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FULLY ADAPTIVE MULTIRESOLUTION SCHEMES FOR STRONGLY
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Abstract. We present a fully adaptive multiresolution scheme for spatially one-dimensional quasi-
linear strongly degenerate parabolic equations with zero-flux and periodic boundary conditions. The
numerical scheme is based on a finite volume discretization using the Engquist-Osher numerical flux
and explicit time stepping. An adaptive multiresolution scheme based on cell averages is then used
to speed up the CPU time and the memory requirements of the underlying finite volume scheme,
whose first-order version is known to converge to an entropy solution of the problem. A particular
feature of the method is the storage of the multiresolution representation of the solution in a graded
tree, whose leaves are the non-uniform finite volumes on which the numerical divergence is eventually
evaluated. Moreover using the L1 contraction of the discrete time evolution operator we derive the
optimal choice of the threshold in the adaptive multiresolution method. Numerical examples illustrate
the computational efficiency together with the convergence properties.
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1. Introduction

Adaptive multiresolution schemes were introduced in the 1990s for hyperbolic conservation laws with the
aim to accelerate discretization schemes while controlling the error [31]. This approach has been exploited
in different directions. Fully adaptive multiresolution schemes for hyperbolic equations are developed in [17].
In addition to CPU time reduction thanks to the reduced number of costly flux evaluations, these schemes
also allow a significant reduction of memory requirements by using dynamic data structures. An overview on
multiresolution techniques for conservation laws is given by Müller [40], see also Chiavassa et al. [16]. Fully
adaptive multiresolution schemes for parabolic equations are presented in [44,45]. Adaptive computations of
combustion problems in three space dimensions illustrated the efficiency and accuracy of the method [44].

Some approaches to define adaptive space discretizations emerge from ad hoc criteria, while others are
based on a posteriori error estimators using control strategies by solving computationally expensive adjoint

Keywords and phrases. Degenerate parabolic equation, adaptive multiresolution scheme, monotone scheme, upwind difference
scheme, boundary conditions, entropy solution.
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2 Centre de Mathématiques et d’Informatique, Université de Provence, 39 rue Joliot-Curie, 13453 Marseille Cedex 13, France.
kschneid@cmi.univ-mrs.fr

Article published by EDP Sciences c© EDP Sciences, SMAI 2008

http://dx.doi.org/10.1051/m2an:2008016
http://www.esaim-m2an.org
http://www.edpsciences.org
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problems [1,49]. Adaptive mesh refinement methods introduced by Berger and Oliger [4] are now widely used
for many applications using structured or unstructured grids, see e.g. [2,3].

It is the purpose of this paper to present an extension of the fully adaptive multiresolution scheme for
parabolic PDEs [45] to spatially one-dimensional degenerate parabolic PDEs of the type

ut + b(u)x = A(u)xx, (x, t) ∈ QT := I × T , I ⊂ R, T := (0, T ), (1.1)

where the function b(u) is assumed to be Lipschitz continuous and piecewise smooth with b(u) > 0 for u ∈
(0, umax) and b(u) = 0 otherwise, where umax is a given maximum solution value, and

A(u) =
∫ u

0

a(s) ds, (1.2)

where a(u) is a bounded, non negative integrable function. (In the sequel, whenever we refer to (1.1), it is
understood that b(u) and A(u) satisfy these assumptions.) Wherever a(u) vanishes, (1.1) degenerates into a
first-order hyperbolic conservation law. Since degeneracy is allowed to occur not only at isolated solution values,
but on u-intervals of positive length, (1.1) is called strongly degenerate parabolic.

Solutions of strongly degenerate parabolic equations, which include scalar conservation laws as a special case,
are in general discontinuous, and need to be defined as weak solutions along with an entropy condition to select
the physically relevant weak solution. This property excludes the application of standard numerical schemes for
uniformly parabolic equations having smooth solutions; rather, appropriate schemes are based on finite volume
(FV) schemes for hyperbolic conservation laws. In fact, our discretization is based on a simple FV scheme with
explicit time integration and uses the Engquist-Osher [23] numerical flux [11,12,25].

The analysis of numerical schemes for (1.1) exhibits several difficulties; most notably, due to the involved
nonlinear structure of (1.1), it is usually difficult to construct an exact solution, the convergence rate is not
known, and numerical experimentation is necessary to identify the best suited parameters for a numerical
scheme, for example the threshold parameters in a multiresolution scheme [13].

First applications of multiresolution schemes to (1.1) were presented in [13,46]. In [13], the multiresolution
method combines the switch between central interpolation or exact computation of numerical flux with a
thresholded wavelet transform applied to cell averages of the solution to control the switch. The multiresolution
method used in [13] closely follows the work of Harten [31]. Within that version, the differential operator is
always evaluated on the finest grid, but computational effort is saved by replacing, wherever the solution is
sufficiently smooth, exact flux evaluations by approximate flux values that have been obtained more cheaply by
interpolation from coarser grids. Though the version of the multiresolution method of [13] is effective for (1.1),
it does not provide memory savings. In contrast to [13], the method presented herein does provide significant
memory savings, since the multiresolution representation of the solution is stored in a graded tree [17,22,40,41,
45], whose leaves are the finite volumes for which the numerical divergence is computed. This means that the
numerical flux is actually evaluated on the borders of these finite volumes. Since the flux is computed only at
these positions, but not on all positions of the fine grid (as in [13]), we refer to our method as fully adaptive. On
the other hand, the properties of the underlying discretization allow to derive an optimal choice of the threshold
parameter for the adaptive multiresolution computations, as suggested in [17]. This choice guarantees that the
perturbation error of the adaptive multiresolution scheme is of the same order than the discretization error of
the finite volume scheme.

To further put this work into the proper perspective, we first mention that the main applications of (1.1)
include a theory of sedimentation-consolidation processes [5], a diffusively corrected kinematic traffic model [7,
42], and two-phase flow in porous media [24]. The initial-boundary value problem for (1.1) that models batch
sedimentation is analyzed in [8], where the existence of BV entropy solutions is shown via the vanishing
viscosity method, while their uniqueness follows by a technique introduced by Carrillo [15]. On the other hand,
Evje and Karlsen [25] show that explicit monotone finite difference schemes, which were introduced by Harten
et al. [32] and Crandall and Majda [18] for conservation laws, converge to BV entropy solutions for initial-value
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problems of strongly degenerate parabolic equations. These results are extended to several space dimensions
in [33]. Further analyses of finite volume schemes for degenerate parabolic equations include the works by
Eymard et al. [26] and Michel and Vovelle [39].

Variants of the techniques of [25,33] suitable for (1.1) with flux-type boundary conditions are analyzed
in [6,11,12]; in particular, in [11,12] it is proved that these schemes converge to an entropy solution. Convergence
of monotone schemes to an entropy solution has also been proved for conservation laws and strongly degenerate
convection-diffusion equations with discontinuous flux [9,10,34,35,50,51]. Such equations arise, for example,
if the sedimentation-consolidation model is extended to so-called clarifier-thickener units. They can also be
effectively discretized by the multiresolution technique presented herein [14].

The remainder of this paper is organized as follows. In Section 2, we specify the initial and boundary
conditions for two initial-boundary value problems for (1.1): Problem A with zero-flux boundary conditions,
and Problem B with periodic boundary conditions. For Problem A, the regularity assumptions on the initial
datum and the definition of an entropy solution are given. An existence and uniqueness result for Problem A
is recalled; a similar analysis can be conducted for Problem B. In Section 3, the numerical discretization for
Problem A is described (the modifications for Problem B are minor). To this end, we introduce in Section 3.1
the basic finite volume scheme. The first-order version of this scheme is a monotone upwind scheme involving
the Engquist-Osher flux [23], which is analyzed in [11,12]; we here utilize a spatially second-order MUSCL-type
version [6]. The basic time discretization is described in Section 3.2. It is based on a particular embedded
Runge-Kutta method, the RK3(2) Runge-Kutta-Fehlberg (RKF) method, which allows to adaptively control
the time step. In Section 4, the conservative adaptive multiresolution method is outlined; in particular, in
Section 4.1, the construction of the graded tree structure is described. The final multiresolution algorithm,
which combines the ingredients of Sections 3 and 4, is outlined in Section 4.2. Further details on the numerical
method and on its implementation using dynamical data structures can be found in [45]. An error analysis
of the adaptive multiresolution scheme is outlined in Section 5. Based on the analyses by Cohen et al. [17]
and Roussel et al. [45] we show that, if the convergence rate of the FV scheme is known, then the threshold
parameter of the multiresolution scheme can be chosen optimally in the sense that the multiresolution scheme
has the same order of convergence (with respect to the discretization of the finest grids) than the finite volume
scheme. Calculations presented in the Appendix show that within a finite choice of values ranging over several
orders of magnitude, the reference tolerance has been chosen optimally.

In Section 6 we present numerical results for a sedimentation-consolidation model, which gives rise to Prob-
lem A, and for a model of traffic flow on a circular road, which leads to Problem B (Examples 1 and 2,
respectively). To this end, we recall in Section 6.1 the sedimentation-consolidation model, and present in
Section 6.2 numerical simulations for Example 1. In light of the findings of Section 5, we first perform test
calculations to estimate the order of convergence α of the FV scheme for Problem A, resulting in α ≈ 0.6, and to
analyze the behavior of the RKF time step control compared to a simulation with a fixed time step. Numerical
experiments with the multiresolution scheme, in part combined with the RKF device, then demonstrate that
the error control outlined in Section 5 is indeed effective here. In Section 6.3, we outline a traffic model, which
leads to Problem B. The numerical experiments for traffic flow on a circular road (Example 2) presented in
Section 6.4 are similar to those of Section 6.2, and equally illustrate the effectiveness of the method. Some
conclusion that can be drawn from the paper are given in Section 7.

2. Statement of the problem and preliminaries

For the interval I := (xa, xb), the zero-flux initial-boundary value problem, Problem A, is defined by (1.1)
and the initial and boundary conditions

u(x, 0) = u0(x), x ∈ I, (2.1)(
b(u) − A(u)x

)
(x�, t) = 0, t ∈ T , x� ∈ {xa, xb}. (2.2)
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Problem B arises from replacing the zero-flux boundary condition (2.2) by the periodicity condition

u(xa, t) = u(xb, t), t ∈ T . (2.3)

Problems A and B admit an existence and uniqueness analysis if the functions b(u) and A(u) satisfy the
assumptions stated in Section 1. In addition, we assume that the initial function u0 satisfies a regularity
condition [11], which we here state in terms of a spatial discretization that will also be used for the FV scheme.
To this end, let J ∈ N denote the number of space steps, Δx := (xb − xa)/J , xj+1/2 := xa + (j + 1/2)Δx for
j = 0, . . . , J − 1, Ij := [xj−1/2, xj+1/2) and

u0
j :=

1
Δx

∫
Ij

u0(x) dx, j = 0, . . . , J. (2.4)

For Problem A, we assume that u0 ∈ BV (I), 0 ≤ u0(x) ≤ umax for all x ∈ Ī, and that there exists a
constant M > 0 such that

J−1∑
m=1

∣∣A(
u0

m+1

)
− 2A

(
u0

m

)
+ A

(
u0

m−1

)∣∣ ≤ MΔx uniformly in Δx; (2.5)

note that this requests, in particular, that M be independent of J . As detailed in [11], (2.5) is imposed to ensure
uniform L1 Lipschitz continuity in time for the numerical solution when the discretization parameters tend to
zero. The continuous version of (2.5) states that the total variation of (Aε(u0))x on the interval I must be
uniformly bounded with respect to ε, where ε > 0 is a regularization parameter of a smooth regularization Aε(·)
of A(·). In the continuous case, this condition was introduced in [8] to achieve a uniform estimate of the spatial
variation of the time derivative of a viscous regularization of Problem A. Both (2.5) and the continuous n
condition are satisfied, for example, if u0 is constant.

For the purpose of illustration, we recall here the definition of an entropy solution of Problem A [8,11].

Definition 2.1. A function u ∈ L∞(QT ) ∩ BV (QT ) is an entropy solution of the initial-boundary value
problem (1.1), (2.1), (2.2) (Problem A) if the following conditions are satisfied:

(1) The integrated diffusion coefficient has the regularity A(u)x ∈ L2(QT ).
(2) The boundary condition (2.2) holds in the following sense:

γ(x�, t)
(
b(u) − A(u)x

)
= 0, t ∈ T , x� ∈ {xa, xb},

where γ is the trace operator.
(3) The initial condition (2.1) holds in the following sense:

lim
t↓0

u(x, t) = u0(x) for almost all x ∈ I.

(4) The following entropy inequality holds for all test functions ϕ ∈ C∞
0 (QT ), ϕ ≥ 0, and all k ∈ R:∫∫

QT

{
|u − k|ϕt + sgn(u − k)

[
b(u) − b(k) − A(u)x

]
ϕx

}
dt dx ≥ 0.

The proof of existence of an entropy solution by the method of vanishing viscosity is outlined in [8]. That
paper also presents a sketch of the uniqueness proof, which relies on results by Carrillo [15] that permit applying
Kružkov’s “doubling of the variables” [36] technique to strongly degenerate parabolic equations. These results
allow us to state the following theorem; a similar analysis can be conducted for Problem B.

Theorem 2.1. The initial-boundary value problem (1.1), (2.1), (2.2) (Problem A) has a unique entropy solution.
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3. Numerical discretization

3.1. Finite volume scheme

Problem A is discretized in space with classical finite volumes. The computational domain I is decomposed
into cells {Ij}2L

j=1. The initial-boundary value problem (IBVP) is then integrated over each cell Ij , where the
volume of each cell is denoted by |Ij |. Hence we get

duj

dt
= D̄j

(
U(t)

)
, j = 1, . . . , 2L, (3.1)

where U(t) = (ui(t))i=1,...,2L contains the cell averages of the numerical solution at time t, such that

uj(t) ≈
1
|Ij |

∫
Ij

u(x, t) dx, j = 1, . . . , 2L,

and D̄j(U(t)) is the numerical divergence of cell Ij at time t. In the one-dimensional case, Ij is an interval (the
cell [xj−1/2, xj+1/2]) with step size Δxj := xj+1/2 − xj−1/2, and we may simply write

D̄j(U(t)) ≈ − 1
|Ij |

((
b(u) − A(u)x

)∣∣
xj+1/2

−
(
b(u) − A(u)x

)∣∣
xj−1/2

)
, j = 1, . . . , 2L. (3.2)

If F̄j+1/2 and F̄j−1/2 are the numerical fluxes associated with the left and right cell boundaries, respectively,
then we may write

D̄j = − 1
Δxj

(
F̄j+1/2 − F̄j−1/2

)
, j = 1, . . . , 2L. (3.3)

Available discretization methods differ by the definition of the numerical flux that approximates F̄j±1/2.
In addition to the notation introduced previously, we let N ∈ N be the number of time steps, Δt := T/N , and

In := [tn, tn+1), where tn = nΔt for n = 0, . . . , N . We denote by un
j the numerical solution at (xj , tn), assume

that the values for n = 0 are given by (2.4), and approximate the entropy solution of Problem A by a three-point
finite difference scheme, which is defined by an “interior” formula for un

1 , . . . , un
J−1 and two “boundary” formulas

for un
0 and un

J , respectively. Defining ν := Δt/Δx2 and λ := Δt/Δx, we employ the following discretization,
where hn

j+1/2 := h(un
j , un

j+1) and dn
j+1/2 := A(un

j+1) − A(un
j ) for j = 0, . . . , J − 1:

un+1
0 = un

0 − λhn
1/2 + νdn

1/2, (3.4a)

un+1
j = un

j − λ
(
hn

j+1/2 − hn
j−1/2

)
+ ν

(
dn

j+1/2 − dn
j−1/2

)
, j = 1, . . . , J − 1, (3.4b)

un+1
J = un

J + λhn
J−1/2 − νdn

J−1/2. (3.4c)

We use the Engquist-Osher flux function [23]

h(u, v) := b(0) +
∫ u

0

max
{
b′(s), 0

}
ds +

∫ v

0

min
{
b′(s), 0

}
ds. (3.5)

In [12] it is shown that the scheme (3.4), (3.5), which is the first-order version of the basic scheme used herein,
converges to the entropy solution of Problem A, provided that the following CFL condition is satisfied:

CFL := λ‖b′‖∞ + ν‖a‖∞ ≤ 1/2. (3.6)

Convergence of a semi-implicit variant of (3.4), (3.5) is shown in [11] under the milder CFL condition λ‖b′‖∞ ≤
1/2. In both cases, the convergence proof relies on the monotonicity of the first-order scheme.
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In order to upgrade the spatial discretization to second order, we use a MUSCL (variable extrapolation)
scheme. We introduce a piecewise linear function un(x) defined by

un(x) := un
j + sn

j (x − xj), x ∈ (xj−1/2, xj+1/2),

where sn
j denotes a suitable slope constructed from un. For smooth solutions, in regions where sn

j is an O(Δx)
approximation of ux(xj , tn), the reconstruction is linear and the truncation error is O(Δx2). In regions where
sn

j = 0, the reconstruction is piecewise constant and the truncation error is O(Δx). For Cauchy problems, the
slopes are limited to enforce the Total Variation Diminishing (TVD) property of the scheme. In our case, we
use the θ-limiter [28]

sn
j = M̂

(
θ
un

j − un
j−1

Δx
,

un
j+1 − un

j−1

2Δx
, θ

un
j+1 − un

j

Δx

)
, θ ∈ [0, 2], (3.7)

where we choose θ = 0.5 as in [6], and M̂ is the minmod function

M̂(a, b, c) :=

⎧⎪⎨
⎪⎩

min{a, b, c} if a, b, c > 0,
max{a, b, c} if a, b, c < 0,
0 otherwise.

Then we extrapolate the data to the boundaries of each cell and form the corresponding second order scheme.
(An alternative “order upgrading” method would be to use a second-order essentially non-oscillatory (ENO)
reconstruction [47], as done in [45].) For Problem A (with zero-flux boundary conditions), (3.7) is used for
j = 2, . . . , J − 2, and we set

sn
0 = sn

1 = sn
J−1 = sn

J = 0. (3.8)

Experience in previous work [6] shows that the boundary formulas properly approximate the zero-flux boundary
conditions (2.2) only if the first-order version (3.4a) and (3.4c) is utilized, that is, if condition (3.8) is imposed.
Early numerical experiments showed that dropping this condition and calculating boundary slopes according
to (3.7) produces oscillatory solutions.

For Problem B, the basic scheme is defined by formula (3.4b) for j = 0, . . . , J , provided that the space index
is taken modulo J . In the same sense, (3.7) is used for all j.

3.2. Time integration

The FV scheme described in Section 3.1 is only first order in time, and should be upgraded to at least second
order so that the second-order spatial accuracy is effective. This can be achieved if the time integration is
done, for example, by a standard second or higher order Runge-Kutta (RK) scheme. However, we herein utilize
a particular class of so-called embedded RK schemes [19,27,30], which, apart from providing the necessary
accuracy, also allow for an adaptive control of the time step. Specifically, we utilize a simple version of a so-
called Runge-Kutta-Fehlberg (RKF) method. RKF schemes are based on the observation that by varying the
vector b of weights for the stages calculated in the course of a Runge-Kutta step, pairs of schemes with different
orders of accuracy can be generated. This allows to estimate the approximation error in time, and the time step
can be automatically adjusted to control the error in time. The additional computational effort is moderate,
since both schemes utilize the same nodes and interior weights of the quadrature formula.

In our case, we use the RK3(2) method, which is a RKF method defined for a system of ordinary differential
equations du/dt = L(t, u) that combines a Runge-Kutta scheme

um+1 = um + b̂1κ1 + b̂2κ2 + b̂3κ3 (3.9)
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of order p = 3 with another scheme

um+1 = um + b̌1κ1 + b̌2κ2 + b̌3κ3 (3.10)

of order p − 1 = 2, where the stages

κ1 = ΔtL(tm + c1Δt, um),

κ2 = ΔtL(tm + c2Δt, um + a21κ1),

κ3 = ΔtL(tm + c3Δt, ūm + a31κ1 + a32κ2) (3.11)

are the same for both methods. The coefficients for the resulting RK3(2) method are given in the following
Butcher tableau:

c1 = 0
c2 = 1 a21 = 1
c3 = 1/2 a31 = 1/4 a32 = 1/4

b̂1 = 1/6 b̂2 = 1/6 b̂3 = 2/3
b̌1 = 1/2 b̌2 = 1/2 b̌3 = 0

(3.12)

These specific coefficients define an optimal pair of embedded TVD-RK methods of orders two and three [47].
If we denote by ûm+1 and ǔm+1 the candidate values of um+1 determined by (3.9) and (3.10), respectively, then
truncation error between these two approximations is estimated by

δold := ûm+1 − ǔm+1 =
p∑

i=1

(b̂i − b̌i)κi ∼ (Δt)p (with p = 3 in our case). (3.13)

We could adjust Δt to maintain prescribed accuracy δdesired in time by using Δtnew = Δtold|δdesired/δold|1/p

with p = 3, but to avoid excessively large time steps, we apply a time step limiter function S defined as

S(t, Δt) := (S0 − Smin) exp(−t/Δt) + Smin,

where we choose S0 = 0.1 and Smin = 0.01. This implies that we initially allow 10% of variation in the time
step, and after a few iterations, we allow only 1%. The new time step Δtnew is now defined as

Δtnew =

⎧⎪⎨
⎪⎩

Δtold|δdesired/δold|1/p if |(Δtnew − Δtold)/Δtold| ≤
1
2
S(t, Δtold),

1
2
S(t, Δtold)Δtold + Δtold otherwise.

(3.14)

We emphasize that Δtnew is the time step for computing ūm+2. More details on the numerical scheme and
its implementation can be found in [21]. The nomenclature of “RKF method” for the embedded Runge-Kutta
scheme used herein is widespread in the literature (see e.g. [48]). However, this scheme does not utilize what
has become known as the “Fehlberg trick” [19] (i.e., κp equals κ1 of the next time step).

Both the second- and third-order TVD-RK schemes presented herein are optimal in the sense that if the first-
order explicit Euler time discretization um+1 = um + ΔtL(tm, um) is stable in a certain norm, i.e., ‖um+1‖ ≤
‖um‖ under a condition Δt ≤ Δt1, then both schemes are stable under the same condition Δt ≤ Δt1, see [47]
for details. This means that even though these TVD-RK schemes are of second-order or third-order accuracy,
the CFL condition for the resulting FV scheme is still the condition (3.6) imposed on the first-order version of
the scheme, which limits Δt/Δx2.
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4. Conservative adaptive multiresolution discretization

To accelerate a given finite volume scheme on a uniform grid without loosing accuracy, the solution on a fine
grid is represented by values on a coarser grid plus a series of differences at different levels of nested dyadic
grids. These differences contain information on the solution when going from a coarse to a finer grid; specifically,
these coefficients are small in regions where the solution is smooth. Removing small coefficients by thresholding
defines a locally refined adaptive grid. A suitable choice of this threshold guarantees that the discretization
error of the reference scheme is balanced with the accumulated thresholding error introduced in each time step.
This allows to reduce memory and CPU requirements without loosing accuracy.

4.1. Graded tree data structure

Mainly for sake of data and time compression, differences and the solution at different levels are organized
in a dynamic tree. We denote by root the basis of the tree, and by node any element of the tree. In one-
dimensional space, a parent node has two sons, and the sons of the same parent are called brothers. A given
node has nearest neighbors in each direction, called nearest cousins. A node without children is called a leaf.
For the computation of the fluxes of a leaf, we need s′ = 2 nearest cousins in each direction, if these do not
exist, we create them as virtual leaves. This graded tree structure has been illustrated in previous work, see
e.g. [14,45], and is comprehensively described in [40].

We follow the ideas of Harten’s cell average multiresolution framework [31]. We denote by Λ the set of indices
of existing nodes, by L(Λ) the restriction of Λ to the leaves, and by Λl the restriction of Λ to a multiresolution
level l, 0 ≤ l ≤ L. To obtain the cell averages of a level l from those of the finer level l +1, we use the projection
operator Pl+1→l, which in our one-dimensional case it is defined by

ul,j = (Pl+1→lUl+1)j :=
1
2
(ul+1,2j + ul+1,2j−1).

To estimate the cell averages of a level l + 1 from those of level l, we use the prediction operator Pl→l+1.
This operator should be local in the sense that the interpolation for a son is made from the cell averages of its
parent and the s nearest cousins of its parent; and should be consistent with the projection in the sense that it
is conservative with respect to the coarse grid cell averages: Pl+1→l ◦ Pl→l+1 = Id. For a regular grid structure
in one space dimension, we use a polynomial interpolation:

ûl+1,2j = ul,j +
s∑

m=1

γm(ul,j+m−ul,j−m), ûl+1,2j−1 = ul,j −
s∑

m=1

γm(ul,j+m−ul,j−m), j = 1, . . . , N(l). (4.1)

For all of our cases, the order of accuracy is r = 3, i.e., s = 1, which corresponds to quadratic polynomial
interpolation with γ1 = −1/8. Nevertheless, one may choose an arbitrarily higher order of accuracy.

The detail d̄l,j is the difference between the exact and the predicted value, d̄l,j := ul,j − ûl,j. Given that
a parent has two sons, only one detail is independent. Then, knowledge of the cell average values of the two
sons is equivalent to the knowledge of the cell average value of the father node and the independent detail.
Repeating this operation recursively on L levels, we get the multiresolution transform on the cell averages
M̄ : ŪL �→ (D̄L, . . . , D̄1, Ū0). Due to the data structure, the decoding and encoding procedures are achieved
with complexity of O(NL log NL) (see [45]), and this improves if the solution is highly compressed itself.

4.2. Algorithm implementation

Now we give a brief description of the multiresolution procedure used to solve the test problems. A more
detailed description can be found in [14].

(1) Initialize the physical and numerical parameters.
(2) Creation of the initial graded tree structure:

• Create the root and compute its cell average value.
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• Split the cell, compute the cell average values in the sons and compute the corresponding details.
• Recursively apply the thresholding strategy until all sons have details below the tolerance εl.

DO n = 1 : total time steps.
(3) Determine the set of leaves and virtual leaves.
(4) Time evolution with fixed time step: Compute the discretized divergence operator D̄ for all the leaves,

compute the RK steps for the leaves, and compute D̄ for the intermediate RK steps.
(5) Update of the tree structure:

• Recalculate the values on the nodes and the virtual nodes by projection from the leaves.
• Compute the details in the whole tree. If the detail in a node is smaller than the tolerance, then

the node and its brothers are deletable. If some node and its sons are deletable, and the sons are
leaves without virtual sons, then delete sons. If some node has no son and it is not deletable and
it is not at level l = L, then create sons for this node.

• Update the values in the new sons of the former leaves by prediction from the former leaves.
END DO n.

(6) Output: Save mesh, leaves and cell averages.
Step (4) is slightly modified when we use the RKF adaptive time step. In that case, the new step is

(4) Time evolution with adaptive time step:
• Compute the discretized divergence operator for all the leaves as in (3.11).
• Compute the difference between the two solutions obtained as in (3.13).
• Apply the limiter for the time step variation and compute the new time step by (3.14).

The effectiveness of the multiresolution method is measured by the data compression rate μ and the speed-up V
between the CPU time of the FV solution and that of the MR solution. These quantities are defined by

μ :=
NL

NL/2L + |L(Λ)| , V :=
(CPU time)VF

(CPU time)MR
, (4.2)

where NL is the number of points of the finest grid, and |L(Λ)| is the number of leaves.

5. Error analysis of the adaptive multiresolution scheme

The main properties of the basic FV scheme with Runge-Kutta time discretization, i.e. the contraction
property of the scheme in the L1 norm, the CFL stability condition and the order of approximation in space, allow
to derive the optimal choice of the threshold parameter ε for the adaptive multiresolution scheme. Following
the ideas introduced by Cohen et al. [17] and thereafter used by Roussel et al. [45], we decompose the global
error between the cell average values of the exact solution at the level L, denoted by ūL

ex, and those of the
multiresolution computation with a maximal level L, denoted by ūL

MR, into two errors:

∥∥ūL
ex − ūL

MR

∥∥ ≤
∥∥ūL

ex − ūL
FV

∥∥ +
∥∥ūL

FV − ūL
MR

∥∥. (5.1)

The first error on the right-hand side, called discretization error is the one of the FV scheme on the finest grid
of level L. It can be bounded by

∥∥ūL
ex − ūL

FV

∥∥ ≤ C12−αL, C1 > 0, (5.2)

where α is the convergence order of the FV scheme. The classical approach of Kuznetsov [37] yields α = 1/2 for
a hyperbolic scalar equation. Excepting the discontinuity due to the degeneracy, we can anticipate that α = 0.5
is a pessimistic estimate of the convergence rate for our case. Unfortunately to our knowledge, there is not yet
any theoretical result of convergence rate for numerical schemes of strongly degenerated parabolic equations.
Numerical tests presented in Section 6 give α ≈ 0.6, slightly over our chosen value.
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For the second error, called perturbation error, Cohen et al. [17] assume that the details on a level l are
deleted when smaller than a prescribed tolerance εl. Under this assumption, they show that if the numerical
scheme, i.e. the discrete time evolution operator, is contractive in the chosen norm, and if the tolerance εl

at the level l is set to εl = 2l−Lε, then the difference between FV solution on the fine grid and the solution
obtained by multiresolution accumulates in time and satisfies

∥∥ūL
FV − ūL

MR

∥∥ ≤ C2nε, C2 > 0, (5.3)

where n denotes the number of time steps. At a fixed time T = nΔt, this leads to

∥∥ūL
FV − ūL

MR

∥∥ ≤ C2
T

Δt
ε, C2 > 0.

According to the CFL condition (3.6), the time step Δt must satisfy

Δt ≤ Δx2

2(Δx‖b′‖∞ + ‖a‖∞)
·

Denoting |I| the size of the domain and Δx the smallest space step, we have Δx = |I| 2−L, from which we
deduce that

Δt = C3
|I|22−2L

|I|2−L‖b′‖∞ + ‖a‖∞
, 0 < C3 ≤ 1

2
·

If we want the perturbation error to be of the same order as the discretization error, we need that ε
Δt ∝ 2−αL

or ε 22L
(
|I|2−L‖b′‖∞ + ‖a‖∞

)
∝ 2−αL. This can be rewritten as

ε ∝ 2−(α+1)L

|I|‖b′‖∞ + 2L‖a‖∞
· (5.4)

For the hyperbolic case, i.e. ‖a‖∞ = 0, (5.4) is equivalent to the result ε ∝ 2−(α+1)L obtained by
Cohen et al. [17]. Then, in the computations in Section 6, the so-called reference tolerance will be set to

εR = C
2−(α+1)L

|I|‖b′‖∞ + 2L‖a‖∞
· (5.5)

Note that ‖b′‖∞ and ‖a‖∞ are computed numerically in the next section. To choose an acceptable value for
the factor C (which, of course, depends on T , C1, C2, C3 and |I|) in our numerical examples, a series of
computations with different tolerances are necessary, as explained in the Appendix.

6. Numerical results

6.1. Sedimentation-consolidation processes

The analysis of strongly degenerate parabolic equations has in part been motivated by a theory of sedimentat-
ion-consolidation processes of flocculated suspensions outlined in [5]. We here limit ourselves here to one-
dimensional batch settling of a suspension of initial concentration u0 = u0(x) in a column of depth H , where
u0(x) ∈ [0, umax] and umax is a maximum solids volume fraction. The relevant initial-boundary value problem
is Problem A, (1.1)–(2.2), with xa = 0 and xb = H . The unknown is the solid concentration u as a function of
time t and depth x. The suspension is characterized by the hindered settling function b(u) and the integrated
diffusion coefficient A(u), which models the sediment compressibility. The function b(u) is assumed to be
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Figure 1. Example 1 (batch sedimentation): time-space representation of the solution.

continuous and piecewise smooth with b(u) > 0 for u ∈ (0, umax) and b(u) = 0 for u ≤ 0 and u ≥ umax.
A typical example is

b(u) =

{
v∞u(umax − u)K for u ∈ (0, umax),
0 otherwise,

v∞ > 0, K > 0, (6.1)

where v∞ > 0 is the settling velocity of a single particle in unbounded fluid. Moreover, in the framework of
the sedimentation-consolidation model we have that a(u) := b(u)σ′

e(u)/(Δ�gu), where Δ� > 0 is the solid-fluid
density difference, g is the acceleration of gravity, and σ′

e(u) is the derivative of the material specific effective
solid stress function σe(u). We assume that the solid particles touch each other at a critical concentration value
(or gel point) 0 ≤ uc ≤ umax, and that σe(u), σ′

e(u) = 0 for u ≤ uc and σe(u), σ′
e(u) > 0 for u > uc. This implies

that a(u) = 0 for u ≤ uc, such that this application motivates an equation of type (1.1) that is indeed strongly
degenerate parabolic. A typical function is

σe(u) =

{
0 for u ≤ uc,
σ0[(u/uc)β − 1] for u > uc,

σ0 > 0, β > 1. (6.2)

6.2. Numerical results for batch sedimentation (Example 1)

As in [10,46], we consider a suspension characterized by the functions (6.1) with v∞ = 1.0×10−4 m·s−1, K = 5
and umax = 1.0, and (6.2) with σ0 = 1.0 Pa, uc = 0.1 and β = 6, respectively. The corresponding functions
b(u) and A(u) are plotted in Figure 2. The remaining parameters are Δ� = 1660 kg ·m−3 and g = 9.81 m · s−2.
Note that for (6.1) and β ∈ N, the function A(u) has a closed algebraic form [6]. In Example 1, we consider an
initially homogeneous suspension with u0 ≡ 0.08 in a column of depth H = 1 m.

Before discussing in detail the performance of the scheme for this case, we display in Figure 1 the complete
numerical solution until t = 20 000 s obtained by the fully adaptive multiresolution scheme in order to illustrate
the physics of the model. Figure 1 illustrates that the suspension-clear liquid interface propagates as a sharp
shock and the transition between the region of initial concentration and the sediment rising from below is
sharp. We can also note the formation of a stationary sediment. In Figure 1 the visual grid used to represent
the numerical solution is much coarser than the computational.
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Figure 2. Example 1 (batch sedimentation): model functions b(u) (left) and A(u) (right).
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Figure 3. Example 1 (batch sedimentation): errors for different degrees of freedom.

6.2.1. Computations on uniform fine meshes

To estimate the convergence rate of the FV scheme detailed in Section 3.1, we performed numerical experi-
ments using a fixed time step (with the third-order, three-step RK scheme defined by (3.9), (3.12) instead of an
adaptive RKF time discretization) for all computations. We calculated a reference solution on a fine mesh with
J = 2048 and performed computations using J = 128, 256, 512 and 1024. We compared errors at three different
instants: before the front and back waves meet (t = 4000 s), near the point at which they meet (t = 9000 s), and
after the solution has reached a steady state (t = 12 000 s). In all cases, the errors between the FV computations
with 2l, l = 7, . . . , 10 control volumes are plotted in Figure 3 versus the corresponding degrees of freedom in
a double logarithmic graphic, where the slope corresponding to the L1 norm of the error is α ≈ 0.6. We have
also used different initial functions u0(x) (smooth functions and piecewise constants with several discontinu-
ities). Of course, the observed convergence rate depends on the number and strength of discontinuities of the
initial datum; to obtain a conservative estimate, we choose the following fairly rough initial condition, on which
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Figure 4. Example 1 (batch sedimentation): evolution of the time step depending on the
initial CFL value for the FV scheme with global time adaptivity using the RK3(2) method.

Table 1. Example 1 (batch sedimentation): initial CFL, speed-up factor V , initial and final
time steps, and corresponding final errors. NL = 128, δdesired = 0.0005, S0 = 0.1, Smin = 0.01.
(*): Fixed time step RK3.

Initial CFL V Initial Δt [s] Final Δt [s] L∞-error L2-error L1-error
(*) 0.50 1 7.81 × 10−3 7.81 × 10−3 6.99 × 10−3 5.96 × 10−3 5.78 × 10−3

1.00 27.22 5.09 × 10−2 6.18 × 10−2 3.16 × 10−3 3.04 × 10−3 2.17 × 10−3

0.75 16.49 3.11 × 10−2 6.15 × 10−2 3.56 × 10−3 2.79 × 10−3 2.03 × 10−3

0.50 10.34 7.81 × 10−3 6.13 × 10−2 3.21 × 10−3 2.71 × 10−3 2.05 × 10−3

0.10 6.20 4.21 × 10−3 6.12 × 10−2 3.01 × 10−3 2.38 × 10−3 1.64 × 10−3

the results of Figure 3 are based:

u0(x) =

{
0 for x ∈ [0, 1

8 ] ∪ [ 28 , 1
4 ] ∪ [58 , 3

4 ] ∪ [78 , 1],
0.1 otherwise,

(6.3)

In Figure 4 we show the evolution of the time step depending on the initial CFL value, using the FV scheme on
a uniform fine mesh with global adaptivity, and the RK3(2) method introduced in Section 3.2. The parameters
are NL = 128, δdesired = 0.0005 and S0 = 0.01. For all choices of the initial CFL number, the time step converges
to the value 0.0621 s, and Table 1 indicates that the adaptation of the step size reduces the computational cost.
Here, the gain is substantially larger for initial CFL values above the maximum CFL number allowed by (3.6).
We also note that the final error with respect to the reference solution is reduced for the time adaptive schemes
compared to the FV scheme with fixed time step, even when these configurations violate (3.6).

6.2.2. Multiresolution examples

For this example, we take an initial dynamic graded tree, allowing L = 11 multiresolution levels. We
use a fixed time step determined by λ = 20 s · m−1, so that Δt = λhL. The prescribed tolerance εR is
obtained from (5.5), where the constant C for this example corresponds to a factor C = 500 (see the Appendix
for details), so εR = 5.16 × 10−5 and the threshold strategy is εl = 2l−LεR. The constants in (5.5) are
‖b′‖∞ = 9.0296× 10−5 m · s−1 and ‖a‖∞ = 3.5981× 10−5 m2 · s−1.

We simulate the process until the phenomenon enters in a steady state (tfinal = 12 000 s). Figures 5a, 5c
and 5e show the solution before the front and back waves meet (t = 2000 s), near the point when these waves
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Figure 5. Example 1 (batch sedimentation): (a, c, e) numerical solution and (b, d, f) positions
of the leaves at time instants t = 2000 s, t = 9000 s and t = 12 000 s. The dashed vertical line
is the initial datum u0 = 0.08; the solid vertical line marks uc.
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Table 2. Example 1 (batch sedimentation): corresponding simulated time t, speed-up fac-
tor V , data compression rate μ, and normalized errors for different methods at different times.
L = 11 multiresolution levels.

Method V μ L1-error L2-error L∞-error
t = 2000 s

FV 1 1 5.28 × 10−6 1.41 × 10−6 3.76 × 10−6

FV + RKF 14.32 1 1.79 × 10−5 8.91 × 10−6 1.66 × 10−5

MR 8.21 15.93 2.23 × 10−5 2.35 × 10−5 3.83 × 10−5

MR + RKF 27.42 15.92 1.28 × 10−4 4.57 × 10−5 6.36 × 10−5

t = 9000 s
FV 1 1 2.11 × 10−6 1.28 × 10−6 8.46 × 10−6

FV + RKF 14.38 1 3.45 × 10−5 8.95 × 10−6 3.29 × 10−5

MR 9.32 15.64 3.32 × 10−5 3.84 × 10−5 4.72 × 10−5

MR + RKF 31.20 15.65 2.49 × 10−4 4.08 × 10−5 7.65 × 10−5

t = 12 000 s
FV 1 1 6.38 × 10−7 4.84 × 10−7 5.03 × 10−7

FV + RKF 14.49 1 5.61 × 10−6 1.27 × 10−6 4.31 × 10−6

MR 9.87 14.52 5.41 × 10−6 6.79 × 10−5 1.43 × 10−6

MR + RKF 33.05 14.52 8.74 × 10−5 1.82 × 10−5 4.29 × 10−5

meet (t = 9000 s), and after the solution has reached a steady state (t = 12 000 s), respectively. Figures 5b,
5d and 5f display the corresponding positions of the leaves of the tree (where a “+” marks the center of each
leaf). The plotted positions indicate that the adaptation of the mesh is adapted correctly, in the sense that the
multiresolution method automatically detects steep gradient regions and adds finer scales.

From Table 2 we infer that the multiresolution computation is always cheaper in CPU time and in memory
requirements than the FV method on the finest grid. The CPU time used with adaptive time stepping is roughly
a third of the CPU time required with a fixed time step. The fixed time step for the MR calculation (with
CFL = 1/2) is Δtfixed = 8.24 × 10−3 s and the adaptive time step for the MR (+RKF) calculation apparently
converges to Δt = 2.34 × 10−2 s ≈ 3Δtfixed.

It is worth pointing out that the time adaptivity is global in the sense that time stepping is dominated by
the time step on the finest resolution level l = L.

The L1, L2, and L∞ norms of the error between the numerical solution obtained by multiresolution for
different multiresolution levels L, and a finite volume approximation on a uniform fine grid, are depicted in
Figure 6. In fact, we compute in practice the error between the numerical solution obtained by multiresolution
and the projection of the numerical solution by FV approximation. Comparisons of speed-up factor and data
compression for different maximal multiresolution levels L are displayed in Figure 7.

Table 3 summarizes the speed-up factor V , the compression rate μ and errors for the FV and multiresolution
schemes using different maximal multiresolution levels. The simulated time is t = 2000 s. Figure 8 shows the
corresponding L1-errors, compared with a reference solution obtained by finite volume approximation on a
uniform fine grid with 213 control volumes. Note that the slope for all methods is practically the same.

6.3. Traffic flow with driver reaction

The classical Lighthill-Whitham-Richards (LWR) kinematic wave model [38,43] for unidirectional traffic flow
on a single-lane highway starts from the principle of “conservation of cars” ut + (uv)x = 0 for x ∈ R and
t > 0, where u is the density of cars as a function of distance x and time t and v = v(x, t) is the velocity
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Figure 6. Example 1 (batch sedimentation): (a) errors ‖ūMR − ūFV‖1, ‖ūMR − ūFV‖2
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Figure 7. Example 1 (batch sedimentation): (a) data compression rate μ and (b) speed-up
factor V for different scales L. Comparison between multiresolution with fixed and adaptive
time stepping. The simulated time is t = 2000 s.

of the car located at position x at time t. The basic assumption of the LWR model is that v is a function
of u only, v = v(u), i.e., each driver instantaneously adjusts his velocity to the local car density. A common
choice is v(u) = vmaxV (u), where vmax is a maximum velocity a driver assumes on a free highway, and V (u) is
a hindrance function taking into account the presence of other cars that urges each driver to adjust his speed.
Thus, the flux is

b(u) := uv(u) = vmaxuV (u) for 0 ≤ u ≤ umax, b(u) = 0 otherwise, (6.4)
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Table 3. Example 1 (batch sedimentation): corresponding simulated time, speed-up factor V ,
data compression rate μ, and errors for different methods at different maximal scales.

Method V μ L1-error L2-error L∞-error
L = 10

FV 1 1 1.35 × 10−5 8.70 × 10−4 9.35 × 10−4

MR 8.78 12.76 4.09 × 10−4 1.35 × 10−4 7.49 × 10−4

MR+RKF 32.15 12.76 6.35 × 10−4 2.74 × 10−4 8.88 × 10−4

L = 11
FV 1 1 4.37 × 10−6 5.68 × 10−7 1.47 × 10−5

MR 10.46 15.93 1.23 × 10−5 2.35 × 10−5 3.83 × 10−5

MR+RKF 39.19 15.95 5.34 × 10−5 4.39 × 10−5 6.01 × 10−5

L = 12
FV 1 1 1.29 × 10−9 6.37 × 10−9 8.65 × 10−10

MR 12.70 16.34 4.16 × 10−6 1.01 × 10−7 6.72 × 10−7

MR+RKF 43.21 16.35 5.47 × 10−6 6.44 × 10−7 1.38 × 10−6
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Figure 8. Example 1 (batch sedimentation): L1-errors for the MR method (dash-dotted),
MR+RKF method (dotted) and FV method (dashed).

where umax is the maximum “bumper-to-bumper” car density. The simplest choice is the linear interpolation
V (u) = V1(u) := 1 − u/umax; but we may also consider the alternative Dick-Greenberg model [20,29]

V (u) = V2(u) := min{1, Θ ln(umax/u)}, Θ > 0. (6.5)

The diffusively corrected kinematic wave model (DCKWM) [7,42] extends the LWR model by a strongly
degenerating diffusion term. This model incorporates a reaction time τ , representing drivers’ delay in their
response to events, and an anticipating distance Lã, which means that drivers adjust their velocity to the density
seen the distance Lã ahead. We use the equation [42] Lã = max{(v(u))2/(2ã), Lmin}, where (v(u))2/(2ã) is
the distance required to decelerate to full stop from speed v(u) at deceleration ã, and Lmin is a minimal
anticipation distance, regardless of how small the velocity is. If one assumes that reaction time and anticipation
distance are only effective when the local car density exceeds a critical value uc, then the governing equation
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(replacing ut + b(u)x = 0) of the DCKWM is the strongly degenerate parabolic equation

ut + b(u)x = A(u)xx, x ∈ R, t > 0, (6.6)

where for simplicity we suppress dependence on the parameters τ and Lã, and

A(u) :=
∫ u

0

a(s) ds, a(u) :=

{
0 if u ≤ uc,
−uvmaxV

′(u)
(
Lã(u) + τvmaxuV ′(u)

)
if u > uc.

(6.7)

There are at least two motivations for a critical density uc. One of them is based on the Dick-Greenberg
model (6.5); obviously, V ′

2(u) = 0 for u ≤ uc := umax exp(−1/Θ), so that (6.7) is satisfied for V (u) = V2(u).
A more general viewpoint is that uc is a threshold value in the sense that the drivers’ reaction can be considered
instantaneous in relatively free traffic flow, i.e. when u ≤ uc, and otherwise is modeled by the diffusion term.
Both motivations give rise to the same behavior of the diffusion coefficient. Moreover, we assume that V (u) is
chosen such that a(u) > 0 for uc < u < umax. Consequently, the right-hand side of (6.6) vanishes on the interval
[0, uc], and possibly at the maximum density umax. Thus, the governing equation of the DCKWM model (6.6)
is strongly degenerate parabolic.

6.4. Traffic flow on a circular road (Example 2)

We consider the traffic model outlined in Section 6.3, and choose the velocity function and model parameters
according to [7,42]. The velocity function is given by (6.5) with umax = 220 cars ·mi−1, C = e/7 = 0.38833 and
vmax = 70 mph, so that

b(u) =

⎧⎪⎨
⎪⎩

vmaxu for 0 ≤ u ≤ uc = exp(−1/Θ)umax = 16.7512 cars · mi−1,
vmax(e/7)u ln(umax/u) for uc < u ≤ umax,

0 otherwise.
(6.8)

For Example 2, we choose the parameters ã = 0.1 g, where g is the acceleration of gravity in mi · h−2,
τ = 2 s = 0.0005̄h and Lmin = 0.05 mi. This yields the following integrated diffusion coefficient A(u), measured
in cars · mph, see [7] for details on its algebraic derivation:

A(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for u ≤ uc,
1.27099 · (41.878u− 12.787u lnu + u(lnu)2)

−0.4105u− 286.54 for uc < u ≤ u∗ := 78.2198 cars · mi−1,
117.9003 + 0.94864u for u > u∗.

(6.9)

The functions b(u) and A(u) for this example are shown in Figure 10.
We assume a circular road of length H = 10 mi, so that the periodic boundary condition

u(H, t) = u(0, t), t ∈ (0, T ] (6.10)

applies. We assume the smooth initial density distribution u0(x) = 50(1 + sin(0.4πx)) cars · mi−1. In addition,
at x = 5 mi, a traffic light S is placed with

S(t) =

{
0 (red) for t ∈ [(k + 0.125) h, (k + 0.375) h], k = 0, 1, 2, . . . ,
1 (green) otherwise.

(6.11)

Note that this example involves periodicity both in space (due to the periodic boundary condition (6.10)), in
time (due to the behavior of the traffic light), and is provided with periodic initial condition.
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Figure 9. Example 2 (traffic model): time-space representation of the solution.
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Figure 10. Example 2 (traffic on a circular road): model functions b(u) (left) and A(u) (right).

Before discussing the performance of the fully adaptive multiresolution scheme, we present in Figure 9 three-
dimensional plots of the numerical solution obtained for by this scheme. It illustrates that a nearly periodic
solution quickly evolves. Moreover, the depletion of the zone behind the traffic light and the queue of cars
waiting in front of it periodically produces traveling type-change interfaces, i.e. jumps between the solution
value zero and sub-critical values. In Figure 9, the visual grid used to represent the numerical solution is again
much coarser than the computational one.

6.4.1. Finest grid computations

In Figure 11 we show the time evolution of the time step depending on the initial value of CFL, using the
FV scheme on a uniform fine mesh with global adaptivity and the RK3(2) method described in Section 3.2. In
all cases, the time step apparently converges to the value 1.217 × 10−4 s. Here, the adaptivity of the step size
reduces the computational cost, see Table 4.
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Figure 11. Example 2 (traffic model): (a) evolution of the time step depending on the initial
value of CFL for the FV scheme with global time adaptivity using the RK3(2) method, (b) zoom
until t = 0.07 h. NL = 256, δdesired = 0.001 and S0 = 0.01.

Table 4. Example 2 (traffic model): initial CFL, speed-up factor V , initial and final time
steps, and corresponding normalized errors. NL = 256, δdesired = 0.001, S0 = 0.1, Smin = 0.01.
(*): Fixed time step RK3.

Initial CFL V Initial Δt [h] Final Δt [h] L∞-error L2-error L1-error
(*) 0.50 1 4.10 × 10−5 4.10 × 10−5 5.62 × 10−4 1.47 × 10−4 8.32 × 10−4

1.00 16.32 8.22 × 10−5 1.29 × 10−4 8.53 × 10−3 5.41 × 10−3 5.06 × 10−3

0.75 11.34 6.16 × 10−5 1.17 × 10−4 1.38 × 10−3 2.77 × 10−3 3.46 × 10−3

0.10 8.75 8.62 × 10−5 1.22 × 10−4 7.51 × 10−4 2.01 × 10−3 8.86 × 10−4

6.4.2. Multiresolution examples

For this example, we take an initial dynamic graded tree, allowing L = 10 multiresolution levels. First
we use a multiresolution procedure with fixed time step, taking CFL = 1/2, and we simulate the process
until tfinal = 1.6 h. Figure 12 shows the solution before the traffic light is red and during the red phase.
Figure 13 shows the solution right after the green phase and part of the second cycle of the traffic light. For
this example, the factor C in (5.5) is set to C = 1 × 106 (see details in the Appendix), yielding a reference
tolerance of εR = 1.33 × 10−5 for L = 10. Here, the Lipschitz constants in (5.5) are ‖b′‖∞ = 70 mi · h−1 and
‖a‖∞ = 7.9177 mi2 · h−1.

The errors in L1, L2, and L∞ norms between the numerical solution obtained by multiresolution for different
multiresolution levels L, and the solution obtained by finite volume approximation in a uniform fine grid, are
depicted in Figure 14. In fact, we compute in practice the error between the numerical solution obtained by
multiresolution and the projection of the numerical solution by FV approximation. Furthermore, comparisons of
speed-up factor and data compression for different maximal multiresolution levels L, are depicted in Figure 15.
All these calculations corresponds to the “red” phase, t = 0.2 h.

Tables 5 and 6 summarize the CPU time, compression rate and errors for the FV method and the multires-
olution scheme. Table 5 displays these quantities for several different times, while in Table 6 we use different
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Figure 12. Example 2 (traffic model): (a, c, e) numerical solution and (b, d, f) positions of
the leaves. The simulated times are t = 0.1 h, t = 0.2 h and t = 0.3 h. The dashed curve in
plot (a) is the initial datum u0(x). The solid horizontal line marks uc.
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Figure 13. Example 2 (traffic model): numerical solution (a, c, e) and positions of the leaves
(b, d, f). The simulated times are t = 0.4 h, t = 1.3 h and t = 1.6 h. The solid horizontal line
marks uc.
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Figure 14. Example 2 (traffic model): (a) errors ‖ūMR − ūFV‖1, ‖ūMR − ūFV‖2

and ‖ūMR − ūFV‖∞ and (b) errors ‖ūMR/RKF − ūFV‖1, ‖ūMR/RKF − ūFV‖2 and
‖ūMR/RKF − ūFV‖∞ for different scales L. The simulated time is t = 0.2 h.
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Figure 15. Example 2 (traffic on a circular road): (a) data compression rate μ and (b) speed-
up factor V for different scales L. The simulated time is t = 0.2 h.

maximal multiresolution levels and consider the simulated time t = 0.4 h. Here we can see that the multireso-
lution computation is always cheaper in CPU time and in memory requirements than the finite volume method
on the finest grid, and we can also notice that the gain in speed-up factor using an adaptive time stepping is
about four times the speed-up factor attained by fixed time stepping, this comes clear if we also note that the
fixed time step for the MR calculation, with CFL = 1/2 is Δt = 2.217 × 10−5 h and the adaptive time step for
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Table 5. Example 2 (traffic model): corresponding simulated time, speed-up factor V , data
compression rate μ, and errors for different methods. L = 10 multiresolution levels.

Method V μ L1-error L2-error L∞-error
t = 0.1h

MR 5.12 7.93 2.31 × 10−4 4.79 × 10−4 5.83 × 10−5

MR+RKF 12.47 7.93 6.18 × 10−4 1.07 × 10−3 6.66 × 10−5

t = 0.2 h
MR 5.21 5.99 1.76 × 10−4 7.68 × 10−5 8.39 × 10−6

MR+RKF 16.34 5.99 3.67 × 10−4 2.73 × 10−4 3.00 × 10−5

t = 0.3 h
MR 5.23 7.58 2.24 × 10−4 7.89 × 10−5 9.46 × 10−6

MR+RKF 17.34 7.58 7.47 × 10−4 9.21 × 10−5 3.67 × 10−5

t = 0.4 h
MR 7.42 5.54 1.83 × 10−4 3.32 × 10−5 4.36 × 10−6

MR+RKF 19.18 5.54 4.62 × 10−4 5.29 × 10−5 1.08 × 10−3

t = 1.3 h
MR 7.78 7.36 1.55 × 10−3 5.64 × 10−5 2.61 × 10−5

MR+RKF 21.62 7.37 2.31 × 10−3 8.06 × 10−5 3.17 × 10−5

t = 1.6 h
MR 7.59 9.75 6.17 × 10−3 1.01 × 10−4 2.94 × 10−4

MR+RKF 19.63 9.75 8.40 × 10−3 5.16 × 10−4 4.55×10−4

the MR (+RKF) calculation tends to converge to the value Δt = 9.86× 10−5 h, which is roughly four times the
above value. Figure 16 shows the corresponding L1-errors, compared with a reference solution obtained on a
uniform fine grid with 213 control volumes.

7. Conclusions

In the present paper we have presented numerical results using a fully space-time adaptive finite volume-
multiresolution scheme developed to be used for strongly degenerate parabolic equations. The strong degeneracy
of the diffusive term leads to solutions that are discontinuous in general, and in particular exhibit sharp interfaces
where the equation changes between parabolic and hyperbolic type. Multiresolution schemes are natural can-
didates of adaptive schemes to capture these interfaces along with the classical shocks appearing in hyperbolic
regions. The numerical results shown herein confirm that the proposed scheme is indeed well adapted to this
kind of equations. We have also examined the advantage of this approach compared with standard FV schemes.
In our experiments, we have obtained a considerable speed-up on the computations and also a substantial mem-
ory compression, while keeping the same accuracy order as in the reference schemes. The approximation order
of the FV scheme is maintained due to a suitable choice of the threshold, which is a considerable improvement
with respect to other multiresolution schemes where the tolerance is chosen in practice heuristically. Time step
control is then introduced using an embedded RKF method which permits to adjust the time step automatically
and to control the error. Different examples in one space dimension for sedimentation processes and traffic flow
show the validity and effiency of the new scheme. The interplay of the key ingredients mentioned above could
represent an asset specially in the case of large number of mesh elements, systems, higher space dimensions
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Table 6. Example 2 (traffic model): speed-up factor V , data compression rate μ, and normal-
ized errors for different methods at different maximal scales for t = 0.4 h.

Method V μ L1-error L2-error L∞-error
L = 10

FV 2.21 1 3.94 × 10−6 4.77 × 10−6 2.53 × 10−6

MR 7.42 5.54 1.83 × 10−4 3.32 × 10−5 4.36 × 10−4

MR+RKF 32.11 5.54 4.62 × 10−4 5.29 × 10−5 1.08 × 10−3

L = 11
FV 1.54 1 2.11 × 10−6 1.28 × 10−7 8.46 × 10−7

MR 7.38 6.31 9.07 × 10−5 4.68 × 10−5 5.71 × 10−5

MR+RKF 26.16 6.31 3.27 × 10−4 7.21 × 10−5 2.15 × 10−6

L = 12
FV 1 1 1.14 × 10−8 4.29 × 10−8 8.65 × 10−9

MR 7.22 8.95 4.61 × 10−5 1.21 × 10−6 4.72 × 10−6

MR+RKF 21.49 8.95 1.26 × 10−4 6.89 × 10−6 2.02 × 10−5
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Figure 16. Example 2 (traffic model): L1-errors for the MR method (dash-dotted), MR+RKF
method (dotted) and FV method (dashed).

and when the reference scheme is computationally expensive. Although we deal only with scalar and one space
dimension applications, it is known that the main features of our method (i.e., Runge-Kutta Fehlberg time
stepping, general multiresolution and FV schemes) are applicable for the mentioned extensions.

The success of the improvements to the reference scheme depends on the proper tuning of the parameters,
especially for the adaptivity of the time stepping. Also it is known that the efficiency of the multiresolution
strategy is problem dependent. These are very delicate issues, and they are subject of future work. Work
currently in preparation includes other applications of interest that maintain the same essential structure:
strong degeneracy of the diffusive terms, but for systems and higher space dimensions (by means of tensor
product strategies). Other possible extensions include the use of penalisation methods for complex domains
and schemes with local time adaptivity [22,41].
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Figure 17. Example 1 (batch sedimentation): data compression rate μ and speed-up factor V
for different scales L and values of C. The simulated time is t = 2000 s.
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Figure 18. Example 1 (batch sedimentation): L1-errors for different scales L and values of C.
The simulated time is t = 2000 s.

As an observation of a practical nature for readers who may wish to implement the method presented herein,
we mention that in order to obtain memory compression, not only the tree data structure is essential, but also
the way of navigating inside the data structure, as proposed in [45]. Each node should be represented by a
pair (j, l) corresponding to the spatial position j on the level l. The children nodes need to be connected to its
parent node for example by using pointers, so that the maximum number of steps required to get to any node
is L because we move recursively between children nodes and its parent. After thresholding we have added a
“safety zone” (extra refinement near the leaves of the tree) to ensure the proper representation of the solution
in the following time step.
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Figure 19. Example 2 (traffic model): data compression rate μ and speed-up factor V for
different scales L and values of C. The simulated time is t = 0.2 h.
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Figure 20. Example 2 (traffic model): L1-errors for different scales L and values of C;
t = 0.2 h. Same linestyle as in Figure 19.

Appendix

In this section we deal with the selection of the optimal factor C in (5.5) for the numerical examples. First,
notice from Figures 17 and 19 that for all displayed scales, the multiresolution procedure is in every case
(for different values of C) cheaper than the reference FV computations on the finest grid (i.e., both a higher
compression rate and a higher speed-up factor are attained); but the real advantage is achieved in practice
for higher scales, for every tolerance level. We cannot compute a solution to the same order as that of the
FV scheme for small values of L and large tolerance levels, as we can deduce from Figures 18 and 20, this loss of
accuracy is caused by the perturbation error. The aim of introducing εR is to maintain the order of accuracy of
the FV computations on the finest grid, but to gain in compression; so looking closely at Figures 18 and 20, we
notice that the computations obtained using C = 500 for Example 1 and C = 1×106 for Example 2 (and hence
εR = 5.16 × 10−5 for Example 1 and εR = 1.33 × 10−5 for Example 2) are sufficiently accurate, in the sense
that with these choices we keep the same order as the FV calculations while increasing V and μ. In particular,
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C = 500 for Example 1 and C = 1 × 106 for Example 2, the best available values of C (among those that
have been tested in both cases). Also the difference of magnitude (a factor 2000) between the two constants
is reasonable if we consider that C depends on the magnitude of the solution (umax = 1 for Example 1 and
umax = 220 for Example 2) and on the size of the domain (|I| = 1 for Example 1 and |I| = 10 for Example. 2).
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