Linear logic, Ludics, Implicit Complexity, Operator Algebras

Geometry of Interaction

Laurent Regnier

Institut de Mathématiques de Luminy

・ロト ・ 中 ・ エ ・ ・ エ ・ うへつ

Syntax/Semantics

Syntax = finite (recursive) sets Semantics = embedding of syntax into abstract (nonrecursive) framework

▶ in model theory: formula ~→ sets, or elements of a (infinite) boolean algebra

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

- ► in denotational semantics: proofs ~→ morphism between domains
- ▶ etc.

The three levels of logic

The level of formula (truth) → model theory The level of proofs (provability) → denotational semantics The level of interaction (cut elimination) → geometry of interaction

・ロト ・ 中 ・ エ ・ ・ エ ・ うへつ

Gol programme = build a semantics for cut elimination.

"Instances" of Gol:

- ➤ a game semantics interpretation (Abramsky-Jagadeesan-Malacaria game model) ~→ traced monoidal categories
- the semantics of sharing reduction (Abadi-Gonthier-Lévy context semantics)
- ▶ an abstract machine (Danos-Regnier):
 - ► a regular paths computing device
 - a reversible automaton
 - Krivine's machine
- an abstract version of proof-nets experiments
- a precursor of ludics: Gol admits *localisation* (that's kind of the problem)

▲ロト ▲理 ト ▲ヨト ▲ヨト - ヨ - のの⊙

Formula $A \rightsquigarrow \text{space } S(A)$ Proof $\Pi : A \rightsquigarrow \text{operator } \pi \text{ acting on } S(A) \text{ (notation: } \pi : A)$ Cut $\rightsquigarrow \text{given } \pi_1 : A \multimap B \text{ and } \pi_2 : B \multimap C, \text{ define}$ $\text{Ex}(\pi_1, \pi_2) : A \multimap C$

・ロト ・ 中 ・ エ ・ ・ エ ・ うへつ

Note: π_1 , π_2 are not functions, $Ex(\pi_1, \pi_2)$ is not composition

Simplified (but not so much) version:

Given π_1 : A and π_2 : A^{\perp} , define $\mathsf{Ex}(\pi_1, \pi_2)$: \perp

 $\rightsquigarrow \pi_1 \perp \pi_2 \text{ if Ex}(\pi_1, \pi_2) \in \bot$ (see ludics...)

Categorical flavor, implicit use of duality (eg game semantics)

- ► S(A) is built by induction on A: $S(A \otimes B) = S(A \multimap B) = S(A) + S(B)$
- $\pi: A$ is an operator on $\mathcal{S}(A)$ (satisfying...)
- ► Possibly get a definability theorem: π : A if Π actually is a proof of A → full abstraction of AJM game model

What about pure lambda-calculus (or system F)?

Remark

$$\pi: A \multimap B = \begin{pmatrix} \pi^{A^{\perp}, A^{\perp}} & \pi^{A^{\perp}, B} \\ \pi^{B, A^{\perp}} & \pi^{B, B} \end{pmatrix}$$

ション ふゆ マ キャット ビー シンクション

Basic schema: the a posteriori typed variant

Girard's symmetric realisability construction (at work in: LL strong normalization, phase semantics, ludics, quantum coherent spaces...)

- Fix a given (universal) space S (eg S = ℓ²) → S(A) = S for all A: all operators act on S
- \blacktriangleright Fix a duality, $\textit{eg}\;\pi\perp\pi'$ iff $\pi\pi'$ is nilpotent
- T(A) is a set of operators defined by induction on A:

•
$$\mathcal{T}(A^{\perp}) = \mathcal{T}(A)^{\perp}$$

• $\mathcal{T}(A \otimes B) = \{\pi_1 + \pi_2, \pi_1 \in \mathcal{T}(A), \pi_2 \in \mathcal{T}(B)\}^{\perp \perp}$

ション ふゆ マ キャット ビー シンクション

Thus $\mathcal{T}(A \multimap B) = (\mathcal{T}(A) \otimes \mathcal{T}(B^{\perp}))^{\perp}$

• Adequation lemma: if Π proof of A then $\pi \in \mathcal{T}(A)$

Remark

What is
$$\pi_1 + \pi_2$$
?

Follow the a priori typed scheme: operators = partial permutations on finite sets

Formula
$$A \rightsquigarrow \mathcal{S}(A) = \{ occurrences \ of \ atoms \ in \ A \} \\ \mathcal{S}(A \otimes B) = \mathcal{S}(A \multimap B) = \mathcal{S}(A) + \mathcal{S}(B)$$

Proof \rightsquigarrow axiom links permutation on $\mathcal{S}(A)$

Cut \rightsquigarrow identify atoms in A to their dual in A^{\perp} ;

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

The multiplicative case (continued)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Remark

 π and σ are partial symetries: π^2 and σ^2 are projectors

Execution formula

Matrix representation:

$$\pi = \pi_1 + \pi_2 = \begin{pmatrix} \pi_1 & 0 \\ 0 & \pi_2 \end{pmatrix} = \begin{pmatrix} \pi_1^{A^{\perp}, A^{\perp}} & \pi_1^{A^{\perp}, B} & 0 & 0 \\ \pi_1^{B, A^{\perp}} & \pi_1^{B, B} & 0 & 0 \\ 0 & 0 & \pi_2^{B^{\perp}, B^{\perp}} & \pi_2^{B^{\perp}, C} \\ 0 & 0 & \pi_2^{C, B^{\perp}} & \pi_2^{C, C} \end{pmatrix}$$
$$\sigma = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

The execution formula

$$\mathsf{Ex}(\pi_1,\pi_2) = (1-\sigma^2)\pi\left(\sum_{k\geq 0} (\sigma\pi)^k\right)(1-\sigma^2)$$

e 🖅 🛛 e

Hint: let A be a MLL formula. A *point* in |A| may be viewed as a *set* (*ie* a vector over \mathbb{F}_2) of *localisations*(moves) in $\mathcal{S}(A)$

For example:

•
$$a = (a_1, a_2) \in |A_1 \otimes A_2| = |A|_1 \times |A|_2$$

$$\bullet \ \alpha \in \mathcal{S}(A_1 \otimes A_2) = \mathcal{S}(A_1) + \mathcal{S}(A_2) \rightsquigarrow \alpha = (i, \alpha_i), \ i = 1 \text{ or } 2, \\ \alpha_i \in \mathcal{S}(A_i)$$

►
$$(a_1, a_2) = a_1 \oplus a_2 = \{(1, \alpha_1), \alpha_1 \in a_1)\} \cup \{(2, \alpha_2), \alpha_2 \in a_2)\}$$

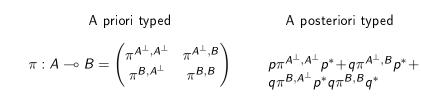
Theorem

If π : A is the GoI of Π : A then $a \in \llbracket \Pi \rrbracket$ iff $\pi(a) = a$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

NB Operators act now on infinite space



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○

•
$$\mathcal{S}(!A) = \mathbb{N} imes \mathcal{S}(A)$$
, adding a copy index

From $\pi: A \multimap B$ construct $!\pi: !A \multimap !B$:

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$$\begin{array}{l} \bullet \ !\pi^{!A,!A}(k,a) = (k,\pi^{A,A}(a)) \\ \bullet \ !\pi^{!A,!B}(k,a) = (k,\pi^{A,B}(a)) \\ \bullet \ !\pi^{!B,!A}(k,b) = (k,\pi^{B,A}(b)) \\ \bullet \ !\pi^{!B,!B}(k,b) = (k,\pi^{B,B}(b)) \end{array}$$

Exponentials continued

• Fixed space =
$$\mathbb{N}$$
 (or ℓ^2)

▶ Use
$$\langle .,. \rangle : \mathbb{N} \times \mathbb{N} \simeq \mathbb{N}$$
 for exponentials: $(k, a) \rightsquigarrow \langle k, a \rangle$

• Define $\pi \perp \pi'$ if $\pi \pi'$ nilpotent (*ie* computation is finite)

•
$$\mathcal{T}(!A) = \{!\pi, \pi \in \mathcal{T}(A)\}^{\perp \perp}$$

Theorem

if Π : A then $\pi \in \mathcal{T}(A)$

This is a strong normalisation theorem.

In the setting of Hilbert spaces one can alternatively define duality by means of *weak* nilpotency, allowing to account for non terminating terms *eg* fixed points.

- Monoid with 0 generated by p, q (multiplicatives), d (dereliction), r, s (contraction), t (digging)
- ▶ Involution: $0^* = 0$, $1^* = 1$, $(uv)^* = v^*u^*$
- ► Morphism: !(0) = 0, !(1) = 1, !(u)!(v) = !(uv), $!(u)^* = !(u^*)$

ション ふゆ マ キャット ビー シンクション

- Annihilation equations: $x^*y = \delta_{xy}$ (x, y generators)
- Commutation equations:
 - !(u)d = du
 - !(u)x = x!(u) for x = r, s
 - !(u)t = t!(!(u))

▶ Orientate equations ~→ rewriting system

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

- Normal forms = 0 or AB^*
- Inverse semigroup structure

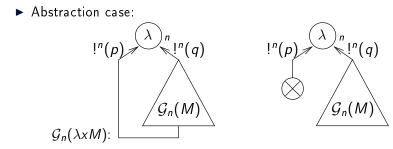
The path interpretation of Gol

To a lambda-term M we associate a Gol weighted graph $\mathcal{G}_n(M)$:

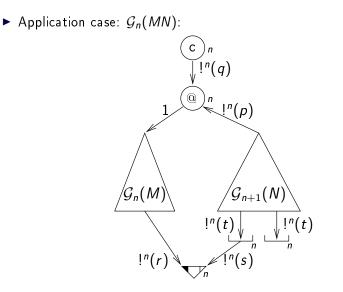
► Variable case:

Sac

イロト イポト イヨト イヨト



The path interpretation of Gol



▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 - のへで

The path interpretation of Gol

Note: γ path in $\mathcal{G}_n(M)$, $w(\gamma)$ its weight is a Gol operator

Definition

Execution paths = invariant of beta-reduction = virtual redexes Regular path = non null weight path $(w(\gamma) \neq 0)$

Theorem

 γ is an execution path iff γ is regular

Theorem

If M is a term (thus an MELL proof) then

$$E_X(M) = \sum_{\gamma \in \mathcal{R}} w(\gamma)$$

・ロット (雪) (日) (日)

Э

SQA

where $\mathcal{R} = \{ regular \ paths \in \mathcal{G}_0(M) \}$

Term (proof-net) \rightsquigarrow weighted graph:

- ▶ token = element of S (the space in the a posteriori typed scheme)
- weighted edge = transition
- \rightsquigarrow Term (proof-net) = automaton: the IAM

Remark

All transitions are reversible and have disjoint domains and codomains \rightsquigarrow the automaton is bideterministic

ション ふゆ マ キャット ビー シンクション

In order to make the abstract machine explicit, redefine the space ${\cal S}$ of tokens:

- token (state) = (B, S) (really B.S):
 - $B = box \ stack$ of exponential signatures
 - S = balanced stack of exponential signatures + multiplicative constants P and Q

・ロト ・ 中下・ エリト ・ ヨー・ うへつ

- exponential signature = binary tree with leaves in $\{\Box, R, S\}$
- Transitions = partial transformations on (B, S)

Theorem

 $\mathit{KAM} \subset \mathit{IAM}$

A lot more to say

- Gol for additives
- ▶ Pointifixion: relating Gol/AJM games with HO
- Coherence problems: $\Pi \rightsquigarrow \Pi_0 \not\rightarrow \mathsf{Ex}(\pi) = \pi_0$
- Gol for other systems, eg interaction nets, π-calculus, differential nets

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

Þ