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Two-dimensional statistically stationary isotropic turbulence with an imposed uniform scalar
gradient is investigated. Dimensional arguments are presented to predict the inertial range scaling of
the turbulent scalar flux spectrum in both the inverse cascade range and the enstrophy cascade range
for small and unity Schmidt numbers. The scaling predictions are checked by direct numerical
simulations and good agreement is observed. © 2009 American Institute of Physics.
�doi:10.1063/1.3263703�

I. INTRODUCTION

In the present work we consider the spectral distribution
of the passive scalar flux in two-dimensional incompressible
Navier–Stokes turbulence. The scalar flux appears as the un-
closed quantity in the Reynolds averaged equation for the
mean scalar field: separating the velocity and passive scalar

field into mean and fluctuations, u=u+u� and �= �̄+��, the
equation for the mean scalar field reads

� �̄

�t
+ ūj

� �̄

�xj
= �

�2�̄

�xj
2 −

�uj���

�xj
, �1�

where � is the diffusivity of the scalar and the overbar de-
notes an ensemble average. The last term of this equation

contains the correlation uj���, which is called the scalar flux.
It is the term which represents the influence of the turbulent
fluctuations on the mean scalar profile. Since it is the un-
closed term in the Reynolds averaged equations, it needs to
be modeled, e.g., by means of an eddy diffusivity. To pro-
pose correct models for the scalar flux, understanding of the
physics of the turbulent flux is needed. For an overview of
models for the scalar flux, we refer to the book by Schiestel,1

the work by Rogers et al.,2 or more recently the model de-
rived by Wikström et al.3 For the more complicated case of
the scalar flux in the presence of shear and rotation, see the
work by Brethouwer.4 These studies focus on three-
dimensional turbulence.

We consider statistically homogeneous velocity and sca-
lar fields so that we can investigate the scale distribution of
the turbulent scalar flux by means of Fourier spectra. The
Fourier spectrum related to the scalar flux is defined as

Fuj�
�k� = �

��k�
F�x−x��uj��x,t����x�,t��d��k� , �2�

in which ��k� is a circular wavenumber shell with radius k,
the wavenumber, and F �x−x��¯ � denotes the Fourier trans-
form with respect to the separation vector x−x�. This defi-
nition is such that by construction we have

�
0

�

Fuj�
�k�dk = uj���, �3�

which illustrates that the scalar flux spectrum characterizes
the contribution of different lengthscales �or wavenumbers�
to the scalar flux. This spectrum is also called the scalar-
velocity cospectrum since it is defined as the real part of the
scalar-velocity correlation in Fourier space. The imaginary
part is called the quadrature spectrum. The quadrature spec-
trum does not contribute to the scalar flux in physical space
and we therefore concentrate on the cospectrum.

Academically the least complicated case to study the tur-
bulent scalar flux is, as proposed by Corrsin,5 isotropic tur-
bulence on which we impose a stationary uniform mean sca-

lar gradient ��̄ /�x1��, arbitrarily chosen in the x1-direction.
In this case there exists one nonzero component of the scalar
flux, aligned with the gradient. The other component is zero.
We consider this case and in particular, we focus on the
inertial range scaling of the scalar flux spectrum. We will in
the following drop the subscripts and denote the cospectrum
by F�k�. We will also drop the primes and denote the fluc-
tuations of velocity and scalar by u and �, respectively. Be-
fore starting the study of the scaling in two-dimensional tur-
bulence, we briefly discuss the results obtained in the related
case of three-dimensional turbulence. Lumley6,7 predicted
that at high Reynolds numbers the inertial range should fall
off as k−7/3. Indeed he predicted the inertial range to be given
by

F�k� � ��1/3k−7/3, �4�

with � the dissipation of kinetic energy, or more precisely the
energy flux at scale k. This scaling was investigated experi-
mentally in the atmospheric boundary layer8 and in decaying
grid turbulence at Taylor-scale Reynolds numbers up to R�

=600.9,10 In these grid-turbulence experiments it was found
that the �7/3 scaling was not observed at this Reynolds
number. It was subsequently proposed11 that the inertial
range exponent might be �2 instead of �7/3. However, in
closure calculations, it was shown that the �2 scaling was a
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low-Reynolds number effect and that the �7/3 scaling
should be observed at higher Reynolds numbers.12,13 This
was confirmed by the work of O’Gorman and Pullin14 and
recent direct numerical simulations �DNSs�.15

In the case of two-dimensional turbulence only few stud-
ies address the problem of the scaling of the scalar flux spec-
trum. Let us recall that in two-dimensional turbulence, in
which the energy is injected at a wavenumber ki, two cas-
cades can be observed: first an energy cascade toward the
large scales and, second, an enstrophy cascade to the small
scales. If the injection scale is much smaller than the domain
size and much larger than the range in which the viscous
stresses become important, both cascades are characterized
by power-law scaling.16–18 We focus on these inertial ranges,
which we will denote by IC for the inverse energy cascade
and FC for the forward enstrophy cascade range. In particu-
lar we investigate the wavenumber dependence of the scalar
flux spectrum in these ranges.

One of the few works investigating the scaling of the
scalar flux spectrum in two-dimensional turbulence is Ref.
19, which mentions that the scalar flux spectrum can be
roughly estimated by

F�k� 	 E�k�1/2E��k�1/2, �5�

in which the scalar variance spectrum is defined as

E��k,t� =
1

2
�

��k�
F�x−x����x,t���x�,t��d��k� . �6�

In the inverse cascade �IC� range, where both the energy
spectrum E�k� and the scalar variance spectrum E��k� are
known to obey the Kolmogorov–Obukhov scaling,20,21 this
would lead to a k−5/3 inertial range. Close observation of the
numerical results in Ref. 19 shows that this is not the case.

In the present paper we show that this k−5/3 inertial range
prediction does not correspond to the physics of the problem.
Phenomenological scalings for the inertial ranges in both the
IC and the forward enstrophy cascade will be proposed for
the scalar flux spectrum F�k� and the scalar variance spec-
trum E��k� for the cases of unity and small Schmidt number
�the Schmidt number is defined as the ratio of the diffusivity
of momentum to that of the scalar, Sc=	 /�, and is identical
to the Prandtl number when the passive scalar is tempera-
ture�. DNSs are carried out to verify the validity of the
predictions.

Note that since the scalar fluctuations are produced by a
mean gradient, the scalar fluctuations are in principle not
isotropic, but axisymmetric around the direction of the gra-
dient. It was shown22,23 that in the case of three-dimensional
isotropic turbulence the spectral distribution of scalar flux
can be described by a single scalar function. The distribution
of scalar variance can be described by two scalar functions.
In the present work, by integrating over wavenumber shells
�Eqs. �2� and �6��, we eliminate the angle dependence. A
detailed study of the anisotropy of the scalar field will not be
performed in the present work.

II. LINK BETWEEN THE LAGRANGIAN TIMESCALE
AND SCALAR FLUX SPECTRUM

The phenomenological scaling for the scalar flux pro-
posed in the present work is based on the direct relation
which exists between the scalar field and the Lagrangian dy-
namics of the turbulent velocity field. We therefore first dis-
cuss this link. Kraichnan proposed in the framework of the
Lagrangian history direct interaction approximation24 that
the dominant spectral timescale characterizing the inertial
range dynamics can be estimated by


�k,t� = �
0

t E�k,t�s�
E�k,t�

ds =
1

E�k,t��0

t

E�k,t�s�ds . �7�

This quantity was investigated numerically in Ref. 25. The
energy spectrum is the spherically averaged Fourier trans-
form of the two-point velocity correlation,

E�k,t� =
1

2
�

��k�
F�x−x��ui�x,t�ui�x�,t��d��k� . �8�

E�k , t �s� is the equivalent spectrum in which the Eulerian
velocity ui�x� , t� is replaced by ui�x� , t �s�, which is defined
as the velocity at time s of a fluid particle which arrives at
point x� at time t. The definition of ui�x� , t �s� is illustrated in
Fig. 1. The definition of E�k , t �s� is thus

E�k,t�s� =
1

2
�

��k�
F�x−x��ui�x,t�ui�x�,t�s��d��k� . �9�

By definition E�k , t � t� coincides with the Eulerian spectrum
E�k , t�. An interesting property of Eq. �7� is that the integral
can be explicited by integrating ui�x , t �s� along its trajectory.

�
0

t

E�k,t�s�ds =
1

2
�

��k�
F�x−x�
ui�x,t��

0

t

ui�x�,t�s�ds�d��k�

=
1

2
�

��k�
F�x−x��ui�x,t�Xi�x�,t��d��k� . �10�

Instead of the two-time quantity ui�x� , t �s�, the expression
now contains the single-time displacement vector of the fluid
particle, Xi�x� , t�, corresponding to the vector pointing from
its position at t=0 to its position at t, x�, or, in other words,
the trajectory. The link between the scalar flux spectrum and
the integral of E�k , t �s� becomes evident if we compare the

FIG. 1. �Color online� Representation of the Lagrangian two-point velocity
correlation.
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evolution equation of a nondiffusive passive scalar fluctua-
tion � in the presence of a mean scalar gradient,

��

�t
+ uj

��

�xj
= − �u1, �11�

with the equation of the x1-component of the Lagrangian
position vector Xi�x , t�:

dX1

dt
=

�X1

�t
+ uj

�X1

�xj
= u1. �12�

Indeed, both equations are identical, only differing by a fac-
tor −�. As was already stated in Ref. 26, the scalar fluctua-
tion is therefore proportional to the displacement of a fluid
particle in the direction of the gradient. In the limit of van-
ishing diffusivity, relation �7� can thus be recasted, using
Eqs. �2� and �10� as in Ref. 27:


�k� =
�−1F�k�

E�k�
. �13�

If the energy spectrum and the Lagrangian timescale are
known, the scalar flux spectrum is given by relation �13�.

A. Prediction of the scaling of the scalar flux
spectrum at large and unity Schmidt number

Dimensional analysis and phenomenological rea-
soning24,28 give that at a scale l�k−1 the Lagrangian time-
scale should be approximately given by l /u�l� in which the
typical velocity u�l� can be estimated to be of the order of
�kE�k�. This yields an estimation for the timescale 
�k�,


�k� � �k3E�k��−1/2. �14�

Combining this relation with Eq. �13� yields an estimation
for the scalar flux inertial range scaling,

F�k� � ��E�k�
k3 , �15�

which is a direct relation between inertial range scaling of
the scalar flux spectrum and the energy spectrum. In three-
dimensional turbulence, using Kolmogorov scaling for the
energy spectrum,

E�k� � �2/3k−5/3, �16�

leads to classical scaling for the scalar flux spectrum,

F�k� � ��1/3k−7/3. �17�

In two-dimensional turbulence this scaling should hold in the
IC range where Kolmogorov scaling is expected. In the for-
ward enstrophy cascade range, the energy spectrum is pre-
dicted to scale as16–18

E�k� � �2/3k−3, �18�

with � as the flux of enstrophy in the direct cascade. This
scaling was later refined introducing logarithmic
corrections,29,30

E�k� � �2/3k−3/ln�k/ki�1/3, �19�

with ki as the wavenumber corresponding to the energy in-
jection. We neglect this correction as a first approach. For
this forward entrophy cascade range �15� yields the scaling

F�k� � ��1/3k−3. �20�

It should be noted that the preceding analysis supposes a
high Schmidt number. Indeed, the analogy between the po-
sition of a fluid particle and a scalar fluctuation �Eqs. �11�
and �12�� is exact for infinite Schmidt number. However, the
effect of the Schmidt number for Sc larger than one is
small.22,31 O’Gorman and Pullin14 showed that when chang-
ing the Schmidt number from 1 to 104, the shape of the
scalar flux spectrum was only little affected. We now explain
this.

The equation for the cospectrum can be derived directly
from the scalar advection-diffusion equation combined with
the Navier–Stokes equation �e.g., Refs. 12 and 22�. It reads


 �

�t
+ �	 + ��k2�F�k� = −

2

3
�E�k� + Tu�

NL�k� . �21�

The left hand side contains the time derivative and the influ-
ence of viscosity 	 and scalar diffusivity �. We consider the
statistically stationary state in which the time-derivative term
drops. The first term on the right hand side is the production
of scalar flux by interaction of the velocity field with the
mean scalar gradient �. The last term is the nonlinear inter-
action which contains two contributions: a purely conserva-
tive nonlinear interaction which sums to zero by integration
over wavenumbers and a purely destructive pressure scram-
bling term which annihilates the correlation between scalar
and velocity fluctuations. The viscous-diffusive term can be
written as

�	 + ��k2F�k� = 	�1 + Sc−1�k2F�k� . �22�

This term changes only by a factor of 2 when the Schmidt
number goes from 1 to �. The influence of the Schmidt
number for Sc larger than one is therefore small.

B. Prediction of the scaling of the scalar flux spectrum
at small Schmidt number

In the case of Sc→0 we do expect the above reasoning
to change. We now discuss this case of small Schmidt
number.

When the diffusivity becomes very large �keeping 	 con-
stant to retain an inertial range for the energy spectrum�, the
influence of the nonlinear terms in Eq. �21� will become
small, since the diffusive timescale becomes smaller than the
nonlinear timescale �such as the eddy turnover time�. The
production term is then directly balanced by the diffusive
term. In this case Eq. �21� reduces to the equilibrium

�k2F�k� = − 2
3�E�k� , �23�

which yields
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F�k� = −
2�E�k�

3�k2 . �24�

O’Gorman and Pullin14 obtained the same expression in
three dimensions. In the IC range this should yield a k−11/3

scaling and in the FC range a k−5 scaling.
In Sec. IV results of DNSs of isotropic 2D turbulence

with an imposed mean scalar gradient are presented to check
the relations:

�−1F�k� � 
�1/3k−7/3 IC for Sc � 1,

�1/3k−3 FC for Sc � 1,

�−1�2/3k−11/3 IC for Sc  1,

�−1�2/3k−5 FC for Sc  1.
� �25�

III. PREDICTIONS FOR THE SPECTRUM
OF THE PASSIVE SCALAR VARIANCE

It is expected that the scalar variance spectrum displays
Batchelor scaling32 in the forward enstrophy cascade as was
experimentally demonstrated by33

E��k� � ���−1/3k−1, �26�

with �� the �diffusive� destruction rate of passive scalar fluc-
tuations. In the IC, Corrsin–Obukhov scaling is expected.

E��k� � ���−1/3k−5/3. �27�

The equation for the scalar variance spectrum reads


 �

�t
+ 2�k2�E��k� = − F�k�� + T�

NL�k� , �28�

with T�
NL�k� being the nonlinear transfer term. For very small

Schmidt number this equation can again be linearized, yield-
ing for the statistically stationary state

E��k� =
− F�k��

2�k2 . �29�

This gives, using Eq. �24�,

E��k� =
E�k��2

3�2k4 . �30�

For the scalar variance, our predictions are therefore

E��k� � 
���−1/3k−5/3 IC for Sc � 1,

���−1/3k−1 FC for Sc � 1,

�2�−2�2/3k−17/3 IC for Sc  1,

�2�−2�2/3k−7 FC for Sc  1.
� �31�

IV. NUMERICAL VERIFICATION OF THE PROPOSED
INERTIAL RANGE SCALINGS

A. Numerical method

Simulations are performed using a standard pseudospec-
tral method.34 The simulations are fully dealiased and the
resolution is 10242 gridpoints for a square periodic domain
of size 2�. The time is advanced using a second order
Adams–Bashforth time-stepping scheme.

The equations for the vorticity field and scalar field are

��

�t
+ uj

��

�xj
= �− 1��+1	�

�2��

�xj
2� + f − �

�−2�

�xj
−2 , �32�

��

�t
+ uj

��

�xj
= �− 1���+1���

�2���

�xj
2��

− �u1, �33�

with the vorticity �=ez · ���u�, f a random-phase isotropic
forcing localized in a band in wavenumber-space with a
time-correlation equal to the timestep. The parameters � and
�� are integers equal to one in the case of Newtonian viscos-
ity and diffusivity and equal to 8 in the case of hyperviscos-
ity or hyperdiffusivity. The mean gradient � is in all cases
taken equal to 1 so that the scalar flux, and its spectrum, is
dominantly negative.

In all cases, hyperviscosity is used to concentrate the
influence of the viscous term at the highest wavenumbers.
This allows to increase the extent of the inertial range, which
is the main subject in the present work. Equivalently the
scalar variance is removed at the largest wavenumbers by a
hyperdiffusive term except in the case of small Schmidt
number. Since in that case the diffusive term becomes the
dominant mechanism, the scaling is directly affected by the
type of diffusion, as can be seen in expressions �23� and �29�.
In that case we therefore use a “normal” Laplacian diffusive
term ���=1�. In two-dimensional turbulence the energy
shows a tendency to cascade to smaller wavenumbers, i.e., to
larger scales. To avoid a pile-up of energy at the smallest
wavenumber linear Rayleigh friction �the last term in Eq.
�32�� is used, with � equal to unity.

Two different fully developed turbulent flows are inves-
tigated. First the IC range, in which the forcing is localized
in a wavenumber shell around ki=210. In this case the for-
ward enstrophy range is reduced to less than an octave and a
full decade of IC inertial range is observed in the simula-
tions. Second the forward enstrophy range. In this case the
forcing is localized around ki=8, and the IC range is absent
since the friction acts strongly in the region k�ki. Param-
eters used in the simulations are summarized in Table I. Also
shown are some average values of some typical turbulence
quantities.

In both velocity fields two different cases are considered
for the passive scalar. One at Sc=1, with hyperdiffusivity
���=8� and one at small Schmidt number and ��=1. It is not
straightforward to define Schmidt numbers for these cases.
The precise definition of the Schmidt numbers is however
not important for the present study, but what is important is
the location of the inertial ranges and the ranges where dif-
fusivity becomes important. These ranges can be determined
as follows. We define a wavenumber k� at which the nonlin-
ear timescale 
�k� becomes of the order of the diffusive time-
scale ��k2�−1. If k� is in the inertial range, we can estimate its
value by using expression �14� and the inertial range scalings
�16� and �18�. This yields k���� /�3�1/4 in the IC and
k���� /�3�1/6 in the forward cascade. The wavenumber k�

marks the crossover between an inertial-convective range
and an inertial-diffusive range. We will call unity Schmidt
number cases, these cases in which both viscosity and diffu-
sivity mainly act in the last two octaves of the energy and
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scalar spectra, i.e., k� is of the order of the viscous wave-
number, �� /	3�1/4. The direct influence of the viscosity and
diffusivity is then small for wavenumbers smaller than ap-
proximately 100. In the case of small Sc, a normal diffusive
term is used since the scaling depends directly on the Laplac-
ian. The diffusivity is here taken large enough for it to act at
all scales, including the large scales, i.e., k� is of the order of,
or smaller than ke, the wavenumber at which the energy
spectrum peaks.

Simulations are performed until a statistically stationary
flow is obtained. The spectra are subsequently obtained by
averaging over a time interval of approximately 300 time
units, until a relatively smooth spectrum is obtained. This
corresponds to 270 Te for the IC-range and 540 Te for the
FC-range. The large-scale turnover time Te is here defined as
Te=1 / �ke� u�2 �1/2�.

B. Results

In Fig. 2 visualizations of various quantities are shown at
an arbitrary time. It is observed that the vorticity field con-
tains clear vortical structures in the forward cascade. In the
IC the vorticity field seems almost structureless. However,
closer inspection shows small vortical structures. Visualiza-
tion of the stream function shows more clearly that these
structures are present. The scalar field shows how fluctua-
tions of passive scalar are created by interaction of the flow
with the mean scalar gradient. In the IC case this scalar field
is almost structureless, but shows patches of scalar fluctua-
tion. We also displayed the instantaneous scalar flux, which
is the product of the x1-component of the velocity with the
scalar field. Both positive and negative values of the flux are
observed. The mean value is however smaller than zero
�since the mean gradient is positive�, so that the net flux is
nonzero.

In Fig. 3 visualizations are shown for the scalar field and

the scalar flux for the small Schmidt number case. Vorticity
fields and stream function are not shown, since they are
qualitatively the same as in Fig. 2. Due to the large diffusiv-
ity, all scalar gradients are rapidly smoothed out, so that in
both the IC and FC case the scalar field consists of large
blobs. The scalar flux fields are characterized by a finer
structure.

In Fig. 4 wavenumber spectra are shown for the energy,
scalar variance, and scalar flux. In the IC case, classical
Kolmogorov scaling proportional to k−5/3 holds for E�k� in
the inertial range. The scalar variance spectrum E��k� is also

TABLE I. Details of the simulations. Parameters used in the simulations and
average values of some typical turbulence quantities. These quantities are
averaged over space and time during a time interval of approximately 300

time units. The correlation coefficient �u� is defined as �u�=u� /�u2�2 and
analogous for �v�.

IC, Sc=1 FC, Sc=1 IC, Sc1 FC, Sc1

ki 210 8 210 8

ke 9 4 9 4

� 8 8 8 8

�� 8 8 1 1

	� 1�10−38 1�10−35 1�10−38 1�10−35

��� 1�10−35 1�10−32 10 10

�t 5�10−4 10−4 5�10−4 10−4

u2 1�10−2 0.2 1�10−2 0.2

v2 1�10−2 0.2 1�10−2 0.2

�2 0.1 0.9 5�10−8 1.4�10−5

u� −1.5�10−2 �0.1 −1.5�10−5 −1.2�10−3

v� 4�10−4 2.4�10−3 −4�10−8 9�10−7

�u� �0.45 �0.3 �0.6 �0.7

�v� 1�10−2 6�10−3 −2�10−3 5�10−4

−100 −80 −60 −40 −20 0 20 40 60 80 100

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 −5 −4 −3 −2 −1 0 1 2 3 4 5

Inverse Cascade Forward Cascade

ω

ψ

θ

uθ

FIG. 2. �Color online� Visualizations of �from top to bottom� vorticity,
streamfunction, scalar fluctuations, scalar flux. Left: IC. Right: forward cas-
cade. The Schmidt number is unity. The mean scalar gradient is in the
horizontal direction.
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proportional to k−5/3 as can be expected from Corrsin–
Obukhov arguments, but showing an important prediffusive
bump. This bump is frequently observed in spectra of the
scalar variance, e.g., Refs. 9 and 35. The scalar flux spectrum
is proportional to k−7/3, which is in disagreement with ex-
pression �5� proposed as a rough estimate by Smith et al.,19

and in perfect agreement with expression �25�, which corre-
sponds to classical Lumley scaling. Zero crossings are ob-
served so that not the whole spectrum has the same sign.

In the FC range, the energy spectrum is approximately
proportional to k−3, but slightly steeper for the wavenumbers
close to the injection scale ki. Taking into account the loga-
rithmic correction, the agreement with the prediction im-
proves even more. The scalar variance spectrum E��k� shows
a Batchelor regime32 proportional to k−1. The scalar flux
spectrum does show a scaling close to the scaling of the
energy spectrum, especially for the absolute value of the
spectrum. It is observed that the spectrum changes sign at
several wavenumbers. These sign changes were also ob-
served in the investigation of the scalar flux by the stretched
spiral vortex model for three-dimensional turbulence.23 The
spectrum of the planar contribution of the Lundgren vortex
to the scalar flux showed equivalent negative excursions. We
therefore relate this behavior to the roll-up of the scalar field
by large coherent vortices. Indeed, a fluid particle which re-
mains for a long time trapped in a vortical structure will
contribute both positively and negatively to the scalar flux.

As can be observed in Fig. 5, at small Schmidt number,
excellent agreement is observed with the predictions. In the
IC range, F�k� is proportional to k−11/3 and E��k� to k−17/3. In
the FC range, F�k� is proportional to k−5 and E��k� to k−7.

V. CONCLUSION

In this work the scaling of the scalar flux spectrum in
two-dimensional isotropic turbulence was addressed. Phe-
nomenological arguments based on Lagrangian dynamics
were proposed leading to the following predictions for the
inertial range scaling of the scalar flux spectrum:

�−1F�k� � 
�1/3k−7/3 IC for Sc � 1,

�1/3k−3 FC for Sc � 1,

�−1�2/3k−11/3 IC for Sc  1,

�−1�2/3k−5 FC for Sc  1,
� �34�

and for the scalar variance spectrum,

E��k� � 
���−1/3k−5/3 IC for Sc � 1,

���−1/3k−1 FC for Sc � 1,

�2�−2�2/3k−17/3 IC for Sc  1,

�2�−2�2/3k−7 FC for Sc  1.
� �35�

It was shown by DNS that in the IC the scalar flux spectrum
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FIG. 3. �Color online� Visualizations of scalar fluctuations �top�, scalar flux
�bottom�, in the IC �left� and in the forward cascade �right� for the case of
small Schmidt number.
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FIG. 4. �Color online� The energy spectrum, scalar flux spectrum and scalar
variance spectrum for Sc=1. Top: the case of large wavenumber forcing
�inverse energy cascade�. Bottom: the case of small wavenumber forcing
�forward entrophy cascade�. The solid lines are dimensional predictions
given by Eqs. �25� and �31�. In the FC case also the log-corrected k−3 scaling
is shown for the energy spectrum, which almost superposes the normal k−3

scaling. Dots indicate positive values of the scalar flux spectrum.
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is proportional to k−7/3, in perfect agreement with the scaling
arguments. The scalar variance shows Corrsin–Obukhov
scaling, proportional to k−5/3. In the direct enstrophy cascade
the energy spectrum obeys a log-corrected k−3 scaling and
the scalar spectrum displays Batchelor scaling proportional
to k−1. The scalar flux spectrum shows important positive and
negative contributions, probably related to the presence of
long-living coherent structures. The absolute value of the
spectrum shows a scaling close to k−3. At small Schmidt
number, excellent agreement is observed with the predic-
tions. The scalar flux spectrum scales here as k−11/3 in the IC
case and k−5 in the FC case. The scalar spectrum is propor-
tional to k−17/3 �IC� and k−7 �FC�.
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