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Abstract

We present a new adaptive numerical scheme for solving parabolic PDEs in Cartesian geometry. Applying a finite

volume discretization with explicit time integration, both of second order, we employ a fully adaptive multiresolution

scheme to represent the solution on locally refined nested grids. The fluxes are evaluated on the adaptive grid. A dy-

namical adaption strategy to advance the grid in time and to follow the time evolution of the solution directly exploits

the multiresolution representation. Applying this new method to several test problems in one, two and three space

dimensions, like convection–diffusion, viscous Burgers and reaction–diffusion equations, we show its second-order

accuracy and demonstrate its computational efficiency.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The numerical solution of partial differential equations (PDEs) arising from mathematical modeling of

physical–chemical problems, like turbulent, reactive or non-reactive flows, typically involves a large number

of spatial and temporal scales. In many cases, however, small scales in space are only needed locally, i.e., for
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solutions being intermittent or exhibiting, e.g., steep gradients or shock-like structures. This property

motivates the introduction of some kind of adaptive discretization as the solution may be over-resolved in

large subsets of the computational domain when using equidistant fine grids.

A suitable tool to define adaptive discretization schemes are multiresolution techniques which allow an

efficient data representation with an accurate estimation of the local approximation error, together with a

dynamic grid adaption strategy for evolution problems. In the past, different adaptive methods have been

introduced to improve the computational efficiency and to reduce the memory requirement of the algo-

rithms for solving large scale problems. Historically, adaptive grid methods like Multi-Level Adaptive

Techniques (MLAT) [9] or Adaptive Mesh Refinement (AMR) methods [2–4,34] were the first to achieve

this goal, using a set of locally refined grids where steep gradients or high truncation errors are found.

However, the data compression rate is high where the solution is almost constant, but remains low where

the solution is smooth.

More recently, adaptive wavelet methods to solve PDEs have been developed. For an overview and a

classification of the different methods we refer, e.g., to Dahmen [16], Cohen [12] and Fr€oohlich and Schneider

[23]. The motivation to use wavelet methods to construct numerical schemes is twofold. First, the scale-

space representation of functions exhibiting, e.g., locally steep gradients or boundary layers, i.e., functions

whose Besov regularity is larger than its Sobolev regularity, is efficient using nonlinear approximation, i.e.,

by thresholding the wavelet coefficients [16,19]. The result is that only few coefficients are necessary to

represent a function for a given accuracy. Second, a large class of differential and integral operators have a

sparse representation in a wavelet basis [5] and can be preconditioned by simple rescaling [18,28]. For

evolutionary problems, wavelet schemes offer the possibility to adapt the basis automatically in time by

simply switching on wavelet coefficients in the neighborhood of the active ones. These properties led to the

development of several adaptive wavelet schemes, e.g., for 1D viscous Burgers equations [29–31], for

thermo-diffusive flame computations [8,21,23], for 2D Stokes equations [39] and 2D Navier–Stokes

equations [10,22,37,38]. The above schemes mainly use wavelets as trial and/or test functions in Petrov–

Galerkin schemes.

The current approach is somehow different and can be seen in the spirit of Harten�s pioneering work

[25,26]. Starting point is a finite volume scheme for hyperbolic conservation laws on a regular grid. Sub-

sequently a discrete multiresolution analysis is used to avoid expensive flux computations in smooth re-

gions, first without reducing memory requirements, e.g., for 1D hyperbolic conservation laws [25], 1D

conservation laws with viscosity [6], 2D hyperbolic conservations laws [7], 2D compressible Euler equations

[11], 2D hyperbolic conservation laws with curvilinear patches [17] and unstructured meshes [1,14]. A fully

adaptive version, still in the context of hyperbolic conservation laws, has been developed to reduce also

memory requirements [15,24]. Therewith the solution is represented and computed on a dynamically

evolving automatically adapted grid. Different strategies have been proposed to evaluate the flux without

requiring a full knowledge of fine grid cell-average values. For an overview on adaptive multiresolution

techniques for hyperbolic conservation laws, we refer to M€uuller [32]. For more details on similarities and

differences between adaptive mesh refinement and adaptive wavelet approaches, we refer the reader to

Cohen [13].

In the current paper, we present a fully adaptive multiresolution scheme for solving parabolic PDEs in

one, two and three space dimensions with different types of boundary conditions. With respect to previous

work, we extend the algorithms developed for hyperbolic equations [15] for the case of parabolic ones,

together with the corresponding error analysis. As we are concerned with problems arising from physical–

chemical context, conservation of physical quantities – e.g., global mass – in flux computations is of special

interest. In the case of adaptive flux evaluation, ingoing and outgoing fluxes, both approximated at in-

terfaces from cell-average values of different levels, are not necessarily balanced. Therefore we devise a new

formulation for adaptive flux computation at the interfaces between two different levels being strictly

conservative.
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The paper is organized as follows: in Section 2, a general finite volume method for conservation laws is

presented, including the description of space discretization and time integration schemes used here. In

Section 3, the conservative version of the fully adaptive multiresolution scheme is described, including a

way to ensure conservativity of the flux computations. In Section 4, we describe the algorithm used for the

numerical computation. Details concerning the data structure and the implementation are also given. Then,

Section 5 contains numerical results to show the accuracy of the algorithm and to demonstrate its efficiency.

For the validation of the adaptive method, test-problems like convection–diffusion or viscous Burgers are

studied. We report gains in CPU time and memory, as well as convergence rates. The method is also applied

to reaction–diffusion problems, in order to compute the time evolution of a flame ball. Finally, we conclude

and present some perspectives for future work.

2. Numerical method

2.1. Parabolic conservation laws

We consider the initial value problem for parabolic conservation laws on ðx; tÞ 2 X� ½0;þ1Þ, X � R
d ,

of the form

ou

ot
þr 
 F ðu;ruÞ ¼ SðuÞ;

uðx; 0Þ ¼ u0ðxÞ

ð1Þ

with appropriate boundary conditions.

In the present paper, we restrict ourselves to the case where the diffusive flux is defined by a gradient

operator, assuming constant diffusivity m > 0, i.e.,

F ðu;ruÞ ¼ f ðuÞ � mru:

We shortly summarize the advective flux f and the source term S for the different test-cases presented in

Section 5, which yield simple models for viscous fluid dynamics and combustion problems. For the 1D

convection–diffusion equation, we have ðc > 0Þ

f ðuÞ ¼ cu;

SðuÞ ¼ 0:

In the case of the 1D viscous Burgers equation, we get

f ðuÞ ¼
u2

2
;

SðuÞ ¼ 0

and for the reaction–diffusion equation ða > 0; b > 0Þ,

f ðuÞ ¼ 0;

SðuÞ ¼
b2

2
ð1� uÞ exp

bð1� uÞ

að1� uÞ � 1
:

For ease of notation, we denote by Dðu;ruÞ ¼ �r 
 F ðu;ruÞ þ SðuÞ the divergence and source term. Thus,

(1) can be written in the form
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ou

ot
¼ Dðu;ruÞ: ð2Þ

2.2. Discretized equations

To discretize (2), we use a classical finite volume formulation in the standard conservative form. In the

general case, let us consider the computational domain X in dimension d with an arbitrary shape, and let us

partition it into cells ðXiÞi2K, K ¼ f1; . . . ; imaxg. We then denote �qqiðtÞ the cell-average value of a given
quantity q on Xi at instant t,

�qqiðtÞ ¼
1

jXij

Z

Xi

qðx; tÞdx;

where jXij ¼
R

Xi
dx is the volume of the cell. Integrating (2) on Xi yields

Z

Xi

ou

ot
ðx; tÞdx ¼

Z

Xi

D uðx; tÞ;ruðx; tÞð Þdx;

i.e.,

o�uui

ot
ðtÞ ¼ �DDiðtÞ: ð3Þ

Applying the divergence theorem, we get

�DDiðtÞ ¼ �
1

jXij

Z

oXi

F ½uðx; tÞ;ruðx; tÞ� 
 riðxÞdxþ �SSiðtÞ; ð4Þ

where riðxÞ denotes the outer normal vector to Xi.

Conservativity in the flux computation is ensured if and only if, for two adjacent cells Xi1 and Xi2 , the

outgoing flux from Xi1 to Xi2 balances with the one from Xi2 to Xi1 . In the next sections, we will describe the

time integration and space discretization schemes applied to (3).

2.3. Time integration

Due to the adaptive space discretization, the grid is changing in time, and therefore we first discretize in

time and then in space. Here we use an explicit second-order accurate Runge–Kutta (RK2) scheme. De-

noting by Dt the time step and by �uuni ¼ �uuiðt
nÞ, where tn ¼ nDt, the RK2 scheme used here has the form

�uu
nþ
1
2

i ¼ �uuni þ Dt �DDn
i ;

�uunþ1i ¼
1

2
�uuni

�

þ �uu
nþ
1
2

i þ Dt �DD
nþ
1
2

i

�

:
ð5Þ

Denoting by �uun the vector ð�uuni Þi2K, the discrete time evolution operator
�EEðDtÞ is defined by

�uunþ1 ¼ �EEðDtÞ 
 �uun; ð6Þ

where

�EEðDtÞ ¼ Iþ
Dt

2
�DD
h

þ �DDðIþ Dt �DDÞ
i
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and I denotes the identity operator. The discretization of the operator �DD is described in the following

section, the stability conditions being treated in Section 2.5.

2.4. Numerical flux

We now consider a fixed time tn and, in the following, the superscript n is omitted everywhere. For the

1D case, Xi is a segment x
i�
1
2

; x
iþ
1
2

� �

with step size Dxi ¼ x
iþ
1
2

� x
i�
1
2

. Eq. (4) becomes

�DDi ¼ �
1

Dxi
�FF
iþ
1
2

�

� �FF
i�
1
2

�

þ �SSi: ð7Þ

Advective and diffusive terms are approximated differently. For the advective part, we use Roe�s scheme

[35] with a second-order ENO interpolation, whereas, for the diffusive part, we choose a second-order

accurate centered scheme. Bihari [6] showed that the resulting global scheme, which is non-linear, is second-

order accurate in space:

�FF
iþ
1
2

¼ f R �uu�
iþ
1
2

; �uuþ
iþ
1
2

� �

� m
�uuiþ1 � �uui

Dx
iþ
1
2

; ð8Þ

where Dx
iþ
1
2

¼ 1
2
ðDxi þ Dxiþ1Þ.

The term f R denotes, for the advective part, Roe�s approximate solution to the Riemann problem given

the left ()) and right (+) values of u. Its scalar version is given by

f Rðu�; uþÞ ¼
1

2
f ðu�Þ½ þ f ðuþÞ � jaðu�; uþÞjðuþ � u�Þ�; ð9Þ

where

aðu�; uþÞ ¼
f ðuþÞ�f ðu�Þ

uþ�u�
if u� 6¼ uþ;

f 0ðu�Þ if u� ¼ uþ:

	

The left and right terms, �uu�
iþ
1
2

and �uuþ
iþ
1
2

, respectively, are computed using a second-order ENO interpolation

�uu�
iþ
1
2

¼ �uui þ
1

2
M �uuiþ1




� �uui; �uui � �uui�1

�

;

�uuþ
iþ
1
2

¼ �uuiþ1 þ
1

2
M �uuiþ2




� �uuiþ1; �uuiþ1 � �uui

�

;

ð10Þ

where M is the Min–Mod limiter, which chooses the minimal slope between the left and right sides, i.e.,

Mða; bÞ ¼
a if jaj6 jbj;
b if jaj > jbj:

	

The source term is approximated by �SSi � Sð�uuiÞ. For a general non-linear source term, this choice yields a
second-order accuracy.

Extension to higher dimension in Cartesian geometries is performed through a tensor product approach.

For the 2D case, Xi;j is a rectangle with a volume of size jXi;jj ¼ DxiDyj. Eq. (3) can be written as

o�uui;j

ot
ðtÞ ¼ �DDi;jðtÞ; ð11Þ

where
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�DDi;j ¼ �
1

Dxi
�FF
iþ
1
2
;j

�

� �FF
i�
1
2
;j

�

�
1

Dyj
�FF
i;jþ

1
2

�

� �FF
i;j�

1
2

�

þ �SSi;j:

The same numerical flux as in the 1D case is applied in each direction.

�FF
iþ
1
2
;j
¼ f R �uu�

iþ
1
2
;j
; �uuþ

iþ
1
2
;j

� �

� m
�uuiþ1;j � �uui;j

Dx
iþ
1
2

;

�FF
i;jþ

1
2

¼ f R �uu�
i;jþ

1
2

; �uuþ
i;jþ

1
2

� �

� m
�uui;jþ1 � �uui;j

Dy
jþ
1
2

;

ð12Þ

where Dx
iþ
1
2

¼ 1
2
ðDxi þ Dxiþ1Þ and Dy

jþ
1
2

¼ 1
2
ðDyj þ Dyjþ1Þ.

Analogously, for the 3D case, Xi;j;k is a rectangle parallelepiped with a volume of size jXi;j;kj ¼ DxiDyjDzk.

Hence we get

o�uui;j;k

ot
ðtÞ ¼ �DDi;j;kðtÞ; ð13Þ

where

�DDi;j;k ¼ �
1

Dxi
�FF
iþ
1
2
;j;k

�

� �FF
i�
1
2
;j;k

�

�
1

Dyj
�FF
i;jþ

1
2
;k

�

� �FF
i;j�

1
2
;k

�

�
1

Dzk
�FF
i;j;kþ

1
2

�

� �FF
i;j;k�

1
2

�

þ �SSi;j;k:

The fluxes are in this case

�FF
iþ
1
2
;j;k
¼ f R �uu�

iþ
1
2
;j;k
; �uuþ

iþ
1
2
;j;k

� �

� m
�uuiþ1;j;k � �uui;j;k

Dx
iþ
1
2

;

�FF
i;jþ

1
2
;k
¼ f R �uu�

i;jþ
1
2
;k
; �uuþ

i;jþ
1
2
;k

� �

� m
�uui;jþ1;k � �uui;j;k

Dy
jþ
1
2

;

�FF
i;j;kþ

1
2

¼ f R �uu�
i;j;kþ

1
2

; �uuþ
i;j;kþ

1
2

� �

� m
�uui;j;kþ1 � �uui;j;k

Dz
kþ
1
2

;

ð14Þ

where Dx
iþ
1
2

¼ 1
2
ðDxi þ Dxiþ1Þ, Dy

jþ
1
2

¼ 1
2
ðDyj þ Dyjþ1Þ and Dz

kþ
1
2

¼ 1
2
ðDzk þ Dzkþ1Þ.

2.5. Numerical stability

As the time step is the same for all scales, the stability condition is the one of the same finite volume

scheme on the finest grid. For the linear convection–diffusion equation, denoting by c the velocity and by

Dx the smallest step size, the CFL number r is given by

r ¼
cDt

Dx

and the mesh Reynolds number Re by

Re ¼
cDx

m
:
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Bihari [6] showed that a sufficient stability condition for the above finite volume scheme is

r6 min
Re

2
;
6

Re

� �

: ð15Þ

Moreover, a sufficient condition, so that this scheme is Total Variation Diminishing (TVD), is

r6
Re

Reþ 4
: ð16Þ

The main advantage of an explicit treatment for the diffusive term is that no linear system needs to be

solved. However, it usually implies that Dt ¼ OðDx2Þ. Only for Re� 1, we have Dt ¼ OðDxÞ.

3. Conservative fully adaptive multiresolution scheme

The principle of the multiresolution analysis is to represent a set of data given on a fine grid as values on

a coarser grid plus a series of differences at different levels of nested dyadic grids. In fact, they constitute an

ensemble where each grid is twice finer than the previous one. The differences contain the information of the

solution when going from a coarse to a finer grid. In particular, these coefficients are small in regions where

the solution is smooth. The data structure needs to be organized as a dynamic graded tree if one wants to

compress data, while still being able to navigate through it.

3.1. Dynamic graded tree

In the wavelet terminology, a graded tree structure corresponds to the adaptive approximation. Its dif-

ference with the classical non-linear approximation is that the connectivity in the tree structure is always

ensured. In other words, no hole is admitted inside the tree. DeVore [19] showed that the difference between

both approximations is negligible in terms of required nodes.

Following [15], we first introduce a terminology to define the tree structure.

• The root is the basis of the tree;

• A node is a element of the tree. Here, every cell, when existing, can be considered as a node;

• A parent node has 2d children nodes, d being the space dimension of the problem;

• The children nodes of the same parent are called brothers;

• A given node has nearest neighbors in each direction, called the nearest cousins. The brothers can also be

considered as nearest cousins;

• Given a child node, the nearest cousins of the parent node are called the nearest uncles;

• A node is called a leaf when it has no children;

• In order to compute the ingoing and outgoing fluxes of a given leaf, we need its nearest cousins. When

one of them is not existing, it is created as virtual leaf. A virtual leaf is not considered as an existing node

and is only used for flux computations. As a consequence, no time evolution is made on it.

Fig. 1 illustrates the graded tree structure in 1D. The standard nodes are represented by a thin line, the

leaves by a bold line, the virtual leaves by a dotted line.

A dynamic tree is a tree which changes in time. When needed, some nodes can be added or removed. To

remain graded, it must respect the following conditions:

• When a child is created, all its brothers are also created in the same time;

• A given node has always its s nearest uncles in each direction, diagonal included. When not existing, cre-

ate them as nodes;

• A given node has always its s0 nearest cousins in each direction. When not existing, create them as virtual

leaves;
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As a consequence, a node can be removed only if all its brothers can also be removed, and if it is not the

nearest uncle of an existing node. The number of nearest cousins s0 depends on the accuracy of the space

discretization. For a second-order TVD accurate scheme, as the one described in the previous section, a

five-point space scheme is applied for each dimension. Therefore we have s0 ¼ 2. In addition, the number of
nearest uncles s depends on the multiresolution accuracy and will be explained in the next section.

3.2. Multiresolution representation

Starting point is the cell-average multiresolution representation [25]. The nodes are cell-average values

and two operators are defined to navigate through the tree. A complete description of the 1D multireso-

lution representation is given in this section and a brief description explains how to extend it to higher

dimensions in Cartesian geometry using a tensor product approach.

We denote by K the ensemble of the indices of the existing nodes, by LðKÞ the restriction of K to the

leaves, and by Kl the restriction of K to a level l, 06 l < L.

For the 1D case, we denote by X ¼ X0;0 the root cell, Xl;i, 06 l < L, i 2 Kl the different node cells, �qql;i the

cell-average value of the quantity q on the cell Xl;i, and �QQl ¼ ð�qql;iÞi2Kl the ensemble of the existing cell-
average values at the level l.

To estimate the cell-averages of a level l from the ones of the level lþ 1, we use the projection (or re-
striction) operator Plþ1!l (Fig. 2).

Plþ1!l : �UUlþ1 7! �UUl: ð17Þ

This operator is exact and unique, given that the parent cell-average is nothing but the weighted average of

the children cell-averages. For a regular grid structure in 1D, it is simply defined by the mean value

�uul;i ¼ ðPlþ1!l �UUlþ1Þi ¼
1

2
ð�uulþ1;2i þ �uulþ1;2iþ1Þ: ð18Þ

To estimate the cell-averages of a level lþ 1 from the ones of the level l, we use the prediction (or pro-

longation) operator Pl!lþ1 (Fig. 3).

Pl!lþ1 : �UUl 7! ÛUlþ1: ð19Þ

Fig. 1. Example of graded tree data structure in 1D for s ¼ 1, s0 ¼ 2.

Fig. 2. Projection operator Plþ1!l in 1D.
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This operator gives an approximation of �UUl at the level lþ 1 by interpolation. It is not unique, nevertheless,
in order to be applicable in the dynamic graded tree structure as defined above, this operator must satisfy

two properties:

• It has to be local, i.e., the interpolation for a child is made from the cell-averages of its parent and its s

nearest uncles in each direction;

• It has to be consistent with the projection, i.e., Plþ1!l � Pl!lþ1 ¼ Id.
For a regular grid structure in 1D, we use as prediction operator a polynomial interpolation on the cell-

average values, like the one proposed by Harten [25]:

ûulþ1;2i ¼ Ið �UUl; lþ 1; 2iÞ ¼ �uul;i þ
X

s

m¼1

cmð�uul;iþm � �uul;i�mÞ;

ûulþ1;2iþ1 ¼ Ið �UUl; lþ 1; 2iþ 1Þ ¼ �uul;i �
X

s

m¼1

cmð�uul;iþm � �uul;i�mÞ:

ð20Þ

The accuracy order of the multiresolution method is denoted by r. A rth order accuracy corresponds to a

polynomial interpolation of degree ðr � 1Þ. The degree r is therefore related to the number of required
nearest uncles s by the relation r ¼ 2sþ 1. The corresponding coefficients used in the computations are

r ¼ 3 ) c1 ¼ �
1

8
;

r ¼ 5 ) c1 ¼ �
22

128
; c2 ¼

3

128
:

ð21Þ

The detail is the difference between the exact and the predicted value. In the 1D case, it is defined as

�ddl;i ¼ �uul;i � ûul;i: ð22Þ

These coefficients are redundant, the sum of the details for all the brothers of a parent cell being equal to

zero by definition [25]. Given that a parent has 2d children, only 2d � 1 details are independent. Thus, the
knowledge of the cell-average value on the 2d children is equivalent to the knowledge of the cell-average

value of the parent and these 2d � 1 independent details. This can be expressed in 1D by

�uulþ1;2i; �uulþ1;2iþ1


 �

$ �ddlþ1;2i; �uul;i


 �

:

For more details on this equivalence, we refer to Harten [25]. For a given level l, it can be summarized by

�UUl $ ð �DDl; �UUl�1Þ:

Repeating this operation recursively on L levels, one gets the so-called multiresolution transform on the cell-

average values [25].

�MM : �UUL 7!ð �DDL; �DDL�1; . . . ; �DD1; �UU0Þ: ð23Þ

Fig. 3. Prediction operator Pl!lþ1 in 1D.
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For the 2D case, we denote by X ¼ X0;0;0 the root cell, Xl;i;j, 06 l < L, ði; jÞ 2 Kl the different node cells, by

�qql;i;j the cell-average value of the quantity q on the cell Xl;i;j. For ease of notation, we denote by
�QQl ¼ ð�qql;i;jÞði;jÞ2Kl the ensemble of the existing cell-average values at the level l.
The projection operator for a regular Cartesian grid is then defined by

�uul;i;j ¼ ðPlþ1!l �UUlþ1Þi;j ¼
1

4

X

1

n¼0

X

1

p¼0

�uulþ1;2iþn;2jþp

and the prediction operator based on a linear polynomial interpolation is defined by, for n; p 2 f0; 1g,

ûulþ1;2iþn;2jþp ¼ Ið �UUl; lþ 1; 2iþ n; 2jþ pÞ:

The four values Ið �UUl; lþ 1; 2i; 2jÞ, Ið �UUl; lþ 1; 2iþ 1; 2jÞ, Ið �UUl; lþ 1; 2i; 2jþ 1Þ and Ið �UUl; lþ 1; 2i þ
1; 2jþ 1Þ are given in Appendix A.
As in the 1D case, the details are defined by �ddl;i;j ¼ �uul;i;j � ûul;i;j and the knowledge of the cell-average

values on the 4 children is equivalent to the knowledge of the cell-average value of the parent and 3 in-

dependent details.

Analogously to the 2D case, for the 3D case we denote by X ¼ X0;0;0;0 the root cell, Xl;i;j;k, 06 l < L,

ði; j; kÞ 2 Kl the different node cells, �qql;i;j;k the cell-average value of the quantity q on the cell Xl;i;j;k, and
�QQl ¼ ð�qql;i;j;kÞði;j;kÞ2Kl the ensemble of the existing cell-average values at the level l.
The projection operator for a regular Cartesian grid becomes

�uul;i;j;k ¼ ðPlþ1!l �UUlþ1Þi;j;k ¼
1

8

X

1

n¼0

X

1

p¼0

X

1

q¼0

�uulþ1;2iþn;2jþp;2kþq

and the prediction operator based on a linear polynomial interpolation is defined by, for n; p; q 2 f0; 1g,

ûulþ1;2iþn;2jþp;2kþq ¼ Ið �UUl; lþ 1; 2iþ n; 2jþ p; 2k þ qÞ:

For the eight values Ið �UUl; lþ 1; 2iþ n; 2jþ p; 2k þ qÞ, n; p; q 2 f0; 1g, we refer to Appendix A.
As in the 1D and 2D cases, the details are �ddl;i;j;k ¼ �uul;i;j;k � ûul;i;j;k and the knowledge of the cell-average

values on the 8 children is equivalent to the knowledge of the cell-average value of the parent and 7 in-

dependent details.

In conclusion, the knowledge of the cell-average values of all the leaves is equivalent to the knowledge of

the cell-average value of the root and the details of all the other nodes of the tree structure.

3.3. Error analysis

The global error between the cell-average values of the exact solution at the level L, denoted by �uuLex, and

those of the multiresolution computation with a maximum level L, denoted by �uuLMR, can be decomposed into

two errors

k�uuLex � �uuLMRk6 k�uu
L
ex � �uuLFVk þ k�uu

L
FV � �uuLMRk; ð24Þ

where k 
 k denotes, e.g., the L
1, L2, or L

1 norms. The first error on the right-hand side, called dis-

cretization error is the one of the finite volume scheme on the finest grid of level L. It can be bounded by

k�uuLex � �uuLFVk6C2
�aL; C > 0; ð25Þ

where a is the convergence order of the finite volume scheme. In the present case, as we use second-order

accurate schemes in time and space, we have a ¼ 2.
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For the second error, called perturbation error, Cohen et al. [15] showed that, if the details on a level l are

deleted when smaller than a prescribed tolerance �l, if the discrete time evolution operator �EE is contractive
in the chosen norm, and if the tolerance �l at the level l is set to

�l ¼ 2
dðl�LÞ�;

where d is the space dimension, then the difference between finite volume solution on the fine grid and the

solution obtained by multiresolution accumulates in time and verifies

k�uuLFV � �uuLMRk6Cn�; C > 0; ð26Þ

where n denotes the number of time steps. At a fixed time T ¼ nDt, this leads to

k�uuLFV � �uuLMRk6C
T

Dt
�; C > 0:

For the linear convection–diffusion equation with the numerical scheme defined above, the time step Dt,

following (16), must verify

Dt6
Dx2

4mþ cDx
:

Denoting X the size of the domain and Dx the smallest space step, we have Dx ¼ X2�L, from which we

deduce that

Dt ¼ C
Dx2

4mþ cDx
¼ C

X2�2L

4mþ cX2�L
; 0 < C < 1:

If we want the perturbation error to be of the same order as the discretization error, we need that

�

Dt
/ 2�aL;

i.e.,

�22L 4m



þ cX2�L
�

/ 2�aL:

Defining the Peclet number Pe ¼ cX m�1, the previous condition can be rewritten as

� /
2�ðaþ1ÞL

Peþ 2Lþ2
: ð27Þ

For the inviscid case (i.e., m ¼ 0 or Pe! þ1), (27) is equivalent to the result obtained by Cohen et al. [15],
i.e., � / 2�ðaþ1ÞL. In the numerical computations in Section 5, the so-called reference tolerance will be set to

�R ¼ C
2�ðaþ1ÞL

Peþ 2Lþ2
: ð28Þ

To choose an acceptable value for the factor C, a series of computations with different tolerances will be

necessary, as shown in Section 5.1.

3.4. Conservative flux computation

To illustrate the conservative flux computation, we first consider a 1D leaf Xlþ1;2iþ1 whose cousins in the

right direction Xlþ1;2iþ2 and Xlþ1;2iþ3 are virtual. Therefore their father Xl;iþ1 is a leaf (see Figs. 2 and 3).
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As shown in Fig. 4, the outgoing flux from Xlþ1;2iþ1 in the right direction Flþ1;2iþ1!lþ1;2iþ2 is not balanced

with the outgoing flux from Xl;iþ1 in the left direction Fl;iþ1!l;i. Of course, we could directly compute the

outgoing fluxes from Xlþ1;2iþ1 to Xl;iþ1 in 1D, but such a computation cannot be extended to higher di-

mensions, as we can see in Fig. 5.

So we decided to compute only the ones at the level lþ 1 and to set the ingoing flux on the leaf of level l
equal to the sum of the outgoing fluxes on the leaves of level lþ 1, i.e.,

Fl;i;j!l;iþ1;j ¼ Flþ1;2iþ1;2j!lþ1;2iþ2;2j þ Flþ1;2iþ1;2jþ1!lþ1;2iþ2;2jþ1:

This choice ensures a strict conservativity in the flux computation between cells of different levels, without

increasing significantly the number of costly flux evaluations.

4. Algorithm implementation

In the following, the principle of the algorithm is presented. First, depending on the initial condition, an

initial graded tree is created. Then, given the graded tree structure, a time evolution is made on the leaves.

Then details are computed by multiresolution transform, in order to remesh the tree. To be able to navigate

inside the tree structure, we propose to use a recursive algorithm. The chosen data structure can handle 1D,

2D and 3D Cartesian geometries (see Figs. 6 and 7).

Fig. 5. Ingoing and outgoing flux computation in 2D for two different levels.

Fig. 4. Ingoing and outgoing flux computation in 1D for two different levels.

Fig. 6. Time evolution of the tree structure at time step tn (left), at time step tnþ1 before remeshing (middle), and at time step tnþ1 after

remeshing (right). Deletable cells are represented by a bold line, undeletable cells by a thin line, and virtual leaves by a dotted line.
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4.1. Description

Step 1. INITIALIZE

� Initialize parameters, e.g., number of Runge–Kutta (RK) steps, number of time steps, maximum level,

domain size

� Create the initial graded tree structure
� Create first cell (root) and compute its cell-average value with the initial condition
� Split cell and compute the cell-average values in the children cells with the initial condition
� Compute details in the children cells by multiresolution transform
� IF the detail in a child cell is higher than the prescribed tolerance, THEN split this child
� The former child becomes a parent. Repeat the same procedure until all the children cell have low

details or the maximum level is reached.

DO n ¼ 1, number_of_time_steps
Step 2. TIME EVOLUTION

� Compute Runge–Kutta steps

DO m ¼ 0, number_of_RK_steps-1
� Compute the divergence operator for all the leaves
� Compute ðDnþ1;m

l;i Þ06 l<L;i2LðKlÞ
� Compute a Runge–Kutta step for all the leaves,

e.g., for number_of_RK_steps¼ 2,

m ¼ 0 : �uun;1l;i ¼ �uu
n;0
l;i þ Dt �DD

n;0
l;i ; 06 l < L; i 2LðKlÞ

m ¼ 1 : �uunþ1;0l;i ¼
1

2
�uu
n;0
l;i

h

þ �uu
n;1
l;i þ Dt �DD

n;1
l;i

i

; 06 l < L; i 2LðKlÞ

END DO m

� Check Stability

IF one value is overflow THEN the computation is considered as numerically unstable

� Compute the integral values
e.g.,

R

X
jujdx

Step 3. REMESH

� Refresh Tree

Recalculate the values in nodes and virtual leaves by projection from the leaves

� Adapt the graded tree structure (Fig. 6)
� For the whole tree from the leaves to the root (06 l < L; i 2 Kl)

Compute detail in the node dl;i by a multiresolution transform

Fig. 7. Path used by GetNode to reach the node l ¼ 3, i ¼ 5.
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IF the details in this node and in its brothers are smaller than the prescribed tolerance

THEN the cell and its brothers are deletable
� For the whole tree from the leaves to the root (06 l < L; i 2 Kl)

IF this node and all its children nodes are deletable

AND the children nodes are simple leaves (i.e., they are leaves without virtual children)

THEN delete children (This means that we keep one more level)

IF this node has no children

AND it is not deletable

AND it is not at the maximum level

THEN create the children for this node

(This means that we add one more level for each undeletable leaf)

Step 4. OUTPUT

Write the mesh and the cell-average values into a file.

END DO n

Step 5. FINISH

Deallocate tables

Thus, the algorithm can schematically be summarized by

�uunþ1 ¼ �MM�1 
 Tð�Þ 
 �MM 
 �EEðDtÞ 
 �uun; ð29Þ

where �MM is the multiresolution transform operator, �MM�1 its inverse operator, Tð�Þ the thresholding operator
with the prescribed tolerance �, and �EE the discrete time evolution operator, as defined in (6).

4.2. Data structure

In the implementation of the algorithm, we use a dynamic graded tree structure to represent data in the

computer memory. The adaptive grid corresponds to a set of nested dyadic grids generated by refining

recursively a given cell depending on the local regularity of the solution.

In the program, the tree is represented by a set of nodes with links between them. The main element of

the tree structure is the node, which consists of a set of geometric and physical quantities, and pointers to the

children, which are in the next finer subgrid. The root is the first cell of the tree structure.

Each node can be addressed by its level number l and its coordinate in this level i (i; j in 2D, and i; j; k in
3D). The procedure GetNode achieves this goal (Fig. 7): starting from the root element, it finds the path to

the cell, level by level, by opting for the child which is an ancestor of the target cell.

Thus, any node can be found by amaximumof L steps,Lbeing themaximal level number.Denoting byNmax
themaximal number of cells, we haveNmax ¼ 2

dL, i.e., L ¼ 1
d
log2 Nmax, d being the dimension. Therefore, in the

worst case, the global algorithm is of OðN logNÞ complexity. Nevertheless, for a highly compressed solution,
the L steps are required only in small regions and the number of cells is usually much smaller than Nmax.

Another possibility is to avoid a GetNode procedure and to use a hash-table. In this case, the algorithm is

at least of OðNÞ complexity. However, this table can be large and requires much memory, especially for
large scale 3D computations. That is why we decided here to opt for a solution which optimizes the memory

requirements, with a slightly more complex algorithm.

5. Numerical results

In this section, we present 1D, 2D, 3D numerical results using a second-order accurate scheme with

a multiresolution accuracy of r ¼ 3. This means that only one nearest uncle in each direction is
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required. This choice enables us to maintain a narrow tree structure around regions where high levels

are needed.

5.1. 1D convection–diffusion equation

We consider a linear-convection–diffusion equation for ðx; tÞ 2 ½�1; 1� � ½0;þ1Þ, c > 0, m > 0,

ou

ot
þ c

ou

ox
¼ m

o
2u

ox2
: ð30Þ

Considering as characteristic length scale the size of the domain X and as characteristic time scale T ¼ c=X ,
this equation can be written in the following dimensionless form

ou

ot
þ
ou

ox
¼
1

Pe

o2u

ox2
; ð31Þ

where Pe denotes the Peclet number Pe ¼ cX
m
. We choose as initial condition

u0ðxÞ ¼
1 if x6 0;
0 if x > 0

	

and Dirichlet conditions at the left and right boundaries, i.e.,

uð0; tÞ ¼ 1;

uð1; tÞ ¼ 0

The analytic solution is given in Hirsch [27]

uexðx; tÞ ¼
1

2
erfc

x� t

2

ffiffiffiffiffi

Pe

t

r

 !

: ð32Þ

5.1.1. Numerical results for a given scale and a given tolerance at Pe ¼ 1000

The numerical solution of (31) at t ¼ 0:5 is given in Fig. 8 for Pe ¼ 1000, � ¼ 10�3 and L ¼ 11 scales,
which corresponds to a maximum of 211 ¼ 2048 cells. In the right part of Fig. 8, only the leaves of the mesh
are represented. The phenomenon observed here is a linear propagation of a contact discontinuity in the

right direction, the diffusivity changing the initial discontinuity into a sharp, but continuous, slope. The

Peclet number is here the control parameter.

First, we can notice that, for the chosen tolerance � ¼ 10�3, the last level L ¼ 11 is never required. Then,
the highest level is reached around the steep gradient region, which proves that the multiresolution method

automatically detects the region where small scales are necessary and tracks the propagation phenomenon.

In Fig. 9, the time evolution of L1- and L
1-errors are plotted for both finite volume and multiresolution

computations. We clearly see that the L
1-error decreases with time for the finite volume computation,

whereas it slightly increases for the multiresolution computation. The difference between both curves also

increases for the L
1-error, although it is not so visible. As a consequence, the perturbation error accu-

mulates in time, which confirms the theoretical result in (26) for the L1-error. This result is also satisfied

numerically for the L1-error in this case.

5.1.2. Influence of maximal level and tolerance on CPU time, memory and errors at Pe ¼ 1000

In this part, CPU time, memory requirements,L1- andL
1-errors are given for different maximal levels

and tolerances. CPU time and memory requirements are compared to the ones obtained by the finite
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Fig. 9. Errors k�uu� �uuexk1 (left) and k�uu� �uuexk1 (right) from t ¼ 0 to t ¼ 0:5 for the convection–diffusion equation Pe ¼ 1000, L ¼ 11,

� ¼ 10�3.

Fig. 10. Percentage of CPU compression (left) and percentage of memory compression (right) for different scales L and for different

tolerances � at t ¼ 0:2 for the convection–diffusion equation, Pe ¼ 1000.

Fig. 8. Left: Initial solution (dashed), analytic solution (plain), and computed points by multiresolution (circles) at t ¼ 0:5 for the

convection–diffusion equation Pe ¼ 1000, L ¼ 11, � ¼ 10�3. Right: corresponding tree structure at t ¼ 0:5.
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volume method with the same numerical schemes and on the finest regular grid. It is expressed in percent

(Fig. 10). The corresponding errors are given in Fig. 11.

We first notice that, for such a configuration and for L > 7, the multiresolution computation is always

cheaper in CPU time and memory requirements than the finite volume method on the finest grid. However,

the advantage is only significant for a large L, whatever the tolerance. Fig. 11 shows that, as expected, a

computation cannot be second-order accurate for small scales and big tolerances. As shown in Section 3.3,

the accumulated perturbation error is responsible for this loss of accuracy.

5.1.3. Dependency of CPU time, memory and error on maximal level with the reference tolerance at Pe ¼ 1000

In this part, we verify that multiresolution computations with the reference tolerance defined in (28)

�R ¼ C
2�ðaþ1ÞL

Peþ 2Lþ2
ð33Þ

enables us to maintain the same second-order accuracy as for the finite volume method on the finest regular

grid, while reducing CPU time andmemory requirements. To determine the constantC, we refer to the results

obtained in the previous part for different tolerances (Fig. 11). Reading both curves, we consider as sufficiently

accurate the computation performedwith Pe ¼ 1000, L ¼ 10, and � ¼ 10�4. Thuswefind a factorC ¼ 5� 108.
We observe the second-order accuracy of the multiresolution computation (Fig. 13), while CPU time and

memory requirements decrease with L and reach a minimum around 20% for high levels (Fig. 12).

We also observe an insignificant difference between finite volume and multiresolution computations in

theL1-error curve of Fig. 13. This is due to the fact that the maximum of the error is in the region of the

steep gradient, where the discretization error is dominating and the perturbation error is negligible, given

that all available scales are used there.

5.1.4. Dependency of CPU time, memory and error on maximal level with the reference tolerance at

Pe¼ 10,000

To evaluate the influence of the Peclet number in the estimation of �R, we now perform computations

with Pe¼ 10,000. The diffusion phenomenon is less important than in the previous case, and therefore the
gradient will be steeper. As before, we observe the second-order accuracy of multiresolution computations

(Fig. 15), while CPU time and memory compressions decrease with L and seem to reach a minimum around

10% for high levels (Fig. 14). Due to the fact that there is less diffusion, both CPU time and memory

performances are better than for Pe ¼ 1000.

Fig. 11. Errors k�uu� �uuexk1 (left) and k�uu� �uuexk1 (right) for different scales L and different tolerances � at t ¼ 0:2 for the convection–
diffusion equation, Pe ¼ 1000. For the missing legend, see Fig. 10.
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Fig. 13. Errors k�uu� �uuexk1 (left) and k�uu� �uuexk1 (right) for different scales L and the reference tolerance �R at t ¼ 0:2 for the convection–

diffusion equation, Pe ¼ 1000.

Fig. 14. Percentage of CPU compression (left) and percentage of memory compression (right) for different scales L and the reference

tolerance �R at t ¼ 0:2 for the convection–diffusion equation, Pe ¼ 10000.

Fig. 12. Percentage of CPU compression (left) and percentage of memory compression (right) for different scales L and for the ref-

erence tolerance �R at t ¼ 0:2 for the convection–diffusion equation, Pe ¼ 1000.
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As in Section 5.1.3 and for the same reason, there is no visible difference between finite volume and

multiresolution computations in the L1-error curve of Fig. 15.

5.2. 1D viscous Burgers equation

We now perform multiresolution computations for the viscous Burgers equation, which contains a non-

linear convective term, and for which analytic solutions are known. For ðx; tÞ 2 ½�1; 1� � ½0;þ1Þ, it can be
written in the dimensionless form

ou

ot
þ

o

ox

u2

2

� �

¼
1

Re

o
2u

ox2
; ð34Þ

where Re is the Reynolds number, with the initial condition

u0ðxÞ ¼
1 if x6 0;
0 if x > 0

	

and Dirichlet conditions at the right and left boundaries, i.e.,

uð0; tÞ ¼ 1;

uð1; tÞ ¼ 0:

The analytic solution is given in [27]

uexðx; tÞ ¼
1

2
1

�

� tanh x



�

�
t

2

�Re

4

��

: ð35Þ

5.2.1. Numerical results for a given scale and a given tolerance at Re¼ 1000

The numerical solution of (34) at t ¼ 0:5 is given in Fig. 16 for Re ¼ 1000, � ¼ 10�3 and L ¼ 11 scales,
which corresponds to a maximum of 211 ¼ 2048 cells. As for the convection–diffusion computation, only

Fig. 15. Errors k�uu� �uuexk1 (left) and k�uu� �uuexk1 (right) for different scales L and the reference tolerance �R at t ¼ 0:2 for the convection–

diffusion equation, Pe ¼ 10000.
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the leaves of the mesh are represented in Fig. 16 (right). We observe here a non-linear propagation of a

‘‘shock’’ in the right direction, the diffusivity having the same effect on the discontinuity as in the linear

case.

We notice that, this time, all available scales are used, given that the gradient is steeper than in the linear

case. The time evolution of the errors between computed and analytic solutions are depicted in Fig. 17. This

time, one gets the sameL1-error as with the finite volume method on the finest grid. Therefore the choice

for � is well adapted.

5.2.2. Dependency of CPU time, memory and error on maximal level with the reference tolerance at Re¼ 1000

We repeat the computations performed for the convection–diffusion equation with the same reference

tolerance �R, which is this time

�R ¼ C
2�ðaþ1ÞL

Reþ 2Lþ2
: ð36Þ

Fig. 16. Left: Initial solution (dotted), analytic solution (plain), and computed points by multiresolution (circles) at t ¼ 0:5 for the

viscous Burgers equation Re ¼ 1000, L ¼ 11, � ¼ 10�3. Right: corresponding tree structure at t ¼ 0:5.

Fig. 17. Errors k�uu� �uuexk1 (left) and k�uu� �uuexk1 (right) for the viscous Burgers equation Re ¼ 1000, t ¼ 0:5, L ¼ 11, � ¼ 10
�3.
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The same value for the factor C is used as in the linear case. We notice the second-order accuracy of the

computation (L1 andL
1-errors in Fig. 19). The CPU time and memory compression are decreasing with

L and reaching a minimum around 10% for the highest levels (Fig. 18).

We finally remark that the chosen finite volume scheme conserves both momentum and energy. Due to

the choice made for flux computations, this is also the case for the adaptive multiresolution scheme.

Nevertheless, in the adaptive case, the difference between exact and computed momentum and energy

shows small oscillations of amplitude lower than 10�5. This is due to the remeshing of the grid at each time

step.

5.3. 1D reaction–diffusion equation

Another prototype of a non-linear parabolic equation is the reaction–diffusion equation. Here the non-

linearity is no more in the advective term, as e.g., for the viscous Burgers equation, but in the source term. It

can be written in its dimensionless form, for ðx; tÞ 2 ½0; 20� � ½0;þ1Þ,

Fig. 18. Percentage of CPU compression (left) and percentage of memory compression (right) for different scales L and for the ref-

erence tolerance �R for the viscous Burgers equation Re ¼ 1000, t ¼ 0:2.

Fig. 19. Errors k�uu� �uuexk1 (left) and k�uu� �uuexk1 (right) for different scales L and for the reference tolerance �R for the viscous Burgers
equation Re ¼ 1000, t ¼ 0:2.
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ou

ot
¼

o
2u

ox2
þ SðuÞ; ð37Þ

SðuÞ ¼
b2

2
ð1� uÞ exp

bð1� uÞ

að1� uÞ � 1
; ð38Þ

where a is the temperature ratio and b is the dimensionless activation energy (Zeldovich number). We

choose as initial condition

u0ðxÞ ¼
1 if x6 1;

expð1� xÞ if x > 1:

	

ð39Þ

This equation yields a model for a 1D premixed flame propagation where heat and mass diffusivities are

equal. The function u is the dimensionless temperature. It varies between 0 and 1. The non-dimensional

partial mass of the unburnt gas is 1� u. We choose a Neuman condition at the left boundary and a Di-
richlet condition at the right boundary.

ou

ox
ð0; tÞ ¼ 0;

uð20; tÞ ¼ 0:
ð40Þ

For the numerical computation, the parameters are a ¼ 0:8 and b ¼ 10. The dimensionless time goes from
t ¼ 0 to t ¼ tf ¼ 10.
In Fig. 20, we observe the flame propagation in the x-direction. The highest level is reached in the region

of the reaction zone, ie. for x � 10. We can also notice that the multiresolution computation gives the same
result as the finite volume one. We then compare the value of the flame velocity, defined by

vf ¼

Z

X

S dx ð41Þ

with the asymptotic value given in Peters and Warnatz [33] (Table 1). We observe that the value of vf is

approximately the same for finite volume and multiresolution computations, for the three different values of

Fig. 20. Left: Initial condition for u (dashed) and SðuÞ (dotted), solution by finite volume method for u(plain), solution by multires-

olution method for u (circles) and SðuÞ (dash-dotted) at t ¼ 10 for the reaction-diffusion equation, a ¼ 0:8, b ¼ 10, L ¼ 8, � ¼ 5:10�2.

Right: corresponding tree structure at t ¼ 10.
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the tolerance. All these values are comparable with the asymptotic one. Hence we can conclude that the

value � ¼ 5� 10�2 is well adapted.

5.4. 2D convection–diffusion equation

In this part, we study the performances and check the second-order accuracy of the multiresolution

scheme with the reference tolerance in the 2D case. Therefore we consider the dimensionless equation for

ðx; y; tÞ 2 ½�5; 5�
2
� ½0;þ1Þ

ou

ot
þ V 
 ru ¼

1

Pe
r2u ð42Þ

with the initial condition uðx; y; 0Þ ¼ u0ðx; yÞ. Here we consider a convection in the x-direction, i.e.,

V ¼ ð1; 0Þ
T
. For the initial condition u0ðx; yÞ ¼ dðxÞdðyÞ, where d denotes the Dirac distribution, we have an

analytic solution in an infinite domain

uðx; y; tÞ ¼
Pe

4pt
e�Peðððx�tÞ

2þy2Þ=4tÞ: ð43Þ

For a Gaussian initial condition, we can change variables (x x� s; t t � s, where s > 0). Thus, given

the initial condition

u0ðx; yÞ ¼
Pe

4ps
e�Peððx

2þy2Þ=4sÞ

we get the analytic solution

uðx; y; tÞ ¼
Pe

4pðt þ sÞ
e�Peðððx�tÞ

2þy2Þ=4ðtþsÞÞ: ð44Þ

For the numerical computations, the boundaries are taken far enough from the Gaussian bump, so that

their influence can be considered as negligible.

5.4.1. Numerical results for a given scale and a given tolerance at Pe¼ 1000

The numerical solution of (42) for an initial Gaussian bump is represented in Fig. 21 for Pe ¼ 1000,
� ¼ �R and L ¼ 8 scales, which represents a maximum of ð28Þ

2
¼ 2562 cells. In the figures where the cor-

responding meshes are plotted, each point represents a leaf. For the initial condition, we set s ¼ 0:1.
We observe the phenomenon of linear propagation of the 2D Gaussian bump in the x-direction. The

diffusion effect is difficult to detect, but we can see that the radius of the smallest circle slightly decreases

with time. We also remark that the adaptive mesh follows well the propagation. Nevertheless, although the

mesh is well symmetric at the initial condition, it remains symmetric only on the two sides of the x-axis,

whereas it is not in the other direction. This is due to the fact that the advection takes place in the x-di-

rection.

Table 1

Flame velocity, CPU and memory compression for finite volume and multiresolution methods

Method vf % CPU % Mem

FV 0.916 100.0 100.0

MR � ¼ 5� 10�2 0.917 36.0 32.6

MR � ¼ 10�2 0.916 54.2 47.1

MR � ¼ 10�3 0.916 79.0 67.2

Asymptotic 0.908
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5.4.2. Dependency of CPU time, memory and error on maximal level with the reference tolerance at Pe¼ 1000

As the definition of the reference tolerance is independent of the space dimension, we use the same one as

in the 1D case, i.e., C ¼ 5� 108. We remark here that both CPU and memory compressions are low and

stable with L (around 15% for the CPU compression, 10% for the memory compression), while the cor-

responding errors confirm that the computations are well second-order accurate (Fig. 22). This time, as no

Fig. 22. Errors k�uu� �uuexk1 (left) and k�uu� �uuexk1 (right) for different scales L and the reference tolerance �R for the 2D convection–

diffusion equation Pe ¼ 1000, t ¼ 0:5.

Fig. 21. Isolines u ¼ 0:3, 0:5, 0:7 and 0:9 (top) and corresponding mesh (bottom) for the 2D convection–diffusion equation at t ¼ 0

(left), t ¼ 1 (middle), and t ¼ 2 (right).
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discontinuity exists in the initial condition and as the equation is linear, no steep gradient exists, which

explains that the same percentage of leaves is used whatever L, although more levels are used around the

Gaussian bump.

5.5. 2D reaction–diffusion equation

In this part, the 2D reaction–diffusion equation is solved for a flame ball initially stretched in one di-

rection. As in the 1D case, heat and mass diffusivities are equal. This test-case was originally proposed in

[23]. The resulting equation in the dimensionless form is

ou

ot
¼

o
2u

ox2
þ
o
2u

oy2
þ SðuÞ; ð45Þ

where ðx; y; tÞ 2 ½�20; 20�
2
� ½0;þ1Þ and SðuÞ verifies (38). The initial condition is uðx; y; 0Þ ¼ u0ðrÞ, where

u0 verifies (39) and r
2 ¼ x2 þ y2. We perturbate the circular initial condition by stretching the circle in one

direction and applying a rotation. Therefore, we have

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 2

a2
þ
Y 2

b2

r

;

where

X ¼ x cos hþ y sin h;

Y ¼ �x sin hþ y cos h:

We consider that the reaction takes place in a closed box with adiabatic walls, and hence we choose

Neuman conditions on the boundary, i.e.,

ou

on

�

�

�

�

oX

¼ 0:

The parameters are the Zeldovich number b ¼ 10, and the temperature ratio a ¼ 0:8. The aspect ratio of
the ellipse is given by a ¼ 2, b ¼ 1, and the rotation angle is h ¼ � p

6
. The elapsed time is t ¼ 10. For the

multiresolution computation, the tolerance is set to � ¼ 5� 10�2, like in the 1D case.

As in Fr€oohlich and Schneider [23], we observe a relaxation of the elliptic flame towards a circularly

symmetric structure which is then growing in space (Fig. 23). The finest resolution would correspond to

ð28Þ
2
¼ 2562 cells. On average we only use 6763 out of 2562¼ 65,536 control volumes, which yields a

memory compression of 10.3%. Comparing the elapsed CPU time with the one obtained by the same finite

volume scheme on the finest grid, we get a CPU compression of 19.9%.

5.6. 3D reaction–diffusion equation

The previous equation is now extended to three dimensions, in order to study the evolution of a 3D flame

ball initially stretched in one direction, for equal heat and mass diffusivities. Therefore we consider the

dimensionless equation for ðx; y; z; tÞ 2 ½�20; 20�
3
� ½0;þ1Þ

ou

ot
¼

o
2u

ox2
þ
o
2u

oy2
þ
o
2u

oz2
þ SðuÞ; ð46Þ

where SðuÞ verifies (38). The initial condition is now uðx; y; z; 0Þ ¼ u0ðrÞ, where u0 verifies (39) and

r2 ¼ x2 þ y2 þ z2. The spherical initial condition is stretched in one direction and the same rotation is ap-
plied as previously. Therefore we have
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r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 2

a2
þ
Y 2

b2
þ
Z2

c2

r

;

where

X ¼ x cos hþ y sin h;

Y ¼ �x sin hþ y cos h;

Z ¼ z:

As in the 2D case, we consider that the reaction takes place in a closed box with adiabatic walls, which

means that

ou

on

�

�

�

�

oX

¼ 0:

The Zeldovich number and the temperature ratio are the same as in the 2D case. The aspect ratio of the

ellipsoid is given by a ¼ 2, b ¼ 1, c ¼ 1, and the rotation angle is h ¼ � p

3
. The elapsed time is t ¼ 12. For

the multiresolution computation, the tolerance is set to � ¼ 5� 10�2.
We observe, as in the 2D case, a relaxation of the ellipsoidal flame towards a spherically symmetric

structure which is then growing in space, which shows that the perturbation is not amplified (Fig. 24). The

finest resolution would correspond to ð27Þ3 ¼ 1283 cells. On average we only use 39,636 out of

1283¼ 2,097,152 control volumes, which yields a memory compression of 1.89%. Comparing the elapsed

Fig. 23. Isolines u ¼ 0:1 to 1 and corresponding mesh at t ¼ 2 (left), t ¼ 6 (middle) and t ¼ 10 (right) for the 2D reaction–diffusion

equation.
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CPU time with the one obtained by the same finite volume scheme on the finest grid, we get a CPU

compression of 7.64%. For splitting flames, we refer to Roussel and Schneider [36].

6. Conclusion

In the present paper we developed a new fully adaptive numerical scheme to speed up finite volume

computations of nonlinear parabolic PDEs in Cartesian geometry, in one, two and three space dimensions.

We demonstrated its computational efficiency and the numerical accuracy by computing several test-cases

of linear and non-linear parabolic PDEs.

Starting point of the method is a finite volume discretization on a regular equidistant grid, together with

an explicit time integration, both of second order. Using discrete multiresolution analysis techniques the

computational grid is reduced by deleting non-significant grid points while maintaining the second order

accuracy of the scheme. A dynamical adaptation strategy which exploits the multiscale representation of

the solution by adding neighbored coefficients in scale and space to account for translation and the creation

of finer scales of the solution allows to advance the grid in time. For the evaluation of the numerical fluxes

on the locally refined grid we devise a conservative scheme without increasing significantly the number of

costly flux evaluations. The presented error analysis yields a theoretical relation for the choice of a level

dependent threshold for convection–diffusion equations in order to guarantee the second-order accuracy,

which is verified numerically. The adaptive algorithm is implemented using a graded tree data structure to

represent the adaptive grid in the computer memory. A recursive procedure is used to address each element

of the tree. Although this concept is slightly more complex, i.e., an OðN logNÞ complexity instead of OðNÞ
(where N denotes the number of active grid points), this choice enables us to avoid hash-tables, which

require large arrays and therefore much memory which may be prohibitive for large scale 3D computations.

Fig. 24. Isosurfaces u ¼ 0:5 (black), 0:1 (gray) and corresponding mesh at t ¼ 0 (left), t ¼ 6 (middle) and t ¼ 12 (right) for the 3D

reaction–diffusion equation.
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The accuracy of the algorithm has been validated by solving convection–diffusion and viscous

Burgers equations. We compared the computed solutions with the exact ones and studied the error as a

function of the maximal level and the prescribed tolerance. The presented theoretical relation for the

level dependent tolerance to maintain the second order accuracy has been confirmed by our compu-

tations.

To demonstrate the efficiency of the algorithm, we have compared the performance in terms of CPU time

and memory requirements to a finite volume method using the same numerical schemes on the finest regular

grid with a static data structure. We have shown that the relative performance increases with the number of

required levels and tends towards a minimal value which depends on the test case. Furthermore the gain

increases significantly with the spatial dimension of the problem.

Finally, we presented several applications to combustion problems, i.e., thermo-diffusive flame fronts

and 2D and 3D flame balls. Solving reaction-diffusion equations in one, two and three dimensions we have

shown that the adaptive algorithm can be efficiently used to solve stiff nonlinear problems with reduced

CPU and memory requirements (see Table 1).

Current work is dealing with the parallel implementation of the algorithm on a PC cluster to perform

large scale 3D computations. To reach this goal, the data structure is organized as a ‘‘forest’’, i.e., an

ensemble of trees, each one working on a different processor. Future work will focus on the adaptive

simulation of pulsating flames for large activation energies and slowly diffusing reactants and to study the

instability behavior of flame balls in the fully nonlinear regime. We also plan to extend the developed

scheme to systems of reactive Navier–Stokes equations, in order to take into account hydrodynamic effects

in combustion problems and to use the CVS (Coherent Vortex Simulation) approach [20] to simulate and to

model turbulent reactive flows on adaptive grids. A complementary direction is the use of implicit time

discretization for the diffusive terms (see Figs. 23 and 24).
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Appendix A

In the appendix we devise the explicit formulae of the prediction operator for the linear polynomial

interpolation in the 2D and 3D cases. For the 2D case, Bihari and Harten [7] obtained the following values

using a tensor product approach. For n; p 2 f0; 1g, we have

ûulþ1;2iþn;2jþp ¼ Ið �UUl; lþ 1; 2iþ n; 2jþ pÞ

¼ �uul;i;j � ð�1Þ
n
Qs
xð
�UUl; i; jÞ � ð�1Þ

p
Qs
yð
�UUl; i; jÞ þ ð�1Þ

np
Qs
xyð

�UUl; i; jÞ; ðA:1Þ

where

Qs
xð
�UUl; i; jÞ ¼

X

s

n¼1

cn �uul;iþn;j




� �uul;i�n;j

�

;
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Qs
yð
�UUl; i; jÞ ¼

X

s

p¼1

cp �uul;i;jþp




� �uul;i;j�p

�

;

Qs
xyð

�UUl; i; jÞ ¼
X

s

n¼1

cn

X

s

p¼1

cp �uul;iþn;jþp




� �uul;iþn;j�p � �uul;i�n;jþp þ �uul;i�n;j�p

�

:

We apply the same method to get the prediction in the 3D case. Thus, for n; p; q 2 f0; 1g, we have

ûulþ1;2iþn;2jþp;2kþq ¼ Ið �UUl; lþ 1; 2iþ n; 2jþ p; 2k þ qÞ

¼ �uul;i;j;k � ð�1Þ
n
Qs
xð
�UUl; i; j; kÞ � ð�1Þ

p
Qs
yð
�UUl; i; j; kÞ � ð�1Þ

q
Qs
zð
�UUl; i; j; kÞ

þ ð�1Þ
np
Qs
xyð

�UUl; i; j; kÞ þ ð�1Þ
pq
Qs
yzð

�UUl; i; j; kÞ þ ð�1Þ
nq
Qs
xzð

�UUl; i; j; kÞ

� ð�1Þ
npq
Qs
xyzð

�UUl; i; j; kÞ; ðA:2Þ

where

Qs
xð
�UUl; i; j; kÞ ¼

X

s

n¼1

cn �uul;iþn;j;k




� �uul;i�n;j;k

�

;

Qs
yð
�UUl; i; j; kÞ ¼

X

s

p¼1

cp �uul;i;jþp;k




� �uul;i;j�p;k

�

;

Qs
zð
�UUl; i; j; kÞ ¼

X

s

q¼1

cq �uul;i;j;kþq




� �uul;i;j;k�q

�

; ðA:3Þ

Qs
xyð

�UUl; i; j; kÞ ¼
X

s

n¼1

cn

X

s

p¼1

cp �uul;iþn;jþp;k




� �uul;iþn;j�p;k � �uul;i�n;jþp;k þ �uul;i�n;j�p;k

�

;

Qs
yzð

�UUl; i; j; kÞ ¼
X

s

p¼1

cp

X

s

q¼1

cq �uul;i;jþp;kþq




� �uul;i;jþp;k�q � �uul;i;j�p;kþq þ �uul;i;j�p;k�q

�

;

Qs
xzð

�UUl; i; j; kÞ ¼
X

s

n¼1

cn

X

s

q¼1

cq �uul;iþn;j;kþq




� �uul;iþn;j;k�q � �uul;i�n;j;kþq þ �uul;i�n;j;k�q

�

;

Qs
xyzð

�UUl; i; j; kÞ ¼
X

s

n¼1

cn

X

s

p¼1

cp

X

s

q¼1

cq �uul;iþn;jþp;kþq




� �uul;iþn;jþp;k�q � �uul;iþn;j�p;kþq � �uul;i�n;jþp;kþq þ �uul;iþn;j�p;k�q

þ �uul;i�n;jþp;k�q þ �uul;i�n;j�p;kþq � �uul;i�n;j�p;k�q

�

:

As in the 1D case, the multiresolution accuracy r is related to the number of required nearest uncles by

r ¼ 2sþ 1. The corresponding coefficients cn for r ¼ 3 and r ¼ 5 are
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r ¼ 3 ) c1 ¼ �
1

8
;

r ¼ 5 ) c1 ¼ �
22

128
; c2 ¼

3

128
:
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