
Linear logic, Ludics, Implicit Complexity, Operator
Algebras

Geometry of Interaction

Laurent Regnier

Institut de Mathématiques de Luminy

Disclaimer

Syntax/Semantics

Syntax = �nite (recursive) sets
Semantics = embedding of syntax into abstract (nonrecursive)

framework

I in model theory: formula sets, or elements of a (in�nite)
boolean algebra

I in denotational semantics: proofs morphism between
domains

I etc.

1987: birth of the GoI

The three levels of logic

The level of formula (truth) model theory
The level of proofs (provability) denotational semantics

The level of interaction (cut elimination) geometry of interaction

GoI programme = build a semantics for cut elimination.

GoI in litterature

�Instances� of GoI:

I a game semantics interpretation
(Abramsky-Jagadeesan-Malacaria game model) traced
monoidal categories

I the semantics of sharing reduction (Abadi-Gonthier-Lévy
context semantics)

I an abstract machine (Danos-Regnier):
I a regular paths computing device
I a reversible automaton
I Krivine's machine

I an abstract version of proof-nets experiments

I a precursor of ludics: GoI admits localisation (that's kind of
the problem)

The basic schema of GoI

Formula A space S(A)
Proof Π : A operator π acting on S(A) (notation: π : A)

Cut given π1 : A (B and π2 : B (C , de�ne
Ex(π1, π2) : A(C

Note: π1, π2 are not functions, Ex(π1, π2) is not composition

Simpli�ed (but not so much) version:

Given π1 : A and π2 : A⊥, de�ne Ex(π1, π2) : ⊥

 π1 ⊥ π2 if Ex(π1, π2) ∈ ⊥ (see ludics...)

Basic schema: the a priori typed variant

Categorical �avor, implicit use of duality (eg game semantics)

I S(A) is built by induction on A:
S(A⊗ B) = S(A(B) = S(A) + S(B)

I π : A is an operator on S(A) (satisfying. . .)

I Possibly get a de�nability theorem: π : A if Π actually is a
proof of A full abstraction of AJM game model

What about pure lambda-calculus (or system F)?

Remark

π : A(B =

(
πA⊥,A⊥ πA⊥,B

πB,A⊥ πB,B

)

Basic schema: the a posteriori typed variant

Girard's symmetric realisability construction (at work in: LL strong
normalization, phase semantics, ludics, quantum coherent
spaces. . .)

I Fix a given (universal) space S (eg S = `2) S(A) = S for
all A: all operators act on S

I Fix a duality, eg π ⊥ π′ i� ππ′ is nilpotent

I T (A) is a set of operators de�ned by induction on A:

I T (A⊥) = T (A)⊥

I T (A⊗ B) = {π1 + π2, π1 ∈ T (A), π2 ∈ T (B)}⊥⊥

Thus T (A(B) = (T (A)⊗ T (B⊥))⊥

I Adequation lemma: if Π proof of A then π ∈ T (A)

Remark

What is π1 + π2?

The multiplicative case: MLL

Follow the a priori typed scheme: operators = partial permutations
on �nite sets

Formula A S(A) = {occurrences of atoms in A}
S(A⊗ B) = S(A(B) = S(A) + S(B)

Proof axiom links permutation on S(A)

Cut identify atoms in A to their dual in A⊥;

The multiplicative case (continued)

I π1 : A(B , π2 : B (C ,
 π = π1 + π2 : (A(B)⊗ (B (C)

I σ : (A(B)⊗ (B (C) partial permutation on
S(A⊥) + S(B) + S(B⊥) + S(C) exchanging dual (occurrences
of) atoms in B and B⊥

Remark

π and σ are partial symetries: π2 and σ2 are projectors

Execution formula

Matrix representation:

π = π1 + π2 =

(
π1 0
0 π2

)
=


πA⊥,A⊥

1 πA⊥,B
1 0 0

πB,A⊥

1 πB,B
1 0 0

0 0 πB⊥,B⊥

2 πB⊥,C
2

0 0 πC ,B⊥

2 πC ,C
2



σ =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


The execution formula

Ex(π1, π2) = (1− σ2)π

∑
k≥0

(σπ)k

 (1− σ2)

 π1 ⊥ π2 if σπ = σ(π1 + π2) is nilpotent (the sum is actually
�nite)

GoI and experiments

Hint: let A be a MLL formula. A point in |A| may be viewed as a
set (ie a vector over F2) of localisations(moves) in S(A)

For example:

I a = (a1, a2) ∈ |A1 ⊗ A2| = |A|1 × |A|2
I α ∈ S(A1 ⊗ A2) = S(A1) + S(A2) α = (i , αi), i = 1 or 2,

αi ∈ S(Ai)

I (a1, a2) = a1 ⊕ a2 = {(1, α1), α1 ∈ a1)} ∪ {(2, α2), α2 ∈ a2)}

Theorem

If π : A is the GoI of Π : A then a ∈ JΠK i� π(a) = a

The multiplicative case in the a posteriori typed scheme

I Fixed space = N (or `2)

I p, q : N ↪→ N (iso N + N ' N), eg p(k) = 2k and
q(k) = 2k + 1

I π1 + π2 = pπ1p
∗ + qπ2q

∗

(π1 + π2)(2k) = 2π1(k) and (π1 + π2)(2k + 1) = 2π2(k) + 1

NB Operators act now on in�nite space

Relating the two schemes

A priori typed A posteriori typed

π : A(B =

(
πA⊥,A⊥ πA⊥,B

πB,A⊥ πB,B

)
pπA⊥,A⊥p∗+qπA⊥,Bp∗+
qπB,A⊥p∗qπB,Bq∗

Adding exponentials: the a priori typed scheme

I S(!A) = N× S(A), adding a copy index

I From π : A(B construct !π : !A(!B :

I !π!A,!A(k, a) = (k, πA,A(a))
I !π!A,!B(k, a) = (k, πA,B(a))
I !π!B,!A(k, b) = (k, πB,A(b))
I !π!B,!B(k, b) = (k, πB,B(b))

Exponentials continued

d : !A (A : d∗

d !A,A : (0, a) ↔ a : dA,!A

c : !A (!A1 ⊗ !A2 : c∗

c !A,!A⊗!A : (p(k), a) ↔ (k , a)1 : c !A⊗!A,!A

(q(k), a) ↔ (k , a)2 : c !A⊗!A,!A

dig : !A (!!A : dig∗

dig !A,!!A : (τ(k , k ′), a) ↔ (k , (k ′, a)) : dig !!A,!A

where τ : N× N ↪→ N

Exponentials: the a posteriori typed scheme

I Fixed space = N (or `2)

I Use 〈., .〉 : N× N ' N for exponentials: (k , a) 〈k , a〉
I De�ne π ⊥ π′ if ππ′ nilpotent (ie computation is �nite)

I T (!A) = {!π, π ∈ T (A)}⊥⊥

Theorem

if Π : A then π ∈ T (A)

This is a strong normalisation theorem.
In the setting of Hilbert spaces one can alternatively de�ne duality
by means of weak nilpotency, allowing to account for non
terminating terms eg �xed points.

The GoI equationnal theory

I Monoid with 0 generated by p, q (multiplicatives), d
(dereliction), r , s (contraction), t (digging)

I Involution: 0∗ = 0, 1∗ = 1, (uv)∗ = v∗u∗

I Morphism: !(0) = 0, !(1) = 1, !(u)!(v) = !(uv), !(u)∗ = !(u∗)

I Annihilation equations: x∗y = δxy (x , y generators)

I Commutation equations:
I !(u)d = du
I !(u)x = x!(u) for x = r , s
I !(u)t = t!(!(u))

The theorem AB
∗

I Orientate equations rewriting system

I Normal forms = 0 or AB∗

I Inverse semigroup structure

The path interpretation of GoI

To a lambda-term M we associate a GoI weighted graph Gn(M):

I Variable case:

n

nv

!n(d)

I Abstraction case:

Gn(λxM):

Gn(M) Gn(M)

λ
!n(q)!n(p)

n nλ
!n(q)!n(p)

The path interpretation of GoI

I Application case: Gn(MN):

!n(q)

n

n

@

c

!n(t) !n(t)

n

n n

!n(r) !n(s)

Gn(M) Gn+1(N)

1 !n(p)

The path interpretation of GoI

Note: γ path in Gn(M), w(γ) its weight is a GoI operator

De�nition

Execution paths = invariant of beta-reduction = virtual redexes
Regular path = non null weight path (w(γ) 6= 0)

Theorem

γ is an execution path i� γ is regular

Theorem

If M is a term (thus an MELL proof) then

Ex(M) =
∑
γ∈R

w(γ)

where R = {regular paths ∈ G0(M)}

Interaction Abstract Machine

Term (proof-net) weighted graph:

I token = element of S (the space in the a posteriori typed
scheme)

I weighted edge = transition

 Term (proof-net) = automaton: the IAM

Remark

All transitions are reversible and have disjoint domains and

codomains the automaton is bideterministic

IAM

In order to make the abstract machine explicit, rede�ne the space S

of tokens:

I token (state) = (B, S) (really B.S):
I B = box stack of exponential signatures
I S = balanced stack of exponential signatures + multiplicative

constants P and Q
I exponential signature = binary tree with leaves in {�,R,S}

I Transitions = partial transformations on (B, S)

Theorem

KAM ⊂ IAM

Conclusion

A lot more to say

I GoI for additives

I Pointi�xion: relating GoI/AJM games with HO

I Coherence problems: Π Π0 6→ Ex(π) = π0

I GoI for other systems, eg interaction nets, π-calculus,
di�erential nets

I . . .

	Introduction
	The geometry of interaction programme
	The two GoI schemes

	The multiplicative case
	A priori typed scheme
	A posteriori typed scheme

	The MELL case
	The a priori typed scheme
	The a posteriori typed scheme

	Paths
	Equationnal theory
	Path interpretation of lambda-calculus
	The Interaction Abstract Machine

	Conclusion

