Miscellaneous Remarks about Orthogonality

Pierre Hyvernat

Laboratoire de mathématiques, université Savoie Mont Blanc

rencontre de réalisabilité, Marseille, June 2018
Warning!

Contrary to popular (?) belief, I am no expert on realizability.
Contrary to popular (?) belief, I am no expert on realizability
I only organized 6 realizability workshops because...
Contrary to popular (?) belief, I am no expert on realizability

I only organized 6 realizability workshops because...

... it was fun!
Warning!

Contrary to popular (?) belief, I am no expert on realizability. I only organized 6 realizability workshops because... ... it was fun! Today, I won’t directly talk about realizability,
Warning!

Contrary to popular (?) belief, I am no expert on realizability.
I only organized 6 realizability workshops because...
... it was fun!

Today, I won’t directly talk about realizability,
... but about one thing I like in (classical) realizability:
Contrary to popular (?) belief, I am no expert on realizability

I only organized 6 realizability workshops because...

... it was fun!

Today, I won’t directly talk about realizability,

... but about one thing I like in (classical) realizability:

orthogonality.
(non) definition

The second line of Wikipedia’s entry for orthogonality is

In mathematics, orthogonality is the generalization of the notion of perpendicularity to the linear algebra of bilinear forms.

This is related to what we have in mind...
(non) definition

The second line of Wikipedia’s entry for orthogonality is

In mathematics, orthogonality is the generalization of the notion of perpendicularity to the linear algebra of bilinear forms.

This is related to what we have in mind...

Definition

Orthogonality is a tool used to define (sometimes) interesting models.
The second line of Wikipedia’s entry for orthogonality is

In mathematics, orthogonality is the generalization of the notion of perpendicularity to the linear algebra of bilinear forms.

This is related to what we have in mind...

Definition

Orthogonality is a tool used to define (sometimes) interesting models.

\(\dagger\): the first line is “Orthogonal’ redirects here. For the trilogy of novels by Greg Egan, see Orthogonal (novel).”

but this isn’t really relevant.
Why “Perpendicularity”?

For a finitely dimensional complex vector spaces E, we have

- $u \perp v$ is defined by $u \cdot v = 0$, ("perpendicularity")

- If A is a subvector space, then A^\perp is defined by $A^\perp = \{v \mid \forall u \in A, u \perp v\}$.

- Every subvector space satisfies $A = A^{\perp\perp}$.
Why “Perpendicularity”?

For a finitely dimensional complex vector spaces E, we have

- $u \perp v$ is defined by $u \cdot v = 0$, (“perpendicularity”)
- If A is a subvector space, then A^\perp is defined by $A^\perp = \{ v \mid \forall u \in A, u \perp v \}$.
- Every subvector space satisfies $A = A^{\perp\perp}$.

We have

Proposition

An arbitrary set of vectors V is a subvector space if and only if $V = V^{\perp\perp}$.
Why “Perpendicularly”?

For a finitely dimensional complex vector spaces E, we have

- $\mathbf{u} \perp \mathbf{v}$ is defined by $\mathbf{u} \cdot \mathbf{v} = 0$, ("perpendicularity")
- If A is a subvector space, then A^\perp is defined by $A^\perp = \{ \mathbf{v} \mid \forall \mathbf{u} \in A, \mathbf{u} \perp \mathbf{v} \}$.
- Every subvector space satisfies $A = A^{\perp\perp}$.

We have

Proposition

An arbitrary set of vectors V is a subvector space if and only if $V = V^{\perp\perp}$.

Idea

Orthogonality: defining interesting “spaces” as sets of “things” T satisfying $T = T^{\perp\perp}$, for an appropriate relation “\perp” between “things".
Relations and Orthogonality

Definition

*Given a relation \perp between sets X and Y, we define the following operator from $\mathcal{P}(X)$ to $\mathcal{P}(Y)$:

$$x^\perp = \{ b \in Y \mid \forall a \in x, a \perp b \}$$*
Relations and Orthogonality

Definition

Given a relation \(\perp \) between sets \(X \) and \(Y \), we define the following operator from \(\mathcal{P}(X) \) to \(\mathcal{P}(Y) \):

\[
x \perp = \{ b \in Y \mid \forall a \in X, a \in x \Rightarrow a \perp b \}\]

P. Hyvernat

Miscellaneous Remarks about Orthogonality
Relations and Orthogonality

Definition

Given a relation \(\bot\) between sets \(X\) and \(Y\), we define the following operator from \(\mathcal{P}(X)\) to \(\mathcal{P}(Y)\):

\[
x \downarrow = \{ b \in Y \mid \forall a \in X, a \in x \Rightarrow a \bot b \}\n\]

Lemma

\(\phi\) is of the form \(x \mapsto x\downarrow\) iff \(\phi\) transforms arbitrary unions into intersections.

Note that any such \(\phi\) is antitonic...
Relations and Orthogonality

Definition

Given a relation \perp between sets X and Y, we define the following operator from $\mathcal{P}(X)$ to $\mathcal{P}(Y)$:

$$ x^\perp = \{ b \in Y \mid \forall a \in X, a \in x \Rightarrow a \perp b \} $$

Lemma

ϕ is of the form $x \mapsto x^\perp$ iff ϕ transforms arbitrary unions into intersections.

Note that any such ϕ is antitonic...

Proof idea: define $a \perp b$ iff $b \in \phi(\{a\})$. We have

$$ b \in \phi(x) \iff b \in \phi \left(\bigcup_{a \in x} \{a\} \right) \iff b \in \bigcap_{a \in x} \phi(\{a\}) \iff b \in x^\perp. $$
Relations and Orthogonality

Definition

Given a relation \(\perp \) between sets \(X \) and \(Y \), we define the following operator from \(\mathcal{P}(X) \) to \(\mathcal{P}(Y) \):

\[
x \perp = \{ b \in Y \mid \forall a \in X, a \in x \Rightarrow a \perp b \}\]

This can be generalized with the notion of “double-glueing”.
Relations and Orthogonality

Definition

Given a relation \bot between sets X and Y, we define the following operator from $\mathcal{P}(X)$ to $\mathcal{P}(Y)$:

$$x^\bot = \{ b \in Y \mid \forall a \in X, a \in x \Rightarrow a \bot b \}$$

This can be generalized with the notion of “double-glueing”.

...but I am not going to say anything about that...
Two Orthogonalities

Lemma

Any monotonic \(\phi : \mathcal{P}(X) \to \mathcal{P}(Y) \) can be factorized as \(x \mapsto x \downarrow_1 \downarrow_2 \) for some set \(Z \) and relations \(\downarrow_1 \subset X \times Z \) and \(\downarrow_2 \subset Z \times Y \).
Two Orthogonalities

Lemma

Any monotonic \(\phi : \mathcal{P}(X) \rightarrow \mathcal{P}(Y) \) *can be factorized as* \(x \leftrightarrow x_{\downarrow 1 \downarrow 2} \) *for some set* \(Z \) *and relations* \(\downarrow_1 \subseteq X \times Z \) *and* \(\downarrow_2 \subseteq Z \times Y \).*

Proof: define \(Z = \mathcal{P}(X) \) and

\[
\begin{align*}
(a, x) &\in \downarrow_1 \iff a \in x, \\
(x, b) &\in \downarrow_2 \iff b \in \phi(x).
\end{align*}
\]
Two Orthogonality

Lemma

Any monotonic $\phi : \mathcal{P}(X) \to \mathcal{P}(Y)$ can be factorized as $x \leftrightarrow x_{\perp 1 \perp 2}$ for some set Z and relations $\perp_1 \subseteq X \times Z$ and $\perp_2 \subseteq Z \times Y$.

Proof: define $Z = \mathcal{P}(X)$ and

1. $(a, x) \in \perp_1 \iff a \in x$,
2. $(x, b) \in \perp_2 \iff b \in \phi(x)$.

\[b \in x_{\perp 1 \perp 2} \iff \forall x', x' \in x_{\perp 1} \Rightarrow x' \perp_2 b \]

definition of \perp_2
Two Orthogonalitys

Lemma

Any monotonic $\phi : \mathcal{P}(X) \rightarrow \mathcal{P}(Y)$ can be factorized as $x \leftrightarrow x^{\perp_1 \perp_2}$ for some set Z and relations $\perp_1 \subset X \times Z$ and $\perp_2 \subset Z \times Y$.

Proof: define $Z = \mathcal{P}(X)$ and

- $(a, x) \in \perp_1 \iff a \in x$,
- $(x, b) \in \perp_2 \iff b \in \phi(x)$.

$$
\begin{align*}
 b \in x^{\perp_1 \perp_2} & \iff \forall x', x' \in x^{\perp_1} \Rightarrow x' \perp_2 b \\
 & \iff \forall x', x' \in x^{\perp_1} \Rightarrow b \in \phi(x')
\end{align*}
$$

- definition of \perp_2
- definition of \perp_2
Two Orthogonalitys

Lemma

Any monotonic $\phi : \mathcal{P}(X) \to \mathcal{P}(Y)$ can be factorized as $x \mapsto x_{\perp_1 \perp_2}$ for some set Z and relations $\perp_1 \subseteq X \times Z$ and $\perp_2 \subseteq Z \times Y$.

Proof: define $Z = \mathcal{P}(X)$ and

- $(a, x) \in \perp_1 \iff a \in x$,
- $(x, b) \in \perp_2 \iff b \in \phi(x)$.

\[
b \in x_{\perp_1 \perp_2} \iff \forall x', x' \in x_{\perp_1} \Rightarrow x' \perp_2 b \quad \text{definition of } \perp_1 \perp_2
\]
\[
\iff \forall x', x' \in x_{\perp_1} \Rightarrow b \in \phi(x') \quad \text{definition of } \perp_2
\]
\[
\iff \forall x', \left(\forall a \in x, a \perp_1 x' \right) \Rightarrow b \in \phi(x') \quad \text{definition of } \perp_1
\]
Two Orthogonalities

Lemma

Any monotonic $\phi : \mathcal{P}(X) \to \mathcal{P}(Y)$ can be factorized as $x \mapsto x \perp_1 \perp_2$ for some set Z and relations $\perp_1 \subseteq X \times Z$ and $\perp_2 \subseteq Z \times Y$.

Proof: define $Z = \mathcal{P}(X)$ and

- $(a, x) \in \perp_1$ \iff $a \in x$,
- $(x, b) \in \perp_2$ \iff $b \in \phi(x)$.

\[
\begin{align*}
b \in x \perp_1 \perp_2 & \iff \forall x', x' \in x \perp_1 \Rightarrow x' \perp_2 b \\
& \iff \forall x', x' \in x \perp_1 \Rightarrow b \in \phi(x') \\
& \iff \forall x', (\forall a \in x, a \perp_1 x') \Rightarrow b \in \phi(x') \\
& \iff \forall x', (\forall a \in x, a \in x') \Rightarrow b \in \phi(x')
\end{align*}
\]

\[\text{definition of } \perp_1 \]

\[\text{definition of } \perp_2 \]

\[\text{definition of } \phi \]

\[\text{definition of } \phi \]

\[\text{definition of } \phi \]
Two Orthogonalities

Lemma

Any monotonic \(\phi : \mathcal{P}(X) \to \mathcal{P}(Y) \) can be factorized as \(x \mapsto x \bot_1 \bot_2 \) for some set \(Z \) and relations \(\bot_1 \subset X \times Z \) and \(\bot_2 \subset Z \times Y \).

Proof: define \(Z = \mathcal{P}(X) \) and

\[
\begin{align*}
(a, x) &\in \bot_1 \iff a \in x, \\
(x, b) &\in \bot_2 \iff b \in \phi(x).
\end{align*}
\]

\[
\begin{align*}
b &\in x \bot_1 \bot_2 \iff \forall x', x' \in x \bot_1 \Rightarrow x' \bot_2 b \\
&\iff \forall x', x' \in x \bot_1 \Rightarrow b \in \phi(x') & \text{definition of } \bot_2 \\
&\iff \forall x', \left(\forall a \in x, a \bot_1 x' \right) \Rightarrow b \in \phi(x') & \text{definition of } \bot_1 \\
&\iff \forall x', \left(\forall a \in x, a \in x' \right) \Rightarrow b \in \phi(x') & \text{simplification}
\end{align*}
\]
Two Orthogonalities

Lemma

Any monotonic $\phi : \mathcal{P}(X) \to \mathcal{P}(Y)$ can be factorized as $x \mapsto x_{\perp_1 \perp_2}$ for some set Z and relations $\perp_1 \subset X \times Z$ and $\perp_2 \subset Z \times Y$.

Proof: define $Z = \mathcal{P}(X)$ and

\begin{align*}
(a, x) &\in \perp_1 \iff a \in x, \\
(x, b) &\in \perp_2 \iff b \in \phi(x).
\end{align*}

\begin{align*}
b \in x_{\perp_1 \perp_2} &\iff \forall x', x' \in x_{\perp_1} \Rightarrow x' \perp_2 b \\
&\iff \forall x', x' \in x_{\perp_1} \Rightarrow b \in \phi(x') \\
&\iff \forall x', (\forall a \in x, a \perp_1 x') \Rightarrow b \in \phi(x') \\
&\iff \forall x', (\forall a \in x, a \in x') \Rightarrow b \in \phi(x') \\
&\iff \forall x', x \subset x' \Rightarrow b \in \phi(x') \\
&\iff b \in \phi(x)
\end{align*}

definition of \perp_2
definition of \perp_2
definition of \perp_1
definition of \perp_1
simplification
monotonicity of ϕ
Two Orthogonalities

Lemma

Any monotonic $\phi: \mathcal{P}(X) \to \mathcal{P}(Y)$ can be factorized as $x \mapsto x \downarrow_1 \downarrow_2$ for some set Z and relations $\downarrow_1 \subseteq X \times Z$ and $\downarrow_2 \subseteq Z \times Y$.

Proof: define $Z = \mathcal{P}(X)$ and

- $(a, x) \in \downarrow_1 \iff a \in x$,
- $(x, b) \in \downarrow_2 \iff b \in \phi(x)$.

(comment for L. R.: this is impredicative...)
Closure Operators

Definition (Closure operator)

A closure operator on $\mathcal{P}(X)$ is an operator ϕ satisfying

1. ϕ is monotonic,
2. ϕ is expansive: $\forall x, x \subseteq \phi(x)$,
3. ϕ is idempotent, or equivalently: $\forall x, \phi(\phi(x)) \subseteq \phi(x)$.

P. Hyvernat

Miscellaneous Remarks about Orthogonality 8/26
Closure Operators

Definition (Closure operator)

A closure operator on $\mathcal{P}(X)$ is an operator ϕ satisfying

1. ϕ is monotonic,
2. ϕ is expansive: $\forall x, x \subset \phi(x)$,
3. ϕ is idempotent, or equivalently: $\forall x, \phi(\phi(x)) \subset \phi(x)$.

The following is well known

Lemma

For any relation $\perp \subset X \times Y$, $x \mapsto x\perp\perp$ is a closure operator on $\mathcal{P}(X)$.

(I implicitly reverse the relation where appropriate)
Closure Operators

Definition (Closure operator)

A closure operator on \(\mathcal{P}(X) \) is an operator \(\phi \) satisfying

1. \(\phi \) is monotonic,
2. \(\phi \) is expansive: \(\forall x, x \subseteq \phi(x) \),
3. \(\phi \) is idempotent, or equivalently: \(\forall x, \phi(\phi(x)) \subseteq \phi(x) \).

The following is well known

Lemma

For any relation \(\bot \subseteq X \times Y \), \(x \mapsto x_{\bot} \) is a closure operator on \(\mathcal{P}(X) \).

(I implicitly reverse the relation where appropriate)

The following is less well known

Proposition

Any closure operator \(\phi : \mathcal{P}(X) \rightarrow \mathcal{P}(Y) \) can be factorized as \(\phi(x) = x_{\bot} \) for some relations \(\bot \subseteq X \times Z \).
Partial Proof

Write $\text{Fix}(\phi)$ for the set of fixpoint of ϕ.

1. Because ϕ is a closure operator, $\text{Fix}(\phi)$ is the set of pre-fixpoints of ϕ: $\text{Fix}(\phi) = \{x \mid \phi(x) \subseteq x\}$.
2. By the Knaster-Tarski theorem, $(\text{Fix}(\phi), \sqcap)$ is complete inf-lattice.
Partial Proof

Write $\text{Fix}(\phi)$ for the set of fixpoint of ϕ.

1. Because ϕ is a closure operator, $\text{Fix}(\phi)$ is the set of pre-fixpoints of ϕ: $\text{Fix}(\phi) = \{ x \mid \phi(x) \subseteq x \}$.

2. By the Knaster-Tarski theorem, $(\text{Fix}(\phi), \subseteq)$ is complete inf-lattice.

Lemma

If ϕ is a closure operator, we have $\phi(x) = \bigcap \{ x' \in \text{Fix}(\phi) \mid x \subseteq x' \}$.
Partial Proof

Write $\text{Fix}(\phi)$ for the set of fixpoint of ϕ.

1. Because ϕ is a closure operator, $\text{Fix}(\phi)$ is the set of pre-fixpoints of ϕ: $\text{Fix}(\phi) = \{ x \mid \phi(x) \subseteq x \}$.
2. By the Knaster-Tarski theorem, $(\text{Fix}(\phi), \sqcap)$ is complete inf-lattice.

Lemma

If ϕ is a closure operator, we have $\phi(x) = \bigcap \{ x' \in \text{Fix}(\phi) \mid x \subseteq x' \}$.

Define $Z = \text{Fix}(\phi)$ and $\bot \subseteq X \times Z$ by $a \bot x \iff a \in x$.

P. Hyvernat
Miscellaneous Remarks about Orthogonality
9/26
Partial Proof

Write $\text{Fix}(\phi)$ for the set of fixpoint of ϕ.

1. Because ϕ is a closure operator, $\text{Fix}(\phi)$ is the set of pre-fixpoints of ϕ: $\text{Fix}(\phi) = \{ x \mid \phi(x) \subseteq x \}$.

2. By the Knaster-Tarski theorem, $(\text{Fix}(\phi), \bigcap)$ is complete inf-lattice.

Lemma

If ϕ is a closure operator, we have $\phi(x) = \bigcap\{ x' \in \text{Fix}(\phi) \mid x \subseteq x' \}$.

Define $Z = \text{Fix}(\phi)$ and $\bot \subseteq X \times Z$ by $a \bot x \iff a \in x$.

\[a \in x^{\bot} \iff \forall x' \in \text{Fix}(\phi), x' \in x^{\bot} \Rightarrow a \bot x' \]

\[\text{definition of } \bot \]
Partial Proof

Write $\text{Fix}(\phi)$ for the set of fixpoint of ϕ.

1. Because ϕ is a closure operator, $\text{Fix}(\phi)$ is the set of pre-fixpoints of ϕ: $\text{Fix}(\phi) = \{ x \mid \phi(x) \subseteq x \}$.

2. By the Knaster-Tarski theorem, $(\text{Fix}(\phi), \cap)$ is complete inf-lattice.

Lemma

If ϕ is a closure operator, we have $\phi(x) = \bigcap \{ x' \in \text{Fix}(\phi) \mid x \subseteq x' \}$.

Define $Z = \text{Fix}(\phi)$ and $\bot \subseteq X \times Z$ by $a \perp x \iff a \in x$.

\[
\begin{align*}
a \in x^{\bot} & \iff \forall x' \in \text{Fix}(\phi), \ x' \in x^{\bot} \Rightarrow a \perp x' & \text{definition of } x^{\bot} \\
& \iff \forall x' \in \text{Fix}(\phi), \ x' \in x^{\bot} \Rightarrow a \in x' & \text{definition of } \perp
\end{align*}
\]
Partial Proof

Write $\text{Fix}(\phi)$ for the set of fixpoint of ϕ.

1. Because ϕ is a closure operator, $\text{Fix}(\phi)$ is the set of pre-fixpoints of ϕ: $\text{Fix}(\phi) = \{x \mid \phi(x) \subseteq x\}$.

2. By the Knaster-Tarski theorem, $\left(\text{Fix}(\phi), \cap\right)$ is complete inf-lattice.

Lemma

If ϕ is a closure operator, we have $\phi(x) = \bigcap\{x' \in \text{Fix}(\phi) \mid x \subseteq x'\}$.

Define $Z = \text{Fix}(\phi)$ and $\bot \subseteq X \times Z$ by $a \bot x \Leftrightarrow a \in x$.

\[
\begin{align*}
a \in x \bot \Leftrightarrow & \forall x' \in \text{Fix}(\phi), x' \in x \bot \Rightarrow a \bot x' \\
\Leftrightarrow & \forall x' \in \text{Fix}(\phi), x' \in x \bot \Rightarrow a \in x' \\
\Leftrightarrow & \forall x' \in \text{Fix}(\phi), (\forall a \in x, a \bot x') \Rightarrow a \in x' \\
& \text{definition of } \bot \\
& \text{definition of } \bot \\
& \text{definition of } \bot
\end{align*}
\]
Partial Proof

Write $\text{Fix}(\phi)$ for the set of fixpoint of ϕ.

1. Because ϕ is a closure operator, $\text{Fix}(\phi)$ is the set of pre-fixpoints of ϕ: $\text{Fix}(\phi) = \{x \mid \phi(x) \subseteq x\}$.
2. By the Knaster-Tarski theorem, $(\text{Fix}(\phi), \sqcap)$ is complete inf-lattice.

Lemma

If ϕ is a closure operator, we have $\phi(x) = \bigcap \{x' \in \text{Fix}(\phi) \mid x \subseteq x'\}$.

Define $Z = \text{Fix}(\phi)$ and $\bot \subset X \times Z$ by $a \bot x \iff a \in x$.

\[
\begin{align*}
a \in x^{\bot} & \iff \forall x' \in \text{Fix}(\phi), x' \in x^{\bot} \Rightarrow a \bot x' \quad \text{definition of } \bot \\
& \iff \forall x' \in \text{Fix}(\phi), x' \in x^{\bot} \Rightarrow a \in x' \quad \text{definition of } \bot \\
& \iff \forall x' \in \text{Fix}(\phi), \left(\forall a \in x, a \bot x' \right) \Rightarrow a \in x' \quad \text{definition of } \bot \\
& \iff \forall x' \in \text{Fix}(\phi), \left(\forall a \in x, a \in x' \right) \Rightarrow a \in x' \quad \text{definition of } \bot
\end{align*}
\]
Partial Proof

Write \(\text{Fix}(\phi) \) for the set of fixpoint of \(\phi \).

1. Because \(\phi \) is a closure operator, \(\text{Fix}(\phi) \) is the set of pre-fixpoints of \(\phi \): \(\text{Fix}(\phi) = \{ x \mid \phi(x) \subseteq x \} \).
2. By the Knaster-Tarski theorem, \(\left(\text{Fix}(\phi), \bigcap \right) \) is complete inf-lattice.

Lemma

If \(\phi \) is a closure operator, we have \(\phi(x) = \bigcap \{ x' \in \text{Fix}(\phi) \mid x \subseteq x' \} \).

Define \(Z = \text{Fix}(\phi) \) and \(\bot \subseteq X \times Z \) by \(a \bot x \iff a \in x \).

\[
\begin{align*}
a \in x \bot \ &\iff \forall x' \in \text{Fix}(\phi), x' \in x \bot \Rightarrow a \bot x' \\
&\iff \forall x' \in \text{Fix}(\phi), x' \in x \bot \Rightarrow a \in x' \\
&\iff \forall x' \in \text{Fix}(\phi), \left(\forall a \in x, a \bot x' \right) \Rightarrow a \in x' \\
&\iff \forall x' \in \text{Fix}(\phi), \left(\forall a \in x, a \in x' \right) \Rightarrow a \in x' \\
&\iff \forall x' \in \text{Fix}(\phi), x \subseteq x' \Rightarrow a \in x' \\
&\quad \text{definition of } \bot \\
&\quad \text{simplification}
\end{align*}
\]
Partial Proof

Write \(\text{Fix}(\phi) \) for the set of fixpoint of \(\phi \).

1. Because \(\phi \) is a closure operator, \(\text{Fix}(\phi) \) is the set of pre-fixpoints of \(\phi \): \(\text{Fix}(\phi) = \{ x \mid \phi(x) \subseteq x \} \).
2. By the Knaster-Tarski theorem, \((\text{Fix}(\phi), \cap) \) is complete inf-lattice.

Lemma

If \(\phi \) is a closure operator, we have \(\phi(x) = \bigcap \{ x' \in \text{Fix}(\phi) \mid x \subseteq x' \} \).

Define \(Z = \text{Fix}(\phi) \) and \(\bot \subseteq X \times Z \) by \(a \bot x \iff a \in x \).

\[
\begin{align*}
a \in x^\bot &\iff \forall x' \in \text{Fix}(\phi), x' \in x^\bot \Rightarrow a \bot x' & \text{definition of } x^\bot \\
&\iff \forall x' \in \text{Fix}(\phi), x' \in x^\bot \Rightarrow a \in x' & \text{definition of } \bot \\
&\iff x' \in \text{Fix}(\phi), (\forall a \in x, a \bot x') \Rightarrow a \in x' & \text{definition of } x^\bot \\
&\iff \forall x' \in \text{Fix}(\phi), (\forall a \in x, a \in x') \Rightarrow a \in x' & \text{definition of } \bot \\
&\iff a \in \bigcap \{ x' \in \text{Fix}(\phi) \mid x \subseteq x' \} & \text{simplification} \\
&\iff a \in \bigcap \{ x' \in \text{Fix}(\phi) \mid x \subseteq x' \} & \text{definition}
\end{align*}
\]
Partial Proof

Write \(\text{Fix}(\phi) \) for the set of fixpoint of \(\phi \).

1. Because \(\phi \) is a closure operator, \(\text{Fix}(\phi) \) is the set of pre-fixpoints of \(\phi \):
 \[\text{Fix}(\phi) = \{ x \mid \phi(x) \subseteq x \} . \]

2. By the Knaster-Tarski theorem, \((\text{Fix}(\phi), \subseteq) \) is complete inf-lattice.

Lemma

If \(\phi \) is a closure operator, we have
\[\phi(x) = \bigcap \{ x' \in \text{Fix}(\phi) \mid x \subseteq x' \} . \]

Define \(Z = \text{Fix}(\phi) \) and \(\bot \subseteq X \times Z \) by \(a \bot x \iff a \in x \).

\[
\begin{align*}
a \in x^{\bot} &\iff \forall x' \in \text{Fix}(\phi), x' \in x^{\bot} \Rightarrow a \bot x' & \text{definition of } \bot \\
&\iff \forall x' \in \text{Fix}(\phi), x' \in x^{\bot} \Rightarrow a \in x' & \text{definition of } \bot \\
&\iff \forall x' \in \text{Fix}(\phi), \left(\forall a \in x, a \bot x' \right) \Rightarrow a \in x' & \text{definition of } \bot \\
&\iff \forall x' \in \text{Fix}(\phi), \left(\forall a \in x, a \in x' \right) \Rightarrow a \in x' & \text{simplification} \\
&\iff a \in \bigcap \{ x' \in \text{Fix}(\phi) \mid x \subseteq x' \} & \text{definition} \\
&\iff a \in \phi(x) & \text{lemma}
\end{align*}
\]
Partial Proof

Write $\text{Fix}(\phi)$ for the set of fixpoint of ϕ.

1. Because ϕ is a closure operator, $\text{Fix}(\phi)$ is the set of pre-fixpoints of ϕ: $\text{Fix}(\phi) = \{ x \mid \phi(x) \subseteq x \}$.
2. By the Knaster-Tarski theorem, $(\text{Fix}(\phi), \subseteq)$ is complete inf-lattice.

Lemma

If ϕ is a closure operator, we have $\phi(x) = \bigcap\{x' \in \text{Fix}(\phi) \mid x \subseteq x'\}$.

Define $Z = \text{Fix}(\phi)$ and $\bot \subseteq X \times Z$ by $a \bot x \Leftrightarrow a \in x$.

(comment for L. R.: this is impredicative...)

P. Hyvernat

Miscellaneous Remarks about Orthogonality

9/26
So...

- Closure operators are nice.
So...

- Closure operators are nice.
- (Pre-)fixpoints of closure operators are found everywhere:
 - subvector spaces,
So...

- Closure operators are nice.
- (Pre-)fixpoints of closure operators are found everywhere:
 - subvector spaces,
 - algebraic structures,
 - they are "closed" under some operations

-Closure operators are equivalent to "bi-orthogonals".

Note however that not all closure operators can be obtained from a "homogeneous" relation \(K \subseteq X \times X \).

Counterexample: \(x \in X \) if \(X \) is cofinite, \(x \) otherwise.
So...

- Closure operators are nice.
- (Pre-)fixpoints of closure operators are found everywhere:
 - subvector spaces,
 - algebraic structures,
 - topological spaces,
 - they are "closed" under some operations
 - "Kuratowski closure axioms": \(\phi(\emptyset) = \emptyset \)
 - and \(\phi(x \cup y) = \phi(x) \cup \phi(y) \).
So...

- Closure operators are nice.
- (Pre-)fixpoints of closure operators are found everywhere:
 - subvector spaces,
 - algebraic structures,
 - topological spaces,
 - etc.

Note that those fixpoints are closed under arbitrary intersections.

Closure operators are equivalent to “bi-orthogonals”.

Note however that not all closure operators can be obtained from a “homogeneous” relation $K \cup X \cap X$.

Counter example: $x \cup X \cap \# x$ if X is cofinite x otherwise

P. Hyvernat
Miscellaneous Remarks about Orthogonality
10/26
So...

- Closure operators are nice.
- (Pre-)fixpoints of closure operators are found everywhere:
 - subvector spaces,
 - algebraic structures,
 - topological spaces,
 - etc.

Note that those fixpoints are closed under arbitrary intersections.

- they are "closed" under some operations
- "Kuratowski closure axioms": \(\phi(\emptyset) = \emptyset \)
 and \(\phi(x \cup y) = \phi(x) \cup \phi(y) \).
So...

- Closure operators are nice.
- (Pre-)fixpoints of closure operators are found everywhere:
 - subvector spaces,
 - algebraic structures,
 - topological spaces,
 - etc.

Note that those fixpoints are closed under arbitrary intersections.

- Closure operators are equivalent to “bi-orthogonals”.

Note however that not all closure operators can be obtained from a “homogeneous” relation $K \hat{\times} \hat{X}$.

Counter example: $x \hat{\times} X \equiv \#_x \iff X$ is cofinite, otherwise.
So...

- Closure operators are nice.
- (Pre-)fixpoints of closure operators are found everywhere:
 - subvector spaces,
 - algebraic structures,
 - topological spaces,
 - etc.

Note that those fixpoints are closed under arbitrary intersections.

- Closure operators are equivalent to “bi-orthogonals”.

Note however that not all closure operators can be obtained from a “homogeneous” relation \(\bot \subset X \times X \).

\[
\text{counter example: } x \in X \mapsto \begin{cases}
 x & \text{if } X \text{ is cofinite} \\
 x & \text{otherwise}
\end{cases}
\]
Plan

1. Framework
2. Realizability
3. Linear Logic

P. Hyvernat

Miscellaneous Remarks about Orthogonality
Interpreting Types

Constant atomic types are easy: take all terms with that type.
Interpreting Types

Constant atomic types are easy: take all terms with that type.
Interpreting types with parameters (system F) is more difficult.
Interpreting Types

Constant atomic types are easy: take all terms with that type.

Interpreting types with parameters (system F) is more difficult. It has been done with
Interpreting Types

Constant atomic types are easy: take all terms with that type.
Interpreting types with parameters (system F) is more difficult. It has been done with

- reducibility candidates (Girard),

"C ⊆ SN", "C is → closed", "t neutral with its one step reducts in C ⇒ t ∈ C"
Interpreting Types

Constant atomic types are easy: take all terms with that type.
Interpreting types with parameters (system F) is more difficult. It has been done with

- reducibility candidates (Girard),

 \(C \in S\mathcal{N} \), \(C \rightarrow_\beta \) closed, \(t \) neutral with its one step reducts in \(C \Rightarrow t \in C \)

- saturated sets (Tait),

 \(S \in \mathcal{S\mathcal{N}} \), \((x)\bar{u} \in S \) if \(\bar{u} \in \mathcal{S\mathcal{N}} \), \((t[x = v])\bar{u} \in S \Rightarrow (\lambda x.t)\bar{u} \in S \)
Interpreting Types

Constant atomic types are easy: take all terms with that type.
Interpreting types with parameters (system F) is more difficult. It has been done with

- reducibility candidates (Girard),

 \[C \in \mathcal{SN} \], \[C \Rightarrow_\beta \text{ closed} \], \[t \text{ neutral with its one step reducts in } C \Rightarrow t \in C \]

- saturated sets (Tait),

 \[S \in \mathcal{SN} \], \[(x)u \in S \text{ if } u \in \mathcal{SN} \], \[(t[x = v])u \in S \Rightarrow (\lambda x.t)vu \in S \]

- orthogonality between terms and contexts (Krivine, Miquel, ...)

 \[O \in \mathcal{SN} \], \[O = O \perp \perp \]
Interpreting Types

Constant atomic types are easy: take all terms with that type.
Interpreting types with parameters (system F) is more difficult. It has been done with

- reducibility candidates (Girard),

 \[C \subseteq SN \], \[C \rightarrow_\beta \text{ closed} \], \[t \text{ neutral with its one step reducts in } C \Rightarrow t \in C \]

- saturated sets (Tait),

 \[S \subseteq SN \], \[(x)u \in S \text{ if } u \in SN \], \[(t[x \equiv v])u \in S \Rightarrow (\lambda x.t)v u \in S \]

- orthogonality between terms and contexts (Krivine, Miquel, ...)

 \[O \subseteq SN \], \[O = O^\perp \perp \]

The relation \(t \perp C \) depends on the model.

Remark: reducibility candidates and saturated sets are “closed” for some operations. In theory, they can be obtained using an orthogonality relation.
In practice, it is important that \perp is closed under **backward** reduction:

“if $t \perp C$ and $t' \rightarrow t$ then $t' \perp C$.”
Strong Normalization

In practice, it is important that \perp is closed under backward reduction:

"if $t \perp C$ and $t' \rightarrow t$ then $t' \perp C$".

This is not the case when $t \perp C$ is defined as $C[t] \in SN$!

Some care is needed to prove strong normalization using this technique...
Strong Normalization

In practice, it is important that \perp is closed under **backward** reduction:

“if $t \perp C$ and $t' \rightarrow t$ then $t' \perp C$”.

This is **not** the case when $t \perp C$ is defined as $C[t] \in SN$!

Some care is needed to prove strong normalization using this technique...

In many models, strong normalization isn’t important!

- “$t \perp \pi$” when $\langle t, \pi \rangle$ loops or reduces to 0 or 1. (Mellies & Vouillon, 2005)
- “$t \perp \pi$” if $\langle t, \pi \rangle \rightarrow^* \langle \text{stop}, n \cdot \pi' \rangle$ for some n s.t. $f(n) = 0$. (Miquel, 2009)

Here f is an arbitrary primitive recursive function.
Not Every Set is Closed!

Sets of terms that are not closed can be important...
Not Every Set is Closed!

Sets of terms that are not closed can be important...

... Lepigre uses the following for interpreting the type \(A \rightarrow B \)

\[\forall \text{ values: } \| A \rightarrow B \| = \left\{ \lambda x.t \mid \forall v \in \| A \|, t[x = v] \in \| B \|^{\perp} \right\}, \]
Not Every Set is Closed!

Sets of terms that are not closed can be important...

... Lepigre uses the following for interpreting the type $A \rightarrow B$

- **Values:** $||A \rightarrow B|| = \{ \lambda x.t \mid \forall v \in ||A||, t[x = v] \in ||B||^\perp \}$,

- **Contexts:** $||A \rightarrow B||^\perp$.

P. Hyvernat
Miscellaneous Remarks about Orthogonality
14/26
Not Every Set is Closed!

Sets of terms that are not closed can be important...

... Lepigre uses the following for interpreting the type $A \to B$

- values: $||A \to B|| = \{ \lambda x.t \mid \forall v \in ||A||, t[x = v] \in ||B||^\perp \}$,
- contexts: $||A \to B||^\perp$,
- terms: $||A \to B||^{\perp \perp}$.
Not Every Set is Closed!

Sets of terms that are not closed can be important...

... Lepigre uses the following for interpreting the type $A \rightarrow B$

- **values:** $||A \rightarrow B|| = \{ \lambda x.t \mid \forall v \in ||A||, t[x = v] \in ||B||^{\perp\perp} \}$,
- **contexts:** $||A \rightarrow B||^{\perp}$,
- **terms:** $||A \rightarrow B||^{\perp\perp}$.

This is important because Rodolphe works in a call-by value setting.
Not Every Set is Closed!

Sets of terms that are not closed can be important...

... Lepigre uses the following for interpreting the type $A \to B$

\[
\begin{align*}
\forall \text{ values: } ||A \to B|| &= \left\{ \lambda x.t \mid \forall v \in ||A||, t[x = v] \in ||B||^\perp \right\}, \\
\forall \text{ contexts: } ||A \to B||^\perp, \\
\forall \text{ terms: } ||A \to B||^{\perp \perp}.
\end{align*}
\]

This is important because Rodolphe works in a call-by-value setting.

More about that in Rodolphe’s talk...
Personal Remarks

In many examples, (Krivine’s) orthogonal based realizability is used to prove results on terms and reduction.
Personal Remarks

In many examples, (Krivine’s) orthogonal based realizability is used to prove results on terms and reduction.

It is a kind of generalized, computational, semantical (???) version of “Friedman’s trick” (A-translation).
In many examples, (Krivine’s) orthogonal based realizability is used to prove results on terms and reduction.

It is a kind of generalized, computational, semantical (???) version of “Friedman’s trick” (A-translation).

1/ do a negative translation, 2/ replace ⊥ by a useful formula, 3/ deduce useful facts...
In many examples, (Krivine’s) orthogonal based realizability is used to prove results on terms and reduction.

It is a kind of generalized, computational, semantical (?) version of “Friedman’s trick” (A-translation).

1/ do a negative translation, 2/ replace \(\bot \) by a useful formula, 3/ deduce useful facts...

... except Krivine realizability is classical, so that step “1/” is skipped.
In many examples, (Krivine’s) orthogonal based realizability is used to prove results on terms and reduction.

It is a kind of generalized, computational, semantical (???) version of “Friedman’s trick” (A-translation).

1/ do a negative translation, 2/ replace \bot by a usefull formula, 3/ deduce usefull facts...

... except Krivine realizability is classical, so that step “1/” is skipped.

ask V. Blot or A. Miquel for more details
In many examples, (Krivine’s) orthogonal based realizability is used to prove results on terms and reduction.

It is a kind of generalized, computational, semantical version of “Friedman’s trick” (A-translation).

1/ do a negative translation, 2/ replace \(\bot \) by a useful formula, 3/ deduce useful facts...

... except Krivine realizability is classical, so that step “1/” is skipped.

ask V. Blot or A. Miquel for more details

Another use for realizability is creating models for interesting theories. In those, computation “isn’t important”.
In many examples, (Krivine’s) orthogonal based realizability is used to prove results on terms and reduction.

It is a kind of generalized, computational, semantical (?) version of “Friedman’s trick” (A-translation).

1/ do a negative translation, 2/ replace \(\bot \) by a useful formula, 3/ deduce useful facts...

... except Krivine realizability is classical, so that step “1/” is skipped.

ask V. Blot or A. Miquel for more details

Another use for realizability is creating models for interesting theories. In those, computation “isn’t important”.
We could “in principle” replace terms / contexts by something else...
In many examples, (Krivine’s) orthogonal based realizability is used to prove results on terms and reduction.

It is a kind of generalized, computational, semantical (???) version of “Friedman’s trick” (A-translation).

1/ do a negative translation, 2/ replace \(\bot \) by a useful formula, 3/ deduce useful facts...

... except Krivine realizability is classical, so that step “1/” is skipped.

ask V. Blot or A. Miquel for more details

Another use for realizability is creating models for interesting theories. In those, computation “isn’t important”.

We could “in principle” replace terms / contexts by something else...

Question: are there interesting “realizability” models without computational content?

(except forcing models)
Plan

1. Framework
2. Realizability
3. Linear Logic
Interpreting Formulas

This is easy:

- boolean algebras (classical logic)
- Heyting algebras (intuitionistic logic)
Interpreting Formulas

This is easy:
- boolean algebras (classical logic)
- Heyting algebras (intuitionistic logic)

For linear logic, more care is needed...
Interpreting Formulas and Proofs

This is easy:
- boolean algebras (classical logic)
- Heyting algebras (intuitionistic logic)

For linear logic, more care is needed...

Interpreting proofs for classical logic also requires more care...
Phase Semantics

Definition (Girard, “Linear Logic”, 1987)

A phase space is given by:

- a commutative monoid (whose elements are called “phases”),
- a set \bot of phases.

Two phases are orthogonal, written $p \perp q$ when $pq \in \bot$, and fixpoints for $\bot \bot$ are called **facts**.
Phase Semantics

Definition (Girard, “Linear Logic”, 1987)

A phase space is given by:

- a commutative monoid (whose elements are called “phases”),
- a set \(\perp \) of phases.

Two phases are orthogonal, written \(p \perp q \) when \(pq \in \perp \), and fixpoints for \(\perp \perp \) are called facts.

This gives a (complete) provability semantics for linear logic, where the connectives are given by

<table>
<thead>
<tr>
<th>connective</th>
<th>(x & y)</th>
<th>(x \oplus y)</th>
<th>(x \otimes y)</th>
<th>(x & y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>“basis”</td>
<td>(x \cap y)</td>
<td>(x \cup y)</td>
<td>(x \cdot y)</td>
<td>???</td>
</tr>
<tr>
<td>fact</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Phase Semantics

Definition (Girard, “Linear Logic”, 1987)

A phase space is given by:

- a commutative monoid (whose elements are called “phases”),
- a set \(\perp \) of phases.

Two phases are orthogonal, written \(p \perp q \) when \(pq \in \perp \), and fixpoints for \(\perp \perp \) are called facts.

This gives a (complete) provability semantics for linear logic, where the connectives are given by

<table>
<thead>
<tr>
<th>connective</th>
<th>(x & y)</th>
<th>(x \oplus y)</th>
<th>(x \otimes y)</th>
<th>(x & \neg \neg y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>“basis”</td>
<td>(x \cap y)</td>
<td>(x \cup y)</td>
<td>(x \cdot y)</td>
<td>???</td>
</tr>
<tr>
<td>fact</td>
<td>(x \cap y)</td>
<td>((x \cup y) \perp \perp)</td>
<td>((x \cdot y) \perp \perp)</td>
<td>((x \perp \cdot y \perp) \perp)</td>
</tr>
</tbody>
</table>
Phase Semantics

Definition (Girard, “Linear Logic”, 1987)

A phase space is given by:

- a commutative monoid (whose elements are called “phases”),
- a set \perp of phases.

Two phases are orthogonal, written $p \perp q$ when $pq \in \perp$, and fixpoints for $\perp \perp$ are called facts.

This gives a (complete) provability semantics for linear logic, where the connectives are given by

<table>
<thead>
<tr>
<th>connective</th>
<th>$x & y$</th>
<th>$x \oplus y$</th>
<th>$x \otimes y$</th>
<th>$x \otimes y$</th>
<th>$x \perp$</th>
</tr>
</thead>
<tbody>
<tr>
<td>“basis”</td>
<td>$x \cap y$</td>
<td>$x \cup y$</td>
<td>$x \cdot y$</td>
<td>$x \cdot y$</td>
<td>$x \perp$</td>
</tr>
<tr>
<td>fact</td>
<td>$x \cap y$</td>
<td>$(x \cup y) \perp$</td>
<td>$(x \cdot y) \perp$</td>
<td>$(x \perp \cdot y \perp) \perp$</td>
<td>$x \perp$</td>
</tr>
</tbody>
</table>
Phase Semantics

Definition (Girard, “Linear Logic”, 1987)

A phase space is given by:

- a commutative monoid (whose elements are called “phases”),
- a set \(\perp \) of phases.

Two phases are orthogonal, written \(p \perp q \) when \(pq \in \perp \), and fixpoints for \(_\perp \perp \) are called facts.

This gives a (complete) provability semantics for linear logic, where the connectives are given by

<table>
<thead>
<tr>
<th>connective</th>
<th>(x & y)</th>
<th>(x \oplus y)</th>
<th>(x \otimes y)</th>
<th>(x # y)</th>
<th>(x^\perp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>“basis”</td>
<td>(x & y)</td>
<td>(x \oplus y)</td>
<td>(x \otimes y)</td>
<td>???</td>
<td>(x^\perp)</td>
</tr>
<tr>
<td>fact</td>
<td>(x & y)</td>
<td>((x \cup y)^\perp)</td>
<td>((x \cdot y)^\perp)</td>
<td>((x^\perp \cdot y^\perp)^\perp)</td>
<td>(x^\perp)</td>
</tr>
</tbody>
</table>

The proof of completeness uses the free commutative monoid on formulas (finite multisets) with \(\Gamma \perp \Delta \) iff \(\vdash \Gamma, \Delta \) is provable.
Coherent Spaces

They give a denotational semantics for linear proofs (Girard, 1987)

Definition

A coherent space over X is a $C \subseteq \mathcal{P}(X)$ such that $C = C^\perp\perp$,.
Coherent Spaces

They give a denotational semantics for linear proofs (Girard, 1987)

Definition

A coherent space over X is a $C \subseteq \mathcal{P}(X)$ such that $C = C^\perp\perp$, where $x \perp y$ iff “$x \cap y$ contains at most 1 element”.
Coherent Spaces

They give a denotational semantics for linear proofs (Girard, 1987)

Definition

A coherent space over X is a $C \subseteq \mathcal{P}(X)$ such that $C = C^\perp$, where $x \perp y$ iff “$x \cap y$ contains at most 1 element”.

The connectives are given by

<table>
<thead>
<tr>
<th>connective</th>
<th>$C \land D$</th>
<th>$C \otimes D$</th>
</tr>
</thead>
<tbody>
<tr>
<td>“basis”</td>
<td>$C \lor D$</td>
<td>$C \times D$</td>
</tr>
<tr>
<td>space</td>
<td></td>
<td></td>
</tr>
<tr>
<td>over</td>
<td>$X \lor Y$</td>
<td>$X \times Y$</td>
</tr>
</tbody>
</table>
Coherent Spaces
They give a denotational semantics for linear proofs (Girard, 1987)

Definition

A coherent space over X is a $C \subseteq \mathcal{P}(X)$ such that $C = C^\perp\perp$, where $x \perp y$ iff “$x \cap y$ contains at most 1 element”.

The connectives are given by

<table>
<thead>
<tr>
<th>connective</th>
<th>$C & D$</th>
<th>$C \otimes D$</th>
</tr>
</thead>
<tbody>
<tr>
<td>“basis”</td>
<td>$C \cup D$</td>
<td>$C \times D$</td>
</tr>
<tr>
<td>space</td>
<td>$(C \cup D)^\perp\perp$</td>
<td>$(C \times D)^\perp\perp$</td>
</tr>
<tr>
<td>over</td>
<td>$X \uplus Y$</td>
<td>$X \times Y$</td>
</tr>
</tbody>
</table>
Coherent Spaces

They give a denotational semantics for linear proofs (Girard, 1987)

Definition

A coherent space over X is a $C \subseteq \mathcal{P}(X)$ such that $C = C^\perp \perp$, where $x \perp y$ iff “$x \cap y$ contains at most 1 element”.

The connectives are given by

<table>
<thead>
<tr>
<th>connective</th>
<th>$C & D$</th>
<th>$C \otimes D$</th>
</tr>
</thead>
<tbody>
<tr>
<td>“basis”</td>
<td>$C \lor D$</td>
<td>$C \times D$</td>
</tr>
<tr>
<td>space</td>
<td>$C \lor D$</td>
<td>$(C \times D)^\perp$</td>
</tr>
<tr>
<td>over</td>
<td>$X \lor Y$</td>
<td>$X \times Y$</td>
</tr>
</tbody>
</table>

$Z^i = \{x \mid \exists z \in Z, x \subseteq z\}$.
Coherent Spaces

They give a denotational semantics for linear proofs (Girard, 1987)

Definition

A coherent space over X is a $C \subseteq \mathcal{P}(X)$ such that $C = C^\perp \perp$, where $x \perp y$ iff “$x \cap y$ contains at most 1 element”.

The connectives are given by

<table>
<thead>
<tr>
<th>connective</th>
<th>$C & D$</th>
<th>$C \otimes D$</th>
<th>C^\perp</th>
</tr>
</thead>
<tbody>
<tr>
<td>“basis”</td>
<td>$C \cup D$</td>
<td>$C \times D$</td>
<td>C^\perp</td>
</tr>
<tr>
<td>space</td>
<td>$C \cup D$</td>
<td>$(C \times D)^\perp$</td>
<td>C^\perp</td>
</tr>
<tr>
<td>over</td>
<td>$X \cup Y$</td>
<td>$X \times Y$</td>
<td>X</td>
</tr>
</tbody>
</table>

$Z^\perp = \{x \mid \exists z \in Z, x \subseteq z\}$.
Coherent Spaces

They give a denotational semantics for linear proofs (Girard, 1987)

Definition

A coherent space over X is a $C \subseteq \mathcal{P}(X)$ such that $C = C^\perp \perp$, where $x \perp y$ iff “$x \cap y$ contains at most 1 element”.

The connectives are given by

<table>
<thead>
<tr>
<th>connective</th>
<th>$C & D$</th>
<th>$C \otimes D$</th>
<th>C^\perp</th>
</tr>
</thead>
<tbody>
<tr>
<td>“basis”</td>
<td>$C \uplus D$</td>
<td>$C \times D$</td>
<td>C^\perp</td>
</tr>
<tr>
<td>space</td>
<td>$C \uplus D$</td>
<td>$(C \times D)^\perp$</td>
<td>C^\perp</td>
</tr>
<tr>
<td>over</td>
<td>$X \uplus Y$</td>
<td>$X \times Y$</td>
<td>X</td>
</tr>
</tbody>
</table>

Other connectives are defined by de Morgan duality...

$Z^\perp = \{ x \mid \exists z \in Z, x \subseteq z \}$.
Coherent Spaces

They give a denotational semantics for linear proofs (Girard, 1987)

Definition

A coherent space over X is a $C \subseteq \mathcal{P}(X)$ such that $C = C^\perp\perp$, where $x \perp y$ iff “$x \cap y$ contains at most 1 element”.

The connectives are given by

<table>
<thead>
<tr>
<th>connective</th>
<th>$C & D$</th>
<th>$C \otimes D$</th>
<th>C^\perp</th>
</tr>
</thead>
<tbody>
<tr>
<td>“basis”</td>
<td>$C \uplus D$</td>
<td>$C \times D$</td>
<td>C^\perp</td>
</tr>
<tr>
<td>space</td>
<td>$C \uplus D$</td>
<td>$(C \times D)^\downarrow$</td>
<td>C^\perp</td>
</tr>
<tr>
<td>over</td>
<td>$X \uplus Y$</td>
<td>$X \times Y$</td>
<td>X</td>
</tr>
</tbody>
</table>

Other connectives are defined by de Morgan duality...

This is more “abstract” than realizability models.

$Z^\perp = \{x \mid \exists z \in Z, x \subseteq z\}.$
Finiteness Spaces

They give a denotational semantics for differential proofs (Ehrhard, 2003)

Definition

A *finiteness space* over \(X \) is a \(C \subset \mathcal{P}(X) \) such that \(C = C^{\perp \perp} \), where \(x \perp y \) iff “\(x \cap y \) is finite”.

The connectives are given by

<table>
<thead>
<tr>
<th>connective</th>
<th>(C & D)</th>
<th>(C \otimes D)</th>
<th>(C^{\perp})</th>
</tr>
</thead>
<tbody>
<tr>
<td>“basis”</td>
<td>(C \cup D)</td>
<td>(C \times D)</td>
<td>(C^{\perp})</td>
</tr>
<tr>
<td>space</td>
<td>((C \cup D)^{\perp \perp})</td>
<td>((C \times D)^{\perp \perp})</td>
<td>(C^{\perp})</td>
</tr>
<tr>
<td>over</td>
<td>(X \cup Y)</td>
<td>(X \times Y)</td>
<td>(X)</td>
</tr>
</tbody>
</table>

Other connectives are defined by de Morgan duality...
Finiteness Spaces

They give a denotational semantics for differential proofs (Ehrhard, 2003)

Definition

A *finiteness space* over X is a $C \subseteq \mathcal{P}(X)$ such that $C = C^\perp\perp$, where $x \perp y$ iff “$x \cap y$ is finite”.

The connectives are given by

<table>
<thead>
<tr>
<th>connective</th>
<th>$C & D$</th>
<th>$C \otimes D$</th>
<th>C^\perp</th>
</tr>
</thead>
<tbody>
<tr>
<td>“basis”</td>
<td>$C \uplus D$</td>
<td>$C \times D$</td>
<td>C^\perp</td>
</tr>
<tr>
<td>space</td>
<td>$C \uplus D$</td>
<td>$(C \times D)^\perp$</td>
<td>C^\perp</td>
</tr>
<tr>
<td>over</td>
<td>$X \uplus Y$</td>
<td>$X \times Y$</td>
<td>X</td>
</tr>
</tbody>
</table>

Other connectives are defined by de Morgan duality...
Finiteness Spaces

They give a denotational semantics for differential proofs (Ehrhard, 2003)

Definition

A finiteness space over X is a $C \subset \mathcal{P}(X)$ such that $C = C^\perp\perp$, where $x \perp y$ iff “$x \cap y$ is finite”.

The connectives are given by

<table>
<thead>
<tr>
<th>connective</th>
<th>$C & D$</th>
<th>$C \otimes D$</th>
<th>C^\perp</th>
</tr>
</thead>
<tbody>
<tr>
<td>“basis”</td>
<td>$C \uplus D$</td>
<td>$C \times D$</td>
<td>C^\perp</td>
</tr>
<tr>
<td>space</td>
<td>$C \uplus D$</td>
<td>$(C \times D)^\downarrow$</td>
<td>C^\perp</td>
</tr>
<tr>
<td>over</td>
<td>$X \uplus Y$</td>
<td>$X \times Y$</td>
<td>X</td>
</tr>
</tbody>
</table>

Other connectives are defined by de Morgan duality...

Finiteness spaces give a model of differential λ-calculus...

“The operations of identification could be seen as formal derivation or formal primitive. The interest of this approach was to propose, at the theoretical level, to replace brutal beta-conversion by iterated linear conversions.”

Girard, “Linear Logic”, 1987
Other Notable Models

- totality spaces (Loader, 1994) $x \perp y$ iff $x \cap y$ contains exactly one element
- Köthe spaces (Ehrhard, 2002)
- probabilistic coherent spaces (Girard, 2004)
- quantum coherent spaces (Girard, 2004)
- geometry of interaction (Girard, 1989)
- ludics (Girard, 2001)
Other Notable Models

- totality spaces (Loader, 1994)
 \[x \perp y \text{ iff } x \cap y \text{ contains exactly one element} \]

- Köthe spaces (Ehrhard, 2002)
 \[u \perp v \text{ iff } \sum_{x \in X} u(x)v(x) \text{ converges} \]
 where \(u \) and \(v \) functions \(X \to \mathbb{R} \)
Other Notable Models

- totality spaces (Loader, 1994) $x \perp y$ iff $x \cap y$ contains exactly one element

- Köthe spaces (Ehrhard, 2002) $u \perp v$ iff $\sum_{x \in X} u_x v_x$ converges

- probabilistic coherent spaces (Girard, 2004) $u \perp v$ iff $\sum_{x \in X} u_x v_x \leq 1$
 where u and v functions $X \to R^+$
Other Notable Models

- totality spaces (Loader, 1994) \(x \perp y \) iff \(x \cap y \) contains exactly one element
- Köthe spaces (Ehrhard, 2002) \(u \perp v \) iff \(\sum_{x \in X} u_x v_x \) converges
- probabilistic coherent spaces (Girard, 2004) \(u \perp v \) iff \(\sum_{x \in X} u_x v_x \leq 1 \)
- quantum coherent spaces (Girard, 2004) \(u \perp v \) iff \(0 \leq \text{tr}(uv) \leq 1 \)

where \(u \) and \(v \) are self-adjoint operators on a finite dimensional Hilbert space

"One of the wild hopes that this suggests is the possibility of a direct connection with quantum mechanics... but let’s not dream too much!", (Girard, "Linear Logic", 1987)
Other Notable Models

- totality spaces (Loader, 1994) \(x \perp y \iff x \cap y \) contains exactly one element
- Köthe spaces (Ehrhard, 2002) \(u \perp v \iff \sum_{a \in X} u_a v_a\) converges
- probabilistic coherent spaces (Girard, 2004) \(u \perp v \iff \sum_{a \in X} u_a v_a \leq 1\)
- quantum coherent spaces (Girard, 2004) \(u \perp v \iff 0 \leq \text{tr}(uv) \leq 1\)
- geometry of interaction (Girard, 1989) \(u \perp v \iff uv \) is nilpotent
 \(\text{ie } (uv)^n = 0\) for some \(n\), where \(u\) and \(v\) are operators or matrices
Other Notable Models

- totality spaces (Loader, 1994) \(x \perp y \) iff \(x \cap y \) contains exactly one element
- Köthe spaces (Ehrhard, 2002) \(u \perp v \) iff \(\sum_{x \in X} u_x v_x \) converges
- probabilistic coherent spaces (Girard, 2004) \(u \perp v \) iff \(\sum_{x \in X} u_x v_x \leq 1 \)
- quantum coherent spaces (Girard, 2004) \(u \perp v \) iff \(0 \leq \text{tr}(uv) \leq 1 \)
- geometry of interaction (Girard, 1989) \(u \perp v \) iff \(uv \) is nilpotent
- ludics (Girard, 2001) \(u \perp v \) iff interaction of \(uv \) “goes well” where \(u \) and \(v \) are abstract proof / terms
Old Fashioned Coherent Spaces

The original presentation of coherent spaces uses (reflexive) graphs.

Definition

- A coherent space over X is a reflexive graph, $a \bowtie b$ means that a and b are related.
- A coherent set, or clique is a complete subgraph,
- The dual G^\perp of a coherent space is the reflexive closure of its complement.
Old Fashioned Coherent Spaces

The original presentation of coherent spaces uses (reflexive) graphs.

Definition

- A coherent space over \(X \) is a reflexive graph, \(a \bowtie b \) means that \(a \) and \(b \) are related
- A coherent set, or clique is a complete subgraph,
- The dual \(G^\perp \) of a coherent space is the reflexive closure of its complement.

Lemma

The 2 definitions are equivalent.
Old Fashioned Coherent Spaces

The original presentation of coherent spaces uses (reflexive) graphs.

Definition

- A coherent space over X is a reflexive graph, $a \ circ b$ means that a and b are related
- A coherent set, or clique is a complete subgraph,
- The dual G^\perp of a coherent space is the reflexive closure of its complement.

Lemma

The 2 definitions are equivalent.

Idea of proof:

- Given G over X, define $C = \{x \mid x$ is a clique of $G\}$,
- Given C over X, define $a \ circ b$ iff $\{a, b\} \in C$.
Old Fashioned Coherent Spaces

The original presentation of coherent spaces uses (reflexive) graphs.

Definition

- A coherent space over X is a reflexive graph, $a \circ b$ means that a and b are related.
- A coherent set, or clique is a complete subgraph,
- The dual G^\perp of a coherent space is the reflexive closure of its complement.

Lemma

The 2 definitions are equivalent.

Idea of proof:

- Given G over X, define $C = \{x \mid x$ is a clique of $G\}$,
- Given C over X, define $a \circ b$ iff $\{a, b\} \in C$.
- Don’t forget to check the transformations are inverse to each other.
Comparing Coherence and Finiteness

Even though “$\perp_c \subseteq \perp_f$”, the resulting models are very different.
Comparing Coherence and Finiteness

Even though \(\perp_c \subset \perp_f \), the resulting models are very different.

\[\forall x, x \perp_c \subseteq x \perp_f \quad \text{but} \quad x \perp_c \perp_c \not\subseteq x \perp_f \perp_f \]
Comparing Coherence and Finiteness

Even though \(\perp_c \subset \perp_f \), the resulting models are very different.

\[\forall x, x^{\perp_c} \subset x^{\perp_f} \quad \text{but} \quad x^{\perp_c \perp_c} \not\subset x^{\perp_f \perp_f} \]

In particular

1. finite sets are always finitary, they usually are not cliques
2. they are closed under finite unions, they interpret algebraic \(\lambda \)-calculus, ask, L. Vaux
3. “&” and “⊕” coincide for finitary sets.
Comparing Coherence and Finiteness

Even though \(\perp_c \subset \perp_f \)”, the resulting models are very different.

\[\forall x, x^\perp_c \subset x^\perp_f \quad \text{but} \quad x^\perp_c \perp_c \not\subset x^\perp_f \perp_f \]

In particular

1. finite sets are always finitary,
2. they are closed under finite unions,
3. “&” and “⊕” coincide for finitary sets.

With that in mind, the following is surprising

Theorem

There is a canonical “inclusion” of Coh into Fin that preserves the linear structure.
Finitely Incoherent Sets

Considering “finite unions of cliques” would make points 1 and 2 true.
Finitely Incoherent Sets

Considering “finite unions of cliques” would make points 1 and 2 true.
But that’s not really well behaved.
Finitely Incoherent Sets

Considering “finite unions of cliques” would make points 1 and 2 true. But that’s not really well behaved.

Definition

If C is a coherent space over X, $x \subseteq X$ is **finitely incoherent** when x doesn’t contain any infinite anticliques,
Finitely Incoherent Sets

Considering “finite unions of cliques” would make points 1 and 2 true.
But that’s not really well behaved.

Definition

If C is a coherent space over X, x ⊆ X is finitely incoherent when x doesn’t contain any infinite anticliques, i.e. when

\[x \in C^{\perp_c \perp_f} \]
Finitely Incoherent Sets

Considering “finite unions of cliques” would make points 1 and 2 true. But that’s not really well behaved.

Definition

If C is a coherent space over X, x ⊆ X is finitely incoherent when x doesn’t contain any infinite anticliques, i.e. when

\[x \in C_{\perp_c \perp_f} \]

We write \(\mathcal{F}(C) = C_{\perp_c \perp_f} \) for the set of finitely incoherent sets.
Finitely Incoherent Sets

Considering “finite unions of cliques” would make points 1 and 2 true. But that’s not really well behaved.

Definition

If C is a coherent space over X, $x \subset X$ is finitely incoherent when x doesn’t contain any infinite anticliques, i.e. when

$$x \in C^\perp_{c\perp_f}$$

We write $\mathcal{F}(C) = C^\perp_{c\perp_f}$ for the set of finitely incoherent sets.

Lemma

$\mathcal{F}(C)$ is a finiteness space over X.
Quite surprisingly, we have

Lemma

$$\mathcal{F}(C^\perp) = \mathcal{F}(C)^\perp$$
Magic Happens

Quite surprisingly, we have

Lemma

\[\mathcal{F}(C^\perp) = \mathcal{F}(C)^\perp \]

Proof: by definition, we need to show that \(C^{\perp \perp} = C = C^{\perp \perp} \).
Quite surprisingly, we have

Lemma

$$\mathcal{F}(\mathcal{C}^\perp c) = \mathcal{F}(\mathcal{C})^\perp f$$

Proof: by definition, we need to show that $\mathcal{C}^\perp c^\perp f = \mathcal{C}^\perp f = \mathcal{C}^\perp c^\perp f^\perp f$.

We have $\mathcal{C} \subset \mathcal{C}^\perp f = \mathcal{F}(\mathcal{C})$ and thus $\mathcal{C}^\perp f \supset \mathcal{C}^\perp c^\perp f^\perp f$.
Quite surprisingly, we have

Lemma

\[\mathcal{F}(C^\perp) = \mathcal{F}(C)^\perp \]

Proof: by definition, we need to show that \(C^\perp C^\perp C^\perp C^\perp = C^\perp C^\perp C^\perp C^\perp. \)

\[\text{we have } C \subset C^\perp C^\perp C^\perp C^\perp = \mathcal{F}(C) \text{ and thus } C^\perp C^\perp C^\perp C^\perp. \]

\[\text{if } x \in C^\perp \text{ and } y \in C^\perp C^\perp C^\perp C^\perp: \]

\[x \cap y \subset y \in \mathcal{F}(C): \text{ doesn’t contain infinite anticliques,} \]

\[x \cap y \subset x \in C^\perp C^\perp C^\perp C^\perp: \text{ doesn’t contain infinite cliques,} \]
Magic Happens

Quite surprisingly, we have

Lemma

\[\mathcal{F}(C^\perp) = \mathcal{F}(C)^\perp \]

Proof: by definition, we need to show that

\[C^\perp \subseteq C^\perp \subseteq \mathcal{F}(C) \text{ and thus } C^\perp \supseteq C^\perp \supseteq \mathcal{F}(C)^\perp. \]

\[\text{we have } C \subseteq C^\perp \subseteq \mathcal{F}(C) \text{ and thus } C^\perp \supseteq C^\perp \supseteq \mathcal{F}(C)^\perp. \]

\[\text{if } x \in C^\perp \text{ and } y \in C^\perp: \]

\[\text{if } x \cap y \subseteq y \in \mathcal{F}(C): \text{ doesn’t contain infinite anticliques,} \]

\[\text{if } x \cap y \subseteq x \in C^\perp: \text{ doesn’t contain infinite cliques,} \]

by Ramsey’s theorem, \(x \cap y \) is finite and thus \(x \in C^\perp \perp \perp \). We have

\[C^\perp \subseteq C^\perp \subseteq \mathcal{F}(C)^\perp. \]

P. Hyvernats

Miscellaneous Remarks about Orthogonality
Magic Happens

Quite surprisingly, we have

Lemma

\[\mathcal{F}(C^\perp) = \mathcal{F}(C)^\perp \]

Proof: by definition, we need to show that \(C^\perp \perp f = C^\perp = C^\perp \perp f \perp f \).
...
...
...

Corollary

\[C^\perp f \perp f = C^\perp c \perp f \]
Magic Happens

Quite surprisingly, we have

Lemma

\[\mathcal{F}(C^\perp c) = \mathcal{F}(C)^\perp f \]

Proof: by definition, we need to show that \(C^\perp c^\perp c^\perp f = C^\perp f = C^\perp c^\perp f^\perp f \).

...

...

Corollary

\[C^\perp f^\perp f = C^\perp c^\perp f \]

Proof: \(C^\perp f^\perp f = C^\perp c^\perp c^\perp f^\perp f \)
Magic Happens

Quite surprisingly, we have

Lemma

\[\mathcal{F}(C^\perp c) = \mathcal{F}(C)^\perp r \]

Proof: by definition, we need to show that

\[C^\perp c^\perp r = C^\perp r = C^\perp c^\perp r^\perp r. \]

...
...
...

Corollary

\[C^\perp r^\perp r = C^\perp c^\perp r \]

Proof:

\[C^\perp r^\perp r = C^\perp c^\perp r^\perp r^\perp r = C^\perp c^\perp r \]
More Magic

We also have

Lemma

\[\mathcal{F}(C \& D) = \mathcal{F}(C) \& \mathcal{F}(D) \quad \text{and} \quad \mathcal{F}(C \otimes D) = \mathcal{F}(C) \otimes \mathcal{F}(D) \]
More Magic

We also have

Lemma

\[\mathcal{F}(C \& D) = \mathcal{F}(C) \& \mathcal{F}(D) \quad \text{and} \quad \mathcal{F}(C \otimes D) = \mathcal{F}(C) \otimes \mathcal{F}(D) \]

Proof: easy for \(C \& D \).
More Magic

We also have

Lemma

\[\mathcal{F}(C \& D) = \mathcal{F}(C) \& \mathcal{F}(D) \quad \text{and} \quad \mathcal{F}(C \otimes D) = \mathcal{F}(C) \otimes \mathcal{F}(D) \]

Proof: easy for \(C \& D \).

For \(C \otimes D \), we need to show “\(r \) contains an infinite anticlique iff \(\pi_1(r) \) or \(\pi_2(r) \) contain an infinite anticlique”.

Suppose \(\pi_1(r) \) contains an infinite anticlique \(A \). For each \(a \in A \), take \(b \) such that \((a, b) \in A\).
More Magic

We also have

\[
\mathcal{F}(C \& D) = \mathcal{F}(C) \& \mathcal{F}(D) \quad \text{and} \quad \mathcal{F}(C \otimes D) = \mathcal{F}(C) \otimes \mathcal{F}(D)
\]

Lemma

Proof: easy for \(C \& D \).

For \(C \otimes D \), we need to show “r contains an infinite anticlique iff \(\pi_1(r) \) or \(\pi_2(r) \) contain an infinite anticlique”.

Suppose \(\pi_1(r) \) contains an infinite anticlique \(A \). For each \(a \in A \), take \(b \) such that \((a, b) \in A \).

The set of those \((a, b) \) is an infinite anticlique of \(C \otimes D \).
We also have

Lemma

\[
\mathcal{F}(C \& D) = \mathcal{F}(C) \& \mathcal{F}(D) \quad \text{and} \quad \mathcal{F}(C \otimes D) = \mathcal{F}(C) \otimes \mathcal{F}(D)
\]

Proof: easy for \(C \& D \).

For \(C \otimes D \), we need to show “\(r \) contains an infinite anticlique iff \(\pi_1(r) \) or \(\pi_2(r) \) contain an infinite anticlique”.

- Suppose \(\pi_1(r) \) contains an infinite anticlique \(A \). For each \(a \in A \), take \(b \) such that \((a, b) \in A \).
 - The set of those \((a, b) \) is an infinite anticlique of \(C \otimes D \).

- If \(r \) contains an infinite anticlique \(A \), then at least one of \(\pi_i(A) \) is infinite.
 - Suppose \(\pi_1(A) \) is infinite, but doesn’t contain an infinite anticlique.
More Magic

We also have

Lemma

\[\mathcal{F}(C \& D) = \mathcal{F}(C) \& \mathcal{F}(D) \quad \text{and} \quad \mathcal{F}(C \otimes D) = \mathcal{F}(C) \otimes \mathcal{F}(D) \]

Proof: easy for \(C \& D \).

For \(C \otimes D \), we need to show “\(r \) contains an infinite anticlique iff \(\pi_1(r) \) or \(\pi_2(r) \) contain an infinite anticlique”.

- Suppose \(\pi_1(r) \) contains an infinite anticlique \(A \). For each \(a \in A \), take \(b \) such that \((a, b) \in A\).
 The set of those \((a, b)\) is an infinite anticlique of \(C \otimes D \).

- If \(r \) contains an infinite anticlique \(A \), then at least one of \(\pi_i(A) \) is infinite.
 Suppose \(\pi_1(A) \) is infinite, but doesn’t contain an infinite anticlique.
 By Ramsey’s theorem, it contains an infinite clique \(C \). For each \(a \in C \), take \(b \) such that \((a, b) \in A\).
We also have

Lemma

\[\mathcal{F}(C \& D) = \mathcal{F}(C) \& \mathcal{F}(D) \quad \text{and} \quad \mathcal{F}(C \otimes D) = \mathcal{F}(C) \otimes \mathcal{F}(D) \]

Proof: easy for \(C \& D \).

For \(C \otimes D \), we need to show “\(r \) contains an infinite anticlique iff \(\pi_1(r) \) or \(\pi_2(r) \) contain an infinite anticlique”.

- Suppose \(\pi_1(r) \) contains an infinite anticlique \(A \). For each \(a \in A \), take \(b \) such that \((a, b) \in A \).
 The set of those \((a, b) \) is an infinite anticlique of \(C \otimes D \).

- If \(r \) contains an infinite anticlique \(A \), then at least one of \(\pi_i(A) \) is infinite.
 Suppose \(\pi_1(A) \) is infinite, but doesn’t contain an infinite anticlique.
 By Ramsey’s theorem, it contains an infinite clique \(C \). For each \(a \in C \), take \(b \) such that \((a, b) \in A \).
 The set of those \(b \) is an infinite anticlique in \(\pi_2(A) \subset \pi_2(r) \).
More Magic

We also have

Lemma

\[\mathcal{F}(C \& D) = \mathcal{F}(C) \& \mathcal{F}(D) \quad \text{and} \quad \mathcal{F}(C \otimes D) = \mathcal{F}(C) \otimes \mathcal{F}(D) \]

Unfortunately

Lemma

This doesn’t extend to the exponentials.