 — 222)

If the image of f in B is integral over A, then f is integral over C{x}.

The proof of the above result is given in Section 6.2. Note that we actually prove
that (I) = (II) = (III) = (IV) = (I). The theorem then immediately follows be-
cause (I) is Gabrielov’s rank theorem 1.4.

One striking feature of Theorem 1.7 is that statements (II), (IIT), (IV) are intrinsi-
cally algebraic. This contrasts with the statement of Gabrielov’s rank theorem, which
depends on the generic rank (a geometrical condition). It seems important to clarify
this relationship. We believe that the following open problem would be helpful in this
investigation:

ProsrLem 1.8. — Counsider a family of local rings (4, )nen, where &7, is a subring of
K[x1,...,2,]. It is natural to ask:

(1) Under which hypothesis over (,),ecn does Gabrielov’s rank theorem hold for
morphisms A — B, where A and B are reduced quotients of rings 47,7

(2) Under which hypothesis over (4,),ecn are all the four statements in Theo-
rem 1.7 equivalent, where A and B are reduced quotients of rings 7,7

Note that the problem is also well-posed when K is a field of positive charac-
teristic (see [Ron09] for the generalization of the geometric rank to fields of posi-
tive characteristic). Furthermore, if we consider a morphism ¢ : A — B, where A
and B are quotients of convergent power series rings by ideals generated by alge-
braic power series, and if the components of ¢ are algebraic power series, then we
always have r(¢) = r7(¢) = r’(¢) (see [Ron09, Th.6.7] for the general case, and
[Tou76, Bec77, Mil78] for partial cases).

We finish this paragraph by pointing out that the statement of Theorem 1.7(II)
above can be refined in the following way:

Cororrary 1.9. Let ¢ : A — B be a morphism of analytic C-algebras, where B is
an integral domain. Let us assume that ¢ is strongly injective. If f € B is algebraic
over A then f is algebraic over A.

The proof of this result is given in Section 6.3.
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1.2.3. Connection with Zariski main theorem. We now turn our attention to Zariski
main theorem, a classical result in algebraic geometry (we recall that a ring is essen-
tially finitely generated over a field k if it is the localization of a finitely generated
extension of k):

ZARISKI'S MAIN THEOREM ([Zar48, Zar50]). Let A be a reduced local ring that is
essentially finitely generated over a field k. Let A denote the integral closure of A in
Frac(A) (that is, the integral closure with respect to A — Frac(A)). Then the integral
closure ofg n Frac(g) coincides with the completion of A.

Note that Theorem 1.7(IT) and Corollary 1.9 can be seen as generalizations of the
above result, where we replace the morphism A — Frac(A) with a strongly injective
morphism ¢ : A — B.

1.2.4. Connection with elimination theory and completion. — In commutative algebra
and in algebraic geometry, elimination theory is the study of elimination of variables
between polynomials. This is the main step in the resolution of polynomial equations.
For example, in the case of linear equations, elimination theory reduces to Gaussian
elimination. In general, the main tools in elimination theory are the resultant and
the Grobner basis. Note that, unfortunately, there is no analogue of the resultant for
power series, and the analogue of Grébner basis, the standard basis, is not as powerful
for the objectives of elimination theory.

The general situation is the following: Let « and y be two vectors of indeterminates
and I an ideal of C{x,y}. The problem is to determine I N C{x}. Note that, unlike
in the polynomial case, we may have I N C{xz} = (0) even if ht(I) is larger than
the number of indeterminates y; [Osgl6]. By Remark 1.18 below, we may even have
INC{x} = (0) while IC[x,y] N C[x] # (0). Therefore, an interesting question is to
determine under which hypothesis IC[z, y] N C[z] is generated by I N C{x}.

This question has been investigated for the first time in [CJPR19] where it is related
to several other properties.

In this context, given f € C{x,y}, where y is a single variable, it is important
to understand under which conditions we may assume that f € C{x}[y], up to mul-
tiplication by a convergent unit. Such a result would allow us to adapt arguments
from elimination theory to the more general context of convergent power series. From
this perspective, Theorem 1.7(III) provides a formal characterization of the above
condition.

1.2.5. Connection with the Weierstrass preparation theorem. — The Weierstrass prepa-
ration theorem is a very powerful tool in algebraic and analytic geometry. In this
subsection, we show how Gabrielov’s rank theorem can also be seen as an extension
of the Weierstrass preparation theorem for rings of convergent power series. Recall
that the usual form of the Weierstrass theorem is the following one:

Tueorem (Weierstrass preparation theorem: usual formulation). — Let f be a formal
(resp. convergent) power series in the indeterminates x1, ..., x, over C. Assume
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A PROOF OF A. GABRIELOV'S RANK THEOREM 1337

that f is x,-reqular of order d, that is, f(0,...,0,7,) = 2 x unit(x,). Then there
exist unique formal (resp. convergent) power series ai, ..., aq in the indeterminate

x' = (21,...,2n-1) such that

f(@) = (zq + ar(@)zf " + - + aa(a’)) x unit(z).

Another classical form of the Weierstrass preparation theorem is the following one
(see [Mal67] for instance):

WEIERSTRASS PREPARATION THEOREM. — Let A — B be a morphism of analytic
(resp. complete) C-algebras. Let m be the maximal ideal of A. Then B is finite over A
if and only if B/mB is finite over A/m = C.

As a direct Corollary, we obtain the following case of Theorem 1.4:

Cororrary 1.10 (Gabrielov’s rank theorem for finite morphisms). — Let ¢ : A — B
be an injective and finite morphism of analytic C-algebras, where B is an integral
domain. Then ¢ : A — B is injective and finite.

Proof. — Let m (resp. @) be the maximal ideal of A (resp. A). We have mA = .
Thus, if ¢ : A — B is finite, then A/m — B/mB is finite by the Weierstrass prepa-
ration theorem. But A/m = A/@ and B/mB = B/mB. Hence ¢ : A — B is again
finite, by the Weierstrass preparation theorem applied to (b

Now, since ¢ is finite, we have dim(A) = dim(B) by [Mat89, Th.9.3.ii, 9.4.ii].
Hence dim(ﬁ) = dim(4) = dim(B) = dim(g). But, since A — B is finite, the
induced morphism A/ Ker(gg) — B is also finite, thus dim(A/ Ker(aAﬁ)) = dim(B).
Therefore dim(A/ Ker(:ﬁ\)) = dim(A) and Ker({ﬁf) is a height 0 prime ideal. But, since
¢ is injective and B is a domain, A is a domain, and A is also a domain (cf. [Ronls,
Prop. 4.1] for example). This proves that Ker((;AS) = (0) and ¢ is injective. O

Remark 1.11 (On the connection with Problem 1.8). — We claim that the Weierstrass
preparation theorem is a necessary condition for Gabrielov’s rank theorem to hold
in a family of real or complex rings (4,)nen, as asked in Problem 1.8. Indeed, let
¢ : A — B be an injective morphism between rings that are quotients of rings .<7,,
and assume that A/m — B/mB is finite. By the Weierstrass preparation theorem for
complete local algebras, we have that (E : A — B is finite. In particular any element
f € Bis integral over A. Therefore, if Theorem 1.7(I1) is satisfied for the family (.47, ),
we necessarily have that f is integral over A. Therefore if B = 7, /I for some n and
some ideal I of 47, and 47, is a subring of K[z1,...,,] as in Problem 1.8, we have
that the xz; are integral over A, therefore B is integral over A.

1.2.6. Convergent power series with support in strongly convex cones. In general
roots of monic polynomials with coefficients in C[z] can be represented as Laurent
Puiseux series with support in a rational strongly convex cone by a theorem of
MacDonald [McD95] (and its generalization due to Gonzédlez Pérez [GP00]). We will
reformulate Gabrielov’s rank theorem in this setting. Before we need to give some
definitions.
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Derinrrion 1.12. Let o be a strongly convex rational cone containing (R>o)™. This
means that o has the form

o={ueR"|3IN,....; s €ERxp, u= M1+ -+ Avi},

where vy, ..., vg are given vectors with integer coordinates and ¢ does not contain
any non-trivial linear subspace of R"™.

For such a cone we denote by C[o] the set of formal power series with support in
o NZ", that is:

CHGH = {f = ZanﬂZ" Jax® | fa € (C}

More generally, if d € N*, we denote by C[o N éZ"]] the set of formal power series
with support in o N éZ". Let us mention the following result:

Tueorem 1.13 (MacDonald’s theorem [McD95] [GP00]). — Let P(z) € C[x][z] be
a monic polynomial. Then there exists a strongly convex rational cone o containing
(Rx0)" and a positive integer d such that the roots of P(z) are in Clo N 1Z"].

Since o is a convex rational cone, there exists indeterminates uj, ..., us and a
binomial ideal I of C[u] such that C[o] ~ C[u]/I. Therefore we define the analogue
of the ring of convergent power series C{c} as the subring of C[o] which is isomorphic

to C{u}/I.

Remark 1.14. The original result of MacDonald is given for a (non necessarily
monic) polynomial P with coefficients in C[z]. In this case, the polynomial not being
monic, the supports of the roots of P are in the translation of a strongly convex
rational cone o.

Theorem 1.13 has been proved in [GP00] in the convergent case. The general case is a
direct consequence of [PR12, Th.6.2]: for a given P(z) € C[z][#] monic, we consider
a vertex a € N of the Newton polyhedron NP(Ap) of the discriminant Ap of P.
There exists a strongly convex rational cone ¢ such that NP(Ap) C a + o. This
means that Ap = ®U(x), where the support of U(x) is in ¢ and U(0) # 0. Then, by
[PR12, Th.6.2], the roots of P are Puiseux series with support in o, that is, elements
of C[o N $Z"] for some d € N*.

Theorem 1.7(IT) has the following corollary about the Galois group of a polynomial
with formal power series coefficients:

Tueorewm 1.15. — Let P(z) € C[x][z] be a monic irreducible polynomial such that the
roots of P(z) are in C[oN éZ”]], where o is a strongly convex rational cone containing
(R>0)™ and d is a positive integer. If one of the roots of P is in C{o N 3Z"} then the
coefficients of P(z) are in C{x}.

The proof of this result is given in Section 6.4.
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1.3. ExamprEs. In this section, we recall the classical examples of Osgood [Osg16]
and Gabrielov [GabT71].

Exampre 1.16 (Osgood’s example [Osgl6]). — Osgood showed the existence of a mor-
phism ¢ : C{x1,z9, x5} — C{u,v} such that
2) (6) =2, 17(9)=3, r7(¢)=3.

Indeed, consider the following morphism:

d(x1) =u, o) =uv, ¢(x3)=uve".

We denote by g/b\ : Clx1,x2, 23] — CJu,v] the morphism induced by ¢. Given f €

Ker(¢), let us write f = >, fa(x), where the fi(x) are homogeneous polynomials
of degree d (when they are not zero), so that:

0=0(f) = Zfd(u,uv,uve”) = Zudf(l,v,ve”).
deN deN
Therefore f4(1,v,ve”) = 0 for every d, hence fq = 0 for every d since v and ve’ are
algebraically independent over C. It follows that r¥ (¢) = r¥(¢) = 3, while we can
easily check that r(¢) = 2. In particular the map ¢® : (C2,0) — (C3,0) defined by
¢*(u,v) = (u,uv,uve’) sends a neighborhood of the origin onto a subset Z of C?
that is generically a complex manifold of dimension 2, but whose analytic or formal

Zariski closure is C3.

Examrre 1.17 (Gabrielov’s example [GabT71]). — Gabrielov extended Osgood’s exam-
ple, and provided a morphism v : C{x1, z2, x5, x4} — C{u, v} such that
(3) @) =2 17@) =3 17@¥)=4,

which is built up from the observation that Osgood’s example ¢ is not well-behaved
in terms of elimination theory, that is:

(4) $(C{z}) ¢ 6(Cle]) N C{u}.

Indeed, we follow the heuristic that, even if x5 — z2€%2/*1 is not a power series, its
image under ¢ should be 0. Let us consider a polynomial truncation of its formal
power series:

n .
1 x4

fn = (333—3325 N xy € Clay, w2, 23], VneN,
i=0 1

and note that

oo 4

S(fa) = w0 Z—' VneN.

i=n+1
It follows that (n + 1)!¢(f,) is a convergent power series whose coefficients have
module less than 1. Moreover when the coefficient of u¥v* in the expansion of ¢(f,,)
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is nonzero, we have k = n + 1. This means that the supports of ¢(f,,) and ¢(f,,) are
disjoint whenever n # m. Therefore the power series
hi=" " (n+1)6(fn)
neN
is convergent since each of its coefficients has module less than 1. But QAS being injective,
the unique element whose image is h is necessarily:

7 = X0+ 0ifo = (S 00+ D8 af Jaa + Flon, a2
neN neN
Now, § is a divergent power series and ¢(§(z)) = h(u,v) € C{u,v}. This shows
that (4) holds.
Finally, consider the morphism ¢ : C{x1, x2, 3,4} — C{u,v} defined by

Y(x1) =u, Y(x2) =wv, P(xs) =uve’, P(xq) = h(u,v).

By the above considerations, we see that x4 — g(«) belongs to the kernel of . In fact

one can show that Ker(zZ) = (x4 — g(=)), while Ker(¢) = (0).

Remark 1.18. Note that Gabrielov’s example illustrates a case where the com-
pletion operation does not commute with the elimination of indeterminates. Indeed,
since Ker () # (0), there exist kq, ..., k4 € C[x, u,v] such that

(21 — w)ky + (z2 — uv)ky + (v3 — uve® ks + (x4 — h(u, v))ks € Cla] ~ {0}.

This means that IC[x,u,v] N Clx] # (0), where I denotes the ideal of C{x,u,v}
generated by

x1—u, Ty—uw, x3—uve’, x4—h(u,v).
On the other hand, since Ker(1) = (0), we see in a similar way that I N C{x} = (0),
as claimed.

Remark 1.19 (Pathological real-analytic examples). — Variations of Osgood example
have been used to provide the following list of pathological examples:

— In [Paw89], Pawlucki provides an example of a subanalytic set (given by a non
regular morphism) which is neither formally nor analytically semi-coherent. In par-
ticular, this contradicted a result previously announced by Hironaka [Hir86].

— In [BP18], Bierstone and Parusiriski show the existence of a proper real-analytic
(non regular) mapping which can not be transformed into a mapping with locally
equidimensional fibers by global blowing ups (contrasting with the complex case where
the result holds true, as proved by Hironaka [Hir75]).

— In [BB19], the first author and Bierstone show the existence of a proper real-
analytic (non-regular) mapping which can not be monomialized via global blowing
ups in the source and target.

Acknowledgements. — The third author would like to thank J. M. Aroca, E. Bierstone,
F. Cano, F. Castro, M. Hickel and M. Spivakovsky for the fruitful discussions he had
about this problem.
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2. RANKS AND TRANSFORMATIONS

2.1. GexeraL prorerTIES. — We follow the notations introduced in Section 1.1.
We start by stating basic properties of the ranks introduced in Definition 1.3.

Prorosirion 2.1 (Basic properties). — Let ¢ : A — B be a morphism of reduced
C-analytic algebras.

(1) We have 1(9) <17 (6) < %(9).
(2) If 17 (¢) = dim(A) (resp. 7 (¢) = dim(A)), ¢ is injective (resp. ¢ is injective).
(3) Assume that B is an integral domain. Then

r7(¢) =17(9) += Ker(g) = Ker()A.

Proof. — A rigorous proof of (1) is given in [Izu89, Lem. (1.5)].

Now assume that 1 (¢) = dim(A) and A is reduced. This means that Ker(¢) is an
ideal of height 0. Since A has no non trivial nilpotents, Ker(¢) = (0). The same proof
works in the same way when 17 (¢) = dim(A). Indeed, by the Artin approximation
theorem, A is reduced when A is (see e.g. [Ron18, Prop. 4.1]), and dim(A) = dim(A)
(see [Mat89, Th. 13.9] for example). This proves (2).

For (3), let us remark that Ker(¢)A C Ker(). If B is an integral domain, B is
also an integral domain by the Artin approximation theorem, therefore Ker(¢) and
Ker(a) are prime ideals. By the Artin approximation theorem, Ker(qﬁ)g is a prime
ideal of A of the same height as Ker(¢). Therefore we have

Ker(¢) = Ker(¢)A <= ht(Ker(¢)) = ht(Ker(¢)).
This proves (3). O

It is straightforward that the three ranks are invariant under isomorphisms. They
are also invariant under some more general transformations, as shown in the following
proposition:

Prorosition 2.2. — Let ¢ : A — B be a morphism of reduced C-analytic algebras
corresponding to a morphism of germs of analytic sets @ : (Y,b) — (X, a).

(1) Assume that B is an integral domain. Let o : B — By be such that r(o) =
dim(B), and By is an integral domain. Then all of the ranks of ¢ and o o ¢ coincide,
that is, r(¢) = (0 0 ¢), 17 (¢) =17 (0 0 ¢) and 17 (¢) =17 (0 0 ¢).

(2) Lett: Ay — A be an injective finite morphism, where A is an integral domain,
and assume that B is an integral domain. Then all of the ranks of ¢ and ¢poT coincide.
Proof. — For (1), by Proposition 2.1(1) we have that o and ¢ are injective, because B
is an integral domain. Therefore Ker(a o 25) = Ker(a) and Ker(o o ¢) = Ker(¢), and
17 (00 ¢) =17 (¢) and 17 (0 0 ¢) = r7(¢)).

Let us denote by (Z,c) the germ of analytic set associated to Bj. Since r(o) =
dim(B), the map o® is an analytic diffeomorphism at a generic point in a neighborhood
of ¢. It follows that r(¢) = r(c o ).
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Finally, for (2), assume that 7 is an injective finite morphism, where A; is an
integral domain. We have Ker(¢ o 7) = Ker(¢) N A;. Since B is an integral domain,
Ker(¢) and Ker(¢o 1) are prime ideals. Thus, by the going-down theorem for integral
extensions [Mat89, Th. 9.4ii], we have that ht(Ker(¢o7)) < ht(Ker(¢)), thus 1% (¢) <
1 (¢ o 7). On the other hand, we have the equality 1% (¢) = 1% (¢ o 7) because
ht(Ker(¢ o)) = ht(Ker(¢)) by [Mat89, Th. 9.3ii]. Now, since 7 is finite and injective,
T is also finite and injective by Corollary 1.10. Moreover, we have

dim(A;) — ht(Ker7) = dim(A) = dim(A) = dim(4;) = dim(4;),
since finite morphisms preserve the dimension and 7 is injective. But ht(Ker(7)) =0
if and only if Ker(7) = (0) because A; is an integral domain. Thus, 7 is injective and
17 (¢po1) =17 (9).
Eventually, if we denote by (Z,¢) the germ of analytic set defined by A;, we have
7 (X,a) = (Z,¢) is a finite map. Therefore r(¢ o 7) = (). O

We now use the above Proposition to prove the following lemma, which implies
that Theorem 1.4 follows from Theorem 1.2:

Lemva 2.3, — Let ¢ : A — B be a morphism of analytic C-algebras, where B
is an integral domain. There exists an injective analytic morphism of C-alge-
bras ¢ : C{x} — C{u}, where x = (x1,...,2y) and v = (uq,...,uy), such that

r(y) = 1(¢), 17 (1) =17 (¢) and v (¥) = 17 ().

Proof. — Note that we can replace ¢ by the morphism A/Ker(¢)) — B induced
by 1, since the quotient by the Kernel clearly preserve all of the three ranks. Thus we
may assume that ¢ is injective. By resolution of singularities there exists an injective
morphism of analytic C-algebras ¢ : B — B’ which is a composition of quadratic
transformations and analytic isomorphisms such that B’ = C{u} is regular. Next,
by the normalization theorem for convergent power series (see [Nag62, Th.45.5] or
[dJP00, Cor. 3.3.19]), there exists an injective finite morphism 7 : C{z} — A. We now
set ¢ := o o1y o7 and we conclude by Proposition 2.2. O

2.2. Mo~nomiaL maps. — Thanks to Lemma 2.3, we can now focus on the regular case,
that is, when A = C{z} and B = C{u}. Apart form the isomorphisms, the typical
morphisms between smooth spaces that we use are those of the following form (see
Lemma 2.7 or Section 3.2):

(i) Power substitutions:

C{uy,...,um} — Cluy,...,Un}

~a1

up Uy

Uy, > Uy,

where a; € N*.
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(ii) Quadratic transformations:
C{uy,...,um} — Cluy,...,Un}
uy — 6162

Uy > U

Uy, > Up,-

Remark 2.4. The quadratic transformations do not correspond to blowing ups
because they are not bimeromorphic maps. They correspond to the blowing up of a
codimension 2 linear space in some affine chart followed by taking the “analytification”
at a closed point. The blowing up corresponds to the injective morphism

Clug, .., um} — Clug, ... 7Um}[ﬂ1]/(u1 — Uyus)

and the “analytification” corresponds to the morphism

Clu, - um Ml — @y us)

— (C{'Ltl, e ,um7171}/(ul _ 171%2) ~ (C{al,UQ,. . .,um}.

Let ¢ : A — B be a morphism of C-algebras, where A = C{x} and B = C{u}.
It follows from Proposition 2.2 that: composition with a power substitution or a qua-
dratic transformation in the target o : B — Bj preserves all ranks; and composition
with power substitutions in the source 7 : A7 — A preserves all ranks. Unfortunately,
quadratic transformations in the source may not preserve the ranks:

Remark 2.5 (On quadratic transformations in the source). Let us consider the
morphism ¢ : C{z,y, 2} — C{u,v} defined by ¢(z) = u, ¢(y) = v and ¢(z) = uve?,
and a quadratic transformation 7 : C{z1,y1,21} — C{z,y, 2z} defined by 7(z1) = «z,
7(y1) = 2y and 7(21) = z. Then we have

pot(r1) =u, ¢ot(y)=uv, ¢oT7(z)=uve’,

which is Osgood’s map (see Example 1.16). Thus we have r¥ (¢po7) = 1% (¢po7) =3
while 17 (¢) = 17 (¢) = 2 (because Ker(¢) and Ker(¢) are generated by z — xye?)
and r(¢) =r(poT)=2.

Power substitutions and quadratic transformations are monomial morphisms. A ba-
sic but important property of these morphisms is the following one:

Leyyia 2.6. — Consider an n x n square matrizc M = (p;;) of natural numbers such
that det(M) # 0, and the monomial map 7: Clx] — Clu] defined by:

T(x;) =u =uf™ - utin s i=1,...,n.

If f € Clx] is such that 7(f) € C{u}, then f € C{z}.
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Proof. Consider the formal expansions
F=Y far® and 7(f)= Y fau* =Y ggu’.
aeN™ aeN™ BEN™

By hypothesis, there exist two constants A, B > 1 such that |gg| < ABIPI for every
B € N" Let pioo = || M||oc = max pi ;. Since det(M) # 0, we conclude that

2
[fal = 1gsa| < ABMET < A(B 1)l
for every a € N", proving that f is convergent. |

The following result shows how we can use power substitutions and quadratic
transformations in order to transform a given morphism of convergent power series
rings into a morphism with a simpler form, but without changing the ranks:

Lemma 2.7 (Preparation of ¢). Let ¢ : C{z1,...,zn} = C{uy,...,u,} be a mor-
phism of convergent power series rings. There is a commutative diagram

Clz} -2 Clu

J /}f

C{zx} L C{u}
where

(i) o is a composition of quadratic transformations, power substitutions and iso-
morphisms;

(ii) 7 s a composition of power substitutions and isomorphisms;

(iii) if r(¢) =1, then ¢'(z1) = w1 and ¢'(x;) =0 forj=2,...,n;

(iv) if r(¢) = n =2, then ¢'(x1) = w1 and ¢'(x2) = udul with a =0 and b € Zwo;

(v) if r(@) > 1 and ¢ is injective, then

r
r

() ¢'(x1) = w1, ¢'(2)) =uy’gi(u), j=2,....n,
where aj € Zxo, 9;(0) =0 and g;(0,us,...,u,) #0 for j=2,...,n.
In these conditions, we have 1(¢') = v(¢), v7 (¢') =17 (¢) and v (¢') = r7 ().

In particular, condition (iii) combined with Lemma 2.3 immediately implies the
following very particular case of Gabrielov’s rank theorem:

Cororrary 2.8 (Generic rank 1). — Let ¢ : A — B be a morphism of reduced analytic
C-algebras. If v(¢) = 1, then 17 (¢) = 17 (¢) = 1.

Proofof Lemma 2.7. We will prove the lemma by transforming step by step the
morphism ¢ into the morphism ¢'.

Up to a linear change of coordinates in C{u} we may assume that the initial form
of ¢(x1) evaluated at (ui,0,...,0) is equal to Cu§ for some e > 0 and C € C*.
Let 01 : C{u} — C{u} be the quadratic transform defined by o;(u;) = u; and
o1(u;) = wu; for j = 2,...,n. Then oy o ¢(z1) = uiU(u), where U(u) € C{u} is a
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unit. Let us replace ¢ by o1 o ¢. Up to replacing 1 by (1/U(0))x; we may assume
that U(0) = 1. Now, let V(u) € C{u} be a convergent power series whose e-th power
is equal to U(u). Let 71 : C{x} — C{x} be the finite morphism (power substitution)
given by 71 (z1) = z§, m1(z;) = z; for j = 2,...,n. Replacing ¢ by ¢ o 71, we may
assume that ¢(z1) = w1V (u), where V(u) is a unit. Moreover by composing ¢ with
the inverse of the isomorphism of C{u} sending u; onto u; V(u), we may assume that
¢((E1) = Uz.

Let ¢(z;) = ¢;j(u) € C{u} the image of z; under ¢ and consider the analytic
isomorphism:

T — 1, xj—x; —¢i(x1,0), j=2,...,n.
If r(¢) = 1, we conclude that ¢;(u) = 0 as we wanted to prove. Let us assume,
therefore, that r(¢) > 1 and ¢ is injective. We easily conclude that ¢;(u) ¢ C{u;}
for all j = 2,...,n. Furthermore, because of the change of variables, we know that

#;(u1,0,...,0) =0, which implies that ¢;(u) = uy’ g;(u) for some a; > 0, g;(0) =0
and g;(0,us,...,u,) # 0, proving (v).

Finally, assume that n = 2. After composing ¢ with k& quadratic transformations of
the form (uy,us) — (ug,urug), for a sufficiently large k, we can suppose that go(u) =
u§W (u), where b > 0 and W (0) # 0. After composing ¢ with the isomorphism whose
inverse is defined by uy — u; and ug — uQI/V('uJ)l/b7 we have the desired result.

The last statement follows from Proposition 2.2. O

3. GABRIELOV'S RANK THEOREM

3.1. Low pimenstoNal, GABRIELOV'S RANK THEOREM. — Somehow surprisingly, the
most difficult case in the proof of Gabrielov’s rank theorem is the following;:

Tueorewm 3.1 (Low-dimension Gabrielov I). — Let ¢ : C{z1, 22,23} — C{ui,us} be
a C-analytic morphism of convergent power series. Then

r(¢) =17 (¢) =2 = r7(¢) = 2.

Indeed, we deduce Theorem 1.4 from Theorem 3.1 in the next subsection, following
the same strategy as the one originally used by Gabrielov. Later, Sections 4 and 5
will be entirely dedicated to proving Theorem 3.1, where we deviate from Gabrielov’s
original approach. This last part will involve a geometric setting and the use of tran-
scendental tools.

There exists a particular case of Theorem 3.1 which admits a simple algebraic
proof, namely when the generator of Ker(gg) is a quasi-ordinary polynomial, that is
when its discriminant is a monomial times a unit. This particular case turns out to
be crucial later on in the proof of Theorem 3.1. We finish this section by proving this

result:

Proprosition 3.2 (Quasi-ordinary case). — Let P € Clz1, z2][y] be a reduced monic
non-constant polynomial and let Ap denote its discriminant. Assume the following:
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(i) Ap = z{'x5? x unit(x) for some formal unit unit(x),
(ii) there exists a morphism ¢ : Clx,y} — C{uy,uz} with r(¢p) = 2 such that
P € Ker(¢).

Then P admits a non trivial monic divisor in C{x1, xz2}[y].

Proof. The proof combines the Abhyankar-Jung theorem, recalled in Section 7 at
the end of this paper, with Lemma 2.7.

By assumption, we have r(¢) = 2 and 17 (¢) = 2 since P € Ker(ngS). Because
17 (¢) = 2, Ker(;ﬁ) is a height one prime ideal, thus a principal ideal, by [Mat89,
Th. 20.1]. Therefore any generator of Ker(qAS) divides P. If 1 (¢) = 2, then Ker(¢) is a
height one prime ideal of C{x,y}, and Ker(¢)C[x,y] = Ker(g). Thus any generator
f(x,y) of Ker(¢) divides P. Since P is a monic polynomial, we must have f(0,y) # 0.
Therefore, by the Weierstrass preparation theorem, f(x,y) = unit x ﬁ(w,y), where
IS(m,y) € C{x}[y] is a monic polynomial. Thus P divides P, and the proposition is
proved in this case.

Let us now prove that 1% (¢) = 2. We denote by ¢;(u), ¢2(u) and ¢3(u) the
respective images of z1, x2 and y under ¢. By the Abhyankar-Jung theorem, we can

expand P(y) as
d
P= H(ZU - fi(ﬂﬁll/e,x;/e)),
i=1

where d = deg,(P) and e = d!. Furthermore, by Lemma 2.7(iv) we may suppose
that ¢1(u) = u; and ¢a(u) = udub with b > 0. Therefore we may extend ¢ as a

morphism ¢’ from (C{:E}/e,xé/e,y} to (C{ui/e,ué/e} by defining

e e e a/e bje
¢ (%) = ', ¢ (2 = u .

By Proposition 2.2(2) we have 17 (¢') = 1’ (¢). Therefore, if one of the & is conver-
gent, Ker(¢') # (0), thus 1 (¢) = r(¢) = 2.
By the above reduction, we may assume that e = 1 by replacing ¢ by the morphism:
x1— ur, x> ufud, Y — ds(uf, uf),

~

and P by P(x5,x5,y). Replacing in the original equation, we have, since P € Ker(¢),
d
H(¢(y) — &(u1, ufuy)) = 0.
i=1
Hence, there is an index i such that 7(&)(uy, u¢ub) € C{u}. Thus, by Lemma 2.6,
& (x) € C{z} and r¥(¢) = 2, as we wanted to prove. O

3.2. Repucrion or Tueorem 1.4 1o Turorem 3.1. The proof of Theorem 1.4 is done
by contradiction, following closely the ideas of Gabrielov [Gab73, Th.4.8]. We note
that we do not use in this section, at any point, a quadratic transformation 7 : Ay — A
in the source, cf. Remark 2.5. We assume:

(*) There exists a morphism ¢ : A — B of analytic C-algebras, where B is an
integral domain, such that r(¢) = 7 (¢) but r7 (¢) < 17 ().
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First reduction. Suppose that (*) holds true. Then, there exists an injective mor-
phism ¢ : C{z} — C{u}, where x = (z1,...,2) and v = (uq,...,u,), such that
r(¢) =17 (¢) =m — 1> 1,17 (¢) = m and Ker(;é\) is a principal (nonzero) ideal.

Indeed, by Lemma 2.3, there exists an injective morphism ¢ : C{x} — C{u},
where * = (x1,...,%,) and w = (uy,...,u,), such that r(¢) = r7(¢) > 1, but
17 (¢) < 17(¢). Since 17 (¢) < 17 (¢) = m, we know that Ker(a) # (0). Now, suppose
that Ker(gg) is not principal or, equivalently, that its height is at least 2. By the
normalization theorem for formal power series, after a linear change of coordinates,
the canonical morphism

Clz
7 Clay, ..., zng)] — I 1]\
Ker(9)
is finite and injective. Therefore the ideal p := Ker(¢)NClzy, . .. , Tr(¢)+1] 18 @ nonzero
height one prime ideal. Since C[z1,. .., 2y4)+1] is a unique factorization domain, p is

a principal ideal (see [Mat89, Th. 20.1] for example).

Now, denote by ¢’ the restriction of ¢ to C{zi,...,2Zr(g)11}. By definition
Ker(ngS’) = p, thus 17 (¢') = 1(¢) + 1 — 1 = 1(¢) = 17 (¢). Since ¢ is injective, ¢’
is injective and 1 (¢’) = r(¢) + 1. Moreover, since 7 is finite, by Proposition 2.2
we have: R R

1(¢) =r(¢') =1(¢) = 1(¢).
Therefore we replace ¢ by ¢’ and we assume that r(¢) =17 (¢) =m —1 and 1% (¢) =m,
as we wanted to prove.

Second reduction. — Suppose that () holds true. Then, we claim that there exists an
injective morphism ¢ : C{x} — C{u}, where & = (z1,...,2n41) and v = (uy,..., uy)
(that is, m = n + 1), such that r(¢) = 1”7 (¢) = n and Ker(q@) is a principal (nonzero)
ideal (in particular, 17 (¢) =n < n+ 1 =r7(¢)).

We consider the morphism given in the 1st Reduction. Up to a linear change of
coordinates in u, we can suppose that the rank of the Jacobian matrix of ¢ evaluated
in (uy,...,ur,0,...,0) is still equal to r :=r(¢). Let us denote by ¢g the composition
of ¢ with the quotient map C{u} — C{uq,...,u,}, which satisfies r(¢g) = r(¢). Now,
by Proposition 2.1 we have:

1= m—1(go) > m —r7 (¢0) = ht(Ker(do)) > ht(Ker()) = 1.

The last inequality comes from the fact that Ker(g/ﬁ\) C Ker(ggo). This shows that
ht(Ker(¢o)) = 1. Therefore Ker(¢y) = Ker(¢) since both are prime ideals of height
one. We note, furthermore, that ¢q is injective. Indeed, if Ker(¢p) # (0), take a
nonzero f € Ker(¢g), and note that f € Ker(qAS) by the previous equality, which
implies that f € Ker(¢), a contradiction. We can assume that n = and m =n + 1,
as was required.

Third reduction. — Suppose that (x) holds true. Then, we claim that there exists
an injective morphism ¢ : C{x} — C{u}, where © = (21,22, 23) and u = (uy, usz)
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(that is, m = 3 and n = 2), such that 1(¢) = r¥(¢) = 2 and Ker(gg) is a principal
(nonzero) ideal.

(Note that the third reduction contradicts Theorem 3.1, providing the desired
contradiction, and proving Theorem 1.4.)

We consider the morphism given in the second reduction. Let P be a generator of
Ker(ngS). After a linear change of coordinates we may assume that P is a Weierstrass
polynomial with respect to x,+1 =: y and that ¢(x;) is not constant for i = 1,...,n.
Our goal is to reduce the dimension n by restriction to hyperplanes in the coordi-

nates x. More precisely, we rely in two results about generic sections:

Turorem 3.3 (Abhyankar-Moh reduction theorem, [AM70, p.31]). — Let F' € C[]
be a divergent power series, and denote by A the subset of C of all constants A € C
such that F(Axa, xa, ..., Tn) € C{za,...,x,} is convergent. Then A has measure zero.

Tueorem 3.4 (Formal Bertini theorem, [Cho58]). — Let k be an uncountable field,
n >3 and x = (r1,...,2,). Let P(y) € k[x][y] be irreducible. Then there is an at
most countable subset A C k, such that P(cxo+dxs, xa,. .., Ty, y) remains irreducible
ink[xa, ..., z,][y] for every c € kA and every d € k transcendental over kp,., where
kp. denotes the field extension of the prime field of k generated by the coefficients of
P(z,y) and ¢ (in particular kp. is a countable field).

In order to be self-contained we give a complete proof of Theorem 3.4 in Sec-
tion 3.3. We will say that a hyperplane z1 — Y ", \;a; = 0 is generic if A € C"~1
can be chosen outside a subset of measure zero. Note that both theorems demand
a generic hyperplane section in the variable . Our task now is to modify the mor-
phism (without changing its ranks) in order to guarantee that it can be restricted to
a generic hyperplane section.

Indeed, by Lemma 2.7, we may assume that r(¢) > 1 and that the ¢(z;) with
j=1,...,n satisfy the normal form given in Lemma 2.7(v). The image of ¢, nev-
ertheless, does not yet necessarily include generic hyperplanes in z. In order to deal
with this issue we use a trick of Gabrielov (whose idea we illustrate in the concrete
example 3.5 below).

Let us perform the trick. Up to composing ¢ with a quadratic transformation
ur — uyp and u; — wu; for j = 2,...,n, we may suppose that a; € Z~¢ in the normal
forms (5) of Lemma 2.7(v). Furthermore, up to making power substitutions of the form
T — xJaJ with a; = Hk# ay, for every j = 2,...,n, we can suppose that a; =a >0
is independent of j. Finally, we consider the power substitution x; — :c‘f“. All these
operations preserve the ranks of the morphism by Proposition 2.2. We therefore have
obtained the following normal form:

(b(xl) :uclH_la ¢($]) :ulllgj(u)a j :2,...,7’L,
where ¢;(0) = 0 and g¢;(0,ug,...,u,) # 0. Now, let us consider a lincar function
ha(x) = 21 — X075 Ajaj with A; € C for j =2,...,n. Note that:

o1 = Xy Nimi) = uf (ur — 3oip Ajg;(w)) = ulgx(w).
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We claim that for a generic choice of A € C"~1, the hypersurface Vy := (gx(u) = 0)
is not contained in the set of critical points of the morphism ¢® : (C",0) — (C"*1,0)
(where we recall that p** = ¢), which we denote by W.

Indeed, on the one hand, outside of a proper analytic subset I' € C*~!, we know
that ¢gx(0) = 0, gx(0,ug,...,u,) # 0 and Oy, gx(0) # 0. Therefore, by the im-
plicit function theorem, the equation gj(u) = 0 admits a nonzero solution u; =
Exlug,y ... up).

On the other hand, assume by contradiction that Vy € W for A € A ¢ C* 1,
where A is of positive measure. Since W is a proper analytic subset of C™, W contains
only finitely many hypersurfaces. Therefore, when \ runs over A, V) runs over finitely
many hypersurfaces. We define an equivalence relation on A by A ~ X if Vi = V5.
Then A is the disjoint union of the (finitely many) equivalence classes. Therefore, at
least one of these equivalence classes is not included in an affine hyperplane. We denote
it by Ag. Then

n

(6) Z()‘J - )‘j) 'gj(u)|VA = (gk(u) - gx(u)) |V)\ =0, VA A€,

j=2
Since Ag is not included in an affine hyperplane, we may choose A, X(l), cee A
such that the vectors A — X1, ... A — X(") are linearly independent. Therefore,

(6) applied to the A — A(®) implies that gi(u)ly, =0, so that ui|y, = 0. In other
words, (gx(u) = 0) C (u; = 0), so that &, (us, ..., u,) = 0, which is a contradiction.
Therefore, for a generic choice of A € C"~!, the induced morphism:

- Clay, ..., z,][y] Cluqy - .-, un]
. [ — n

(71 = 2ip Aiwi) (u1 = 2 i—p Ajg;(u))
is such that r(¢y) = n—1. Finally, let us assume that n > 3. By Theorems 3.3 and 3.4,
the polynomial P remains irreducible and divergent in

Clzt, .z ]yl/ (w1 — Dy Nixy)

for a generic choice of A = (g, ..., \,) € C"~ 1. We conclude, therefore, that r7 (vy) =
n — 1 and v (y\) = n. By repeating this process, we obtain the desired morphism
with n = 2.

¥

Examrre 3.5 (On Gabrielov’s trick)

(1) Consider the morphism ¢ : C{z1, x2, x3,y} — C{u1, u2,us} given by

ple1) =u1,  @(rs) = ufug, () =ufug and @(y) = f(u).
Consider a hyperplane Hy = (21 — Aax2 — A3zx3), where (A, A3) # (0,0), and note
that @(x1 — Ao — Agz3) = u1U(u) where U(0) # 0. It follows that the restriction
of ¢ to Hy induces a morphism:

C{z1, 22, 23,9} Cluy, uz,us}
—
(331 — doxo — )\3333) (ul)

1/),\ : = (C{UQ,’U,g}

which is constant equal to zero, so that r(¢,) = 0.
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(2) (Gabrielov’s trick). In order to solve the above issue, we perform a power sub-
stitution in the source (which preserves all ranks by Proposition 2.2). More precisely,
we consider z1 = $, so that we now have p(z1) = u$. It now follows that:

gO(iEl — )\2%2 — )\31’3) = ’U,% (u1 — )\2'[1,2 — )\3U3)
and the restriction of ¢ to Hy induces a morphism:

C{Il,IQ,Ig,y} C{u17u27u3}
({,E1 — )\2%2 — /\31‘3) (’LL1 — )\2U2 — )\3U3)

(D%

and we can easily verify that r(¢) =2 =1r(¢) — 1.

3.3. Proor or TiE FORMAL BERTINT THEOREM. — Before giving the proof of the theo-

rem we make the following remarks:

Remark 3.6 (On the formal Bertini theorem)

(1) A stronger version of the above result was originally stated in [Cho58] (where A
is assumed to be finite), but we were not able to verify the proof. We follow the same
strategy as Chow to prove the above result.

(2) Tougeron proposes an alternative proof of the formal Bertini theorem in [Tou72,
p. 349] via a “Lefschetz type” theorem. The proof is geometric and does not adapt in
a trivial way to the formal case.

(3) (Counterexample of formal Bertini for n = 2). Consider the irreducible poly-
nomial P(z,y) = y? — (2% + 23). For every A € C, we have that:

Pz, Az,y) =y> — (1+X)2” = (y — 2V 1+ A2)(y + 2/ 1+ A2)

is a reducible polynomial. Therefore, there is no formal Bertini theorem for n = 2.

For ¢ € k we set
k[z][]
(za3 — (21 + cx2))

R(c) := [t + ],

= k[z]

The ideal generated by the x; is a prime ideal of R(c), denoted by p(c), and the
completion of R(c)p(c) is k(z)[x2, ..., 2n].

We begin by giving the proof of the following proposition, given as a lemma in
[Chob8]:

Prorosition 3.7. — Let k be an uncountable field and n > 3. Let P(y) € k[x][y] be
an irreducible monic polynomial. Then there is a countable subset A C k such that,
for all c € k" A, P(y) is irreducible in R(c)y(c)[y]-

Proof. — More generally, for ¢y, ..., ¢s €k, s distinct elements with s > 2, we set

R(er, ..., cs) :=K[x][z1,- .., 2]/ (2123 — (w1 + c122), . . ., 2sT3 — (X1 + cs2)).

The ideal generated by the z; is a prime ideal of R(cy,...,cs), denoted by p, and the
completion of R(cq,...,c¢s)p is isomorphic to k(z1,. .., 2zs)[zs, . .., zs], where the z;
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satisfy the following relations over k (for every i, j, k, ¢ with ¢ # j and k # {):

Cizjg — Cjz4 CrLzZp — CZZk' Zi — Zj Zp — Zk

(7) = ) =

¢ —¢j Cr — Cr G—c¢j  Cco—ck

Therefore the completion of R(ei,...,c¢s)p is isomorphic to k(zi,22)[xs, ..., zs],
and z; and zo are algebraically independent over k (we may replace z; and zo by any
other z;, z;). Let us fix s = 2. We have, in R(c1, c2)p:

3, T2 = —— 3.
Co —C1 Co—C1

€221 — C122 22 — 21
213 = 21 + C1%2, 223 =T1 +Ca%2, T1=———2X

Therefore, for an element f € ﬁ(cl, ¢2)p, we have f € R if and only if

(8) f= Z faz(t252x5® - x0n, where  [a1 > agor ag > a3 = fo, =0].
aeN™

Let P(y) € k[z][y] be irreducible and assume that there exist an uncountable
set I and distinct elements ¢; € k, ¢ € I, such that P(y) is reducible in é(ci)p(ci)[y}.
We fix two such ¢; that we denote by ¢; and co. By the previous discussion, we may
assume that the ﬁ(ci)p(m are all embedded in k(z1, z2)[xs,...,2,]. Since there is
only finitely many ways of splitting a monic polynomial into the product of two monic
polynomials, we may assume that we have the same factorization P(y) = Py (y)Pa(y)
in all the ﬁ(ci)p(ci)[y}.

Let f be a coefficient of Py (y) or Py(y) in R(cy, 2)p(c;), that we write

f= 3 feal-apn,
BENn—2

where the fg € k(z1, 22). Since f € E(cl)p(cl) and

]/%(61);)(01) = k(zl)[['r27 s 7In]] = k(zl)[[22$371‘3, s 7‘rnﬂ7

we have that fz € k(z1)[22] for all #, and deg_, (fg) < B3 for all 3 such that fz # 0.
By symmetry, we have that fz € k[z1,22] and deg, (fs) < B3 for all 8 such that
fa # 0. Now let us choose one more ¢;, that we denote by c¢s. By (7), we have

C3 — C2 C1 — C2
29 = 21+ 23.
3 —C €1 —C3

By replacing zo by =22, + ﬁzg in the fg, we obtain the coefficients gg of the

Cc3—C1
= Y gkl
BeNn—2

expansion

as an element of k(z1, z3)[xs, ..., z,]. In particular, we have that gg € k[z1, 23] and
deg.,(g9s) < B3 for i = 1 or 3, for all 3 such that gg # 0. For a given j3, we have

deg., (95) < deg, ., (f5),

where deg, . denotes the total degree in 21, 29. This inequality may be strict, as
some cancellations may occur. But, for a given 3, there is a finite set Ag C k (possibly
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empty) such that
€3 — C2

—— ¢ Ay = deg,, (9p) = deg., ., (fs).
C3 C1

We remark that the map H : ¢z € k — (c3 —¢2)/(c3 — ¢1) is injective. Therefore
the set
A= | H™'(4)
BEN"—2
is at most countable. Since I is uncountable, we may choose cs ¢ A. Therefore for
such a c3, we have
VB, deg, (9p) =deg., .,(fs)-

Now, by the previous discussion done for the fgz, we also have deg, (gs) < 83. There-
fore, for every 3, we have deg,, ., (fs) < B3. Thus, by (8), we see that f € R. This
argument applies to any coefficient of P;(y) or Px(y). Hence, we have that P;(y),
P, (y) € R[y]. This contradicts the assumption that P(y) is irreducible in R[y]. O

Now we can give the proof of Theorem 3.4:

Proofof Theorem 3.4. — We apply Proposition 3.7 to P(y). Let ¢ ¢ A. By construc-
tion, the image of P(y) in S(c)[y] is

P(CZ‘Q + RT3, L2y .. axﬂmy)a
where S(c)[y] is identified with k(z)[z2,...,z,][y]. In fact, we have
P(cxo + 223,22, ..., Zn,Y) € kpc(2)[T2,- .., Ta]ly]-

Therefore, if we replace z by any element of k that is transcendental over kp ., we have
that P(cxo + zxs, z2,...,Tn,y) is irreducible. O

/I. PROOF OF THE LOW-DIMENSIONAL G/\BRIELOV THEOREM

4.1. GEOMETRICAL FRAMEWORK. In order to prove Theorem 3.1, we will use geomet-
ric arguments involving transcendental tools. In particular, the article changes pace
and we use essentially geometric language instead of algebraic. We start by fixing the
notation.

Given a point a € C™, when n is clear from the context we write &, for the ring of
analytic germs ¢(C"),, and O, for its completion. Given an analytic germ f € O,
we denote by fa the Taylor series associated to f at the point a. In particular, the
Taylor mapping is the morphism of local rings:

Ta:ﬁa—>ﬁa

f— fa
A coordinate system centered at a is a collection of functions & = (z1,...,x,) which
generate the maximal ideal m, of &, in which case we recall that &, is isomorphic to
C{x}. We define, similarly, coordinate systems T = (Z1,...,Z,) of 0a, and we note
that &, is isomorphic to C[x]. We say that a coordinate system & of O is convergent
if there exists a coordinate system x of &, such that Z; = Ty(x;) for i = 1,...,n.
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Whenever Z is a convergent coordinate system, we abuse notation and we identify it
with .

Let ® : Y — X be a complex analytic map between two smooth analytic spaces.
Given b € Y and a € X where a = ®(b), we will denote by ®; the associated analytic
map germ Py, : (Y, b) — (X, a). We denote by @} : &, — O the morphism of local
rings defined by

Ve, Oi(f):=fods.
Then we denote by Cﬁ;‘; : ﬁAa — ﬁb the completion morphism of ®}. Following the
notation given in the introduction, we note that (®})? is the localization of the mor-
phism ® to b, that is, (®§)* : (Y,b) = (X, a).

When ¢ : A — B is a morphism of local rings, and P € A[y] is a polynomial with
coefficients in A, P = pg+p1y+- - - +pay?, we will use the following abuse of notation:

d(P) = d(po) + d(p1)y + -+ + d(pa)y” € Blyl.

Concretely, we will use this notation with A = &, or ﬁAu, and B = 0 or @,.

4.2. GEOMETRICAL FORMULATION OF LOW-DIMENSION RESULTS. — We now rephrase The-
orem 3.1 and Proposition 3.2 in the geometrical context. Instead of a morphism
¢ : C{zy,72,y} — C{ui,us} such that r(¢) = 2 and 17 (¢) = 2, we work with
a morphism of germs ® : (C%a) — (C3,®(a)) such that ®* = ¢, r(®*) = 2 and
17 (®*) = 2. In order to simplify the notation, we always assume that ®(a) € a x C
(which is always possible up to a translation in the target) and that there exists a
formal polynomial P € &, [y] such that ®*(P) = 0, that is, Ker(®*) = (P) (which we
can always suppose by Weierstrass preparation).
We introduce the following definition:

Derinition 4.1 (Convergent factor). Let P € 0, [y] be a non-constant monic poly-
nomial. We say that P admits a convergent factor (at a) if there exists an analytic
non-constant monic polynomial ¢ € &,[y| such that T,(q) = g, divides P.

We are ready to reformulate Theorem 3.1:

Turorew 4.2 (Low-dimension Gabrielov II). — Let P € O4[y] be a monic polyno-
mial, where a € C2. Suppose that there exists an analytic morphism ® : (C2,a) —
(C3,®(a)), generically of rank 2, such that ®(a) € {a} x C and

o (P) = 0.

a

Then P admits a convergent factor. In particular, if P is a formally irreducible poly-
nomial, then P is an analytic polynomial.

The condition ®(a) € {a} x C is only stated for convenience. In practice we can
always assume that this condition holds by a translation in the range of ®. Note that
Theorem 4.2 immediately implies Theorem 3.1.

It is easy to see that, in Theorem 4.2, we can always suppose that the polyno-
mial P € 5u[y] is reduced. In particular, the discriminant of P (with respect to
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the projection (x,y) — (x)) is a nonzero formal power series which we denote by
Ap € C[z]. As said before, in what follows, quasi-ordinary singularities (that is,
when Ap is monomial) will play an important role. We start by distinguishing two
cases of quasi-ordinary singularities:

Derinition 4.3 (Monomial discriminant). Let P € 0, [y] be a reduced monic non-
constant polynomial. We say that the discriminant Ap is formally monomial if there
exists a coordinate system x = (z1,x2) of 0Oy, such that:

Ap =z -W(x)=a" - z5? - W(x),

where W(x) € Oy is a unit. We say that the discriminant Ap is analytically monomial
if € = (z1,22) is a coordinate system of &.

Exampre 4.4 (Formally vs analytically monomial). — Suppose that:

o0
Ap =z - (acg— E n'x?)
n=1

On the one hand, there is no (formal) unit U(z1,z2) such that

U(xzy,x2)(xe — Z n!-al)
n=1

is convergent. Indeed, by the unicity of the preparation given by the Weierstrass
preparation theorem, this would imply that U and zo — Y- | n!- 27 are convergent
power series, which is not the case. Therefore Ap is not analytically monomial. On the
other hand, after the formal change of coordinates:
oo
/l‘\lzl‘l, /l‘\gzl‘g—zn!~l‘?.
n=1

we conclude that Ap(Z) = T; - T2, which is formally monomial.
We are ready to reformulate Proposition 3.2:

Provosition 4.5 (Final case). — Let P € 0, [y] be a reduced monic polynomial, where
a € C2, whose discriminant Ap is analytically monomial. Suppose that there exists
an analytic morphism ® : (C% a) — (C3 ®(a)), generically of rank 2, such that
®(a) € {a} x C and

then P admits a convergent factor.

Note that Proposition 3.2 immediately implies Proposition 4.5. We remark that
Proposition 4.5 is a particular case of Theorem 4.2. The proof of Theorem 4.2 consists
in reducing to the quasi-ordinary case via blowing ups in the target of ®. As we have
remarked in 2.5, a blowing up does not preserve the formal and analytic ranks of
the analytic germ. We must make global arguments over the blown-up space, as we
discuss in the next section.
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4.3. BLOWING UPS AND THE INDUCTIVE SCHEME. We consider an analytic manifold N
(which is eventually assumed of dimension 2) and a simple normal crossing divisor F'
over N. An admissible blowing up (for the couple (N, F)) is a blowing up:

o:(N,F) — (N, F)

whose center ¥ is connected and has normal crossings with F, that is, at every

point a € €, there exists a coordinate system x of &, and ¢t € {1,...,n} such that

€ = (x1 =--- =2 =0) and F is locally given as a finite union of hypersurfaces

(z; = 0). In particular, note that if € is a point, then the blowing up is admissible.
A sequence of admissible blowing ups is a finite sequence of morphisms:

(C2,0) = (No,a) « 2 (N}, Fy) <22 .. < 2" (N, F,)

and we fix the convention that o : (N, F.) = (Np, Fy) denotes the composition of
the sequence.

The proof of Theorem 4.2 demands an argument in terms of the history of the ex-
ceptional divisors, so it is convenient to introduce notation to keep track of the history
explicitly. More precisely, consider a sequence of admissible blowing ups (o1, ...,0,).
Note that, for every j € {1,...,7}, the exceptional divisor Fj is a simple normal
crossing divisor which can be decomposed as follows:

Fi=FYuFr U -UFY, vj=1,..r

where Fj(o) is the strict transform of Fy, and for every k € {1,...,j}, the divisor Fj(k)
is an irreducible and connected component of F; which is uniquely defined via the
following recursive convention:

— if k = j, then Fj(j ) stands for the exceptional divisor introduced by o;;
— if k < j, the divisor Fj(k) is the strict transform of Fj(f)l by o;.

The proof of Theorem 4.2 will follow from combining Proposition 4.5 with the
following result, as we show in Section 4.4 below:

Prorosition 4.6 (Inductive scheme). — Let a € C* and consider a mon-constant
reduced monic polynomial P € O4[y]. Consider a sequence of admissible blowing ups

(C2,a) = (Np, a) <21 (N, Fy) <22 .. 7" (N, F,).

We set 0 := o1 0---00,, and we assume that:
(i) Vb € o7 (a), we have that 55 (Ap) is formally monomial,
(ii) Ik e {1,...,r}, Jb € F) such that Py = o4 (P) has a convergent factor.
Then P admits a convergent factor.

Remark 4.7. — In Example 4.4, we have illustrated that the discriminant of P is not

analytically monomial in general. In fact, even after a sequence of blowing ups, Ap is
not analytically monomial in general. Indeed, let us choose the polynomial P given in
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Example 4.4 which is formally monomial. If we consider the quadratic transformation
(z1,22) = (21, 2122) We get

" (Ap) = 22 ((22 —)-Y n!z;“).

n>1

Therefore, *(Ap) is formally monomial at the point of coordinates (z1,22) = (0, 1)
but it is not analytically monomial at this point as shown in Example 4.4. A straight-
forward induction shows that this is again the case after finitely many blowing ups.
Therefore we need to be careful when we reduce the proof of Theorem 4.2 to Propo-
sitions 4.5 and 4.6 (cf. Case II in Section 4.4).

The proof of Proposition 4.6 is given in Section 4.5 below. The crucial technical
point to prove it, is the following extension result:

Prorosition 4.8 (Semi-global extension). — Let a € C% and consider a non-constant
reduced monic polynomial P € O4[y]. Consider a sequence of admissible blowing ups

(C2,a) = (Np, a) <21 (N, Fy) <22 .. 7" (N, F,).

We set 0 := o1 0---00,, and we assume that:
(i) Vb € o7 (a), 55 (Ap) is formally monomial,
(ii) 9b € FY such that Py = o4 (P) has a convergent factor.

Then, there exists an open neighborhood Uﬁl) of F,gl), and a convergent non-

constant polynomial q € ﬁU(” [y] such that, at every point ¢ € Fr(l)

, the polynomial g,
divides P, := o (P) and either P, = @, or the quotient P./q. does not admit a con-

vergent factor.

In Corollary 5.19 below, we prove a more precise version of the above proposition.
Indeed, Section 5 is entirely dedicated to the proof of Proposition 4.8, and it includes
three theorems which are of independent interest.

Finally, we need one more ingredient before proving Proposition 4.6. First, note
that if P € O,[y] is convergent, then it is clear that a convergent factor ¢ at a point a,
is also a convergent factor of P on a neighborhood of a. When P € é’\u [y] is divergent,
then this property still holds over “fibers”, that is:

Prorosition 4.9 (Convergent factor along fibers). — Leta € C™ and & : M — C™ be
an analytic map, generically of maximal rank, where M is smooth. Let P € ﬁu [y] be
a non-constant monic polynomial and suppose that there exists b € ®~1(a) such that
Py = ®}(P) admits a convergent factor q at b. Then, there exists a neighborhood U
of b such that, for every point ¢ € UN®~(a), the polynomial q is a convergent factor
of P..

We prove Proposition 4.9 in Section 4.6 below.
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4.4. Proor or GABRIELOV'S LOW DIMENSION THEOREM (REDUCTION oF THEOREM 4.2 TO
Prorositiox 4.6). — The discriminant Ap is a formal curve in (C?,a), so it admits
a resolution of singularities via blowing ups of points which are always convergent
centers. In other words, there exists a sequence of (analytic) point blowing ups:

o o oy
((C2,ll) = (N(),Cl) <—1 (N17F1) <—2 B — (NT7F7")7

such that for every b € o~*(a) (here o := oy 0 --- 0 0y), the pulled-back discriminant
o4 (Ap) is formally monomial (but not necessarily analytically monomial). Note that
any further sequence of point blowing ups preserve this property, and we may compose
this sequence with further blowing ups of points if necessary. Now, let

o1 x Id oo x 1d os x 1d
(— e

(C?,a) x C = (My,a x C) (M, E) (M,, E)

be the associated sequence of admissible blowing ups over C3. We can now show that
there exists a sequence of point blowing ups in the source of the morphism &:

(C2a) = (Lo, ) <20 (Ly, Dy) <22 . <25 (L, D,),

where \; denotes a finite sequence of blowing ups, including length zero (so, the
identity); and mappings ®; : (L;, D;) — (M;, E;) for ¢ = 1,...,s, such that the
following diagram commutes:

A A As— As
Lo L1 T S A L,
(I)OJ (I)IJ J(I)s—l lq)s
My o1 x 1d M, oo X Id o 051 X Id M., os x 1d M.

where ®¢ = ®. Indeed, this result follows from usual resolution of indeterminacy of
maps: let % be the reduced ideal sheaf whose support is the first center of blowing
up %o in My, and consider its pullback #y = ®§(SH). Let Ay : L1 — Lo denote the
sequence of point blowing ups that principalizes _#j; we conclude by the universal
property of blowing ups the existence of the morphism ®; : L1 — Mj. It is enough
to repeat this argument for the entire sequence.

Now, since ®g is generically of maximal rank and the \; are sequences of point
blowing ups, we conclude that ®4 is generically of maximal rank. We denote by A the
composition of the \;. Let ¢ € A7!(a) and denote by ®,(c) = (b,b) its image. Note
that:

B} (Py) = B} 0G5(P) = A7 0 B o(P)
by hypothesis.

We now consider the two following cases:

Case 1. Suppose that Ap, is analytically monomial. In this case we do not need to
make any other subsequent blowing ups (and r = s when we apply Proposition 4.6).
Indeed, all hypothesis of Proposition 4.5 are satisfied, so we conclude that P, admits
a convergent factor. This implies that all hypothesis of Proposition 4.6 are satisfied,
so we conclude that P admits a convergent factor, as we wanted to prove.
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Ficure 1. Proof of Theorem 4.2: case II.

Case Il. — Suppose that Ap, is not analytically monomial, but only formally mono-
mial. In this case, we make further blowing ups in order to reduce to Case I (and
r > s when we apply Proposition 4.6).

Let ¥ C Ls be the analytic subset of Ly where ®; is not of maximal rank (note
that this set is the support of the ideal generated by the determinant of the two-
by-two minors of the Jacobian of ®;). Since 3 is an analytic curve, there exists an
analytic curve 7 : (C,0) — (Lg,¢) which intersects ¥ U ®~1(E,) only at c. We set
IT : My — N the canonical projection. Then, taking v = Il o &, 0 7, we obtain
an analytic curve on (N, b) which intersects the exceptional divisor Fy only at b.
We claim that v and (Ap, = 0) can not have flat contact. Indeed, if they had flat
contact, then (Ap, = 0) would have a convergent factor h that is coprime with u
where F, = (u = 0). Thus Ap, = h%® x unit and (Ap, = 0) would be convergent
which contradicts the assumption. This implies that by a sequence of point blowing
ups we can separate the strict transform of v and (Ap, = 0). We are now in Case
when we center at the point b’ given by the strict transform of ~. Indeed, at b’, the
germ defined by Ap, is equal to the germ defined by one irreducible component of
the exceptional divisor.

4.5. Tue 1npuctioN scHEME (REDUCTION OF Prorosition 4.6 to Prorosition 4.8
AnND 4.9). — The proof of Proposition 4.6 follows by induction on the lexicographical
order of (r, k). Note that the first step of the induction, that is when r = k = 0, is
tautological. We now fix (r, k) and we assume that the proposition is true whenever
(r', k") < (r,k). We divide the proof in two parts, depending if k =1 or k& > 1:

Casel: k =1. — By Proposition 4.8, there exists an open neighborhood T(l) of ngl),
and a convergent polynomial ¢ € &) [y] such that, at every point ¢ € F,gl), the
polynomial g, divides P, = ¢}(P) and, furthermore, either P. = ¢, or the quotient

P./q. does not admit a convergent factor. Note that, since F, is connected and Uﬁl)
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£ m 02000,
1 NN ——

Ficure 2. Proof of Proposition 4.6: case I.

is open, by Proposition 4.9, at each connected component of F,. \ Fr(l), there exists a
point in this component, say ¢;, where ¢ (P) admits a convergent factor.

We now consider the geometrical picture after only the first blowing up o1, which
has exceptional divisor F; = Fl(l). Let {aj,...,az} be all the points in F} which are
centers of subsequent blowing ups. Note that oo 000, : (N, F,.) — (N1, Fy) is
an isomorphism at every point of Fy ~\ {ay,...,a,}. There exists, therefore, an open
neighborhood V; of Fy \ {a1,...,as}, and an analytic polynomial p € Oy, [y] such
that:

oto-0ai(F) =1

Now, let us denote by P; := (71);,(P) for j = 1,...,¢, which is a non-constant monic
polynomial in ﬁAuJ [y]. We consider the sequence of blowing ups o3y := g20- - -00;.. Note
that the pull-back of the discriminant Ap, is everywhere formally monomial, since it
coincides with the pull-back of Ap by the entire sequence o. Furthermore, since P
admits a convergent factor at a point in every connected component of Fj. \ Ffl),
we conclude that P; admits a convergent factor (at some point, say c;) after its
composition with o). It follows that P; satisfies all conditions of Proposition 4.6
with (7', k") such that " < r — 1. By induction, P; admits a convergent factor of
maximal degree p;, defined in a neighborhood W; of a;. Furthermore, the degree
of p; must be the same as the degree of p, since they coincide after pull-back by o)
at a point of Fj. \ F}l), by the inductive assumption.

Finally, since p; is convergent in a neighborhood Wj, there exists a point
b, cW;nN Fl(l) where p; and p are well-defined. Since these polynomials are con-
vergent, have the same degree, and p is the convergent factor of maximal degree of
o7 (P), we conclude that p = p; at b;. It follows that p extends in a neighborhood
U, =W ngl W; of Fy, and it formally divides o5 (P) everywhere in F;. We claim
that p = of(p) for some p € O,[y]. Indeed, we can define the coefficients of p on
an open punctured disc of C? centered at the origin by p = o} (p), since oy is
biholomorphic outside the origin. Then we conclude with the Riemann extension
theorem (see e.g. [dJP00, Th.4.1.24]). Since p formally divides 53 (P), we have that p
formally divides P, as we wanted to prove.
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(7)
5

i—1

Ficure 3. Proof of Proposition 4.6: case II.

Casell: k > 1. Let ag_1 denote the center of the blowing up oy, and consider:

o —

P._, = (0'1 0-+-.0 O-k—l)*akq(P)’

and note that P,_; is a non-constant monic polynomial which belongs to ﬁAakfl [y].
We consider the sequence of blowing ups o) := o o -+ o o,.. Note that the pull-
back of the discriminant Ap, , is everywhere formally monomial, since it coincides
with the pull-back of Ap by the entire sequence o. Furthermore, since P admits
a convergent factor over the exceptional divisor created by the blowing up oy, we
conclude that P, admits a convergent factor after its composition with o) at some

point ¢ € Fﬁk). It follows that Py satisfies all hypothesis of Proposition 4.6 with
(r', k") such that " < r — k < r — 1. By induction, we conclude that Px_; admits
a convergent factor py_1 € Og,_,[y], defined in some neighborhood Wjy_1 of aj_1.
)

Therefore, by Proposition 4.9, there exists a point b € F,g
where 7 (P) admits a convergent factor. We conclude by induction.

1, for some j < kK —1,

4.6. CONVERGENCE OF FACTORS ALONG FIBERS (PROOF OF Prorosition 4.9). — The proof
is divided in two steps, depending on the nature of ®~1(a):

Step I. — Suppose that ®~!(a) = E is a SNC divisor. Let (v, w) = (v,wa,...,w,)
be a coordinate system centered at b such that (v =0) C E. We can write:

x; =040 (v,w), i=1,...,n,

where ¥ = (Uy,...,¥,,) is an analytic morphism defined in some open neighbor-
hood U of b, and ¥,;(0,w) # 0 for all ¢ = 1,...,n. Without loss of generality, we
can suppose that there exists a disc D C C such that U = D™ and that the coef-
ficients of the polynomial ¢ are convergent over U. Next, we set a = (aq,...,ay),
and let A € 5’; be a fixed function. We consider the expansion of A in terms of
a-homogeneous polynomials:

A= Z A;(x), where A;(x) is an homogeneous polynomial of degree i.
=0
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This implies that:

(oo} oo oo oo oo
Dy (A) = Zviw(Ai) = Zvi Zvjaij(w) = ka Z a;j(w) = kabk(w),

i=0 i=0  j=0 k=0  it+j=k k=0
where, since A; are polynomials and ¥ is convergent in U = D", we conclude that
a;j(w) are analytic functions defined on D"~!. Moreover, since for every k, the func-
tion by (w) is a finite sum of functions a,;;(w), we conclude that by(w) are also an-
alytic functions defined over D™~ !. Denoting by @pn-: the ring of analytic func-
tions defined over D"~ !, we conclude that by(w) € @pn-1 for every k € N, so that
®i(A) € Opn-1]v]. Since the choice of A € 0, was arbitrary, we conclude that
Py € Opn-1]v][y]- In particular, for every ¢ € (v = 0) N D", we get that P, = P, as
elements of Opn—1[v][y]. Furthermore, the factor ¢ also belongs to &pn-1[v][y], and
it follows from the Euclidean division that P, = ¢-Q + R, where R € Opn-1[v][y] has
an identically zero formal expansion at b. Since the ring &pn-1 is of convergent series,
this implies that R = 0. It follows that ¢ divides P, at every point ¢ € (v =0)NU.
We conclude the proposition by remarking that F is a SNC divisor and the choice of
the hypersurface (v = 0) C E was arbitrary.

Step 1. — Let ¥ := ®~1(a); since the morphism ® is generically of maximal rank,
we conclude that ¥ is a proper analytic subvariety of M. Consider a resolution of
singularities of X, that is, an analytic morphism o : (M', E’) — (M,X) of maximal
rank such that 0=1(X) = E’ is a SNC divisor. From Step I, at every point b’ € o=1(b),
there exists a neighborhood Uy where o/ (q) is a convergent factor of Py. Since ¥ is
an analytic subvariety of M, there exists an open neighborhood U of b where U N'X
is connected. Since ¢ is proper, furthermore, up to shrinking U we can suppose that
9) ol U)yc U Up.
b’co—1(b)

Now given a point ¢ € ¥ N U, suppose by contradiction that ¢ is not a factor of P,
that is, the formal division P, = ¢, - @ + R has a nonzero remainder R € ﬁc[y]
It follows that, at every point ¢ € o71(c) we have that o (R) := R # 0, which
implies that g does not divide P.. But ¢/ € ENo~(U), leading to a contradiction
with (9). It follows that ¢ formally divides P, at every point ¢ € XN U, as we wanted
to prove.

5. SEMI-GLOBAL EXTENSION OF CONVERGENT FACTORS

5.1. SEMI-GLOBAL EXTENSION OVERVIEW (PROOF OF ProposiTiON 4.8). — This subsection
contains the full strategy to prove Proposition 4.8. In order to motivate each object,
we leave the proofs and development of the necessary supporting techniques, namely
Theorems 5.8, 5.16, 5.18 and Proposition 5.13, to Sections 5.2, 5.3, 5.4 and 5.5.

We start by providing the adequate algebraic setting for the discussion. More pre-
cisely, following Tougeron [Tou90], we build up a subring of the algebraic closure of
C(x) (See Definition 5.5 and Theorem 5.8) which captures geometrical properties
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necessary to address Proposition 4.8. Our presentation is at first general (that is,
n € N), and we specialize it to the case n = 2 when it becomes convenient for the
presentation.

5.1.1. Preliminaries on valuation rings. — We consider the ring of power series C[x],
where ¢ = (21,...,z,) and we denote by C((x)) its field of fractions. We denote
by v the (x)-adic valuation on Cx]. The valuation v extends to C((x)) by defining
v(f/g) =v(f)—v(g) for every f, g € C[x], g # 0. We consider the valuation ring V,,
associated to it, that is,

Vo :={f/g1f g€Clx], v(f) > v(g)} ={F € C(=) |v(F) > 0}.

We denote by ‘A/l, its completion. Classically elements of 17,, can be represented as
formal series A = )7, Ay, where the Ay are in V, and, if Ay # 0, v(Ax) = k.
For B € V, we have B = f/g, where f, g € C[z]. We expand f = 37, -, fk,
g = zk>k2 gk, where the fi and g are homogeneous polynomials of degree k and
fr1s gk, 7 0. Therefore we have

-1
A G (ED O
G2 K>k fi, k>hy Th2
Therefore the elements A € ‘A/,, are of the form:

o a(T)
A=t

keN

where ay and by are homogeneous polynomials such that deg(ax) — deg(by) = k.

Derinition 5.1 (Weighted-homogenous polynomial). — Let z1, ..., 2, be indetermi-
nates, and let wy, ..., w, € Qx¢. We say that a polynomial I'(x,z) € Clzx, 2] is
(w1, ...,wy)-weighted homogeneous if T'(x, 27", ..., 2¥") is homogeneous.

Derinition 5.2 (Homogeneous elements). — A homogeneous element + is an element
of an algebraic closure of C(x), satisfying a relation of the form T'(x,~) = 0 for some
w-weighted homogeneous polynomial I'(z, z), where w € Qx¢. Furthermore, if I'(x, 2)
is monic in z, we say that v is an integral homogeneous element. In this case, w is
called the degree of «v. This degree is well-defined. Indeed, the minimal polynomial of
is w-weighted as a factor of an w-weighted homogeneous polynomial, and conversely
any polynomial which is weighted homogeneous and a multiple of an w-weighted
homogeneous polynomial is w-weighted homogeneous.

Remark 5.3. — In order to give a general overview of the strategy of the proof we

postpone the presentation of the main properties of homogeneous elements (cf. Lem-
ma 5.21, Corollary 5.22 and Lemma 5.23).
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Given an integral homogeneous element v of degree w, there exists an extension of
the valuation v, still denoted by v, to the field C(x)[7], defined by

VCZ_: ak(:c)'yk> = min{v(ay) + kw}.

where d is the degree of the field extension C(x) — C(x)[y]. In particular, the above
property justifies our use of the valuation v (instead of naively using the notion of
order, which would not extend to integral homogeneous elements).

More generally, given homogeneous elements v = (y1, ..., 7.) of degrees
w = (w1, ..., w,), there exists an extension of the valuation v, still denoted by v, to
the field C(x)[v], defined by

y( Z ak(w)'yk> = min{v(ag) + kw1 + - + krwy },
Ktk
where the indices k; run over {0,...,d; — 1}, where d; is the degree of the field
extension
C@)m, .- vi-1] — C@) [, -l
We denote by V,, 4 the valuation ring of v defined on C((x))[vy]. We note that V, - is
a local ring, and we denote by ‘A/W, its completion. We remark that the image of V,
or of ‘71/,'7 under the valuation v is the subgroup I', 5 of Q generated by 1,ws,...,w,.
This group being a finitely generated Z-module, it is a discrete group, therefore V,, 5
and ‘7”77 are discrete valuation rings.
Note that all elements of 171,,7 are written as finite sums:

Z ax(x)Y*,  where a(x) € Frac(V,) and v(ak(z)y*) > 0.

K1y.oykp
Derinrrion 5.4 (Initial term). — For a nonzero element £ € 171,’.7, we can write
&= Z &k, where & € C((«))[v] are v-homogeneous terms of degree k.

k€QxoNT'y ~

The initial term of &, denoted by in, (), is defined as &,, where
ko = mll’l{k € Q}() N FV,"/ | fk 7é O},

which is well-defined because I', ~ is a finitely generated subgroup of Q.

5.1.2. Projective rings and a Newton-Puiseuz-FEisenstein theorem. — We are now ready
to define the rings of functions which we are interested in:

Derinirion 5.5 (Projective rings). — Let h be a homogeneous polynomial. We denote
by P, ((x)) the subring of Frac(V, ) characterized by the following property: A € Pp, ()
if there exists kg € Z, o, 8 € N and ax(x) homogeneous polynomials for & > kg so
that:

ap(x
A=) h§£+;’ where v(ag) — (ak + B)v(h) =k, Yk = k.
k>ko
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We denote by P[] the subring of P, (x)) of elements A whose initial term kg belongs
to Z>o. When 7 is an integral homogeneous element, we denote by P, [, 7] the subring
of V,, ~, whose elements & are of the form:

d—1
&= Zflk(:n)fyk'7 where Ay, € Py ((x)) and v(Ag(z)y*) >0, k=0,...,d — 1.
k=0
Remark 5.6. — Let us remark that the family (Pp[x])s is a directed set, since, for

two homogeneous polynomials h; and hg, we have
]P)hi [[.’I}]] C Phlhz H.’B]] fori=1,2.

Remark 5.7 (Geometrical properties of projective rings)

(1) (Invariance by linear coordinate changes). Let h be a homogeneous polynomial,
v be an homogeneous integral element and ® : (C™,0) — (C",0) be a linear coor-
dinate change. Note that h := h o ® is an homogeneous polynomial and that P[]
(respectively Pp,((x)) and Py[x,~]) is isomorphic to Py [x] (respectively P;((x)) and
]PTL [[337 ’7}])

(2) (Blowing ups) We specialize to the case n = 2. Let o : (N, F) = (N,, F.) —

1)

(C2%,0) be a sequence of point blowing ups and let b € Fﬁ be a point. We can find

two different normal forms, depending on the nature of b:
(a) Suppose that b does not belong to the intersection of two exceptional
divisors. Then, up to a linear change of coordinates in z, there exists a system
of local coordinates (v, w) centered at b such that:

r1 =0, To9 = VW
and, if A € P,[z], we obtain:
a(1,w) ok,

h(1,w) ak+5
k>0

Ap =

so that o : PpJz] — C(w)[v] is a well-defined morphism. In particular, if b
does not belong to the strict transform of (h = 0) (so h(1,0) # 0) then A, € O
and oy : Ppx][y] — Oy is well-defined.

(b) Suppose that b belongs to the intersection of two components of the
exceptional divisor. Then, up to a linear change of coordinates in x, there exists
local coordinate system (v, w) centered at b and ¢ € Z~¢ such that:

1 = v, xp = vwtl,

and, if A € P, [x], we obtain:
ag(1,w e \E
Ap:=0 Ehlwak+ﬁwv)'

Our interest in these rings is justified by the following version of the Newton-
Puiseux-Eisenstein theorem, proved in Section 5.2:
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Tueorewm 5.8 (Newton-Puiseux-Eisenstein). — Let P(z,y) € Clz][y] be a monic poly-
nomial. There exists an integral homogeneous element v, and a homogeneous polyno-
mial h(x), such that P(x,y) factors as a product of degree 1 monic polynomials in y
with coefficients in Ppx,~].

The following result is an easy, but convenient, reformulation of Theorem 5.8:

Cororrary 5.9 (Newton-Puiseux-Eisenstein factorization). — Let P € Clx][y] be a
monic polynomial. Then, there is a homogeneous polynomial h and integral homoge-
neous elements v, j, such that P can be written as
(10) P(x,y)=[[Q: and Qi=]]w- &= 7,)),
i=1 j=1

where

(i) the Q; € Py[x][y] are irreducible in V,,[y),

(ii) for every i, there are A; i(x) € Py, (a:)) for 0 < k < k; such that

717J Z Al k ’71 NE

(iii) for everyi, the v, ; are distinct conjugates of an homogeneous element ~y;, that
is, Toots of its minimal polynomial T; over C(x).

Proof. — The first equality is a direct consequence of Theorem 5.8. Fix @ an ir-
reducible factor of P in P,[z][y] and let Frac(P,[z]) — K be a normal field ex-
tension containing all the roots of ). Because @ is irreducible, for every j, there is
7; € Aut (K/Frac(Py[x])) such that 7;(&1) = &;. Now, seeing & as an element of
Frac(Pp[z])[v], this gives 7,(& (2, ) = & (2, 75(7)). But since C(x) C Frac(P,[z]),
7;(7y) is also a root of the minimal polynomial of v over C(x). O

5.1.3. Projective convergent rings. — In order to prove Proposition 4.8, we will show
that if P admits a convergent factor after a sequence of blowing ups, then a certain
number of the polynomials @; in equation (10) are “convergent”. We start by mak-
ing the latter notion precise, that is, we introduce a subring P,{x} of P, [x] which
formalizes the notion of convergence in P, [x]. More precisely:

Derinition 5.10 (Projective convergent rings). Let h be a homogeneous polyno-
mial. We denote by P {x}, the subring of P, [z] characterized by elements A € Py [x]
such that

(11) Zak € C{x}, where A= Z hock+ﬂ

k>0 k>0

Note that it is not clear that P,{x} is well-defined, since the characterization of its
elements seems to depend on the choice of the representation of A € P, [x] in power
series, which is not unique. Proposition 5.13, whose proof we postpone to Section 5.3,
addresses this point and shows that Py {x} is well-defined.
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(03

Remark 5.11. We recall that a power series f =3 yn faT
only if there exists A, B > 0 such that the following inequalities hold:

VaeN", |f. <A- Bl

f=Y" fulx)

keN
where fj(x) are homogeneous polynomials of degree k, then f € C{x} if, and only if,
there exists a compact neighborhood K of the origin and constants A, B > 0 such
that:

is convergent if and

Moreover, if we expand [ as

sup |fr(2)| < AB*l ¥k eN.
zeK

Derinition 5.12. — For f analytic on some compact set K C C", we set

[fllx := sup [f(2)]
zeK

Prorosirion 5.13 (Independence of the representative). — Let hy, ho be homogeneous
polynomials and consider elements
a1,k(T) az,k(T)
Av=) e €Pulel and Ao =) S € Pi[a]
k>0""1 k>0 "'"2
such that A1 = Ay when they are considered as elements of YA/,,. Then Zk>0 ar k(x) €
C{z} if and only if 3 o azk(z) € C{z}. In particular:

Pp{z} N C[zx] = C{x}.

The algebraic definition of Pp{x} captures a crucial geometrical property for this
work, namely the “generic” convergence of elements of A € Pp{x} after a point
blowing up. More precisely:

Levva 5.14 (Geometrical characterization of Pp{x}). — Let A € Pp,[z] and consider
a sequence of point blowing ups o : (N, F') — (C™,0). Let b be a point of Fr(l) which
is not on the strict transform of (h = 0), nor on any other component of F. Then
A € Pp{z}, if and only if Ay := G} (A) is a convergent power series.

Proof. — We start by noting that the definition of P, {z} is invariant by linear changes

of coordinates in @, cf. Remark 5.7(1). Therefore, since b is only on jolS)

, as in Remark
5.7(2a), there exists a system of local coordinates (v,ws,...,w,) centered at b such
that:

r1 =v, x;=vw; fori>1.
and, if A € Py[x], we obtain:
ak(1, w) oF

h 1, w ak+6
k>0

Ap =

In particular, as b does not belong to the strict transform of (h = 0), A, € ﬁb.
Assume that A € Pp{x} as in (11). The degree of ax(x) is linear in k, say ak + b
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with a, b € N. Since ) ax(x) € C{x}, there exists a compact neighborhood K of b
and a constant C' > 0 such that |lax(1,w)||x < C*. Since b is not on the strict
transform of (h = 0), h(1l,w) # 0, and, up to shrinking K, we can suppose that
inf (, wyex [|A(1,w)]| = ho > 0, yielding:

It el < 2 (i)

and we easily conclude that Ay is a convergent power series.
Next, suppose that Ay is convergent and let us prove that the formal power series
G =} ik, k() € Cz] is convergent. Indeed, we note that:

w) = ap(l,w)z" = K7 (1, w) - Ap(h*(1,w) - 2,w) € C{z, w}.

k>0

Now, by definition, the degree of the polynomials ax () is an affine function in k, say
ak + b, where a,b € N. It therefore follows that &} (G) = 2 - B(2%, w) is a convergent
power series. It now follows from Lemma 2.6 that G is convergent, finishing the
proof. O

5.1.4. Formal extensions. We now turn our attention to the study of the behaviour
after blowing up of A € Pr{x} at a point b in the strict transform of (h = 0). We start
by studying it formally:

Dermvition 5.15 (Formal extension). — Let A € Pp[z] and consider a sequence of
point blowing ups ¢ : (N, F) — (C™,0). Given a point b € Fr(l), we say that A extends
formally at b if the composition Ay := 7 (A) belongs to 0. Moreover, we say that A
extends analytically at b if Ay belongs to 0.

Given A € Py[x], we know by Lemma 5.14 that A extends to every point b € £
which does not belong to the strict transform of (h = 0) or to the intersection of two
divisors. But, under the hypothesis of Proposition 4.8, the results hold true over every

. (1) .
point b € Fp™’/, that is:

Tueorem 5.16 (Semi-global formal extension). — Let P(x,y) € Clx][y] be a monic
reduced polynomial, and let P = [[;_, Q; be the factorization of P as a product of
irreducible monic polynomials of Pp[x][y] given by Theorem 5.8. Suppose that n = 2
and let o : (N,F) — (C2%,0) be a sequence of point blowing ups so that, at every
point b € Fr(l), the pulled-back discriminant 6{(Ap) is formally monomial. Then, for
every point b € F,El), the polynomials Q; extend formally at b to a polynomial which
we denote by o (Q;). Furthermore, the extension is compatible with the factorization

of P, that is [[;_, 54(Qi) = 0(P).

The proof of Theorem 5.16 is postponed to Section 5.4. The formal extension prop-
erty can be combined with analytic continuation type arguments in order to obtain:
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Levmma 5.17 (Analytic continuation of formal extensions). Let A € Pp{x} and
o (N,F) — (C%0) be a sequence of point blowing ups. Suppose that A formally

(1)

extends at b € Fp/. Then A extends analytically at b.

Proof. — The result easily follows from Lemma 5.14 whenever b is not in the strict
transform of (h = 0) or in the intersection of more than one exceptional divisor. In
the general case, using the normal forms of Remark 5.7(2), we can suppose that there
exists a coordinate system (v, w) centered at b and ¢ € Zxq such that:

z1=v -w’ x9=v wt!

it follows from the hypothesis that there exist polynomials bk( ) for k > ko such that

- ¥t - S ) = B0 ),
k>ko k>ko
that is, by - h(1,w)**+8 = w.a;(1,w). We claim that B is a convergent power series.
Indeed, let us denote by h(1,w) = wéu(w), where u(0) # 0, and consider a closed
ball B(b,r) of radius 7 such that 1 > r > 0, where inf,,ep () [u(w)| > C for some
positive C.
For every polynomial b(w), by the maximum principle, we have

1 1
Ib(w)ll 5o,y = 1b(2)| = 5 [b(2)2"] < ] 1b(w)w? | 5o,

for some z € C, |z| =7.

Therefore, for every polynomial b(w), we get that:

_ 1 _
6] Bo,r) < 116+ ullBeom w1 Bom) < ] 16+ h(1, w)|| Bomllu" 5o,

< g b b1 w) e
We apply this inequality ak + 8 times and we combine it with Remark 5.11: there is
a constant D > 0 such that [|ax(1,w)| g, < D* for every k. This shows that
bl oy < (CrH)~@REA DR v > 0. O

5.1.5. Local-to-semi-global convergence of factors. — As a consequence of the previous
discussion, if P € C[x][y] is a monic polynomial and @ € P,{x}[y] is a factor of P
then, under the conditions of Proposition 4.8, Qu := 7 (Q) is a convergent factor of
Py := G{(P) at every point b € FM Tt remains to show that there exists such a
factor (). This is the subject of the next result:

Tueorem 5.18 (Local-to-semi-global convergence of factors). — Let P € Clx][y] be
a monic reduced polynomial, and h be a homogeneous polynomial as in Theorem 5.8.
Suppose that n = 2 and let o : (N, F) — (C2%,0) be a sequence of point blowing ups.
Suppose that at every point b € F(l) the pulled- back discriminant o (Ap) is formally
monomial. Suppose that there exists a point b € F ) such that Py := G (P) admits a
convergent factor. Then P admits a non-constant factor Q € Pp{x}[y| such that either
P/Q is constant, or o} (P/Q) admits no convergent factor at every point b € F

The proof of Theorem 5.18 is postponed to Section 5.5.
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5.1.6. Proofof Proposition 4.8. We have now collected all necessary ingredients in
order to prove the following result, which immediately yields Proposition 4.8:

Cororrary 5.19 (Semi-global extension of convergent factors). — Let P(x,y) €
Clz][y] be a monic reduced polynomial, and let P = [];_, Q; be the factorization
of P as a product of irreducible monic polynomials of Py[x][y] given in Theorem 5.8.
Let o : (N, F) — (C2,0) be a sequence of point blowing ups, and suppose that:

(i) At every point b € Fr(l), the pulled-back discriminant 6;(Ap) is formally mono-
mial.
(ii) There exists by € FY | where Py, := 0§, (P) admits a convergent factor.

Then, up to re-indexing the polynomials Q;, there exists an index t > 1, a neigh-
borhood Ur(l) of Fr(l) and analytic polynomials q; € O ) [y] for j =1,...,t such that,

), we have that

Tv(q;) = 75(Q;)-

for every point b € Fﬁl

Finally, denote by ¢ = szl q;- Then, at every point b € F,gl), the quotient polynomial
Py /T (q) is either constant, or does not admit a convergent factor.

Proof. — Consider the factorization (10) given by Corollary 5.9:
P(CE,y) = HQl(w7y)) where Qz(way) € ]Phﬂm]][y]v i= 1, sy S
i=1

From Theorem 5.16, we know that @); extends formally to every point b of Fr(l) for
every i = 1,...,s. It follows from Theorem 5.18 that there exists ¢ < s such that
Q; € Pp{x}[y] for every 1 < i < t. Now, by Lemma 5.17, Q; extends analytically
at every point b € Fﬁl) for every ¢ < t. This implies that there exists a polyno-
mial ¢; defined in a neighborhood Ut of FM which formally coincides with o7 (Q;)
at every point b € Fr(l). Finally, it is immediate from the above construction that ¢
is constant along F,gl), which implies that P/ szl Q; admits no further convergent

factors, finishing the proof. |

5.2. Tue Newton-Puiseux- KISENSTEIN THEOREM. The proof of Theorem 5.8 is done
via an induction argument in terms of the degree of P. Note that the case of deg(P) =
1 is trivial (with h = 1 and v = 1), while deg(P) = 2 still admits an elementary proof:

Remark 5.20 (Elementary proof when deg(P) = 2). If deg(P) = 2, then we can
write P(x,y) = Py(x) + Pi(x)y + y? and obtain an explicit formula for their roots.
More precisely, the discriminant Ap € C[x], and can be written as:

Ap = Z 5k($),

k>ko
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where i, = in(Ap) and Jx(x) are homogeneous elements for every k > kg. It follows
that the roots of P(x,y) = 0 are given by:
P1 \/A 7i:|: 5]%(%).

— 14
&+ 2 4 2 4

_ o (x)
B bt Z 5:0(-’”)

k>ko

and we can easily verify that £&x € Pp[z,~], where h := in(Ap) = g, (z) and v :=
Vi(ap) = /5 (@),

In general, it is not possible to choose h = in(Ap) as claimed (but not proved) in
[Tou90].

As we will see, a proof by induction on the degree of P demands manipulations
of several integral elements at the same time. We start by a couple of useful results
about homogeneous elements:

Levma 5.21 (Degree compatibility under extensions). Let P(x,z1,...,2k+1) €
Cle, 21, . -, zk+1) be a (w1, ..., wkt1)-weighted homogeneous polynomial. Let y; be ho-
mogeneous elements of degree w;, for i < k, such that

degzk+1<P(wu’yla s Vi zk+1)) > 1.

Then any element yi11 of an algebraic closure of C(x) such that

P(x,v1,. ., Yk+1) =0

is a homogeneous element of degree wyy1.

Proof. The proof is made by induction on k. For k = 0, the result follows directly
from the definition. Let now k£ > 1, and assume that the result is proved for k — 1.
Let Py(x,z;) be a nonzero irreducible wg-weighted homogeneous polynomial such
that Py(x,v;) = 0. We set

P(x,z1,. ..y 25-1, 2kt+1) := Res,, (Px(x, 21), P(x, 21, ..., 2k41)),

where Res,, denotes the resultant of two polynomials seen as polynomials in the inde-
terminate z;. Then ﬁ(m, Z1yeey Zh—1, 2k+1) 18 @ (W1, ..., wg—1, Wrt1)-weighted homo-
geneous polynomial, and we have ﬁ(m,*yl, ey Vk—1,7k+1) = 0. Because Py(x, zp) is
irreducible, ged(Pr(x, 2;), P(€, Y1, -+, Vk—1, Zks 2k+1)) 18 either 1 or Py(x, zx), but

degszrl (P(.’B, Y1y- -5 Vks Zk-‘rl)) P 17
thus Py(x, zx) does not divide P(x,v1,...,Yk—1, 2k, 2k+1), implying that Py(x, zx)

and P(x,v1,...,Yk—1, 2k, 2k+1) are coprime and P(x,¥1,...,Vk—1, 2k+1) Is nonzero.
We conclude by induction. O
Cororrary 5.22 (Compatibility between homogenous elements). If v1 and ~o are

homogeneous elements, respectively of degrees wy and ws, then

(i) for every q € Qso, 7{ is homogeneous of degree qu,
(ii) 7172 s homogeneous of degree wi + wa,
(iii) 4f w1 = wa, v1 + Y2 is homogeneous of degree wy .
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Proof. — For i = 1 and 2, let us denote by P;(z, z;) a nonzero w;-weighted homo-
geneous polynomial with P;(x,7;) = 0. In order to prove the corollary, we apply
Lemma 5.21 to P(x, 21, 22) = 2§ — 25 if ¢ = a/b in case (i), P(x, 21, 29, 23) = 23 — 2122
in case (ii), and P(x, 21, 22, 23) = 23 — 21 — 22 in case (iii). O

We now turn to the proof of a key result in order to reduce the study from multiple
homogeneous elements to a single one:

Levmma 5.23 (Existence of a primitive integral homogeneous element)
Let v = (1, ---, v) be homogeneous elements. Then there exists an integral
homogeneous element g such that

Vi C Vi

Proof. — For simplicity we assume r = 2. The general case is proved in a similar way.
Let us denote by w; the degree of «;, and write w; = a;/b;, where a;,b; € N. We set
v = /ab2 and v = fy;/ 201 Therefore v} and 7} are homogeneous elements of the
same degree w = 1/b1bs. By the primitive element theorem, there exists ¢ € C such
that
C(z)(71,73) = C(®) (711 + e3).

Therefore V,, ov v =V, 11 4oy Since Vi, 4, 4, C Vi, o1 1, this proves the existence of a
homogeneous element g such that

VV,’Ylv’YQ C Vl’y’YO'

Thus, we only need to prove that 7y may be chosen to be an integral homogeneous
element. Let us assume that

(12) co(®)7d + cr(®)yd ™+ -+ calx) = 0,
where the ¢ (x) are homogeneous polynomials of degree wk + p, where w € Qs and
p € N. Let v}, := co(x)7o. Then, by multiplying (12) by co(x)?™?

d d— _ d—k _
!+ er(@) T ep(@)eo(@) T 4 (@) ea() = 0.

, we have

This shows that 7( is a integral homogeneous element of degree p + w. This proves

the lemma since V,, , =V, O

’
Yo ©

Finally, we are ready to prove Theorem 5.8. We divide the proof in two main steps
(which combined immediately yield Theorem 5.8), which are interesting on their own.
The first step shows that we can concentrate our discussion to the rings ‘A/lw instead of
Pp[x,v]. The proof of this first step follows from arguments in the spirit of Tougeron’s
implicit function theorem [Tou72, Ch.3, Th.3.2]:

Prorosirion 5.24 (Newton-Puiseux-Eisenstein: Step I). — Let P(x,y) € Clz][y] be a
monic polynomial. Suppose that there exists an integral homogeneous element v such
that P(x,y) factors as a product of degree 1 polynomials in y with coefficients in 17,,,7.
Then there exists an homogeneous polynomial h such that P(x,y) factors as a product
of degree 1 polynomials in y with coefficients in Pp[x,~].
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Proof. Let € be a root of the polynomial P(x,y); by hypothesis £ € ‘A/l,,y, so it has
the following form:

d
£ = ZAwi, where A; € Frac(V,) and v(4;7°) > 0.
i=1
Let us denote by v =: 71, ...,74 the conjugates of v over C(x). Then d is the degree
of the minimal polynomial of v over C(x). We denote by M the Vandermonde matrix
whose coefficients are the 7/, for 1 <, j < d. Note that:

d
5J:2A27;7 ]:Lad
=1

are also roots of P(x,y). We now have that:

A1 51 Al fl
M-|:|=1]:]|, therefore | : | =M -1 :
Ad fd Ad gd

Because the entries of M are algebraic over C(z), the entries of M ~! are also algebraic
over C(z). Thus the A; are algebraic over C((x)). Now, we claim that if 4 € V, is
algebraic over C((x)), then there exists h (depending on A) such that A € Pp(()).
The proposition easily follows from the claim, by using the fact that:

Pp, [z, 7] U P, [x,~] C Prlx,~], where h =lcm(hy,hs),

and noting that there are a finite number of roots £ of P, each one of them with a
finite number of coefficients A;. We now turn to the proof of the Claim.

Let A € Frac(‘/},,) be algebraic over C((x)). Note that if ;A € Pp,((x)), then A €
P.,rn((@)) and, if A is algebraic, then x1 A is algebraic too. So, up to multiplying A by
a large power of z1, we may assume that v(A) > 0. We write A =), a;(x)/bi(x),
where a;, b; are homogeneous polynomials such that v(a;)—v(b;) = 4, and we denote by
P(x, z) the minimal polynomial of A. Now, we replace x; by tx; for every i. Therefore,
Q(z) := P(tx,z) (where we leave the dependency in @ and ¢ implicit) is separable
and Q(B) = 0, where B := Y, A;(x)t". Note that @ may not be irreducible over
C((t, z))[z] but it is separable because P is, as an irreducible polynomial over a field
of characteristic zero. We set e := ord;(0Q/9z)(B) > 0, where ord;(-) denotes the
order of a series with respect to the variable ¢. Note that (0Q/0z)(B) # 0, since Q
is separable. We set B := Zi<26+1 A;(z)t and y = tT1v. By Taylor expansions in z

centered at B and B, we have

Q(t*™'v+B) =Q(B) + %Q (B)t“T v 4 @vl(t, x,v)t>e 22
2
and
et1 0Q et | A 2e+2, 2
Qv+ B) = g(B)t v+ Qa(t, ®, v)t= 07,
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where Q1, Q2 € C((,t)[v]. Writing B = B+t Y, (ai(2) /by ()t~ this
gives

ordt(%(B)) = ordt<%(§)) =e,
and ord;(Q(B)) > 2e + 1.

Now, note that every term of B is of the form (a;/b;)t’, where a;(x), b;(x) are ho-
mogeneous polynomials and v(a;) —v(b;) = i. Furthermore, since Q € C((tx))[z], every
term of Q(B) is the form (f;/g;)t!, where, again, f;(x), g:(z) are homogeneous polyno-
mials and v(f;) —v(g;) = 4. Finally, since B is a finite sum with homogeneous denom-
inators and @ € C((xt))[z], there exists an homogeneous polynomial b(x) such that
b(x)Q(t**1v+B) € C[z, t][v]. Therefore, dividing the equation b(x)Q(t** v + B) = 0
by t2¢*t1 we obtain

13 Ro(t,x) + R.(t,x v+ R t,x,v)v? =0,
(13) (t, ) (t, ) ( )

with ordy(R;) = 0, so we can write Ry(t,z) = g(x) + tRy(t,z), where g(zx) is a
nonzero homogeneous polynomial of degree > 2e 4+ 1. Moreover,

v = Z Ag(x)ti—e !

i>2e+1
is a solution of (13) and, thus, ¢ divides Ry (t,x), that is Ro(t,x) = tRo(t, ). We set
t = g(x)%s and v = g(x)w.
Then, dividing (13) by g(x)? we get
(14)  sRo(g(x)*s,x) + 1+ g(w)sﬁl(g(m)Qs,m)}w + R(g(x)?s, z, g(z)w)w? = 0.

By the implicit function theorem, (14) has a unique solution w(s,z) € C[s,z],
w(s, ) =Y, wi(x)s'. Therefore

Zi(fﬂ) b Zi(w) s wi(fﬂ)gz(iw) pitetl

= bi(z) icar bi@) = 9(@)

Hence, if h denotes the product of g2 with the b; for i < 2e + 1, we have that
A(x) € Py[x]. This finishes the proof. O

We now turn to the second step of the proof of Theorem 5.8, which is actually a
more general statement than Theorem 5.8, and easier to prove by induction:

Prorosirion 5.25 (Newton-Puiseux-Eisenstein: Step IT). Let vy be an integral homo-
geneous element and P(x,y) € ‘A/Vﬁ[y] be a monic polynomial. Then there exists an
integral homogeneous element v such that P(x,y) factors as a product of degree 1
polynomials in y with coefficients in XA/,,W/.

Proof. — We prove the proposition by induction on the degree deg, (P) = d. Fixed 7,
note that the result is trivial when d = 1, and suppose that the proposition is proved
for every homogeneous element v and every polynomial in V,, ,[y] with degree d’ < d.
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We fix an homogeneous element v, and let P(x,y) € ‘7%7[34} be a monic polynomial
of degree d. Let us write

P(y):yd+a1yd_1+--~+ad7 aief/\'l,’mizl,...,d.
Up to replacing y by y — a1/d, we can assume that a; = 0. Let ko € {2,...,d} be
such that
v(ag,) _ v(ax)
15 = <
Let 1 be such that ’yfo — iny(ag,) = 0. By Corollary 5.22, v, is a homogeneous

Vke{2,...,d}.

element. By (15), we can write ay = by} for every k € {2,...,d}, where by, € 171,’%71.
We remark that
P(y1y) =1 (y? + bay®™2 + -+ + ba).

We set Q(y) = y? + bay?=2 + - -+ + by. We denote by m, the maximal ideal of 17,,’%717
i.e., the set of elements a such that v(a) > 0, and we denote by Q(y) the image of Q(y)
in XA/W,m /m[y] =~ Cly]. Then Q(y) is not of the form (y —c)? since by = 0 and by, ¢ m.
Therefore we may factor Q(y) as a product Ry (y)Ra(y), where the R;(y) are monic
polynomials with complex coefficients, and R;(y) and Ra(y) are coprime. By Hensel’s
lemma, this factorization of Q(y) lifts as a factorization of Q(y): Q(y) = Q1(y)Q2(y),
where Q;(y) mod m = R;(y) for i = 1,2. Now, by Lemma 5.23, we know that there
exists an homogeneous element 7’ such that Q1(y) and Q2(y) are polynomials with
coefficients in ‘A/l,,n,/, and each one of them has degree d; < d for ¢ = 1,2. We conclude
by induction and by Lemma 5.23 once again. |

Remark 5.26. — The classical Newton-Puiseux theorem asserts that a monic poly-
nomial P(y) with coefficients in k[x], where z is a single indeterminate and k is a
characteristic zero field, has its roots in k'[2'/4] for some d € N* and k — k' a finite
field extension.

Fixi € {1,...,n} and let a(x), b(x) be nonzero homogeneous polynomials. We have
a(x) _ deg(a) —deg(b) @ (x1/xi, .- ,xn/xl)
b(x) E b(z1/miy. . xn/x;)

This proves that V,, is isomorphic to K[z;], where K ~ C(zy /i, . .., @n/%;).

Moreover, if v is an integral homogeneous element, we can consider the coefficients
of its minimal polynomial as elements of K[z1] by the previous remark. In this case,
it is straightforward to check that ~ is identified with cz}/ du(ccl), where c is algebraic
over K, d € N* and U(z1) is a unit of K[z1]. Therefore, Proposition 5.25 is an
extension of the classical Newton-Puiseux theorem for univariate power series since
Py, [[:B]] C ‘7,/.

On the other hand, the classical Eisenstein theorem [Eis52] is the following state-
ment:

Tueorewm (Eisenstein’s theorem [Eis52]). — Given a univariate power series f(x) =
Sren frx® € Q] that is algebraic over Z[x], there exists a nonzero integer b such
that

VkeN, bvtif ez
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This shows that the fi can be written as ax/b**!, where ay, are integers. Therefore,
Proposition 5.25 is a natural extension of the Eisenstein theorem to the situation
where Z is replaced by C[x].

5.3. ON CONVERGENT PROJECTIVE RINGS. — In this subsection we prove Proposi-
tion 5.13. For this we need a complementary inequality to the following inequality:

Vp,q € Clz], [pq| <|pllql,

where |p| is a well chosen norm. The investigation for such complementary inequalities
is an old problem that goes back to K. Mahler [Mah62]. The complementary inequality
that we need is given in Corollary 5.29 given below. Such an inequality follows from
results proved in this field. But for the sake of completeness we chose to include a proof
of this inequality. Moreover our proof seems to be new and may be of independent
interest. It is based on the Weierstrass division theorem that is well-known in local
analytic geometry. Therefore we begin by defining the needed norms:

Derixirion 5.27. — Let p > 0. We denote by C{x}, the subring of C{z} of series
f(®) =3 cnn fax® such that
flp =" |falpl® < oo
aeN”
The map f € C{x}, — |f|, is an absolute value that makes C{x}, a Banach algebra.

Prorosition 5.28. — Let h(x) € C{x}. Then there is p > 0 and C' > 0 such that for
every a(x) € C{x},

a(z) € h(z)Clz] = [“(x) € C{x}, and ‘

h(x) ‘p s C’|a(az)|p}.

a(x)
h(z)
Proof. — The proof is essentially the proof given in [Tou72] of the Weierstrass division
theorem. First we fix p > 0 small enough to ensure that h(x) € C{z},. If h(x) is a
unit, up to shrinking p, the result is straightforward.

If ord(h(x)) = 1, there is an analytic diffecomorphism ¢ : C{x} — C{x} sending
h(x) onto z1. For every p, such a diffeomorphism sends C{x}, onto C{z}, for some
p' > 0. Therefore we may assume that h(x) = z1, and in this case the result easily
follows, with C' = p~1.

Therefore, we assume that ord(h(z)) > 2. Up to a linear change of coordinates,
we may assume that h(zx) is x,-regular of order d > 2, that is, h(0,2,) = zu(x,)
with «(0) # 0. Note that we may identify the C-vector space of polynomials r(x) €
C{x'},[x,)] of degree at most d in z,, with (C{z'},)?. We now define the following
C-linear maps:

Ly, Ly : C{z}, x (C{z'},)* — C{=z},
by
Li(q,r) =qgh+r and Ly(qr)=qzl +r.
Set Ly = Ly — L;. We remark that Lo is a linear isomorphism (every series a(x) can
be written in a unique way as a(z) = zlai(x) + az(x), where ax(x) € C{z'},[z,]
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has degree < d in z,,). We claim that L, and L; " are continuous. Indeed, since qz?
and r formal expansion have disjoint support, we have

|L2(q,7)|, = lgzl + 7], = |alpp® + |7, < C1(p) max{|q|,, |7],},
gz + 7], = |ql,p" + |r|, = min{p, 1} max{|q|,, |r|,}

for some positive constant C;(p) depending on p.
Now, we claim that LsL, !is a continuous linear map of norm < 1 for p chosen
small enough. Indeed, we have that Lz(q,7) = q(z¢ — h) and, therefore

|L3(Q7'r)|p < \CCZ - h|p |Q|p7
hence, for every a(x) € C{z}, we have
d
-1 |xn — h|
|Ls Ly (a(x))], < m |a(x)],.
But for p small enough, we have |24 — h|, < cp? since ord(z? — h(zx)) > 2, for some
constant ¢ > 0. Therefore, the linear map

1-Ls3L;': C{z}, — C{z},
is an isomorphism of Banach algebras. Thus
Li=(1-L3sL;")Ls

is an isomorphism of Banach algebra if p is chosen small enough. Therefore, there is
a constant C, such that for every a(z) € C{z},, there is a unique couple (q,r) €
C{z}, x (C{z'},)?, such that

a(x) = g(x)h(x) +r(x) and max{|q|,,|r|,} < Cla(x)l,.

Now, the fact that a(x) € h(x)C[x] is equivalent to r = 0, and then a/h = ¢, whose
norm is bounded by Cla(x)|,. O

Cororrary 5.29. Let h(x) € Clx] be a homogeneous polynomial. Then, there is a
constant K > 0 such that, for every homogeneous polynomial b(x) € Clx]:

[hf1[bly < K[hb]:.

Proof. — Let p satisfy the previous proposition for h(zx). Then, with a(x) = b(x)h(x),
we get
b(z)], < Clh(z)b()],-
Since h and b are homogeneous, this gives
prED [b()], < CpeEDTIED (2)b()1,

and

(@)1 [b(@)], < Clh(®)|1p%e™ h(a)b(x)1. 0
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We are ready to complete the goal of this section:

Proof of Proposition 5.13. — First, let us remark that )7, _ar € C{zx}, where the ay,
are homogeneous polynomials of degree k, if and only if >, ar € C{x},, for some
p >0, that is, >, .y |ax|, < 0.
Let h; and hs be two homogeneous elements such that
a a
A= Z halzz":‘:ﬁl = Z hoézif-ﬁz
keN "1 keN 2

and assume that ), a1, € C{z}. We have

pot k+pB1

ai k _ ai, kg
Xk: hllllkJrﬁl - Zk: (h1h2)0t17€+51 ’

Let p > 0. We have

a1k+ﬁ1 deg(ai,,)+deg(ha)(a1k+pB1) )

larkhy ™ TP, < lag gl he| SR = p

But deg(a1,x) < ak + S for some «, f € N. Thus we have

| ha1k+ﬁ1|p ( a+deg(h2)a1‘h2|1111)kpﬁc

la1 k|1

for some constant C' > 0. Assume that ), a; » € C{z}, for p’ > 0. Then, for p >0
such that patdes(hz)ar < |hy|=1 p/ we have
k k
Y larkhs T, < pPC Y larihip” = p7C Y larkly < oo
kEN keN i
In the same way, since
al,kh31k+61 a17khglk+61 (h1h2)max{0,a2—a1}k+max{0,,82—,81}

(hyhg)o1k+P o (hth)maX{Oél,az}k+max{ﬁlﬁz} ’

we may assume that
ayk az k
A= D Gamyjers — 2 ke
(b ho\ak+8 ak+p8
(hih2) oo 1o
and ), a1 € C{z}. Hence for every k € N, we have
ak+pB

a1,k = az,khy

Thus, by Corollary 5.29, there is a constant K > 0 such that

K
VkeN, l|azphf™ 7 < T

and, by induction,
Kaerrﬁ
VkeN, lagih < W| 1Lkl1-

Therefore, if )", a1, € C{x}, for p’ > 0, we have that )", as ) € C{x}, for every
p > 0 such that p < |h|$p' /K. O
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Remark 5.30. In [Mah62], Mahler proved the following inequality:
Vh,be Clx], |hb|; < 248 +des®)|p| |p|;.

Such an inequality has been first proved by Gel’fond for polynomials in one indeter-
minate [Gel60]. We could have used this inequality in order to prove Proposition 5.13.

The inequality of Mahler has the advantage of being effective and uniform in both A
and b. On the other hand, the inequality given in Corollary 5.29 shows that the
factor K can be chosen to be independent of b when h is fixed.

5.4. SEMI-GLOBAL FORMAL EXTENSION. — The proof of Theorem 5.16 is done in two
steps. First, assuming that P € C{x}[y] is a convergent polynomial, we can provide
an elementary proof based on analytic continuation and on the classical Abhyankar-
Jung theorem. More precisely:

Prorosirion 5.31 (Semi-global formal extension: the analytic case). Let P(x,y) €
C{x}[y] be a monic reduced polynomial, and let P = [];_, Q; be the factorization of P
given in Corollary 5.9. Suppose that n =2 and let o : (N, F) — (C?,0) be a sequence

of point blowing ups such that, at every point b € F,gl)

, the pulled-back discriminant
ou(Ap) is analytically monomial. Then, for every point b € Fr(l), each polynomial Q;

extends formally at b. Furthermore, the extension is compatible with the factorization
of P, that is [}, o3(Q:) = 73 (P).

Proof. — Given a point b € FY which is not in the strict transform of (h =0), nor
the intersection of exceptional divisors, then each o (Q;) is a monic formal factors
of the convergent monic polynomial ofj(P). We conclude therefore that each Q; is
convergent. In particular, note that @Q; € Pr{x}[y] by Lemma 5.14. We now study
the points b € F\") which are either in the strict transform of (h = 0), or in an
intersection of exceptional divisors.

By combining the normal forms given in Remark 5.7(2), up to a linear change of
coordinates, there exists a coordinate system (v, w) centered at b and ¢ € Zx( such
that:

T =v-w®, xy=uv- wh

Now, by hypothesis, we know that Ap, := ¢{(Ap) is a analytically monomial
(adapted to the exceptional divisor). More precisely, up to an analytic change of
coordinates adapted to the exceptional divisor, that is,

U:ijv wzsﬁ(ﬁa@),

we can assume that Ap, = v*w'U(v,w), where U(v,w) is a unit (note that this
is always the case if b is in the intersection of two exceptional divisors, when we
necessarily have w = w). Then, by the Abhyankar-Jung theorem, we may write

d

Py =[]y - &@/* @),
=1
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where the & @Y%, w"/%") € C{o"/*,©"/%}. Now, there exists a connected punctured
disc D ¢ F" centered at b (in particular, b ¢ D) such that every point ¢ € D does
not belong to the strict transform of (A = 0), nor to the intersection of exceptional
divisors. It follows that o (Q;) is a well-defined analytic function. Furthermore, up to
shrinking D, for every i = 1,...,r, there exists a subset J;(¢) C {1,...,d} such that:

oi@) =[] —&@*" (@ —w)"™),
J€Ji(c)

where b = (0, wp). Since D is a connected set, we conclude that J;(¢) is independent
of the point ¢ € D, and we denote it by J;. There exists, therefore, an element
q € C{oV%" @'/ %"}[y] which is equal to ¢¥(Q;) at every point ¢ € D. On the one
hand, it follows, from analytic continuation, that o} (Q;) is equal to ¢ as a power
series in C{o%/® @'/ %}[y]. Now, on the other hand, if A € P,[x] is a coefficient of Q;
then:

. ae(Le(W,w)) 4~ ok
Ay =0 (A) = ¢
b =0 (A) 1;) h (1, (5, 5))7k 8 ° (v, @),
and Ay is invariant by the action of the (d!)-th roots of unity ((1,(2) — (17, (W),
which implies that ¢ is also invariant by these actions. We conclude that ¢ =: oj(Q;)
is a power series in C{v, w}[y|, finishing the proof. O

Unfortunately, there is no notion of analytic continuation in the case of formal
power series, so the proof does not extend in a trivial way to the formal case. Following
Gabrielov’s original idea [Gab73], we address this extra technical issue via the Artin
approximation theorem:

Tueorewm 5.32 (Artin approximation theorem [Art68]). — Let G(x,y) be a nonzero
function in C{x}y], where x = (x1,...,2,) and y = (y1,...,Ym), and consider
the equation G(x,y) = 0. Suppose that there exists formal power series y(x) =

W1(x), ..., Jm(x)) € (C[x])™ such that:

G(z,y(x)) = 0.

Then there exist convergent power series Yy (z) = (ygL) (x),..., y,(ﬁ) (x)) € (C{z=})™

for every v € N, such that:
G(x,yW(x)) = 0 and for every k, Jp(x) — y,(;)(m) € (x)".

Before turning to the proof of Theorem 5.16, we need to study conditions under
which a well-chosen approximation of a polynomial yields an approximation of their
roots and factors. We start by setting, once and for all, the extension of the valuation v
which we are interested in working with:

Derinition 5.33. — Let V be a ring equipped with a valuation v : V . {0} — R. Let
P(y) e V]y], P(y) = Zi:o a;y’, a; € V for every i. We define

Y(P() = min{v(ao)......v(as)}
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We now turn to the proof of two preliminary results:

Lemma 5.34 (Root-approximation). — Let K be an algebraically closed field equipped
with a valuation v : K~ {0} — R. We denote by V its valuation ring. Let P(y) € Vy]
be a reduced monic polynomial of degree d in vy, and &1, ..., &g be its roots in K. Let
Q(y) € V]y] be a monic polynomial such that

20(P - Q) >d-v(Ap).
Then, for everyi=1,...,d, Q(y) has a unique root &, in K such that

e —g) > 2D

Note that the unicity implies that, in these conditions, () is necessarily reduced.

Proof. — We start by remarking that, if the degree deg, (Q) is different from d, then
v(P — Q) = 0 since these are monic polynomials, and the hypothesis of the lemma are
not satisfied. We therefore have that deg,(Q)) = d, and we denote by &I, ..., & the
roots of Q(y) counted with multiplicity (hence we may have & = £} for some i # j).
Since P and @ are monic polynomials, we have v(&;), v(§;) = 0 for all i and j. We
write

P(y):yd+a1yd_l+"'+ad7 Q(y):yd+b1yd_1++bd
Let us fix i € {1 .,d}. We have

d
H fz) - Q( Z bk — ak s
k=1

j=1
and, since v(&;) > 0, we get:

d
H j ) minj_, {v(a — bp)} = V(P — Q).

1

Jj=
Therefore, there is (at least) one integer j(i) such that

(16)  vl& — €)= P — QW) > 5 v(Ap) > max{v(&n — &)},

Now let m € {1,...,d}, m # 4. Then, by (16), we get

V(fm - 6;(7)) = V(gm - Ez + fz - 6;(1)) = V(gm Ez) IIl<aX{l/(£k - §€)}
Therefore j(m) # j(i) whenever i # m. This gives the unicity of £ and concludes the
proof. O

Prorosition 5.35 (Factor-approximation). — Let P(y) € V,[y] be a reduced monic
polynomial of degree d in y. We write

P(y) = Pi(y) - Ps(y),

where the Pi(y) are irreducible monic polynomials of V,[y]. Let Q(y) € V,[y] be a
monic polynomial such that

2v(P(y) = Q(y)) > dv(Ap).
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Then Q(y) can be written as a product of irreducible monic polynomials Q;[y] € v, [y]:

Qy) = Q1(y) -~ Qs(y),

such that

V(‘PZ_QZ)>@7 i=1,...,s.

Proof. — Again, if the degree deg, (Q) is different from d, then v(P — Q) = 0 since
these are monic polynomials, and the hypothesis of the proposition are not satisfied.

We therefore have degy(Q) = d. We denote by &, ..., & the distinct roots of P(y),
belonging to ‘A/l,[’y] for some homogeneous element ~, and by &7, ..., &, the roots

of Q(y) counted with multiplicity (hence we may have {; = ¢} for some i # j).
By Lemma 5.34, for every i € {1,...,d}, there is a unique j(¢) such that

4 V(P_Q)
v(&i —fj(i)) > a4

and, up to renumbering, we can suppose that j(i) = i. Now, fix i € {1,...,d}. There

exists p € N (where p depends on 7) and o1 = Id, 09, .. ., 0}, Frac(V, )-automorphisms
of K, such that & = o1 (&), ..., 0p(&;) are the distinct conjugates of &; over V,,. Then

b _1(y — ok(&)) is an irreducible factor of P(y) in Vi lyl.
Now let o be any Frac(V,,)-automorphism of K,,. Because o(&;) is a conjugate of &;,
there is an integer £ such that o(&;) = 04(&;). Moreover, we have

o€ — (e = vl ~ &) > Y.

Therefore,
v(o(&) — 0e(&)) = v(o(&) — o(&)) = v(& — &)
v(P - Q)

= v(oe(&§) —o0e(&)) > ———,

and we conclude that o (&]) = o¢(§}). This proves that o1 (&), . .., 0,(&}) are exactly the
(distinct) conjugates of & over Frac(V,,). In particular the polynomial [T} _, (y—o«(€]))
is an irreducible monic factor of Q(y) in V,[y] such that

P » B
o(TT - ovten) - TT - avten)) = 2272
k=1 ety
as we wanted to prove. -

We are now ready to prove the main result of this section:

Proof of Theorem 5.16. The proof is done by approximating the formal polynomial
P(x,y) by a suitable sequence of analytic polynomials (P(*)),cy satisfying all hypoth-
esis of Proposition 5.31, and arguing via Proposition 5.35. Indeed, we start writing:

P=Py(x)+ -+ Pi1(x)y +yd, Ap=AM... Ak

where the A; are distinct irreducible formal polynomials and k; > O forall:=1... e.
We consider the universal discriminant polynomial A, of degree d := deg, (P), that is,
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Ag(Py,...,Py_1) is the discriminant of the polynomial Py + --- 4+ Py_1y%~! + y<.
We apply the Artin approximation theorem to the equation:

ke
€

k1

Aq(Yo, - Ya—1) = 21" %

with respect to the formal solution y; = P;(x) and z; = A;(x). Therefore, for every
v € N, there exist Péb)(iL')? ce chL_)l(:I:) € C{x} such that

and we consider the polynomial with analytic coefficients
PO(@,y) = Py (@) + -+ Py @)y + o,
which has a discriminant, by construction, of the form

Apw = (A§L))k1 o (AWYRe where A;L) —Aje(x),i=1,...,e

Note that, by Theorem 5.8, these polynomials admit a factorization P(*) = Hf(:)l QEL)
in Py, [][y] C Vi [y]. By Proposition 5.35, for ¢ big enough, the number of factors s(*)
is constant equal to s and P is a reduced in V,,[y).

In order to apply Proposition 5.31, it remains to verify that there exists (o € N
such that, for every ¢+ > 19 and for every b € Fr(l), the discriminant o (Ape) is
analytically monomial. Indeed, fix a point b € rY. By Remark 5.7(2), there exists a
coordinate system (v, w) centered at b and adapted to F' given by:

z1 = vw®, x9 = vw !

with ¢ € Z¢. In particular, we note that:
(17) oe(AY) —F5(A)) € (vwe), j=1,... e
(v)

We now divide in three cases in order to prove that oy (A;”) is analytically monomial
(for ¢ big enough) depending on the nature of b:

Casel. Suppose that b is in the intersection of two exceptional divisors. In this case,
¢ > 0and 7} (A;) = v¥whity, where aj, 8; > 0 and @;(0) # 0, for every j = 1,...,e.
It follows from (17) that if « > max{c;, §;}, then O'Z(A;-L)) is analytically monomial.
We easily conclude that op(Ap)) is analytically monomial for ¢ > max$_;{«a;, 3;}.

Case Il. — Suppose that b is not in the intersection of two exceptional divisors, nor
in the strict transform of Ap. In this case, ¢ = 0 and A; = v*/u;, where a; > 0 and
u;(0) # 0, for every j = 1,...,e. It follows from (17) that if © > «;, then U;(A;L))
is analytically monomial. We easily conclude that o (Ap)) is analytically monomial
for ¢ > max$_; {a;}.
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Case I11. Suppose that b is in the strict transform of Ap. In this case, ¢ = 0.
We note that, since (A p) is formally monomial (adapted to the exceptional divisor),
then & (Ap) = v - ¢P4, where a > 0, ©W(0) # 0 and g is a formal series with initial
term av + bw, with b # 0. Since each term A is irreducible and distinct, we conclude
that ¢ can only divide one term Aj, say A;. Therefore, we can write A; = v g - Uy
and A; = v*u;, where ; > 0 and @;(0) # 0, for every j =1,...,e, and u;(0) = 1.
Now, it follows from (17) that if ¢ > «;, then UE(A;L)) is analytically monomial for
j=2,...,e. Next, it follows from (17) that if + > ay, then aﬁ(Aﬁb)) = v21g() | where
g™ (0) = b # 0. It follows from the implicit function theorem, therefore, that
az(Ay)) is analytically monomial and adapted to the exceptional divisor. We easily
conclude that of(Ap)) is analytically monomial for ¢ > a.

Therefore, since Fr(l) is compact and A;L) are convergent power series for every ¢
and j = 1,...,e, we conclude that there exists ¢y € N such that, for every ¢ > g
and for every b € F£1)7 the discriminant of(Ap«)) is analytically monomial. By
Proposition 5.31, the factors QEL) admits a formal extension to every point b € Fr(l)
(which are compatible with the factorization of Péb)). Next, by Proposition 5.35, the
sequence (QEL)
every j =1,...,s

Now, let j € {1,...,s} be fixed, A be a coefficient of @; and AW be the corre-

sponding coefficient of Q§L). Then we have

O-E(A(L)) — Z akvb(:l?w) (’U}C’U)k

k4B,
=6 h (1 w)

). converges to (); with respect to the usual v-adic topology in ‘7,,, for

and, since A®) extends analytically at b, there exist polynomials bi,.(w) such that
ar,.(1,w) = by, (w)h,(1,w)* B for every k > 0. Since A — AW € (x)*, we have
0p(A) — 0p(AW) € (vw®)*. Therefore, if we write

ar(1l,w)

(1, w) O‘k+ﬂ
k>0

(wv)*,

we have ay(1,w) = by, (w)h(1,w)***# for k < . Since this is true for every ¢, we
have that Ap extends formally to b, and so does @;. Finally, this extension is com-
patible with the factorization of P because, as it is pointed out in Remark 5.7(2),
op  Prlx][y] = C(w)[v] is a well-defined morphism. O

5.5. LOCAL-TO-SEMI-GLOBAL CONVERGENCE OF FACTORS. — The goal of this section is
to prove Theorem 5.18. Roughly speaking, one needs to prove that if, for some root
&= Zd ' Ay of P, where the A; are in P[] and 7 is a homogeneous element, op (&)
d—1 . . . p
is convergent, then oy (Z —o Ay ) is again convergent for every conjugate 7 of ~
over C(x). The main dlfﬁculty here, is that, if I'(x, z) denotes the minimal polynomial
of v over C(x), the transform o (I'(, z)) may not be locally irreducible anymore. For
instance let ['(x, ) := 2% — (22 + 23) and o is given by o (21) = u and o} (x2) = uv.
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Then in this case we have locally at the origin:
ob(D(x,2)) = (22 —uv/1 +0v2) (2% + uv/1 + v2).

Therefore, one needs to argue globally along the exceptional divisor, since the trans-
form of I'(x, z) remains globally irreducible.

Our proof follows the strategy inspired from Tougeron’s [Tou90, §3.1], which relies
on the following lemma (stated in [Tou90, Lem. 3.3]):

Lemma 5.36. Let € C C™ be an irreducible algebraic curve, and D1, Dy be two
compact subsets of €, such that the interior of Dy is nonempty. Then

IM >0, VP e€Cler,.... 2, ||Pllp, < M*P)|P|p,,
where ||P||p denotes max,ep |P(z)].

The proof given by Tougeron in [Tou90, Lem. 3.3] is only valid if the compactifica-
tion € C CP™ of the curve ¢ is isomorphic to P!. In order to treat the general case,
we incorporate the idea of the proof of [Izu89, Th. 3.1}, involving Green’s functions.

Proof. — Let € be the smooth compact curve obtained as the normalization of the
closure of € in CP". Note that the irreducibility of € is equivalent to that of %.
Then the coordinate functions z; and P lift canonically to meromorphic functions
Z;, P on €. Furthermore, each of these functions has its poles outside of K; U Ko,
where K; denotes the preimage of D; by the normalization.

Denote by q1, ..., qx the distinct poles of the functions z;, let q¢ be a point in the
interior of K1, and for i =1,...,n, let

m; 1= Jirllaxk multg, Z;,

where multy Z = m means that q is a pole of multiplicity m of Z. With these notations,
if q; is a pole of P, it is of multiplicity at most m; - deg(P). Furthermore, the only
possible poles of P are {q1," - ,qx}-

Now, set U := € ~ {q0,q1,- - -, qr}. Then, following [Lan88, Ch.II, §1], for every
i € {0,...,k}, there exists a Green’s function for g;, that is, a smooth function
Gi: € ~ q; — R such that, for every 4, j, AG; = AG; on U and, on a neighborhood
of g;, the function G; + log |z — q;| can be extended to g; as a smooth function. Note
that, since lim,_, 4, log |z —q,;| = —o0, this last condition implies that G} is positive on
a neighborhood of g;. Finally, such functions are uniquely determined up to additive
constants. We can therefore pick the functions G; so that, for every i € {1,... k},
Gi —Go>0on U~ K, by compactness of €. Set

k
G = Zmz(Gl — Go),
i=1

which is harmonic on U, because every function G; — Gg is harmonic on U, and set
h = exp(G). The function [P/h°8(")|? is subharmonic on U because at every point
of U, it can locally be seen as the square of the module of a holomorphic function.
Indeed, since G is harmonic on U, for every point p of U, there is a neighborhood V'
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of p and a harmonic function H on V which is conjugate to G, that is, H is such that
G + iH is holomorphic on V', and we have

P P
hdeg(P) exp(G + iH )des(P) |’

where exp(G+iH)°8(P) is holomorphic. For 1 < i < k, the function G; can be written
near the point q; as G; = a; —log |z — q;| for some smooth function «;. Furthermore,
because of the bound on its multiplicity, P can be written near q; as 3;/(z — q;)™,
for some analytic function B;.Therefore, the function |P/h%°&8()|? can be extended
to a smooth function on € ~. K. Moreover, by continuity of the partial derivatives,
the non negativity of the Laplacian of [P/hde(P)|2 extends to every point g, for
1 < i < k, therefore |P/hd°8(P)|2 extends to a subharmonic function on & ~ Kj.
Then, the maximum principle applied to this function yields

[P, < [P e < [P/ e < [P, < P,

where the last but one inequality comes from the fact that A > 1 on K. Finally,
denoting M = max.cg, h(z), we get | P||x, < MI8P)||P| k. O

We are now ready to turn to the proof of Theorem 5.18:

Proof of Theorem 5.18. — Let P € C[x][y] be a monic, reduced polynomial, and let
o: (N,F) — (C2,0) be a sequence of point blowing ups, such that the pulled-back
discriminant ¢} (Ap) is formally monomial at every point b of FY. We consider the
factorization of P into irreducible polynomials of Py, [x][y] given by Corollary 5.9:

P(.’I},y) = HQia
=1

By hypothesis, there exists by € F™ such that 04, (P) =: Py, has a convergent factor.
By Proposition 4.9, we can assume that b is in no other component of the exceptional
divisor nor on the strict transform of {h = 0}. Therefore, by Theorem 5.16, we can
write

Py, = HE;O (Qs), where &y (Qi) € 5{;0[19]-
i=1

Now, by hypothesis, there is an index 4 such that o (Q;) admits a convergent factor.
The problem is now to prove that the polynomial Qg, := o7 (Q;) itself is convergent.
For simplicity, in the sequel we denote @; by @, and ; by 7 (with the notation of
Corollary 5.9). We now use the second equality given by Corollary 5.9. Let v be a
homogeneous integral element of degree w = p/e such that

(18) Q = H (y - 5(337'71)) ) where g € Ph[[wv'ﬂ]a
i=1
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where ~; are distinct roots of the minimal polynomial of v:

d
(19) [(x,z) = 2%+ Z filx)z40

which is a w-weighted irreducible homogeneous polynomial. In particular, f;(x) is
homogeneous of degree w -4, f; = 0 if e does not divide ¢, and e divides d (be-
cause fg # 0; otherwise z would divide I" which is irreducible). We conclude that
I’ € C[z, 2°]. Now, note that by the definition of Pp,[x,~], we can write:

d
: ak.; ()
(20) f(.’B, ’Y’L) = Z Aj (m) : 77?a where Aj = Wﬁ]‘(w)’
j=1 k>k;
with k; +wj > 0.
Denote by T the strict transform of I' by the weighted blowing up given by z; = v¢,
g = v°w, z = vPz in the chart v # 0:

d
T(w,z) = 2%+ Zfi(l,w)zd_i.
i=1
Since T is irreducible in C[z, z], the compact algebraic curve € corresponding to T in
the weighted projective space CP?

(e,e.p)
this means that one has the following:

is irreducible. In a more algebraic language,

Cram. —  The polynomial T is irreducible as an element of Clw, z¢].

Proof of the claim. — Indeed, assume that T' = GH, where G, H are non trivial poly-
nomials of C[x, z¢], monic in z. Let us write

dy
6= 3wt 2t
i=1
where g;(w) = 0 if e does not divide i, and e divides dy. Then
dy
WG =Y g w) (")t T+ (072)
i=1

Let i be a multiple of e. Then a monomial of vP'g;(w) has the form

) ) o e—k
,Upz,wk — ,Upz/eewk — ,U(pz/e k)e(vew)k _ 1,1171/6 1,126

Thus G = G'(x,z) with G'(x,2) € C(x)[z°]. The same being true for H we have
that I" factors as a product of two monic polynomials in C(x)[z¢]. Since I' is irreducible
and Clz] is a unique factorization domain, by Gauss’s lemma, I" factors as a product
of two monic polynomials of Clx, z¢], which is not possible by assumption. This shows
that T is irreducible in C[w, 2¢]. O

Therefore T' may not be irreducible in Clw, z], but its irreducible factors can be
obtained from one another by multiplying the second variable by a e-th root of unity.
Denote ¢ :={T' =0} C CZ ..
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This implies that:
t
Hf w, 2)

where €; := (T';(w, z) = 0) are irreducible curves and each of the irreducible factors T';
of T'(w, z) can be obtained from one another by multiplying the second variable by a
e-th root of unity.

Now, let (v, w) be coordinates at by such that op, is locally given by (x1,22) =
(v,vw), as in Remark 5.7(2a). It follows from equation (18) that:

S
Qoo = [ - & (v, 0w, 7)),
i=1
where, by equation (19), ¥ is a root of the polynomial:
d
T(v,w,z):=z%+ vaifi(l, w)z40

i=1
By comparing the expressions of T and T, we conclude that ¥ is a root of f(v, w, z)
if and only if 5 = v*%, where 7 is a root of I'(w, 2).

We use again Proposition 4.9 in order to assume that by is not a zero of the
discriminant of T'(w,z) with respect to the projection m on the w-axis. With this
condition, the implicit function theorem implies that there is a compact disc D’ C
{z = 0} centered at the origin of C; ,
components D}, ..., D} of 771(D’) C €, z can be written as an analytic function
in w. From now on, 7; € C{w} denotes the solution of I'(w, z) = 0 on D!.

Note that for every j, v*JA;(v,vw) € C[v'/¢,w], therefore each 05, (&) is in
C[v"/¢,w]. Up to renumbering, since Qp, has a convergent factor, we can assume

such that, on each one of the connected

that oy (&1) € C{v'/¢,w}. By equation (20), we can write (cf. the normal form given
in Remark 5.7(2a)):

d
I kg (Lw)
(6 = Y73, (4) w7 zv WY e
j=1 k>k;

The coefficient of v*/¢, for ¢ € N, in the previous sum is

d

—j a@/e—jw,j(lvw)
2.7 h(L, w)es (E/e=iw)+5;
Jj=1

(where ag/e_ju, ;(1,w) =0if /e — jw ¢ N) Therefore we have

o Z h 1 w f w?ii)v

where §; € N is bounded by an affine function in ¢, and the degree of P, € Clw, 2] is
bounded by an affine function in £.

Now, note that if 7 is a primitive e-th root of unity, then the set {n‘y | 0 < £ < e—1}
contains a root of each irreducible factor of I'. Furthermore, since ged(p, e) = 17 given

Ty (
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an integer ¢, there exists € € C such that e? =7 and £° = 1. This implies that

Z%O T T1) =5, (€1)(ev/*,w) € CLo'/*, w}.

which shows that o (§;) is convergent whenever 7, is conjugated to 7; by a root of
unity.

Now fix an arbitrary &;. By the previous argument, up to renumbering, we may
assume that 7, and %; belong to the same irreducible component of ¢, where o (£1) €
C{v'/¢, w} is convergent, and let D} and D} be the discs corresponding to the roots 7,
and 7;.

The fact that oy (1) € C{v,w} is equivalent to the existence of A, B > 0 and a
compact disc D in the w-axis, containing the origin in its interior, such that

PZ(U/7W1) < ABL.
h(law)é(l) D
Since h(1,0) # 0, we can assume that D is such that
1
(21) 3C > 1, Ywe D, 6<|h(1,w)\<c.

In particular we have
1Pe(w, 7l < ABC.

Even if it means shrinking D, we may suppose furthermore that D C D’. Denote by
Dy C DY,..., Dy C D) the connected components of 71 (D). Let D; be the connected
component of 7~!(D) such that (w,7,;) € D;. Then ||Py(w,7,;)llp = [[Pe(w,2)]lp,-
Since Dy and D; are in the same irreducible component of %, Lemma 5.36 states the
existence of a constant M > 1 such that

1P (w, 2)l| b, < MIEE|| Py (w, 2)||p, -
Finally, we conclude that

1Pa(w, 7)o = [P, 2)llp, < MEPO 4B,

and, by (21),

< Mdeg(Pg)AB[CQ(S(Z) .

H Py(w,;)
D

h(1,w)5®)

Therefore, because deg(P) and 6(¢) are bounded by affine functions, we conclude

that o(&;) € C{v,w}, for any i. Since the choice of & was arbitrary, we conclude that

Qp, € C{v, w}[y]. Thanks to the assumption that by is not on the strict transform of
{h = 0}, Lemma 5.14 implies that Q; € Pr{z}[y].

Therefore, we can identify convergent factors of P and of Py, for every b outside

of a discrete subset of Fp). In other words, if @) is the maximal convergent factor

of P, then @y is the maximal convergent factor of Py, for every b € FT(.l)

discrete subset of Fr(l). We conclude easily via Proposition 4.9. |

outside of a
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6. APPLICATIONS AND VARIATIONS

In this section we prove the results announced in Section 1.2.

6.1. Proor or Turorem 1.6. — Let us assume that r(¢) = r7 (¢) = r¥(¢). By repla-
cing A by A/Ker( ) we may assume that ¢ is injective. Thus 1(¢) = r7 (¢) = 17 (¢) =
dim(A). Let f € gb( )ﬂB We may assume that f(0) = 0 by replacing f by f— f(0).
We define a new morphism ¢ : C{x, 2}/IC{x, 2} — B, where A = C{x}/I and z is
a new indeterminate, by

(g(x,2)) = g(p(x1), ..., d(xn), f)) forany g € Cfz, 2}

IC{z, 2}

Since v, = ¢, we have r(¢)) > (¢) Since f € q@(g), there exist & € A such
that ¢(h) = f. Thus z — h € Ker(¢). In fact, by the Weierstrass division theorem,
every element of Ker(dz) is equal to an element of A modulo (z — h). But, because
Ker(zﬂ) N A = Ker(¢) = (0), we have that Ker(¢)) = (z — h). In particular the injec-
tion A — C[, z]]/I(C[[m 2] + Ker(1/)) is an isomorphism, thus 17 () = 17 (¢) = r(¢).
Finally, since r7 (¢) > r(%), we get 17 () = r(¢), hence 17 (1) = r¥(2)), by Theo-
rem 1.4. Therefore, by Proposition 2.1 we have that Ker(1)-C = Ker(1)). Thus, if f €
C{z, 2} is a generator of Ker(1)), there is a unit U(x, z) such that f = U(x, z)(z — h).
But, by the unicity in the Weierstrass preparation theorem, we have that v and z —h
are convergent, hence h € A. This proves that ¢ is strongly injective.

On the other hand, assume that ¢ strongly injective. There exists a finite injec-
tive morphism C{xz} — A (by the Noether normalization lemma) and an injective
morphism of maximal rank B — C{y} (by resolution of singularities). Hence, if we de-
note by 1 the induced morphism C{x} — C{y}, by Proposition 2.2, r(¢)) = r(¢) and
17 (1) = 17 (¢) and 9 is strongly injective. Therefore we are exactly in the situation
of [EH77, Th.1.2] that asserts that r(¢)) = r7 (1) = v (¢)).

6.2. Proor or Turorem 1.7. In what follows, we prove that (I) = (II) = (III) =
(IV) = (I). The theorem immediately follows because (I) is Gabrielov’s rank theo-
rem 1.4.

(I) = (II) By replacing A by A/Ker(¢) we may assume that ¢ is injective, thus
r(¢) = dim(A) = n by Theorem 1.6. By Lemma 2.3, there exists a finite injective
morphism C{x} — A and an injective morphism of maximal rank B — C{y}. The
induced morphism C{x} — C{y} is strongly injective, since ¢ is strongly injective,
and f is integral over C[z]. Thus we may assume that A = C{x} and B = C{y}.

Let P(z,z) € C[z][z] be the minimal polynomial of f over C[z]. By replacing f
by f — f(0) we may assume that f € (y)C{y}. Consider the morphism ¢ : C{zx, z} —
C{y} defined by

Y(h(w,2)) = h(d(x1), -, ¢(xn), f) for any h € C{a, 2}.

)
Then r7 (1) = r7 (¢) = n since P(z) € Ker(¢)). Hence, because 17 (1) > r(¢)) > 1(¢),
we have r(¢)) = n. Thus, by (I), r (1)) = n so Ker(z)) is a height one prime ideal,
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thus a principal ideal by [Mat89, Th. 20.1]. Let Q € C{x, z} be a generator of Ker(¢)).

-~

Then @ is a generator of Ker(¢)) and @ divides P in C[x, z]. Moreover P(0,2) # 0
since P(x, z) is a monic polynomial in z. Thus Q(0, z) # 0 and, by the Weierstrass
preparation theorem, there exists a unit U(x, z) € C{x, z} such that UQ is a monic
polynomial in z. But UQ € Ker(v), ie., (UQ)(¢(x), f) = 0, thus f is integral over
C{x}.

(IT) = (III) First of all, we may assume that f is irreducible. Then we apply
the result to each irreducible divisor of f. Let A = C{z} and B = C{=z,t}/(f).
We have fg = ag(x) + ar(x)t + - - + aq(x)t?, where the a; are in C[z]. There is a
sequence of quadratic transformations 7 = o 0 --- 00y : C{x} — C{z} such that
T(aq(x)) = x*U(x) for some unit U(x) € Clz]. Thus

7(f)7(9) = T(ao(x)) + T(ar (@)t + -+ U(2)t".

Therefore
(22) 2VUT e (f)7(g)

_ yd + Ufl,r(adil)ydfl + UflxaT(adil)yd72 NI Uflx(dfl)ozT(aO)7
where y := x“t. Let k € C{z,t} be a prime divisor of 7(f). Then y € C{x,t}/(k) is
integral over C[x] by (22). But the composed morphism

C{z} — Clz,t}/(f) - Clm, t} (k)

has maximal rank, thus y is integral over C{x} by (II), and ¢ is algebraic over C{x}.

(IIT) = (IV) Let P(x,t) € C[z][t] be a nonzero polynomial in ¢ such that P(z, f) =
0 mod (21 — x22). This means that there exists a formal power series g € C[x, z] such
that

P(x, f(z,z)) + (1 — z22)g(x, 2) = 0.
We remark that, because f is algebraic over A, f 4+ Az is algebraic over A for any
A € C and, if deg,(P) = d, the polynomial
T(x,t) = aiP(x,t — M1 /x2) € Cz][t]
is a vanishing polynomial of f 4 Az. Let us choose A € C such that if
h:=f+ Xz

then h(0, z) is a nonzero power series of order 1. We define I := (¢t — h(z, 2), z1 — 222)
as an ideal of C{z,t, z}. The ideal I is prime since C{z,t,2}/I ~ C{xa,...,2n, 2},
and ht(I) = 2 since it is generated by two coprime elements.

By the Weierstrass division theorem

t—h(z,z) =U(z,2,t)(z + h'(z,t))
for some unit U(x, z,t) € C{z, z,t} and h'(z,t) € C{z,t}. Thus
I=(z+4n(x,t),x1 — 222).

Since z + h'(x,t) and x1 — 22z are coprime polynomials, I; := I N C{x,t} # (0).
Moreover, I is a height one prime ideal so it is principal since C{z,t} is a unique
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factorization domain. Let Q(x,t) denote a generator of I, Q(x,t) = x1 + x2h/(x, t).
By the Weierstrass preparation theorem we may assume that

Q=1+ k(za,...,2,,1)

for some k € C{za,...,x,,t}. Moreover we can do the change of variables z; —
x1 + k(z2,...,2,,0) and assume that t divides k(xa, ..., zp,t).

On the other hand I N C[z,t] is also a height one prime ideal as for Iy, and
I, C INC[x,t]. But since I, is prime, I; is also prime and I, = I N C[a, t] because
both have the same height. Hence Q is a generator of I N Cz, ¢].

Since T(z, h) = 0 modulo (21 — 222), T(x,t) € I N C[z,t]. Thus there is a formal
power series R(x,t) such that

R(z,t)Q(x,t) = T'(x,t) € Clzx][t].
But (III) allows us to assume that R(z,t) € C{z,t} and T(x,t) := R(x,t)Q(x,t) €
C{x}[t]. Therefore, T(x, f + Ax1/x2) = 0, and f is algebraic over C{x}. This
proves (IV).

(IV) = (I) We follow the beginning of the proof of Theorem 1.4: we argue by con-
tradiction and assume that ¢ : C{x1,x2, 13} — C{u1,ug} satisfies r(¢) = 17 (¢) = 2
and 1 (¢) = 3. We will replace, step by step, the morphism ¢ by another morphism ¢’
such that r(¢’) = 2 and Ker(q/ﬁ\’ ) is generated by a Weierstrass polynomial in x3 and
such that ¢’ has a particularly simple form.

First, we use Lemma 2.7 to assume that ¢(z1) = uq and ¢(x2) = uus SU(w), where
U(u) is a unit in C{u}. Now let ¢’ : C{u} — C{u} be defined by o'(u1) = u? and
o' (ug) = uuy™t. Then, we have

o' o ¢(z1) = ul and o o P(x3) = (urug)? TV ()

for some unit V(u). Therefore, up to ramification, we may assume that

¢(x1) = vy and ¢(x2) = uius.

Let P be a generator of Ker(g/b\). If we denote by f(uj,us2) the image of x3 by ¢,
we have

P(uy,uiug, f(ur,uz)) =0
or FH(ur, ug) + ay (ug, ugug) f47 (ur, ug) + -+ + ag(ug, urug) = 0
or  fUx1,x3) +ar(xr, x2) T (zy, 23) + - - + ag(z1, 22) = 0 modulo (x5 — z123).

Therefore, by (IV), we may assume that the a; are in C{z1,x2}. But this implies that
Ker(¢) # (0) and r (¢) < 3 which is a contradiction. This proves (I).

6.3. Proor or CororLrary 1.9. — As in the proof of (I) = (II) in Theorem 1.7,
we can assume that ¢ is injective, and ¢: C{x} — C{y}. Since f is algebraic, there
is a nonzero polynomial P(z, z) € C[x][z] in the kernel of ¢, where ¢ is given by
¢ e, 2} — Cly}
Wz, 2) — h(o(x), ).
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Once again as in the proof of (I) = (II) in Theorem 1.7, Ker(¢) is a nonzero principal
ideal. Let Q@ € Ker(¢)). Since @ € Ker(¢)), there is a formal power series g such
that ¢g@Q = P € C[x][z]. Then, by Theorem 1.7(III) there is h € C{x, z} such that

h@Q € C{x}[z]. Moreover h@) € Ker(1), which proves that f is integral over C{x}.

6.4. Proor or Tueorem 1.15. — If f(ac%/d,...,a:}/d) € C{on 3Z"} is a root of

P(z,2), then f(z) is a root of P(x?,z). Let Q(z) be the monic irreducible factor of
P(x%, 2) in C[z][2] having f(x) as a root. Since o is strongly convex, there exists an
invertible linear map L : Z" — Z™ with positive coefficients such that L(c) C (Rx0)".
Let (¢;,)i,; be the matrix of L. Then, since L is the product of elementary matrices,
the morphism 7 : C{z} — C{x} defined by 7(z;) := 2’ - 2 for 1 < i < n
is a composition of the map 7 defined by 7(x1) = 129, 7(x;) = x; for i > 2, and
of the maps permuting the variables z1, ..., x,. Since f(x) is a root of Q(z) then
7(f(x)) = f(r(x)) is integral over 7 (C[x]). Thus, by Theorem 1.7(11), f(7(x)) is
integral over 7(C{zx}) and the coefficients of Q(z) are convergent power series.

Then the factors of P(x, z) are the polynomials Q(&121, .. ., &2y, 2) for any d-th
roots of the unity &1, ..., &, and they are in C{z}[2]. Thus the coefficients of P(x, z)
are convergent power series and the coefficients of P(x, z) also.

7. THE ABHYANKAR-JUNG THEOREM

ABHYANKAR-JUNG THEOREM ([Jun08, Abh58]). — Let K be an algebraically closed field
of characteristic zero. Let P(y) € K[x][y] be a monic polynomial in y of degree d such
that Ap = x*u(x), where u(0) # 0. Then the roots of P(y) are in K[x'/%].

In the case of holomorphic polynomials, the theorem admits a very simple proof
based on the local monodromy of solutions of the polynomial P (this is in fact the
original proof of Jung [Jun08], even if he stated the theorem only for the ring of
convergent power series in 2 indeterminates). The formal case is much more involved,
since the same geometrical arguments are unavailable. The first proof of the general
case is due to Abhyankar [Abh58]. Kiyek and Vicente gave a modern proof of this
result [KV04] and, recently, Parusinski and the third author have provided a more
direct proof reducing the general case to the complex case, via the Lefschetz principle
[PR12]. In this section, we provide a new and very short proof of the Abhyankar-Jung
theorem, in all of its generality, following the techniques developed in Section 5.4 (and
based on the Lefschetz principle).

Proof of the Abhyankar-Jung theorem. — We will prove this result in three steps: first
the case where P(y) € C{z}[y], then the case where P(y) € C[x][y], and finally the
general case.

Step /. — Assume that P(y) € C{z}[y]. Let £ > 0 be such that the coeflicients of P(y)
are analytic on an open neighborhood of the closure of DI := {x € C" | |z;| < e, Vi}.
The projection map ¢ : V := {(z,y) € C"™! | P(x,y) = 0} — C" x {0} is a branched
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covering, and its restriction over U := D?\{zy-- -z, = 0} is a finite covering of
degree d.
Let a € U. We have 71 (U, a) = Z". Therefore

(d'Z)" C ¢u(m (VN o~ (U), b))
But the map
prxe (Dyn)" — ¥
satisfies p*(m((D?,/a)")) = (d!Z)". Thus by pulling back the covering by p, the cover
has no monodromy, thus P(x%, y) factors into linear factors. The polynomial P(z%, )
being monic, its roots &;(x) are bounded near the origin. Therefore, by the Riemann

removable singularity theorem, they extend to analytic functions in a neighborhood
of the origin.

Step I1. — Now suppose that P(y) € C[z][y], and Ap = x%u(zx). We denote by K
an algebraic closure of the field C((x)). The valuation ord on C((x)) extends on K, and
this extension is again denoted by ord. Denote by &1, . .., &y the Troots of P(y) in K.
If P(y) = y¢+ ai(x)y?® ! + --- + aq(zx), there is a universal polynomial A =
A(Al, ceey Ad) € Q[Al, R Ad], such that Ap = A(al, ce ,ad).
Now we apply the Artin approximation theorem: for every integer ¢, there are
ac1(x), ..., aca(x), uc(x) € C{z} such that

Aac, .- acq) = z%uc(x)

and a; — acq, u — ue € ()¢ In particular, for ¢ > 1, we have u.(0) # 0. We set

P.(y) = y? + Z?:l aci(z)y?". By Step I, there exist &.1, ..., &.q € C{z'/?"} such
that
d
Pc(y) = H(y - gc,i)'
i=1

By Lemma 5.34, after renumbering the £, ; we may assume that ord(&.; — &) goes to
infinity. Therefore ¢. € C[x'/#], and the result is proved.

Step I11. — Finally, in the general case, we denote by Ky the subfield of K generated
by all the coefficients of the series defining P(y). Such a field Ky can be embedded in C,
because Q — Ky is a field extension of finite or countable degree, while the degree of
@Q — C is uncountable and C is algebraically closed. We denote by ¢ this embedding.
Then, by the previous case, the roots of P(y) are in C[/%]. Let K; be the subfield
of C generated by ¢(Ky) and the coefficients of the roots of P(y) in C[x'/%]. Then,
there is an embedding of K; in K whose restriction to +(Kg) is ¢ =1, because the degree
of t(Kg) — Kj is 0 (by Lemma 7.1 given below), and K is algebraically closed. O

Levva 7.1, — Let K C L be two fields. Let f € L]z] be algebraic over K[x]. Let K4
be the field extension of K generated by the coefficients of f. Then K — K; is an
algebraic field extension.
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Proof. — This result is well-known (see for instance [Gil69]). The proof goes as fol-
lows: we fix a monomial order on L[x] such that every subset of N has a minimal
element. For f:= 3" . fax® € L]z], we set

exp(f) :=min{a € N* | f, #0} and in(f):= fexp(f)we"p(f).

Assume that P(z, f(x)) = 0, where P(x,y) € K[x][y] is nonzero. From this relation
we obtain that in(f) is algebraic over K[|, therefore focp(s) is integral over K. Then
we replace f by f —in(f) and we replace K by K(fexp(s)). The result follows by
induction. O
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