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Abstract

We present a fully adaptive numerical scheme for evolutionary PDEs in Cartesian geometry based on a second-order
finite volume discretization. A multiresolution strategy allows local grid refinement while controlling the approximation
error in space. For time discretization we use an explicit Runge–Kutta scheme of second-order with a scale-dependent time
step. On the finest scale the size of the time step is imposed by the stability condition of the explicit scheme. On larger
scales, the time step can be increased without violating the stability requirement of the explicit scheme. The implementation
uses a dynamic tree data structure. Numerical validations for test problems in one space dimension demonstrate the effi-
ciency and accuracy of the local time-stepping scheme with respect to both multiresolution scheme with global time step-
ping and finite volume scheme on a regular grid. Fully adaptive three-dimensional computations for reaction–diffusion
equations illustrate the additional speed-up of the local time stepping for a thermo-diffusive flame instability.
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1. Introduction

Systems of nonlinear partial differential equations (PDEs) naturally arise from mathematical modeling of
chemical–physical problems encountered in many applications, like in meteorology or chemical industry. In
turbulent reactive or non-reactive flows, for instance, the solutions of these PDEs typically exhibit a multitude
of active spatial and temporal scales. However, since these scales are mostly not uniformly distributed in the
space-time domain, efficient numerical discretizations could take advantage of this property. Introducing some
kind of adaptivity in space-time allows to reduce the computational complexity with respect to uniform dis-
cretizations, while controlling the accuracy of the adaptive discretization.

Up to the present, different approaches have been investigated to define adaptive space discretizations,
some emerge from ad hoc criteria, others are based on more sophisticated a posteriori error estimators using
control strategies by solving computational expensive adjoint problems [3,38]. Adaptive mesh refinement
(AMR) methods introduced by Berger et al. [7] are now widely used for many applications using structured
or unstructured grids, e.g., see [4,5]. However, the data compression rate is high where the solution is almost
constant, but remains low where the solution is smooth.

More recently, multiresolution based schemes (MR) were developed by Harten [22,23], first for conserva-
tion laws. Harten’s approach has then been extended and further developed in different directions by Cohen
et al. [14], Kaibara and Gomes [27], Chiavassa and Donat [11], Müller [29], and Roussel et al. [35,36]. The
main idea of the MR method is to use a multiresolution data representation. The decay of the MR coefficients
yields information on local regularity of the solution. Therewith the truncation error can be estimated and
coarser grids can be used in regions, where this error is small and the solution is smooth. An adaptive grid
can be introduced by suitable thresholding where only significant wavelet coefficients are retained. Hence a
given discretization on a uniform mesh can be accelerated as the number of costly flux evaluations is signif-
icantly reduced, while maintaining the accuracy of the discretization. The memory requirements could also be
reduced, for example using a dynamic tree data structure. An overview of the different MR methods can be
found, e.g., in the books of Cohen [12] and Müller [29]. A comparison between the AMR method and the
adaptive multiresolution approach has been described in [13].

A bottleneck of most of these space-adaptive methods, which typically employ explicit or semi-explicit time
discretizations, is that the finest spatial grid size imposes a small time step in order to fulfill the stability cri-
terion of the time scheme. Hence, for extensive grid refinement with a huge number of refinement levels, a very
small size of the time step is implied. To overcome this difficulty different strategies have been pursued to intro-
duce adaptive time stepping for space-adaptive discretizations of PDEs. Osher and Sanders [31] introduced
local time stepping for one-dimensional scalar conservation laws, where the space discretization is non-uni-
form but fixed. Extensions of this approach have been presented in [16] for second-order Runge–Kutta
schemes using a predictor–corrector type local time stepping, which has been further improved by Tang
and Warnecke [39]. Space-time mesh refinement for the one-dimensional wave equation based on the conser-
vation of a discrete energy is proposed in [15]. Two different approaches exist in the AMR context originally
proposed by Berger and Oliger [7]. For the computation of stationary solutions, a time step is used in each
subdomain, without synchronization. The instationary solution is of course inconsistent, but becomes consis-
tent when the stationary solution is reached. For the computation of instationary solutions, in the papers of
Berger et al. [7,6] and also in the Ph.D. thesis of Quirk [33], only one-stage time integrations are used, either
explicit or implicit. Multi-stage methods have been considered in the AMR context so far for 1D simulations
only [20]. In [17,18,25], local time-stepping algorithms for discontinuous Galerkin methods are presented. In
[17], each element uses its optimal time step given by the local stability condition without requiring synchro-
nization between the elements. In the context of adaptive wavelet methods, Bacry et al. [2] first introduced a
scale-dependent time step. They applied this method to linear parabolic equations and to the Burgers equa-
tion. A stability analysis of this scheme has been conducted for the heat equation in [10]. It is shown that
the adaptive time-stepping strategy does not affect the stability of the scheme. More recently, Müller and Stir-
iba [30] presented a fully adaptive multiresolution finite volume scheme with a locally varying time stepping.
For time discretization, one stage methods, either explicit or implicit Euler schemes are used. A linear com-
bination, leading to a Crank–Nicholson scheme, yields second-order accuracy. Applications for one-dimen-
sional conservation laws illustrate the efficiency and accuracy of the scheme. A pure space-time Galerkin
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approach for viscous Burgers equation where the time axis is treated like a space direction has been introduced
by Alam et al. [1]. Results for one space dimension look promising, however the extension of this method to
higher dimensions seems questionable as it could be expensive in memory storage.

The aim of the present paper is to develop local scale-dependent time stepping for the space-adaptive mul-
tiresolution scheme introduced in [35,36]. The idea is to obtain additional speed-up of this efficient space-adap-
tive scheme by introducing larger time steps at large scales, without violating the stability condition of the
explicit time scheme. This procedure reduces the number of flux evaluations, due to larger time steps. The orig-
inality of our paper is to combine, in the framework of multidimensional cell-average multiresolution analysis,
a local time stepping together with multi-stage Runge–Kutta methods. The synchronization we propose differs
from the one introduced in [30], where one-stage methods were used.

The remainder of the paper is organized as follows. Section 2 summarizes the finite volume (FV) discret-
ization for uniform grids. Section 3 is dedicated to the formulation of local time-stepping strategies to be used
in combination with adaptive multiresolution finite volume schemes. In a simplified setting of a two-block
grid, formed by two uniform grids with different grid sizes, we consider the matrix method for stability analysis
of such local time-stepping schemes applied to a convection–diffusion equation in one space dimension. In Sec-
tion 4, we describe the space-adaptive multiresolution finite volume method. The multiresolution local time-
stepping algorithm (MR/LTS) is described in Section 5. In Section 6, different applications of this new adap-
tive method are presented and compared with the results obtained using FV schemes on a regular grid and
multiresolution (MR) schemes with global time stepping. Their accuracy, CPU time and memory compression
are discussed. We show results for the convection–diffusion equation, for the one-dimensional compressible
Euler equations and for the reaction–diffusion equations in one and three space dimensions. For the latter
we present a numerical simulation of a thermodiffusive flame instability in the cellular regime. Finally, conclu-
sions are drawn and perspectives for future investigations are discussed. In the Appendix, the algorithms are
presented in a form that emphasizes the way they are actually implemented within the data structure.

2. Finite volume discretization on uniform grids

We consider parabolic conservation laws in Cartesian geometry for ðx; tÞ 2 X� ½0;þ1Þ;X � Rd , of the
form,
ou
ot
¼ Dðu;ruÞ; ð1Þ
with initial condition uðx; 0Þ ¼ u0ðxÞ, and appropriate boundary conditions. We shall consider operators of
type Dðu;ruÞ ¼ �r � F ðu;ruÞ þ SðuÞ formed by divergence and source terms. For the applications of this pa-
per, the flux function contains advective and diffusive parts of the form F ðu;ruÞ ¼ f ðuÞ � mru, with constant
diffusion coefficient m P 0. The numerical model has two basic aspects: the spatial and the temporal
discretization.

For the spatial discretization, in the classical finite volume formulation, we consider the computational
domain composed of the union of cells fXigN

i¼1. In each cell Xi, with boundary oXi, external normal gi and
volume jXij, we integrate Eq. (1) using a quadrature formula, and we get
d�ui

dt
¼ DiðUðtÞÞ; ð2Þ
where UðtÞ ¼ ð�uiðtÞÞ contains the cell-averages of the numerical solution on the computational mesh at instant
t, such that
�uiðtÞ �
1

jXij

Z
Xi

uðx; tÞdx;
and
DiðUðtÞÞ � �
1

jXij

Z
oXi

F ðu;ruÞ � gi dxþ SiðuÞ:
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A variety of methods can be distinguished in the literature, mainly, by the way the numerical flux is defined
for the approximation of the flux contribution. Typically, advective and diffusive terms are approximated dif-
ferently. For the advective part, we use either second-order centered or upwind AUSM + schemes [28]
whereas, for the diffusive part, we always choose a second-order centered scheme. The source term is approx-
imated by Si � Sð�uiÞ. After space discretization by means of the finite volume scheme, the result is a system of
ordinary equations,
dU
dt
ðtÞ ¼ DðUðtÞÞ; ð3Þ
where we assume that the action of the operator D also includes the enforcement of boundary conditions. For
a sequence of discrete time values tn ¼ nDt, let Un be the approximation at tn. At the next time step, Unþ1 is
obtained by the application of a discrete evolution operator E ¼ EðDtÞ such that
Unþ1 ¼ EU n;
where E includes the application of the spatial differential operator D and the discretization in time by means
of some ODE solver. For the application of the present paper we use the second-order Runge–Kutta (RK2)
scheme,
Unþ1 ¼ U n þ Dt
2
½DðUnÞ þD U n þ DtDðUnÞ

� �
�: ð4Þ
3. Local time stepping: spectrum analysis

Explicit time discretizations suffer typically from the limitations of the time step due to stability reasons,
e.g., for advection problems we have a CFL condition which requires that Dt / Dx, and for diffusive terms
we even have Dt / Dx2. Evolving the cell-averages on an adaptive grid with a global time step implies that
the time step is limited by the stability condition of the finest scale, while for coarser scales, the time step could
in principle be larger. Hence, the time step may become very small in the case where many scales are present in
the solution. The basic idea for local scale-dependent time stepping is to use large time steps to advance the
solution at large scales, while small time steps are used to advance the solution at fine scales. The reason is to
reduce the number of operations if fine scales are only required locally, provided the stability constraint can be
preserved in some extent.

For sake of clarification, and inspired by the method proposed in [20], we shall first state and analyze this
kind of strategy for a convection–diffusion equation in one space dimension using a simplified setting of a grid
formed by two blocks of uniform grids with different mesh sizes. Nevertheless, it should be mentioned that for
a fully adaptive numerical discretization a more sophisticated analysis is required. When the eigenmodes of the
problem are preserved, this simplified analysis could be applied, but this necessitates that the grids remain the
same for a substantial number of time steps. For given velocity c > 0 and diffusion coefficient m > 0, we con-
sider the problem,
ou
ot
þ c

ou
ox
¼ m

o2u
ox2

; x 2 X; t > 0;
with X ¼ ½�1; 1�, initial condition uðx; 0Þ ¼ u0ðxÞ and homogeneous Dirichlet boundary conditions
uð�1; tÞ ¼ 0 and uð1; tÞ ¼ 0. We consider two schemes:

(1) a reference single step scheme of the form Unþ1 ¼ EUn, corresponding to a FV/RK2 discretization on a
regular grid;

(2) a local time-stepping scheme W nþ1 ¼ ELTSW n, where W n are vectors formed by cell-averages on two
blocks of uniform grids in which the mesh size in the coarse part is twice the mesh size in the fine part.
The local time-stepping strategy consists in evolving the coarse cells using FV/RK2 with time step 2Dt,
where Dt is the step used to advance the fine cell-averages. Interpolation of cell averages is used at the
interface between the two blocks at intermediate stages.
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For these two schemes, we apply the matrix method for stability analysis by requiring that the spectral
radius of the iteration matrices E, and ELTS are smaller than one. Although this method may not give sufficient
stability criteria, as indicated in [24], our purpose is to visualize the stability effect of non-uniformness of time
and space steps.

3.1. Reference scheme on a uniform grid

For a uniform partition of the interval ½�1; 1� with grid size Dx ¼ 1
N, let �uiðtÞ be approximations of the cell-

averages of the solution on the cells Xi ¼ ½ði� 1
2
ÞDx; ðiþ 1

2
ÞDx�; for �N þ 1 6 i 6 N � 1, with boundary condi-

tions �u�N ¼ �uN ¼ 0. The FV semi-discrete model can be written in the conservative form,
1 wh
d�ui

dt
¼ � 1

Dx
½F iþ1

2
� F i�1

2
�;
where F iþ1
2
� F ðuððiþ 1

2
ÞDx; tÞÞ denotes the numerical flux. For this model problem, we consider the second-

order numerical flux,
F iþ1
2
¼ c

�uiþ1 þ �ui

2
� m

�uiþ1 � �ui

Dx
;

which is equivalent to a central finite difference scheme
d�ui

dt
¼ � 1

Dx
c

�uiþ1 � �ui�1

2
� m

�uiþ1 � 2�ui þ �ui�1

Dx

� �
:

Introducing the mesh Reynolds number Re ¼ cDx
m , the scheme can be expressed in the form,
d�ui

dt
¼ a�ui�1 þ b�ui þ d�uiþ1;
where b ¼ � 2m
Dx2, a ¼ m

2Dx2 ½2þ Re� and d ¼ m
2Dx2 ½2� Re�. For time integration, using RK2 scheme, we obtain the

evolution operator,
U nþ1 ¼ EU n; ð5Þ

where E ¼ ðI þ DtSþ Dt2

2
S2Þ ¼ uðDtSÞ, with S ¼ SðDxÞ being the ð2N � 1Þ � ð2N � 1Þ tri-diagonal matrix

with b; a and d values on the main, lower and upper diagonals, respectively. The matrix S is diagonalizable
with eigenvalues ki which can be expressed in terms of the mesh Reynolds number Re and the CFL number
r ¼ c Dt

Dx, by the formula,
Dtki ¼ �
r

Re
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� Re2

p
cos

ip
2N

� �� �
: ð6Þ
Therefore, the eigenvalues of E ¼ uðDtSÞ are given by uðDtkiÞ, and the spectral radius qðEÞ ¼ qðuðDtSÞÞ is less
than one, if and only if juðDtkiÞj < 1. The curve (b) in Fig. 2 (left) corresponds to the isoline in the Re� r-
plane of the maximum absolute eigenvalue being equal to one, i.e., maxijuðDtkiÞj ¼ 1, where Dtki is obtained
from (6) using N ¼ 50. For the scheme (5), the von Neumann stability region is indicated by curve (a) in Fig. 2
(left), which is a sufficient stability condition for periodic boundary problems. The estimation of this region
proposed in [8] is r 6 Re

2
for Re 6 2

ffiffiffi
3
p

, and Re 6 6
r for Re > 2

ffiffiffi
3
p

, as indicated by curve (c) in Fig. 2 (left).
For a pure advection problem, i.e., m ¼ 0, the eigenspectrum kj ¼ ı c

Dx cosðp pj
2NÞ of matrix S is purely imagi-

nary,1 meaning that the combination of this central finite difference scheme and RK2 is unstable.

3.2. Two-block grid with local time stepping

We consider now a grid formed by two blocks of uniform grids with different mesh sizes. The right block is
a fine grid with spacing Dx1 ¼ Dx, and the left block is a coarse grid with double mesh spacing Dx0 ¼ 2Dx
ere ı ¼
ffiffiffiffiffiffiffi
�1
p

.
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(Fig. 1). Let �u0;i denote the cell-averages on the coarse cells X0;i ¼ ½ði� 1
2
ÞDx0; ðiþ 1

2
ÞDx0�, and �u1;i denote the

cell-averages on the fine cells X1;i ¼ ½iDx1; ðiþ 1ÞDx1�.
Outside the interface at x ¼ Dx1, we compute the numerical flux using the mesh spacing of each block to get
d�u0;i

dt
¼ a0�u0;i�1 þ b0�u0;i þ d0�u0;iþ1; i 6 �1

d�u1;i

dt
¼ a1�u1;i�1 þ b1�u1;i þ d1�u1;iþ1; i P 2;
where a1 ¼ a; b1 ¼ b; d1 ¼ d, while a0 ¼ m
4Dx2 ½1þ Re�, b0 ¼ � m

2Dx2 and d0 ¼ m
4Dx2 ½1� Re� are the coefficients asso-

ciated to the coarse grid block, which are expressed in terms of the parameters Re and r associated with the
fine grid. For the calculation of

d�u1;1

dt and
d�u0;0

dt , the numerical flux F 1
2

at the interface x ¼ Dx1 is required. It is
defined using cell-averages on the fine grid
F 1
2
¼ c

2
� m

Dx

	 

�u1;0 þ

c
2
þ m

Dx

	 

�u1;�1:
To apply this formula, we approximate the virtual cell-average �u1;0 using central Lagrange interpolation of
degree 2, and compute the virtual cell-averages �u0;1 by the exact value �u0;1 ¼ �u1;1þ�u1;2

2
to obtain
�u1;0 ¼ �u0;0 �
1

8
�u0;�1 þ

�u1;1 þ �u1;2

16
:

Therefore, at the grid interface we get
1

Dx
F 1

2
¼ �d1 þ

a1

16

	 

�u1;1 þ a1�u0;0 �

a1

8
�u0;�1 þ

a1

16
�u1;2: ð7Þ
Using this formula, we obtain
d�u0;0

dt
¼ a0 þ

a1

16

	 

�u0;�1 þ

3b0

2
�u0;0 þ

d1

2
� a1

32

� �
�u1;1 �

a1

32
�u1;2
and
d�u1;1

dt
¼ b1 þ

a1

16

	 

�u1;1 þ d1 þ

a1

16

	 

�u1;2 þ a1�u0;0 �

a1

8
�u0;�1:
Defining U lðtÞ ¼ ½�ul;iðtÞ�, and assuming that Dx ¼ 1
2N, this semi-discrete FV formulation can be expressed in

matrix form as
d

dt
U 0

U 1

" #
¼

S0 B0

B1 S1

� �
U 0

U 1

" #
; ð8Þ
where

� S0 is a N � N tri-diagonal matrix with elements b0 on the main diagonal, a0 on the lower diagonal and d0 on
the upper diagonal, except in the last row where a0 is replaced by a0 þ a1

16
and b0 is replaced by 3b0

2
;

� S1 is a ð2N � 1Þ � ð2N � 1Þ tri-diagonal matrix with elements values b1 on the main diagonal, a1 on the
lower diagonal and d1 on the upper diagonal, except on the first row where b1 is replaced by b1 þ a1

16
and

d1 is replaced by d1 þ a1

16
. Furthermore, on the last row, the last element b1 is replaced by b1 � d1, due to

the right boundary condition �u1;2N ¼ ��u1;2N�1.
Δx0
u 1,1

u 0,–1 0,0uu 0,–2

u1,2 u1,3

Δx
1

–1 10

interface

Fig. 1. Two-block grid.
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Fig. 2. Stability boundaries in the Re � r plane: spectrum analysis for RK2 scheme. Left: uniform grid (a) von Neumann analysis, (b)
Dirichlet BC, and (c) estimation of [8]. Right: (a) two-block grid with local time stepping, and (b) uniform fine grid, both with Dirichlet
BC.
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� B0 is a N � ð2N � 1Þ matrix with all elements being equal to zero, except on the last row where the value of
the first and second elements are given by d1

2
� a1

32
and � a1

32
, respectively;

� B1 is a ð2N � 1Þ � N matrix, where all elements are equal to zero, excepting the last two ones of the first
row, which are given by � a1

8
and a1, respectively.

To reduce CPU time, instead of integrating (8) with a global time step Dt, a local time-stepping procedure
considers the use of two time steps. On the right side, with grid size Dx1 ¼ Dx, the cell-averages are evolved
with time step Dt1 ¼ Dt, and on the left side, where the grid size is Dx0 ¼ 2Dx, we use a double time step
Dt0 ¼ 2Dt. The time cycle from tn to tnþ2 is completed after the steps described in Section 5, and illustrated
in Fig. 4. We observe that linear interpolation in time is performed to predict coarse virtual cell-averages
at tnþ1, which are required for the time evolution on fine cells close to the interface. In summary, if
W n ¼ ½U n

0Un
1�

t, where Un
l are the vectors of the cell-averages �un

l;i at the time n, this scheme can be expressed
in matrix notation as follows:
W nþ2 ¼ ELTSW n;
where the iteration matrix
ELTS ¼
D0 þ D1½T þ C1�

D2½T 2 þ C2 þ TC1�

� �

is formed by the sub-matrices D0 ¼ ½ðI þ 2DtS0 þ 2Dt2S2

0Þ;DtðI þ 2DtS0ÞB0�;D1 ¼ ½Dt2B0B1;DtB0ðI þ DtS1Þ�,
D2 ¼ ½0; I �, which is a ð2N � 1Þ � ð3N � 1Þ matrix,
T ¼
1
2
ðI þ Dt2B0B1Þ Dt

2
B0ðI þ DtS1Þ

Dt
2
ðI þ DtS1ÞB1 ½I þ DtS1 þ Dt2

2
S2

1�

" #
; Cs ¼

1
2
ðI þ DtS0ÞðI þ sDtS0Þ sDt

2
ðI þ DtS0ÞB0

Dt
2

B1ðI þ sDtS0Þ sDt2

2
B1B0

" #
:

Fig. 2 (right) shows the spectrum stability curve (a) for algorithm RK2/LTS, which is the isoline where the
maximum absolute eigenvalue of ELTS is equal to one, computed numerically with N ¼ 20. We can also note
that this matrix stability region coincides with the one for a uniform fine grid (b) for Re < 2, but for larger
values of Re, there is a reduction of about 20% of this region.

4. Adaptive multiresolution scheme

Here the goal consists in performing the finite volume model described in the Section 2 in a more economic
fashion, by taking into account local regularity information about the numerical solution. For the implemen-
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tation of this adaptive algorithm, the basic tools come from multiresolution wavelet analysis, which is denoted
everywhere by the subscript MR.

The principle of the MR analysis is to represent a set of data given on a fine grid as values on a coarser grid
plus a series of differences at different levels of nested dyadic grids. The differences contain the information of
the solution when going from a coarse to a finer grid. In particular, these coefficients are small in regions where
the solution is smooth and significant close to irregularities. Based on such a kind of information, a MR
scheme considers the representation of the numerical solution U n

MR ¼ Un
L;MR on a sparse grid Cn ¼ Cn

L, which
is formed by the cells corresponding to significant wavelet coefficients. For the solution to evolve from U n

MR

into U nþ1
MR, three basic steps are undertaken:

Refinement: U nþ
MR  RUn

MR;
Evolution: �Unþ1

MR  EMRU nþ
MR;

Coarsening: U nþ1
MR  Tð�Þ �Unþ1

MR.

The refinement operator R is a precautionary measure to account for possible translation or creation of
finer scales in the solution between two subsequent time steps. Since the regions of smoothness or irregularities
of the solution may change with time, the grid Cn may not be convenient anymore at the next time step tnþ1.
Therefore, before doing the time evolution, the representation of the solution should be extended to a grid Cnþ,
which is expected to be a refinement of Cn, and to contain Cnþ1. Then, a time evolution operator
EMR ¼ EMRðDtÞ is applied. Only the cell-averages on the computational grid Cnþ are evolved in time, and
the adaptive flux computation is adopted at interfaces of cells of different scale levels. Finally, a thresholding
operation Tð�Þ (coarsening) is applied in order to unrefine those cells in Cnþ that are unnecessary for an accu-
rate representation of Unþ1

MR.

4.1. Multiresolution representation of cell-averages

In the present paper, we adopt the cell-average multiresolution representation of Harten [22], which is
briefly described in the following.

For the adaptive multiresolution representation of cell-averages we use a tree data structure. This structure
is organized as a dynamic graded tree to compress data, while still being able to navigate through it. In the
wavelet terminology, a graded tree structure corresponds to an adaptive approximation in which connectivity
in the tree structure is always ensured, i.e., no hole is admitted inside the tree. We denote by K the set of indices
of the existing tree nodes, by LðKÞ the restriction of K onto the leaves, and by Kl the restriction of K to a level
l; 0 6 l < L. For example, in the 1D case, X ¼ X0;0 is the root cell, and Xl;i, i 2 Kl, are the different node cells
at level l. The refinement of a parent node cell Xl;i at level l produces two children nodes Xlþ1;2i, Xlþ1;2iþ1 at level
‘þ 1. We denote by �ul;i the cell-average value of the quantity u on the cell Xl;i, and by U l ¼ ð�ul;iÞi2Kl

the ensem-
ble of the existing cell-average values at the level l. To compute the cell-averages of a level l from the ones of
the level lþ 1, we use the projection operator P lþ1!l : Ulþ1 7!Ul such that
�ul;i ¼ ðP lþ1!lU lþ1Þi ¼
1

2
ð�ulþ1;2i þ �ulþ1;2iþ1Þ: ð9Þ
To estimate the cell-averages of a level lþ 1 from the ones of the level l, we use the prediction operator
P l!lþ1 : Ul 7! eU lþ1. This operator gives an approximation eU lþ1 of Ulþ1 at the level lþ 1 by interpolation. This
operator must satisfy two properties. First, it has to be local, i.e., the interpolation for a child is made from the
cell-averages of its parent and the s nearest parent’s neighbors in each direction. Second, it has to be consistent

with the projection, i.e., P lþ1!l 	 P l!lþ1 ¼ Id. The wavelet coefficients (details) are the differences between the
exact and the predicted values,
�dlþ1;2iþ1 ¼ �ulþ1;2iþ1 � ~ulþ1;2iþ1: ð10Þ

If Dlþ1 is the vector of these wavelet coefficients, there is a one-to-one relation
Ulþ1 $ ðDlþ1;UlÞ:
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Repeating this operation recursively on L levels, one gets the so-called multiresolution transform,
M : UL 7!ðDL;DL�1; . . . ;D1;U 0Þ: ð11Þ

In conclusion, the knowledge of the cell-average values of all the leaves is equivalent to the knowledge of

the cell-average value of the root and the details of all the other nodes of the tree structure. In the applications
of this paper we use the third-order prediction scheme
~ulþ1;2i ¼ �ul;i þ
1

8
ð�ul;iþ1 � �ul;i�1Þ; ~ulþ1;2iþ1 ¼ �ul;i �

1

8
ð�ul;iþ1 � �ul;i�1Þ; ð12Þ
which is exact for quadratic polynomials. For higher dimensions in Cartesian geometry, a tensor product ap-
proach is used. Details can be found in [36].

4.2. Conservative flux computation

In the graded tree structure, a leaf at level lþ 1 has not necessarily a neighbor at the same level. Therefore,
for flux computations, virtual leaves have to be created. In such case, the flux at the interface is computed
using the cell-average values of the adjacent virtual leaves, which are computed by prediction from the infor-
mation at level l. In order to maintain the strict conservativity in flux computations, the ingoing flux for a par-
ent cell (at level l) is taken as the sum of the fluxes going out of the adjacent leaves at level lþ 1 (Fig. 3), i.e.,
F l;i;j!l;iþ1;j ¼ F lþ1;2iþ1;2j!lþ1;2iþ2;2j þ F lþ1;2iþ1;2jþ1!lþ1;2iþ2;2jþ1:
Conservative flux evaluations in three dimensions are performed in a similar way. Details can be found in [36].

4.3. Tree updating

During the simulation, we have a dynamic tree. This means that the tree evolves in time: when needed, some
nodes are added or removed. The tree updating is performed by two operations: the refinement procedure R,
which is performed by including children of some leaves in the tree structure, and the thresholding operator
(coarsering) Tð�Þ, which consists in removing unnecessary leaves where details are smaller than a prescribed
tolerance �, while preserving the graded tree data structure. These two operations are performed by the fol-
lowing procedure:

I) For the whole tree, from the leaves to the root:

� Compute the details on the nodes dl;i; i 2 Kl, by the multiresolution transform.
� Define the deletable cells, if the details on the corresponding nodes and their neighbors are smaller

than the prescribed tolerance.

II) For the whole tree, from the leaves to the root:

� If a node and its children nodes are deletable, and the children nodes are simple leaves (i.e., without

virtual children), then delete their children.
� If the node is not deletable, and it is not at the maximum level, then create the children for this node.
+1,i j

i+1, 2 j2

i2

li, j

+1, 2

,

ji2

i2 2

2, j

j

+1

l

+1

+1

Fig. 3. Ingoing and outgoing flux computation in 2D for two different levels.
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For more details on the implementation of these procedure we refer to [36].
5. Local scale-dependent time stepping

We propose a MR/LTS algorithm that uses the multiresolution framework described in the previous sec-
tion. Assuming that Dt is the time step for cells in the finest scale level L, the main principle is that the cells at
lower levels L� l are evolved with time step 2lDt. Consequently, if Un

LTS represents the numerical solution at
tn ¼ nDt on the adaptive grid Cn ¼ Cn

L � XL, then one complete time cycle of the local time-stepping evolution
operator evolves the solution from tn to tnþ2L

.
In Fig. 4, the basic ideas of the local scale-dependent RK2 time stepping are illustrated for one time

cycle and two scale levels. First, we compute one step of RK2 with the local time step. In case the cell
level is not on the finest level, we store its values and we use it to interpolate the cell-average value for
the previous half local time step, that was not computed (see Fig. 4, top-left). Then, with these interpola-
tion values, we perform the RK2 update on the values for the neighbors on the finest level if they exist (see
Fig. 4, top-right). Following it, we return the cell-average value that we have already stored (see Fig. 4,
bottom-left). Finally, we advance in time the finest levels and we perform the RK2 usual update (see
Fig. 4, bottom-right).
interpolation (cheap)
evolution (expensive)

update

update

xx

x x

t t

tt

1st. stage

1st. stage 2nd. stage

2nd. stage

1st. time stepRK2

2nd. time step

return to the stored value (no cost)

Fig. 4. Scheme of local scale-dependent time stepping.
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For the whole adaptive tree, the time cycle can be summarized as follows:

I. Input leaves and time step (see Appendix, Algorithm 1).
II. Compute LTS time evolution cycle (see Appendix, Algorithm 2).

III. Adapt tree, update the tree values, combining or splitting them (see Appendix, Algorithm 5).

We recall that, since we are working with a spatially graded tree data structure, there is only one level dif-
ference between two neighbor cells. Furthermore, refinement operations are only allowed on the tree data
structure when one complete time cycle on a given level is finished. On the other hand, coarsening of the mesh
is forbidden during the LTS time cycle. In addition, we should mention that the employed interpolation pro-
cedure in time is not strictly conservative. Nevertheless, as shown in the next numerical results section, the
accuracy of the FV scheme is mantained by the MR/LTS scheme.

To estimate the potential of the efficiency of the MR/LTS scheme with respect to the MR scheme, in the
spirit of the analysis in [26,30], let W MR=LTS and W MR be the computational work required to do one time
cycle using local and global time stepping, respectively. Taking into account only the number of flux com-
putations, and assuming the adaptive grid does not change during the time cycle, we obtain
W MR � 2LM ; W MR=LTS �
XL

l¼0

Ml2
l;
where M is the total number of cells of the MR adaptive grid, and Ml is the number of cells at the level l.
Defining the speed-up rate,
H ¼ W MR � W MR=LTS

W MR

;

we obtain H ¼
PL

l¼0aðlÞð1� 2l�LÞ, where aðlÞ ¼ Ml=M is the proportion of cells at level l. This formula re-
veals the dependence of the speed-up on the distribution of cells over the different levels. Since the factor
ð1� 2l�LÞ decreases with increasing l, a gain in efficiency may be expected if the majority of cells is placed
on coarser levels. We can also express aðlÞ ¼ bð‘Þ 2dðl�LÞ=g, where d is the space dimension, g ¼ M=2dL is
the total compression rate of the MR grid, and bðlÞ ¼ Ml=2dl is the compression rate at level l. Consequently,
we have
H ¼ 1

g

XL

‘¼0

2dðl�LÞð1� 2l�LÞbð‘Þ:
For given compression rates g and bðlÞ, we can see the influence of the space dimension, since 2dðl�LÞ is less
significant for higher dimensions. Moreover, its influence is more sensitive at lower levels, where the contrib-
uition of the term ð1� 2l�LÞ becomes larger.
6. Numerical results

In this section, we present different numerical examples in one and three space dimensions using finite
volume second-order accurate schemes with second-order Runge–Kutta (RK2) time integration. A multi-
resolution analysis for a cell-average of third-order prediction is used. In the following, three different
methods, i.e., the finite volume reference scheme (FV), the adaptive multiresolution method (MR) and
the adaptive multiresolution method with local time stepping (MR/LTS), are applied to a one-dimensional
convection–diffusion equation for which the analytical solution is known and for which we conducted the
stability analysis presented in Section 3. Then, we show computations for one-dimensional compressible
Euler equations for a shock tube problem. Finally, we present computations for reaction–diffusion equa-
tions in one and three space dimensions, which correspond to a planar flame front and to a cellular insta-
bility inside a spherical flame initially stretched, respectively.
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6.1. Convection–diffusion equation

We consider the linear convection–diffusion equation,
Fig. 5.
scheme
ou
ot
þ ou

ox
¼ m

o2u
ox2

; ðx; tÞ 2 ½�1; 1� � ½0;þ1Þ; ð13Þ
with initial condition uðx; 0Þ ¼ u0ðxÞ, and boundary values uð�1; tÞ ¼ 1 and uð1; tÞ ¼ 0. All the numerical solu-
tions of this section are compared with the analytical solution (e.g., see [24])
uexðx; tÞ ¼
1

2
erfc

x� t

2
ffiffiffiffi
mt
p

� �
; ð14Þ
and the computations start at u0ðxÞ ¼ uexðx; 0:1Þ, to avoid a discontinuous initial condition which would affect
the accuracy. The tolerance parameter � is chosen according to the formula given in [36]
� ¼ �L ¼ 5� 108 m2�3L

1þ m2Lþ2
: ð15Þ
Using m ¼ 0:001, and L ¼ 9, the plots in Fig. 5 represent the stability regions in the Re� r plane for the FV,
MR and MR/LTS methods obtained by checking the solution at t ¼ 0:5. For all schemes we performed com-
putations for r ranging from 0.125 to 1.875 in steps of 0.125 and for Re from 1 to 10 in steps of 1. The stability
region for the FV scheme depicted in Fig. 5 (left) fits well with the theoretical one presented in Fig. 2 (left) (a).
As shown in Fig. 5 (right), the stability domains for MR and MR/LTS schemes coincide. Moreover, they are
quite similar to the one found for the FV scheme.

The MR/LTS discretization error kuex � uLTSk can be decomposed into different error contributions: the
FV discretization error kuex � uFVk, the thresholding error kuFV � uMRk and the local time-stepping error
kuMR � uLTSk. We can see in Table 1 that the MR/LTS discretization error is almost identical with the FV
discretization error. The thresholding error and the local time-stepping error are two orders of magnitude
smaller. Table 2 presents errors of the different schemes for different maximum scales L, showing that MR
and MR/LTS computations yield the same second-order accuracy as the reference FV computation on the
corresponding regular grid.
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Numerically computed stability regions for the convection–diffusion equation using centered FV(left), MR and MR/LTS (right)
s, with m = 0.001, and L = 9.



Table 1
Convection–diffusion equation: contributions of the different errors at t = 0.5 for r = 0.5, m = 0.001, � = 1.2 � 10�3 and L = 9

Terms L1 norm L2 norm L1 norm

kuex � uFVk 2 � 10�3 2.96 � 10�4 1.50 � 10�2

kuFV � uMRk 3.10 � 10�5 5.22 � 10�6 3.80 � 10�4

kuMR � uLTSk 4.27 � 10�5 8.74 � 10�6 9.15 � 10�4

kuex � uLTSk 1.99 � 10�3 2.94 � 10�4 1.55 � 10�2

Table 2
Convection–diffusion: errors in the L1 and L1 norms for FV, MR and MR/LTS methods obtained at t = 0.5 for r = 0.5, m = 0.001, and
L = 9 to 12

L FV MR MR/LTS

L1 norm L1 norm L1 norm L1 norm L1 norm L1 norm

9 1.13 � 10�2 4.79 � 10�4 1.14 � 10�2 2.33 � 10�3 1.13 � 10�2 2.39 � 10�3

10 2.96 � 10�3 1.25 � 10�4 2.99 � 10�3 6.57 � 10�4 3.35 � 10�3 7.01 � 10�4

11 7.55 � 10�4 3.17 � 10�5 7.57 � 10�4 1.83 � 10�4 9.99 � 10�4 2.24 � 10�4

12 1.90 � 10�4 7.99 � 10�6 1.90 � 10�4 4.58 � 10�5 1.90 � 10�4 4.60 � 10�5
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The gain in CPU time of the MR/LTS computation with respect to the MR one is illustrated in Fig. 6
(right) showing the significant gain of CPU time using the MR/LTS method, which increases with the number
of levels. Moreover, it can be noticed that almost the same memory is required for both methods (Fig. 6, left).

6.2. Shock-tube problem

In the following, we consider the compressible Euler equations in one space dimension and we compute a
shock-tube problem (e.g., see [37]). The governing equations read
Fig. 6.
metho
oQ
ot
þ oF

ox
¼ 0; ð16Þ
with Q ¼ ðq; qu; qeÞt; F ¼ ðqu; qu2 þ p; ðqeþ pÞuÞt, where q ¼ qðx; tÞ is the density, u ¼ uðx; tÞ the velocity,
e ¼ eðx; tÞ the energy per unit of mass and p ¼ pðx; tÞ the pressure. The system is completed by the equation
of state for an ideal gas p ¼ ðc� 1Þqðe� u2

2
Þ, where c is the specific heat ratio. The initial condition is the one

proposed by Sod [37]: Qðx; 0Þ ¼ QL ¼ ð1; 0; 2:5Þ
t, for x < 0, and Qðx; 0Þ ¼ QR ¼ ð0:125; 0; 0:25Þt, for x > 0. For
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the simulations, the computational domain is X ¼ ½�1; 1�, and Neumann boundary conditions are applied on
both sides. For the numerical flux, we use the classical TVD second-order AUSM + scheme, together with the
Van Albada limiter [28]. The physical parameters are Ma ¼ 1; c ¼ 1:4, and the computations are performed
until physical time t ¼ 0:5. The time step is computed with r ¼ 0:5, and the tolerance parameter � depends
on the maximum scale L. For L ¼ 9 and 10 we choose � ¼ 10�3, for L ¼ 11; � ¼ 7:5� 10�4, and for L ¼ 12
and 13, � ¼ 5� 10�4.

The results for pressure, density and velocity at t ¼ 0:5 are shown for the three methods in Fig. 7, with
L ¼ 12, together with the adaptive MR and MR/LTS grids. We observe that all three solutions almost coin-
cide. The adaptive MR and MR/LTS grids are locally refined in the shock region and are identical. In regions
where the solution is smoother, the grids differ slightly, due to the time advancement at larger scales with lar-
ger time steps. Computing the energy

R
juðx; 0:5Þj2 dx at the final time, the results obtained with the FV scheme

are 0.18174 and 0.18170, for L ¼ 12 and 13, respectively. Using MR and MR/LTS, the energy difference
compared with FV scheme is, for both methods, less than 0.004% (see Table 3). Concering the computational
efficiency, Table 3 shows that both adaptive MR and MR/LTS methods strongly reduce the memory require-
ments of the FV scheme. For instance, for L ¼ 13, less than 8% of the memory is used, the MR computation
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Fig. 7. Shock-tube problem: MR and MR/LTS solutions for 1D Euler equation at t = 0.5 with L = 12: pressure (top left), density (top
right), velocity (bottom left), and mesh visualizations (bottom right).



Table 3
Shock-tube problem: CPU, memory compressions and energy error

Method L % CPU time % Memory % Error on energy

FV 12 100 100 0
MR 11.3 14.5 4 � 10�3

MR/LTS 7.9 14.5 3 � 10�3

FV 13 100 100 0
MR 6.1 7.8 1 � 10�3

MR/LTS 3.8 7.6 4 � 10�3
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requires about 6% of the CPU time of the FV computation. The MR/LTS computation yields an additional
speed-up of 38%. Note that MR/LTS is more than 1.6 faster than the MR scheme (Fig. 8), withthout signif-
icantly increasing the error on the solution (see Table 4).

6.3. Reaction–diffusion equations

Next simulations are performed for reaction–diffusion equations, which are prototypes of nonlinear para-
bolic equations and where the nonlinearity is in the source term.

6.3.1. Steady planar flame front

We consider a steady planar flame front, with equal heat and mass diffusions, modeled by the equation
written in its 1D dimensionless form,
Fig. 8.
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4
planar flame front: estimated CPU and memory compressions for the different methods, using CFL r = 0.5, with � = 10�2 for 12

and 2 � 10�3 for 13 scales

d L % CPU Time % Memory % Error on vf

12 14.1 9.9 0.089
TS 12 11.0 9.9 0.089

13 10.1 7.0 0.022
TS 13 7.3 7.0 0.022
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where the function T ¼ T ðx; tÞ is the dimensionless temperature, normalized between 0 (fresh premixed gas)
and 1 (burnt gas). The chemical reaction rate xðT Þ is given by the formula
Fig. 9.
the rea
meshes
xðT Þ ¼ Ze2

2
ð1� T Þ exp

Zeð1� T Þ
sð1� T Þ � 1

; ð18Þ
where s is the burnt–unburnt temperature ratio, vf ¼
R

X xdx is the flame velocity, and Ze is the dimensionless
activation energy (Zeldovich number).

In the simulations, we take the initial condition T ðx; 0Þ ¼ 1, for x 6 1, and T ðx; 0Þ ¼ expð1� xÞ, for x > 1.
The computational domain is x 2 ½�40; 40�; t 2 ½0; 15�, and the boundary conditions oT

ox ð�40; tÞ ¼ 0, and
T ð40; tÞ ¼ 0 are enforced. The physical parameters are s ¼ 0:8; Ze ¼ 10, and we choose a CFL r ¼ 0:5. For
accuracy reasons, the tolerance parameter � is chosen depending on the maximum scale L. For L ¼ 8 and 9,
we take � ¼ 7:5� 10�2, for L ¼ 10; � ¼ 5� 10�2, for L ¼ 11 and 12, � ¼ 5� 10�2 and for L ¼ 13; � ¼ 2� 10�3.

Fig. 9 shows a steady planar flame front. Between the burnt and the unburnt gas, the chemical reaction
takes place. The adaptive grid is strongly refined in this reaction zone and, up to 13 levels, it is active in both
MR and MR/LTS computations, whereas, in quiescent regions, the grid is coarsened down to 5 levels. Com-
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paring the value of the flame velocity with the asymptotic value given in Peters and Warnatz [32], we observe
that all methods yield values close to the asymptotic one of vf ¼ 0:918 within an error tolerance below 0.01%.
For L ¼ 13 levels, the adaptive MR and MR/LTS computations only require 7% of the memory compared to
a FV method on a regular grid. The MR computation is 10 times faster than the FV computation and the
MR/LTS scheme yields an additional speed-up of 28%, i.e., a gain of 1.38 (see Fig. 10).

6.3.2. Three-dimensional flame ball

In the following, we perform numerical simulations of three-dimensional instabilities of spherical flames
initially stretched in one space direction, to check the formation of cellular patterns. A flame ball is a station-
ary or slowly propagating spherical flame structure in a premixed gaseous mixture. Such flames have been
experimentally observed for low Lewis numbers under micro-gravity conditions [34].

The thermo-diffusive approximation is well adapted for the computation of flame balls, because the flame
velocity is very small [9,21]. Considering again the constant density approximation and one-step chemical
kinetics, the system of equations modeling such a flame structure is the set of two reaction–diffusion equations
for the temperature T and the partial mass of the unburnt gas Y
F

oT
ot
¼ r2T þ x� s;

oY
ot
¼ 1

Le
r2Y � x;
where x is the reaction rate
x ¼ xðT ; Y Þ ¼ Ze2

2Le
Y exp

ZeðT � 1Þ
1þ sðT � 1Þ

� �
:

According to the Stefan–Boltzmann law, the heat-loss s due to radiation writes
s ¼ sðT Þ ¼ j½ðT þ s�1 � 1Þ4 � ðs�1 � 1Þ4�;

where j is the dimensionless radiation coefficient. The initial conditions are
T ðr; 0Þ ¼
1 if r 6 r0

expð1� r
r0
Þ if r > r0;

(
; Y ðr; 0Þ ¼

0 if r 6 r0

1� exp Leð1� r
r0
Þ

	 

if r > r0;

(

where r0 denotes the initial radius of the flame ball. The boundaries are sufficiently far from the flame ball, so
that they have negligible influence. Hence we can use Neumann boundary conditions. This spherical initial
condition is stretched in one direction and a rotation in two axes is applied. Hence, we have

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

a2 þ Y 2

b2 þ Z2

c2 ;
q

where X ¼ x cos h� y sin h; Y ¼ ðx sin hþ y cos hÞ cos u� z sin u, and Z ¼ ðx sin hþ
y cos hÞ sin uþ z cos u. The parameters of the ellipsoid are a ¼ b ¼ 1:5; c ¼ 3, and the rotation angles are
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ig. 10. Steady planar flame front: MR and MR/LTS: gain in CPU time for different mesh sizes at t = 15 with CFL r = 0.5.
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h ¼ p
3

and u ¼ p
4

with an initial radius r0 ¼ 1. The computational domain is X ¼ ½�20; 20�3. For the fresh mix-

ture, we chose a lean 6.5% H2–air mixture, for which the Lewis number is Le ¼ 0:3, Ze ¼ 10 and the temper-
ature ratio is s ¼ 0:64. The radiative heat-loss can be increased by adding products like CF3Br which do not
modify the main chemical reaction, but increase the radiative heat-loss due to soot formation [9]. Hence, we
choose a large radiation coefficient, i.e., j ¼ 0:1. The dimensionless elapsed time is t ¼ 27.

We observe that, after the first splitting, the new cells also split until the domain is full of small balls. This
can be seen in Fig. 11, which shows the splitting of the ellipsoid into two cells, a ring of splitting cells, and a
moment where there are cells in different stages of splitting in the domain. In Fig. 12 we can see the projection
of the cell positions used on the adaptive mesh for temperature and concentration in XZ; YZ and XY planes.

The time evolution of the global reaction rate R ¼
R

X xdxdy dz, shown in Fig. 13, is very similar in both
MR and MR/LTS simulations. We observe a growth until t ¼ 22, when the cells touch the boundaries, and
then it starts to decrease.

Table 5 shows the performances for MR and MR/LTS computations. We use a time step of 3.66 � 10�4,
which corresponds to an initial CFL r ¼ 0:1. To give some absolute numbers about the CPU time using an
Intel(R) Xeon(TM) CPU 3.20 GHz processor, the MR computation required around 2 days and 11 h, and
the MR/LTS around 2 days and 4 h to reach the physical time t ¼ 10. The FV computation was performed
for few iterations only to estimate the CPU time of around 89 days and 6 h that such a computation would
require to reach t ¼ 10.

The CPU and memory compressions of the different methods, � ¼ 0:05 with 8 scales and initial CFL
r ¼ 0:1 show that, at t ¼ 10, the MR method requires less than 3% of the CPU time needed for the FV
computation.

The MR/LTS yields an additional speed-up of the MR method of 15% and hence implies a total speed-up
of the FV scheme by a factor 43. Both adaptive methods required only 1% of the memory which the FV com-
putation would consume. The difference in the global reaction rate computed at t ¼ 10 (when the second split-
ting of the flame balls starts) after 27307 iterations which gives R ¼ 669:1 is less than 0.003%. Hence, using a
local time-stepping procedure, we get an additional speed-up without significant loss in accuracy.
Fig. 11. Splitting flame ball using the MR/LTS method: iso-surfaces and isolines on the cut-plane for the temperature (top) and the
concentration of the limiting reactant (bottom) with L = 8 scales, Le = 0.3, Ze = 10, s = 0.64, j = 0.1. Left to right: physical times t = 6.0
(left), t = 13.5 (center), and t = 21.0 (right).



Fig. 12. Splitting flame ball: projections of the cell-centers used on the adaptive mesh in the XZ (top), YZ (middle) and XY-planes
(bottom) at times t = 6.0 (left), t = 13.5 (center), and t = 21.0 (right).
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7. Conclusion

The present paper describes an efficient space-adaptive multiresolution method with local time stepping to
solve evolutionary PDEs in Cartesian geometry. It is based on a finite volume discretization with explicit time
integration, both of second-order. We introduced a new local scale-dependent time-stepping method into the
adaptive multiresolution scheme developed in [35,36]. In comparison to the finite volume scheme on a regular
grid this new scheme allows further speed-up due to an improved time advancement using larger time steps on
large scales without violating the stability condition of the explicit scheme. The number of costly flux evalu-
ations is likewise reduced, together with the memory requirements, thanks to the dynamic tree data structure.
However, as different scales evolve with different time steps, a synchronization of the tree data structure
becomes necessary. The synchronization limits currently the time scheme to second-order Runge–Kutta
methods as for higher order schemes this task becomes much more difficult. We have also shown that a suit-
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Fig. 13. Splitting flame ball: time evolution of the reaction rates for MR and MR/LTS for the 3D flame ball.

Table 5
Splitting flame ball: CPU and memory compressions for the different methods, � = 0.05 with 8 scales and CFL r = 0.1

Method % CPU Time % Memory R

MR 2.7 1.05 669.09
MR/LTS 2.3 1.05 669.11

The global reaction rate is R computed at t = 10, after 27,307 iterations.
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able thresholding of the wavelet coefficients maintains the second-order accuracy of the finite volume scheme
on the regular grid. The local time stepping hence represents a moderate, but significant, speed-up with unsig-
nificant loss of accuracy.

A matrix stability analysis for a simplified two grid problem applied to a convection–diffusion equation
showed that the spectral stability region of the local time-stepping scheme is approximately the same as the
one corresponding to the coarse grid for a mesh Reynolds number Re 6 2, but for higher values of this param-
eter there is a reduction in this stability region. We verified the theoretical prediction numerically for the adap-
tive scheme and showed that the stability region obtained numerically corresponds to the theoretical one. We
demonstrated the efficiency of the new method for different test problems in one and three space dimensions
and studied its performance by comparing the CPU time and the memory requirements with the finite volume
method using uniform discretization. Fully adaptive three-dimensional computations of spherical flame insta-
bilities reveal the applicability to practically relevant problems. The current speed-up increases with the num-
ber of required scales to represent the solution, and also depends on the computational cost of the flux
evaluations. Hereby the structure of the graded tree plays a crucial role which reflects the local regularity
of the solution. A better localization of small scale features of the solution leads to an unbalanced tree for
which MR/LTS is most beneficial. In conclusion, the more expensive the flux evaluation and the larger the
number of well-localized active scales, the better the speed-up of MR/LTS. As predicted by an analytical cost
estimate, we found that the actual speed-up of local time stepping depends on the distribution of the active
cells. If the majority of the cells is active on fine scales, the MR/LTS scheme is less efficient with respect to
the MR scheme, whereas for few active cells on fine scales (e.g., point singularities) the speed-up becomes lar-
ger. In these cases, performing one large time step at a coarse level instead of several time steps on fine scale
cells becomes more efficient.

As perspectives, we plan to extend this space-time adaptive scheme to solve the three-dimensional com-
pressible Navier–Stokes equations to perform Coherent Vortex Simulations (CVS) [19] of turbulent flows
in the weakly compressible regime. Future work will also deal with the extension to higher order space discret-
izations using large stencils (e.g., ENO, WENO), which will imply a modification of the tree structure. Higher
order multi-stage methods for the MR/LTS scheme are not straightforward and will require further
investigations.
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Appendix. Algorithms

In the following algorithms, LðKÞ are the leaves of the tree K and VðKÞ are the virtual leaves of the tree. The
symboledenotes the temporary values.
Algorithm 1 LTS: INPUT

Require: U 0
LðKÞ ¼ f�u0

l;ijðl; iÞ 2 LðKÞg {all the leaves at initial time}
Ensure: Un

LðKÞ ¼ f�un
l;ijðl; iÞ 2 LðKÞg {all the leaves at the time step n}

Require: Dt ¼ DtL {the time step on the finest level is set as reference time step}
Ensure: Dtl ¼ 2L�lDt; 0 < l 6 L {time step at the level l}

LTS:CYCLE
Algorithm 2 LTS: CYCLE

for all iterations n do
LTS: COMPUTE VIRTUAL LEAVES at iteration n (Algorithm 3)
{STAGE 1}
for all levels from l ¼ 0 until L do

for all cells i such that 0 6 i < 2l do
if ðl; iÞ 2 LðKÞ then

p ¼ 2L�l {number of steps being advanced at the level l}
if (ðn� 1Þ mod p ¼ 0) then

Dn
l;i ¼ Dð�un

l;i�2; �u
n
l;i�1; �u

n
l;i; �u

n
l;iþ1; �u

n
l;iþ2Þ {Compute divergence}

~unþp
l;i ¼ �un

l;i þ DtlDn
l;i {RK 1st stage}

if ðl 6¼ LÞ then

~unþp
2
l;i ¼ 1

2
ð~unþp

l;i þ �un
l;iÞ {Store values at intermediary state}

LTS: UPDATE VIRTUAL LEAVES at iteration n (Algorithm 4)
{STAGE 2}
for all levels from l ¼ 0 until L do

for all cells i such that 0 6 i < 2l do
if ðl; iÞ 2 LðKÞ then

p ¼ 2L�l {the number of steps being advanced at the level l}
if ðn mod p ¼ 0Þ theneDnþp

l;i ¼ Dð~unþp
l;i�2; � � � ; ~u

nþp
l;iþ2Þ {Compute divergence}

�unþp
l;i ¼

�un
l;i

2
þ ~unþp

l;i

2
þ Dtl

2
eDnþp

l;i {RK 2nd stage}

LTS: ADAPT TREE at iteration n (Algorithm 5)
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Algorithm 3 LTS: COMPUTE VIRTUAL LEAVES at iteration n

for all levels from l ¼ 0 until L do
for all cells i such that 0 6 i < 2l do

if ðl; iÞ 2 VðKÞ then
q ¼ i
 2
{the cell ðl� 1; qÞ is the parent of the cell ðl; iÞ; i being odd or even}
�un

l;i ¼ P l�1!lð�un
l�1;q�1; �un

l�1;q; �un
l�1;qþ1Þ

{Predict value from parent and its neighbors}
Algorithm 4 LTS: UPDATE VIRTUAL LEAVES at iteration n

for all levels from l ¼ 0 until L do
for all cells i such that 0 6 i < 2l do

if ðl; iÞ 2 VðKÞ then
q ¼ i
 2

{the cell ðl� 1; qÞ is the parent of the cell ðl; iÞ; i being odd or even}
~un

l;i  P l�1!lð~un
l�1;q�1; ~un

l�1;q; ~un
l�1;qþ1Þ

{Predict value from parent and its neighbors}
Algorithm 5 LTS: ADAPT TREE at iteration n

Require n
for all levels from l ¼ 0 until L do

for all cells i such that 0 6 i < 2l do
if ðl; iÞ 2 LðKÞ then

p ¼ 2L�l {number of steps being advanced at the level l}
if ðnmodpÞ ¼ 0 then

{Delete children if possible}

if ðjdn
lþ1;2ij < �lþ1Þ and ðjdn

lþ1;2iþ1j < �lþ1Þ and ðjdn
l;ij < �lÞ then

Deallocate children: ð�un
lþ1;2iÞ; ð�un

lþ1;2iþ1Þ
else

if (n mod p 
 2 ¼ 0) then

{Add children when necessary}

if ðjdn
l;ij > �lÞ then

Allocate children: ð�un
lþ1;2iÞ; ð�un

lþ1;2iþ1Þ
{Predict value from parent and its neighbors}
�un

lþ1;2i ¼ P l!lþ1ð2i; �un
l;i�1; �u

n
l;i; �u

n
l;iþ1Þ

�un
lþ1;2iþ1 ¼ P l!lþ1ð2iþ 1; �un

l;i�1; �u
n
l;i; �u

n
l;iþ1Þ
References

[1] J. Alam, N.-K.-R. Kevlahan, O. Vasilyev, Simultaneous space-time adaptive wavelet solution of nonlinear partial differential
equations, J. Comput. Phys. 214 (2006) 829–857.

[2] E. Bacry, S. Mallat, G. Papanicolaou, A wavelet based space-time adaptive numerical-method for partial-differential equations,
Rairo-Math. Modell. Numer. Anal. 26 (1992) 793–834.

[3] R. Becker, R. Rannacher, An optimal control approach to error control and mesh adaptation, Acta Numer. 10 (2001) 1–102.
[4] J. Bell, M. Berger, J. Saltzmann, M. Welcome, Three-dimensional adaptive mesh refinement for hyperbolic conservation laws, SIAM

J. Sci. Comput. 15 (1994) 127.



3780 M.O. Domingues et al. / Journal of Computational Physics 227 (2008) 3758–3780
[5] M. Berger, R. LeVeque, Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems, SIAM J. Numer.
Anal. 35 (1998) 2298–2316.

[6] M.J. Berger, P. Collela, Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys. 82 (1) (1989) 64–84.
[7] M.J. Berger, J. Olinger, Adaptive mesh refinement for hyperbolic partial differential equations, J. Comp. Phys. 53 (1984) 484–512.
[8] B.L. Bihari, Multiresolution schemes for conservation laws with viscosity, J. Comput. Phys. 123 (1996) 207–225.
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