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The coherent vortex extraction method, a wavelet technique for extracting coherent vortices out of
turbulent flows, is applied to simulations of resistive drift-wave turbulence in magnetized plasma
�Hasegawa–Wakatani system�. The aim is to retain only the essential degrees of freedom,
responsible for the transport. It is shown that the radial density flux is carried by these coherent
modes. In the quasi-hydrodynamic regime, coherent vortices exhibit depletion of the
polarization-drift nonlinearity and vorticity strongly dominates strain, in contrast to the quasi-
adiabatic regime. © 2008 American Institute of Physics. �DOI: 10.1063/1.2956640�

I. INTRODUCTION AND GOVERNING EQUATIONS

One important issue in fusion research is the understand-
ing and control of turbulent radial flux of particles and heat
in magnetized plasmas, in order to improve the confinement
properties of fusion devices.1 Indeed turbulence enhances the
radial diffusion dramatically compared to neoclassical esti-
mations. A long-standing question has been as follows:2–6

what is the role of coherent structures in this radial transport?
The answer to this question requires extracting and charac-
terizing coherent structures. A particularly appropriate frame-
work to identify coherent structures is the wavelet represen-
tation, where wavelets are basis functions well localized in
both physical and Fourier space.7 It has already been used to
identify coherent structures in fluid turbulence and to distin-
guish them from background incoherent noise.8 These meth-
ods have recently been applied to experimental signals of ion
density in the tokamak scrape-off layer,9 separating coherent
bursts from incoherent noise. In the present work, these
methods are applied to assess the role of coherent vorticity
structures in anomalous radial transport in two-dimensional
numerical simulations of drift-wave turbulence. Drift waves
are now generally considered to play a key role in the dy-
namics and transport properties of tokamak edge turbulence
�e.g., Ref. 10 and references therein�. At the edge, the plasma
temperature is low and the collision rate relatively large,
therefore the resistivity is potentially important. The
Hasegawa-Wakatani model11,12 is a two-field model which
includes the main features of turbulent transport by resistive
drift waves.

In the present work, the two-dimensional slab geometry
version of this model is chosen as a paradigm for drift-wave
turbulence in the plasma-edge region. In dimensionless form,
the Hasegawa–Wakatani model reads13

� �
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with n the plasma density fluctuation and � the electrostatic
potential fluctuation. D and � are the cross-field diffusion of
plasma density fluctuations and kinematic viscosity, respec-
tively. The Poisson brackets are defined as

�a,b� =
�a

�x

�b

�y
−

�a

�y

�b

�x
. �3�

We identify the x coordinate with the radial direction and the
y coordinate with the poloidal direction. The equilibrium
density n0 is nonuniform, with a density gradient dn0 /dx in
the negative x direction, such that the equilibrium density
scale Ln=n0 / �dn0 /dx� is constant and the value of � is 1. The
plasma density fluctuations n are normalized by n0, therefore
n /n0→n, the electrostatic potential is normalized as e� /Te

→�, the space as x /�s→x, and the time as �cit→ t, where e
is the electron charge, Te is the electron temperature, �ci is
the ion cyclotron frequency, and �s= �miTe�1/2 / �eB� is the ion
integral length scale. B is the strength of the equilibrium
magnetic field in the z direction and mi is the ion mass. The
key parameter in this model is the adiabaticity c, which rep-
resents the strength of the parallel electron resistivity. It is
defined as

c =
Tek�

2

e2n0��ci
, �4�

with k� the effective parallel wavenumber and � the electron
resistivity.

The vorticity � is related to the electrostatic potential �
by

�2� = � . �5�

Note that for c=0, Eq. �1� corresponds to the advection-
diffusion of a passive scalar in the presence of a �unity� mean
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scalar gradient in the x direction. Equation �2� corresponds
in this case to the vorticity equation. For c→�, the
Hasegawa–Mima14 one-field approximation is approached,15

which ignores all resistive effects. For c→0, we recover the
hydrodynamic limit, which is less relevant to describe edge
fusion-plasma. Here two cases will be considered: a quasi-
adiabatic case with c=0.7, and a quasi-hydrodynamic case
with c=0.01. The case c=0.7 is generally considered to be
the most relevant for tokamak-research and has been inves-
tigated in several other works �e.g., Refs. 4 and 15�. Both
cases differ from the fluid-dynamical case in that the velocity
field is forced through the interaction term c�n−��. The in-
fluence of this term on the density field can, however, be
considered to be negligible in the quasi-hydrodynamic case.6

The quantity of interest, the radial particle density flux,
is the correlation between the radial velocity ur=−�� /�y and
the particle density,

�r = �nur	 , �6�

where the brackets denote an average over both time and
space. The question we address in this paper is how coherent
structures contribute to this flux. To investigate this, direct
numerical simulations of the Hasegawa–Wakatani system are
performed on a periodic domain discretized with N=5122

grid points. The length of the domain is 64 �s. A finite-
difference method is used in which the nonlinear terms are
computed using a method developed by Arakawa.16 The time
stepping is performed using a predictor-corrector scheme.
The plasma density diffusion D and viscosity � are set to
0.01 in normalized units. Computations are performed up to
t=612. At t
100, the kinetic energy saturates and a statisti-
cally stationary state is reached, independent of the �random�
initial conditions. Typical realizations of the vorticity field
are shown in Fig. 1, where one observes coherent structures
for both cases. In each case, we select a dipolar structure that
we indicate by a white frame. The quasi-hydrodynamic case
exhibits coherent vortices of very different sizes and intensi-
ties, in contrast to the quasi-adiabatic case in which the co-
herent structures are more similar in size and intensity.

II. COHERENT VORTEX EXTRACTION „CVE…

A. Method

Definitions and details on the orthogonal wavelet trans-
form and its extension to higher dimensions can be found,
e.g., in Refs. 7 and 17. In the following, we fix the notation
for the orthogonal wavelet decomposition of a two-
dimensional scalar valued field. The wavelet transform un-
folds the field into scales, positions, and directions using a
set of dilated, translated, and rotated functions, called wave-
lets. Each wavelet is well-localized in space, oscillating �i.e.,
it has at least a vanishing mean, or better its first m moments
vanish�, and smooth �i.e., its Fourier transform exhibits fast
decay for wavenumbers tending to infinity�. We apply the
coherent vortex extraction �CVE� algorithm8,18 here using
orthogonal wavelets. In dimension two, orthogonal wavelets
span three directions �horizontal, vertical, and diagonal�, due
to the tensor product construction. To go from one scale to
the next, wavelets are dilated by a factor 2 and the translation
step doubles accordingly. Wavelet coefficients are thus rep-
resented on a dyadic grid.7

We apply the CVE algorithm to the vorticity fields � of
both the quasi-hydrodynamic and the quasi-adiabatic regime.
The extraction is performed from the vorticity since enstro-
phy is an inviscid invariant in the hydrodynamic limit. More-
over, vorticity is Galilean invariant in contrast to velocity
and streamfunction. We consider the quasistationary state of
the simulations, i.e., when a saturated regime is reached, and
we decompose the vorticity field, given at resolution N=22J,
into an orthogonal wavelet series,

��x,y� = �
	�


�̃	�	�x,y� , �7�

where the multi-index 	= �j , ix , iy ,d� denotes the scale j,
the position i= �ix , iy�, and the three directions d=1,2 ,3,
corresponding to horizontal, vertical, and diagonal wave-
lets, respectively. The corresponding index set 
 is

= �	= �j , ix , iy ,d� , j=0, . . . ,J−1; ix , iy =0…2j −1,d=1,2 ,3.
Due to orthogonality, the wavelet coefficients are given by

−14 0 14 0−12 12

FIG. 1. One realization of the vorticity
field for the quasi-hydrodynamic case
�left� and for the quasi-adiabatic case
�right�. The abscissa corresponds to
the radial position. The ordinate indi-
cates the poloidal position. Both range
from 0 to 64 �s. The white frames in-
dicate the dipoles we have selected in
both cases.
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�̃	= �� ,�		, where �·,·	 denotes the L2-inner product defined
as �f ,g	=�f�x ,y�g�x ,y�dxdy. The wavelet coefficients mea-
sure fluctuations of � at scale 2−j around the position i, in
one of the three directions d. Here a Coifman 30 wavelet is
used, which is orthogonal and has 10 vanishing moments17

��xn��x�dx=0 for n=0, . . .9�.
The CVE algorithm can be summarized in the following

three-step procedure:

• Decomposition: compute the wavelet coefficients �̃	 using
the fast wavelet transform.7

• Thresholding: apply the thresholding function �� to the
wavelet coefficients �̃	, thus discarding the coefficients
with absolute values smaller than the threshold �.

• Reconstruction: reconstruct the coherent vorticity field �C

from the thresholded wavelet coefficients using the fast
inverse wavelet transform.

The incoherent vorticity field is obtained by simple subtrac-
tion, i.e., �I=�−�C.

The thresholding function is given by

���a� = �a if �a�  �

0 if �a� � �
� , �8�

where � denotes the threshold,

� = �4Z ln N , �9�

where Z= 1
2 �� ,�	 is the enstrophy �which corresponds to

half of the variance of the vorticity fluctuations� and N is the
resolution. This threshold value allows for optimal denoising
in a min-max sense, assuming the noise to be additive,
Gaussian, and white.8

In summary, this decomposition yields �=�C+�I. Due
to orthogonality, we have ��C ,�I	=0 and hence it follows
that enstrophy is conserved, i.e., Z=ZC+ZI. Let us mention
that the computational cost of the fast wavelet transform
�FWT� is of O�N�.7

B. Compression rates

The results of the extraction are displayed in Table I. The
compression rate is in both cases very significant: for the
quasi-hydrodynamic case, 1.3% of the modes retain more
than 99.9% of the energy and 97% of the enstrophy. For the
quasi-adiabatic case, 1.8% of the modes retain 99.0% of the
energy and 93% of the enstrophy. The contribution of
the coherent vorticity to the radial flux is also given in Table
I. The coherent modes, which contain most of the energy and
enstrophy, are responsible for 99% of the radial particle den-
sity flux �r in the quasi-hydrodynamic case, and for 98% of

�r in the quasi-adiabatic case. In other words, �r is almost
exclusively carried by the coherent structures.

C. Wavenumber spectra and probability density
functions

Spectra and probability density functions �PDF�,
averaged over 512 realizations during the time interval
100� t�612, are shown in Fig. 2 for the total, coherent, and
incoherent vorticity. The PDF of the total and coherent quasi-
hydrodynamic vorticity is far from Gaussian and slightly
skewed, while the quasi-adiabatic vorticity is much closer to
Gaussianity. In both cases, the variance of the incoherent part
is much smaller than the variance of the coherent part, which
has the same PDF as the total. For the quasi-hydrodynamic
case, the coherent part retains 97% of the variance of the
vorticity fluctuations and therefore also 97% of the total en-
strophy Z, with Z=1.4. For the quasi-adiabatic case, the co-
herent part retains 93% of the variance of the vorticity fluc-
tuations and hence 93% Z, with Z=3.4. A similar result is
observed in the enstrophy spectrum computed from the Fou-
rier transform of the vorticity field, averaged over wavenum-
ber shells of radius �k�, the wavenumber. The total and co-
herent enstrophy are the same all over the inertial range, and
at the highest wavenumbers, in the dissipation range, the
incoherent part contributes to the spectral enstrophy density.
Both coherent and incoherent contributions are spread all
over the spectral range, but they present different spectral
slopes in the inertial range and therefore different spatial
correlations. From the integral wavenumber to the dissipa-
tion wavenumber, a negative slope for the coherent contribu-
tion, corresponding to long-range spatial correlations, is ob-
served. The incoherent part shows a positive slope with a
power-law dependence close to k3 in the inertial range. This
corresponds to an equipartition of kinetic energy in two di-
mensions. A similar result was obtained in three-dimensional
isotropic Navier–Stokes turbulence.8

D. Scatter plots

We show in Fig. 3 scatter plots of the vorticity versus the
electrostatic potential corresponding to the fields in Fig. 1.
Both the total part and the incoherent part are shown. Since
the coherent part is almost identical to the total part, it has
been omitted. Also shown, superposed on the same figures, is
the scatter plot corresponding to the zoom on the dipolar
structures indicated by a white frame in Fig. 1. In the freely
decaying hydrodynamic case, c=0, Joyce and Montgomery19

showed that a functional relation ����=� sinh���� should
be expected, corresponding to a final state of decay depleted
from nonlinearity. The parameters � and � are Lagrangian
multipliers, necessary for maximizing the entropy under con-
straints. The value 1 /� can be associated with a �negative�
temperature.19 Depletion from nonlinearity corresponds to
steady solutions of the Euler equation, �� ,��=0, implied by
the existence of a functional relation ����. Indeed drift-wave
turbulence contains an internal instability which prevents the
flow from decaying. This forcing is present in both cases
considered here and a sinh-Poisson relation cannot be ex-
pected a priori for the global flows. Moreover, the two-field

TABLE I. Compression rate �% of coefficients retained�, retained energy
E= 1

2 ���2�	, enstrophy Z= 1
2 ��2	, and radial flux �r, after applying the CVE

filter to the vorticity field of the quasi-hydrodynamic and quasi-adiabatic 2D
drift-wave turbulence simulations.

Compr. �%� E �%� Z �%� �r �%�

Quasi-hydrodynamic �c=0.01� 1.3 99.9 97 99

Quasi-adiabatic �c=0.7� 1.8 99.0 93 98
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model �Eqs. �1� and �2�� contains two nonlinearities, first the
polarization-drift nonlinearity in the vorticity equation, sec-
ond the E�B nonlinearity in the density equation. The latter
disappears in the adiabatic limit as n and � are in phase,
which corresponds to a linear functional relationship. In Fig.
3, a local depletion of the polarization-drift nonlinearity is
seen for the quasi-hydrodynamic case. The scatter plot of
�−�, corresponding to the dipolar structure, that is indicated
by a white frame in figure 1 �left�, is close to a sinh-Poisson
relation �solid black curve� in spite of the presence of the
forcing term. In the quasi-adiabatic case, the dipolar struc-
ture, which is indicated by a white frame in Fig. 1 �right�,

does not exhibit such a functional relation. In the incoherent
parts �Fig. 3, bottom�, no functional relation can be distin-
guished, which confirms that the incoherent part does not
contain any structure, for both the quasi-hydrodynamic and
quasi-adiabatic cases.

E. Strain versus vorticity

A question is now how to quantitatively distinguish be-
tween the structures in both cases. Intuitively it can be in-
ferred that different regions of high vorticity in the quasi-
adiabatic case involve strong mutual shearing, which
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FIG. 2. Top: PDF of the vorticity. Bot-
tom: Fourier spectrum of the enstro-
phy versus wavenumber. Left: quasi-
hydrodynamic case. Right: quasi-
adiabatic case. Dashed line: total field,
solid line: coherent part, dotted line:
incoherent part. Note that the coherent
contribution �solid� superposes the to-
tal field �dashed�, which is thus hidden
under the solid line in all four figures.
The straight lines indicating power
laws are plotted for reference.

FIG. 3. �Color online� Scatter plot of
vorticity against electrostatic potential
for the coherent part �top� and incoher-
ent part �bottom�. Left, quasi-
hydrodynamic case; right, quasi-
adiabatic case. The light gray �red
online� dots correspond to the total
field, the dark gray �blue online� dots
to the dipoles we have selected in
Fig. 1.

072305-4 Bos et al. Phys. Plasmas 15, 072305 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://php.aip.org/php/copyright.jsp



strongly limits their lifetime and the chance to reach a func-
tional relation ����. Koniges et al.3 determined the lifetime
of individual eddies compared to the eddy-turnover time
�over, i.e., the time it takes for a fluid element in an eddy to
make a 2� rotation. They estimated the lifetime of the quasi-
hydrodynamic eddies to be approximately 10 �over, and the
lifetime of the adiabatic eddies �for c=2.0� approximately
�over. As mentioned in their paper, this measure is quite sub-
jective and very time-consuming, especially if a full PDF of
the lifetimes is to be obtained. Here we propose a simpler
way to distinguish the coherent structures for the different
regimes.

In fluid turbulence, the Weiss criterion Q �Ref. 20� is a
local measure of the strain compared to the vorticity for a 2D
velocity field. The Weiss field is defined as

Q = 1
4 ��2 − �2� , �10�

with

�2 = � �u

�x
−

�v
�y
�2

+ � �u

�y
+

�v
�x
�2

. �11�

u and v are two orthogonal components of the velocity vec-
tor. The Weiss criterion was proposed to identify coherent
structures, but it may lead to ambiguous results because the
underlying assumption that the velocity gradient varies
slowly with respect to the vorticity gradient is not generally
valid.21 We apply the same criterion here to drift-wave
turbulence22–24 but not to identify coherent structures �this
being done by the CVE method�, but to distinguish between
the quasi-hydrodynamic and quasi-adiabatic cases.

The PDF of the Weiss field �Fig. 4� reveals that it is its
skewness that differentiates best the two fields. Indeed, it is
more skewed toward negative Q for the quasi-hydrodynamic
case than for the quasi-adiabatic case: the skewness is −11
for the former, compared to −2 for the latter. The PDF shows
thus that in the quasi-hydrodynamic case, the probability to
find rotationally dominated regions is larger, and the rotation
exhibits much larger values, than in the quasi-adiabatic case.
The variance of Q is comparable for the two cases �5 and 4

for the quasi-hydrodynamic case and the quasi-adiabatic
case, respectively�. The skewness of the Weiss field Q ap-
pears to be a good quantitative measure to distinguish be-
tween the two cases studied in the present work. In further
studies, it can be investigated whether this measure can be
used to identify coherence in different types of turbulent
flows.

III. CONCLUSION AND PERSPECTIVES

In conclusion, we have applied the coherent vortex ex-
traction method to dissipative drift-wave turbulence. The re-
sults show that we can identify the essential degrees of free-
dom �less than 2%� responsible for the nonlinear dynamics
and transport. The coherent modes contain almost all the
energy and enstrophy and contribute to more than 98% of the
radial flux.

Evaluating the scatter plot of the vorticity versus the
electrostatic potential, it is shown that the coherent structures
in the quasi-hydrodynamic case are close to a state of local
depletion of polarization-drift nonlinearity. In contrast, this is
not the case for the quasi-adiabatic regime, where nonlinear-
ity remains active and no sinh-functional relation between
vorticity and electrostatic potential is observed. This deple-
tion of nonlinearity in the quasi-hydrodynamic regime may
explain the failure of the quasilinear estimate of the radial
flux.3 The skewness of the Weiss field yields a quantitative
measure for the difference in nonlinear behavior of the co-
herent structures between the quasi-hydrodynamic and quasi-
adiabatic cases.

The wavelet transform, or the proper orthogonal decom-
position �POD�, may become very useful to denoise particle-
in-cell simulations of plasma turbulence.25 A comparison of
the performance of the POD and CVE method is currently
being undertaken and will be reported in a future paper.
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