
Theoretical Computer Science 292 (2003) 131–143
www.elsevier.com/locate/tcs

Minimizing subsequential transducers: a survey

Christian Cho'rut
LIAFA, Universit�e Paris 7, 2, Pl. Jussieu, 75 251 Paris Cedex 05, France

Keywords: Sequential machines; Finite automata; Minimization

1. Introduction

This paper deals with the notion of subsequential transducer, i.e., of ,nite deter-
ministic automaton whose transitions are provided with an “output”. Its purpose is
twofold. First, it is meant to give better access to the result saying, in loose terms,
that it is possible to de,ne a notion of morphism on subsequential transducers in
such a way that the ordinary theory of deterministic automata carries over to subse-
quential transducers. In particular, given a function realized by some subsequential
transducer, there exists a “minimal” subsequential transducer realizing it such that
all trimmed subsequential transducers map onto it. This is a critical departure from
the more general case of rational functions where the existence of such a minimal
object is still unsettled, cf. [13]. Thus, though more complex than ,nite determin-
istic automata, subsequential transducers enjoy the same “syntactical” property and
the techniques for proving this fact are not substantially di'erent. This appeared in
my doctorial thesis and in the proceedings of the ICALP’79 conference. To be more
precise, this was actually stated in a slightly larger context since the function was
supposed to map the free monoid into the free group. In spite of being more gen-
eral and easily “downgradable” to free monoids, this formalism has probably con-
fused some readers and obscured the fact that it was dealing with free monoids
also.

The second objective is to give an account of further works concerned with the
actual construction of minimal transducers. All the constructions are based on the
observation, which I made in my ICALP paper, that it is possible to preserve the
structure of the underlying automaton and pull the output labels “upstream” in such
a way that the longest common pre,x of the labels of all the ,nal paths leaving a
given state is the empty word. A transducer enjoying this property can be minimized

E-mail address: cc@liafa.jussieu.fr (C. Cho'rut).

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00219 -5

132 C. Cho'rut / Theoretical Computer Science 292 (2003) 131–143

by considering the underlying ,nite automaton only. As a consequence, the problem
reduces to estimating the cost of computing these longest common pre,xes for each
state. This approach is adopted in [12, p. 70] where it is observed that the compu-
tation is polynomial in time but no estimate of the exponent of the polynomial is
given. The ,rst serious attempt dates back to [8], see also [10], where a worst case
time complexity in O((L + 1)m) is claimed, with m the number of transitions and L
the maximum length, ranging over the states, of these longest common pre,xes. Al-
though this algorithm works correctly on most randomly given transducers, it is based
on a wrong implicit assumption which makes it fail in some “pathological” cases,
an example of which is given in the last section. Recently, BEeal and Carton estab-
lished this claim rigorously [3]. Their proof shows that the result requires a much
more sophisticated artillery than that employed by Mohri. Later on, Breslauer tackled
the problem in a di'erent way by reducing it to a problem of single source short-
est paths in a graph and by exhibiting an algorithm whose complexity is essentially
proportional to the sum of the lengths of the output labels of the transducer. It starts
with observing that substituting lengths for the actual outputs gives an upper bound
on the length of the longest common pre,xes. The clever idea consists in imposing an
extra condition which, combined with the length condition, gives the correct result. It
is diFcult to compare the two complexities since they are expressed in terms of di'er-
ent parameters. It can, however, be said roughly, that Breslauer’s algorithm is slightly
less eFcient than the corrected version of Mohri’s algorithm for “randomly” given
transducers.

There is a growing interest for subsequential functions outside the community of
theoretical computer scientists. Indeed, it was long observed that they are relevant to
lexical analysis, text processing, coding theory, computer arithmetics etc. Nowadays,
transducers are commonly used by people involved with speech recognition [10] and
machine learning [11]. Actually, there is ongoing research for extending these results
to the much more diFcult case where the outputs of the transducers are subsets of
words, cf., e.g. [9]. So the topic is not yet exhausted. Subsequential functions can
actually be viewed as a special case of rational relations. We refer the reader to Jean
Berstel’s textbook on the topic for a general exposition of transducers and their relation
to traditional language theory [4].

2. Preliminaries

The present theory deals largely with partial functions. Indeed, the predecessors of
the subsequential transducers were the generalized sequential machines of Ginsburg
and Rose [7], all the states of which were ,nal (equivalently which de,ned total
functions). Soon some authors introduced the distinction between ,nal and non-,nal
states but SchKutzenberger added an initial and ,nal processing of each input word which
preserved the main feature of the model, that of being completely deterministic, while
suppressing the arti,cial conditions of the original de,nition. That this model is relevant

C. Cho'rut / Theoretical Computer Science 292 (2003) 131–143 133

is proven by the nice functional equations characterizing subsequential functions [14] or
the metric characterization “La la Ginsburg and Rose” which they enjoy [6]. However,
the price to pay is having to speak of partial rather than total functions. In order to
avoid tedious case studies as much as possible, we augment any set X with an extra
element representing the “unde,ned value” denoted by 0 and we view each partial
function f :X →Y as a total function mapping X ∪{0} into the set Y ∪{0} where
f(x)= 0 whenever f(x) is unde,ned and with the convention f(0)= 0. Observe that
the new “unde,ned value” is common to all sets considered, be it a free monoid, a
set of states or whatever. We may think of f as assigning the singleton {f(x)} to the
singleton {x} whenever f(x) is de,ned and the empty set otherwise. Equivalently, the
0 represents the empty set. The domain of the partial function f is the set of x∈X
such that f(x) �=0 and is denoted as usual by Dom(f).

2.1. Notations

The free monoid generated by a set (or alphabet) A is denoted by A∗. Its elements
are words, its unit is the empty word and is denoted by �. We set M (A)=A∗ ∪{0}.
By making the element 0 act as a zero on M (A) (u0=0u=0 for all u) M (A) is a
monoid. The concatenation product between elements is extended in the standard way
to subsets: if X; Y are two subsets then XY = {xy | x∈X; y∈Y}. In particular, if X = ∅
then XY = ∅.

Given two elements u; v∈M (A), we say u is a pre7x of v whenever there exists an
element w such that v= uw holds and we write u6v. Observe that this de,nes a partial
ordering whose greatest element is 0. Given a subset X ⊆ M (A) we denote by

∧
X the

longest common pre,x of the words in X if X �= ∅. We pose
∧
X =0 if X contains no

word, i.e., X = ∅ or X = {0}. When X contains two, not necessarily di'erent elements
u; v, we simply write u∧ v instead of ∧{u; v}. It is clear that if X ∩ A∗ �= ∅, then there
exist two words u and v such that

∧
X = u ∧ v.

Given two elements u; v∈M (A), we pose u−1v=w if v= uw holds for some unique
element w and u−1v=0 otherwise, e.g. (ab)−1abaa= aa, (ab)−1baa=0 (there is no
element w), (ab)−10= 0, and 0−10= 0 (there are in,nitely many elements w). The
following holds:

∀u; v; w ∈ M (A); (uv)−1w = v−1(u−1w); (1)

∀u ∈ M (A); u−10 = 0−1u = 0; (2)

∀u ∈ A∗; u−1u = �: (3)

Of course, if x is an element and X; Y are two subsets of M (A) we have

xX ⊆ Y ⇒
∧

Y 6 x
∧

X; (4)

∧
xX = x

∧
X: (5)

134 C. Cho'rut / Theoretical Computer Science 292 (2003) 131–143

2.2. Subsequential transducers and subsequential functions

We recall the basics on the notion of subsequential transducers introduced by
SchKutzenberger in [14]. It is a deterministic device provided with a ,nite memory
that performs a mapping from a free monoid into another.

A subsequential transducer is a construct T=(Q; A; B, q−; t; i) where
(i) A and B are the input and output alphabets.
(ii) Q is the ,nite set of states.
(iii) q− is a subset of Q containing at most one element in which case we identify

this element with the subset and we call it the initial state.
(iv) t :Q→B∗ is the termination partial function.
(v) i∈M (B) is the initialization value with i∈B∗ if q− is a singleton and i=0 if

q− = ∅.
We assume that a transition partial function is given which associates with each

pair (q; a)∈Q×A of its domain the next state q · a∈Q. Observe that the function
de,nes an action on the monoid M (A) by the usual induction on the length of the
words and by setting q · 0=0 for all q∈Q and 0 · a=0 for all a∈A∪{0}. Also a
production function associates with each pair (q; a)∈Q×A of its domain the output
word q ∗ a∈B∗. We denote by Q+ the domain of t and call it the subset of 7nal
states. A path is a ,nite sequence of quadruples in Q×A×B∗ ×Q∪{(0; 0; 0; 0)}.

(q0; a0; y0; q1); (q1; a1; y1; q2); : : : ; (qn−1; an−1; yn−1; qn)

with qi · ai = qi+1 and qi ∗ ai =yi for all i=0; : : : ; n−1. We say the path starts in q0 and
ends in qn. A path is 7nal if qn ∈Q+ and it is successful if furthermore q0 = q−. In par-
ticular, when q− =0 then there is no successful path. The elements a0a1 : : : an−1 ∈M (A)
and y0y1 : : : yn−1 ∈M (B) are, respectively, the input and the output labels of the path.
We consider an empty path (n=0) for each state q and we view it as starting and
ending in q and labelled by �. A transducer is trimmed if each state q∈Q lies on a
successful path.

The function realized by the subsequential transducer is also called subsequential
and is de,ned for all u∈M (A) by the condition

f(u) = i(q− ∗ u)t(q− · u):

It is clear from the de,nition that there is no loss of generality in assuming that the
transition and the production functions have the same domain of de,nition.

For example, the function realized by the transducer of Fig.1 has the initial state
(here 0) indicated by an incoming arrow with no source and labeled by i= �. The
,nal states q (here 1 and 3) are indicated by outcoming arrows with no target and
labelled by t(q) (here ba and a; respectively).
Unless otherwise stated, all transducers considered in this paper are assumed

trimmed. Observe that there exists a unique trimmed transducer realizing the func-
tion which is nowhere de,ned.

C. Cho'rut / Theoretical Computer Science 292 (2003) 131–143 135

Fig. 1. A subsequential transducer.

3. Syntactic congruence

Given a function f :A∗ →B∗, with each u∈A∗ we set F(u)=
∧
w∈A∗ f(uw)∈M (B).

Observe that by equality (4) this function F is pre,x preserving, i.e., u6v implies
F(u)6F(v). For all u; v∈A∗ we de,ne u∼

f
v is and only if the following is satis,ed:

for all w ∈ A∗; F(u)−1f(uw) = F(v)−1f(vw): (6)

This equivalence relation is ,ner than the right equivalence associated with the un-
derlying automaton (the “regular” equivalence in the literature) since the following
holds:

u∼
f
v implies for all w ∈ A∗: uw ∈ Dom(f) ⇔ vw ∈ Dom(f): (7)

In order to check whether it is right invariant we denote by g(w) the common value of
both sides of Eq. (6). Observe that F(u)= 0 holds if and only if F(v)= 0. In this case
we have F(ua)=F(va)= 0 and we are done. Assume now F(ua) �=0 and F(va) �=0
and set x=

∧
w∈A∗ g(aw)∈B∗. By equality (5), we get

F(ua) =
∧

w∈A∗
f(uaw) =

∧

w∈A∗
F(u)g(aw) = F(u)

∧

w∈A∗
g(aw) = F(u)x

and thus

F(ua)−1f(uaw) = (F(u)x)−1F(u)g(aw) = x−1g(aw):

The last equality follows from (F(u)x)−1F(u)= x−1(F(u)−1F(u))= x−1 by virtue of
identities (1). In the same way, we would prove that F(va)−1f(vaw)= x−1g(aw) holds.

We call ∼
f

the syntactic congruence of the function.

We may associate with each partial function f :A∗ →B∗ a (not necessarily ,nite)
subsequential transducer

Tf = (Qf; A; B; qf; tf; if); (8)

136 C. Cho'rut / Theoretical Computer Science 292 (2003) 131–143

where Qf = {[u] |F(u) �=0}, qf = {[�]} if F(�) �=0 and qf = ∅ otherwise, if =F(�)
and tf([u])=F(u)−1f(u) for all u∈A∗ which is well-de,ned by equality (6). For the
transition function we set [u] · a=0 if F(ua)= 0; else [u] · a= [u · a] which is well-
de,ned since the equivalence is right invariant. The production function is de,ned
by [u] ∗ a=F(u)−1F(ua). In order to show that this is also well-de,ned consider
u∼
f
v. We have F(ua)= 0 is and only if F(va)= 0. Assume thus that F(ua) �=0 and

choose an arbitrary word w such that uaw; vaw∈Dom(f) (such a word exists by
(7)). Then applying the de,nition of the syntactic equivalence to u∼

f
v there exists

x∈B∗ such that f(uaw)=F(u)x and f(vaw)=F(v)x. Also, the condition ua∼
f
va

implies that there exists y∈B∗ such that f(uaw)=F(ua)y and f(vaw)=F(va)y
holds. Now, F is pre,x preserving and f(uaw)=F(u)x=F(ua)y which shows that
for some z ∈B∗ we have x= zy. Then we obtain z=F(u)−1F(ua)=F(v)−1F(va)
as claimed.

Now, we verify that the transducer thus de,ned computes the function f. Let
us calculate the image of u= a1a2 : : : an ∈A∗ in the subsequential transducer. Pose
qi = qf · a1 : : : ai for all i=0; : : : ; n. Compute

F(�)(qf ∗ u)tf(qf · u) = F(�)(qf ∗ a1)(q1 ∗ a2) : : : (qn−1 ∗ an)tf(qn)
= F(�)(F(�)−1F(a1))(F(a1)−1F(a1a2)) : : :

×(F(a1 : : : an−1)−1F(a1 : : : an))F(u)−1f(u)

= f(u):

Indeed, if all F(a1 : : : ai)’s are di'erent from 0, then everything cancels out except
f(u). Otherwise, both sides are equal to 0.

Theorem 1. A function f :A∗ →B∗ is subsequential if and only if its syntactic con-
gruence has 7nite index.

Proof. Clearly, the condition is necessary. Indeed, let T be a subsequential trans-
ducer realizing f and consider the equivalence on A∗ de,ned by u∼ v if and only
if q− · u= q− · v. If q− · u= q− · v=0 then F(u0)=F(v)= 0 and condition (6) is met.
Otherwise, if q= q− · u= q− · v �=0 holds for all w∈A∗; denote by h(w) the value
(q ∗ w)t(q ·w). Finally, let y=

∧
w∈A∗ h(w). Then we have F(u)= i(q− ∗ u)y, F(v)

= i(q− ∗ v)y and thus

F(u)−1f(uw) = y−1h(w) = F(v)−1f(vw):

Since the relation ∼ is ,ner than the syntactic congruence, the latter has ,nite index.
The converse is a consequence of the construction previous to the present theorem.

C. Cho'rut / Theoretical Computer Science 292 (2003) 131–143 137

4. Morphisms of subsequential transducers

The purpose of this section is to show that it is posible to de,ne a notion of mor-
phisms on the set of trimmed subsequential transducers. Consider two such transducers.

T(1) = (Q(1); A; B; q(1)− ; t(1); i(1)) and T(2) = (Q(2); A; B; q(2)− ; t(2); i(2)):

We are given a partial mapping h :Q(1) →Q(2) and a total mapping ‘ :Q(1) ∈B∗ ∪
(B∗)−1, where (B∗)−1 is the set of formal inverses of elements of B∗. We denote by
Q(1)

+ ; and Q(2)
+ the sets of ,nal states of T(1) and T(2), respectively.

The pair (h; ‘) is a morphism of T(1) onto T(2) if the following conditions hold:

h(q(1)−) = q(2)− and Q(1)
+ = h−1(Q(2)

+); (9)

for all q ∈ Q and a ∈ A: h(q) ·2 a = h(q ·1 a); (10)

i(2) = i(1)‘(q−); (11)

for all q ∈ Q: t(2)(h(q)) = ‘(q)−1t(1)(q); (12)

for all q ∈ Q and a ∈ A: h(q) ∗2 a = ‘(q)−1(q ∗1 a)‘(q ·1 a): (13)

The mapping ‘, meant as de,ning a “lag” on the output labels, requires some comment.
Observe that the labels of the transitions leaving state 1 of Fig. 1 all start with the
pre,x b. Since 1 is not a ,nal state, the behaviour of the transducer is not modi,ed
if this pre,x is stripped of these labels and assigned to the right of the incoming
transitions. By a formal inverse of u= b1 : : : bn we mean the sequence u= b−1

n : : : b−1
1 .

The formal inverse of the empty word � is � itself. If u∈B∗ the notation u−1v is to
be understood as in Section 2.1. If u∈ (B∗)−1 then u is the formal inverse of u′ ∈B∗

and by de,nition u−1v is equal to u′v.
For example, the transducer of Fig. 1 is mapped onto the following transducer via the

morphism (h; ‘) where h(0)= h(2)= Q0; h(1)= h(3)= Q1 ‘(0)= �, ‘(1)= ba; ‘(2)= �;
‘(3)= a (see Fig. 2).

Proposition 1. If (h; ‘) is a morphism from T(1) onto T(2) then the two transducers
realize the same subsequential functions.

Fig. 2. A morphic image of the subsequential transducer of Fig. 1.

138 C. Cho'rut / Theoretical Computer Science 292 (2003) 131–143

Proof. Indeed, consider a word u= a1a2 : : : an and its computation in the transducer
T(1). For all 06 i 6 n set q− · a1 : : : ai = qi. Then the image of u in T(1) is the word

i(1)(q0 ∗1 a1)(q1 ∗1 a2) : : : (qn−1 ∗1 an)t(1)(qn):

By the de,nition of the morphism, and by setting h(qi)= q(2)i for i=0; : : : ; n, the
image of the same word in the transducer T(2) is

i(2)(q(2)0 ∗2 a1)(q(2)1 ∗2 a2) : : : (q(2)n−1 ∗2 an)t(2)(qn)

= i(1)‘(q0)(‘(q0)−1(q0 ∗1 a1)‘(q1)) : : :
(‘(qn−1)−1(qn−1 ∗1 a1)‘(qn))‘(qn)−1t(1)(qn)

= i(1)(q0 ∗1 a1)(q1 ∗1 a2) : : : (qn−1 ∗1 an)t(1)(qn):

Because of the hypotheses on h, the converse is also true.

Proposition 2. For all trimmed subsequential transducers T realizing a subsequential
function f; there exists a unique morphism from T onto Tf.

Proof. Given a transducer T=(Q; A; B; q−; t; i) and the transducer (8), we de,ne a
mapping (h; ‘) from the former onto the latter and then we verify whether it satis,es
conditions (9)–(13). For all q∈Q we set

h(q) = [u] for some arbitrary u with q− · u = q;

‘(q) =
∧

q·w∈Q+

(q ∗ w)t(q · w):

Clearly h is well-de,ned since q− · u= q− · v implies [u] = [v].
It is straightforward to see that condition (9) is satis,ed. Since ∼

f
is right invariant we

have h(q · a)= [ua] = [u] · a= h(q) · a proving that condition (10) also holds. Observe
that the function ‘ satis,es, for all u∈A∗ and q− · u= q,

i(q− ∗ u)‘(q) = F(u): (14)

Indeed, we have

F(u) =
∧

w∈A∗
i(q− ∗ u)(q ∗ w)t(q · w) = i(q− ∗ u)

∧

w∈A∗
(q ∗ w)t(q · w)

= i(q− ∗ u)‘(q):

As a consequence, we get F(�)= i‘(q−) which is condition (11). For all q− · u= q∈
Q+ the following holds:

tf(h(q)) = F(u)−1f(u) = F(u)−1i(q− ∗ u)t(q) = ‘(q)−1t(q);

which establishes condition (12).

C. Cho'rut / Theoretical Computer Science 292 (2003) 131–143 139

Applying equality (14) to ua, we have i(q− ∗ ua)‘(q · a)=F(ua). This entails

‘(q)−1(q ∗ a)‘(q · a) = F(u)−1i(q− ∗ u)(q ∗ a)(q− ∗ ua)−1i−1F(ua)

= F(u)−1F(ua)

which completes the veri,cation of condition (13).

5. Complexity considerations

Given a subsequential transducer T and a state q, denote by �T(q) the longest
common pre,x of all the output labels of the ,nal paths starting from q, i.e.,

�T(q) =
∧

u∈A∗
(q ∗ u)t(q · u):

The construction of the minimal transducer realizing a given subsequential function is
based on the simple property ,rst observed in [6, p. 96] that there exists a transducer T′

realizing the same function as T having the same underlying automaton and such that
�T′(q)= � holds for all states q∈Q. Indeed, we can de,ne a total mapping � :Q→B∗

by setting

�(q) =
∧

{(q ∗ u)t(q:u) | q · u ∈ Q+}: (15)

De,ne a new production function by setting q◦a= �(q)−1(q∗a)�(q · a). That q◦a∈B∗

holds results from equality (4) and the following inclusion:

(q ∗ a){((q · a) ∗ u)(t(q · au)) | a ∈ A; u ∈ A∗}

= {(q ∗ au)(t(q · au)) | a ∈ A; u ∈ A∗} ⊆ {(q ∗ u)(t(q · u)) | u ∈ A∗}:

The resulting transducer has the right property. As a consequence of Proposition
2, minimizing the transducer T′ can be achieved by minimizing its underlying ,-
nite automaton since the function ‘ in the de,nition of a morphism is then
necessarily constant and equal to the empty word, e.g. the transducer of Fig. 1 can
be transformed into the transducer shown in Fig. 3 which enjoys the right
property.

Minimizing an automaton can be achieved in worst case time complexity O(n log n),
where n is the number of states, cf. [1], while computing all the longest pre,xes has
complexity O((L+1)m), where m is the number of transitions and L is the maximum
of the lengths of �T(q) for q∈Q as is brieRy reported now.

Several authors have investigated the complexity of constructing the minimal trans-
ducer [8, 5, 3]. They use di'erent methods but they all start by observing that the input
labels are irrelevant and thus can be ignored. In order to account for the functions

140 C. Cho'rut / Theoretical Computer Science 292 (2003) 131–143

Fig. 3. A subsequential transducer.

Fig. 4. The graph associated with Fig. 1.

t and i, two new vertices, a source s and a target t, are added. The resulting ob-
ject is a ,nite graph G=(Q; E) whose vertices are the states of the transducer and
whose set E of edges, labelled by words in B∗, are its transitions. In order to make
this more evident, we adopt the terminology of graphs and speak of nodes rather than
states, of edges rather than transitions. The label born by the edge (q; p) is denoted
by label(q; p) (with label(q; p)= 0 if (q; p) =∈E). The question arises as to how
to compute, for all nodes q of the graph, the longest common pre,x �(q) of all the
paths starting in q and ending in t, e.g. Fig. 1 is transformed into a graph as shown in
Fig. 4.

The maximum length of �(q) when q ranges over Q is denoted by L. Mohri was the
,rst to propose an algorithm with claimed worst case time complexity in O((L+1)m),
where m is the number of edges. However, it does not work correctly in all cases
since it is based on the wrong (though not explicitly stated) assumption that in order
to guarantee the “global” condition �(q)= � for all q∈Q, it suFces to ensure the
“local” condition:

∧
(q;p)∈E label(q; p)= � for all q∈Q. Fig. 5 shows that this need

not be the case. In fact, it is tempting to consider the Q-tuple (�(q))q∈Q as the solution
of a system of equations over the monoid M (B).

C. Cho'rut / Theoretical Computer Science 292 (2003) 131–143 141

Fig. 5. A system with several solutions.

Fig. 6. The common pre,x migrates “upstream”.

With the above graph, e.g. we are led to associate a system which when reduced to
the unknowns �(0); �(1) and �(2) is as follows:

�(0) = a3�(1) ∧ �(1) ∧ a2�(2);

�(1) = �(0) ∧ a2�(2);

�(2) = �: (16)

Clearly, this system has three di'erent solutions in the variables �(0) and �(1), to wit,
�(0)= �(1)= �, �(0)= �(1)= a, and �(0)= �(1)= a2. The longest common pre,xes
are actually given by the last solution, which is the greatest ,xed point of the decreasing
function de,ned in (16). The solution is thus obtained by setting all three unknowns
to 0 and by iteratively applying function (16). Mohri’s algorithm, however, would
compute the ,rst solution. It would determine the states where the outputs of the
leaving edges have a common pre,x di'erent from the empty word. For such states,
the maximum common pre,x would be deleted from the labels of the leaving edges
and it would be added to the right of the labels of the entering edges (see Fig. 6)
Here it would stop without doing anything.

More precisely, Mohri considers the classical decomposition of the graph into its
largest strongly connected components (SCC) and visits the components in a reverse
topological ordering. Each component C is treated successively. Every node in C
is given a status: dead, live, sleeping. A node q is dead whenever there ex-
ist two leaving arcs labelled by two non-empty words starting with di'erent letters:
label(q; p)= au and label(q; r)= bv for p; r ∈Q, a �= b∈A, u; v∈A∗. Clearly, in this

142 C. Cho'rut / Theoretical Computer Science 292 (2003) 131–143

case, we have �(q)= � and the node needs no further treatment. A node q is live if
the labels of all leaving edges have a non-empty common pre,x, say w. Then w may
migrate from leaving to entering edges. Finally, a node q is sleeping in all other
cases, i.e., it has a leaving arc labelled by �. The sleeping nodes are not discarded
since they may change status (the empty label may receive some non-empty word from
a neighbouring live node). The algorithm investigates the live nodes only and when
it stops it guarantees that all nodes satisfy the condition on the labels “locally” but not
globally, i.e.,

∀q ∈ Q:
∧

p∈Q
label(q; p) = �: (17)

BEeal and Carton have corrected this error in [3]. More precisely, they have denoted
by LG the maximum length of the strings of the form �(q) where q∈Q. A depth-,rst
search on the subgraph G′ obtained by deleting all non-empty labels is run in order to
determine its maximum strongly connected components and compute the ,rst common
letter of all the outgoing labels, if such a letter exists at all. A second depth-,rst search
on the entire graph G performs the migration of this letter resulting in a new graph
G1. At this point, we have LG1 =LG−1. It suFces to proceed in this manner LG times
in order to obtain the desired graph. The overall cost is in O((L+ 1)m) as claimed.

Breslauer proceeds in a di'erent manner, by reduction to a problem of shortest-path
in a graph. Indeed, the label of each edge is replaced by its length and viewed as a
“distance” between the two ends of the edge. The shortest distance of each node q
to some ,nal node is an upper bound on the length of �(q). In general, it is strictly
greater. In order to enforce equality the author uses the following approximation of
�(q). De,ne an arbitrary covering forest of the graph where the ,nal nodes are the
roots of the trees composing the forest. With every node q associate the label L(q) of
the unique path leading from q to some root and set

C(q) =
∧

(q;p)∈E
label(q; p)L(p): (18)

Add a vertex � and connect each root to this node with an edge of distance 0. Also
connect each node q with an edge of distance |C(q)|. The author proves that �(q) is
the pre,x of C(q) whose length is the shortest distance from q to �. These values can
be computed eFciently by any variant of Dijkstra’s algorithm (cf. [2]). The overall
complexity is dominated by the cost of solving (18). Using the structure of “suFx
tree”, the author shows that the complexity is in O(n+m+ s|B|), where s is the sum
of the lengths of the labels of the graph and |B| the cardinality of the alphabet.

References

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Analysis, Addison-Wesley,
Reading, MA, 1974.

[2] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows, Prentice-Hall, Englewood Cli's, NJ, 1993.

C. Cho'rut / Theoretical Computer Science 292 (2003) 131–143 143

[3] M.P. BEeal, Olivier Carton, Computing the pre,x of an automaton, RAIRO, Inf. ThEeor. Appl., to appear.
[4] J. Berstel, Transductions and Context-Free Languages, Teubner, Stuttgart, 1979.
[5] D. Breslauer, The suFx tree of a tree and minimizing sequential transducers, Theoret. Comput. Sci.

191 (1998) 131–144.
[6] C. Cho'rut, A combinatorial problem in the theory of free monoids, in: H.A. Maurer (Ed.), Proc. 6th

ICALP Conference, Lecture Notes in Computer Science, vol. 71, Springer, Berlin, 1979, pp. 88–103.
[7] S. Ginsburg, G.F. Rose, A characterization of machine mappings, Canad. J. Math. 18 (1966) 381–388.
[8] M. Mohri, Minimisation of Sequential Transducers, Lecture Notes in Computer Science, vol. 807,

Springer, Berlin, 1994, pp. 151–163.
[9] M. Mohri, Finite-state transducers in language and speech processing, Comput. Linguistics 23 (1997)

269–311.
[10] M. Mohri, Minimization algorithms for sequential transducers, Theoret. Comput. Sci. 234 (2000) 177–

201.
[11] J. Oncina, P. Garcia, E. Vidal, Learning subsequential transducers for pattern recognition and

interpretation tasks, IEEE Trans. Pattern Anal. Mach. Intell. 15 (1993) 448–458.
[12] C. Reutenauer, Subsequential functions: characterizations, minimization, examples, International Meeting

of Young Computer Scientists, Lecture Notes in Computer Science, vol. 464, Springer, Berlin, 1990,
pp. 62–79.

[13] C. Reutenauer, M.P. SchKuzenberger, Minimization of rational word functions, Siam J. Comput. 30 (4)
(1991) 669–685.

[14] M.P. SchKuzenberger, Sur une variante des fonctions sEequentielles, Theoret. Comput. Sci. 11 (1977)
47–57.

